271: Introduction to Digital Circuits and Systems

- Professor Scott Hauck, EEB-307Q (hauck@ee.washington.edu)
 - Office Hours: stop by or email w/schedule for a slot

- TAs (EEB-371):
 - Vandana Dhawan (vandana1@uw.edu) EEB-361
 - John Sealy (sealyj2@uw.edu) EEB-361

- Lab Hours: most times most weekdays
 (check website)

Grading

- 20% - Homeworks
- 30% - Labs
- 20% - Midterm Exam
- 30% - Final Exam
- Homework is due at the end of class on the specified date.
- Late penalties:
 - <24 hours: -10%
 - <48 hours: -30%
 - <72 hours: -60%
 - >72 hours: not accepted
Joint Work Policy

- Labs will be done alone, homeworks in groups of 1-2.
 - Students may not collaborate on labs/projects, nor between groups on the specifics of homeworks.
- OK:
 - Studying together for exams
 - Discussing lectures or readings
 - Talking about general approaches
 - Help in debugging, tools peculiarities, etc.
- Not OK:
 - Developing a lab together
 - Checking homework answers between groups
- Violation of these rules is at minimum grounds for failing the class

Class & Lab Meetings

- Labs:
 - Each student assigned a lab kit, can work where-ever.
 - **There are no specific assigned lab times.**
 - TAs have large blocks of office hours to help with labs, homeworks, class material, etc.
 - Signups for lab demos will be posted shortly.
- Midterm: Wed, February 11, in class
- Final: Tues, March 17, 2:30-4:20
Motivation

- Readings: 1-1.4, 2-2.4
- Electronics an increasing part of our lives
 - Computers & the Internet
 - Car electronics
 - Robots
 - Electrical Appliances
 - Cellphones
 - Portable Electronics
- Class covers digital logic design & implementation

Example: Car Electronics

- Door Ajar (DriverDoorOpen, PassDoorOpen):

- High-beam indicator (lights, high beam selected):
Example: Car Electronics (cont.)

- Seat Belt Light (driver belt in):
- Seat Belt Light (driver belt in, passenger belt in, passenger present):

Basic Logic Gates

- AND: If A and B are True, then Out is True
 \[\text{A} \quad \quad \text{B} \quad \quad \quad \quad \quad \quad \quad \text{Out} \]

- OR: If A or B is True, or both, then Out is True
 \[\text{A} \quad \quad \text{B} \quad \quad \quad \quad \quad \quad \quad \text{Out} \]

- Inverter (NOT): If A is False, then Out is True
 \[\text{A} \quad \quad \quad \quad \quad \text{Out} \]
TTL Logic

Digital vs. Analog

Digital:
- only assumes discrete values
- Binary/Boolean (2 values)
 - yes, on, 5 volts, high, TRUE, "1"
 - no, off, 0 volts, low, FALSE, "0"

Analog:
- values vary over a broad range continuously
Advantages of Digital Circuits

- Analog systems: slight error in input yields large error in output
- Digital systems more accurate and reliable
 - Readily available as self-contained, easy to cascade building blocks
- Computers use digital circuits internally
- Interface circuits (i.e., sensors & actuators) often analog

This course is about logic design, not system design (processor architecture), not circuit design (transistor level)

Combinational vs. Sequential Logic

Sequential logic

Network implemented from logic gates. The presence of feedback distinguishes between sequential and combinational networks.

Combinational logic

No feedback among inputs and outputs. Outputs are a function of the inputs only.
Black Box (Majority)

- Given a design problem, first determine the function
- Consider the unknown combination circuit a “black box”

Truth Table

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
```

“Black Box” Design & Truth Tables

- Given an idea of a desired circuit, implement it
 - Example: Odd parity - inputs: A, B, C, output: Out
Boolean Elements

Algebra: variables, values, operations

In Boolean algebra, the values are the symbols 0 and 1
If a logic statement is false, it has value 0
If a logic statement is true, it has value 1

Operations: AND, OR, NOT

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X AND Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>NOT X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X OR Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean Equations

Boolean Algebra
values: 0, 1
variables: A, B, C, . . . , X, Y, Z
operations: NOT, AND, OR, . . .

NOT X is written as \(\overline{X} \)
X AND Y is written as \(X \cdot Y \), or sometimes \(X \land Y \) or \(X \& Y \)
X OR Y is written as \(X + Y \)

Deriving Boolean equations from truth tables:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Carry</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Carry = OR'd together *product terms* for each truth table row where the function is 1
if input variable is 0, it appears in complemented form;
if 1, it appears uncomplemented

Sum =
Boolean Algebra

Another example:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Cout</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean Algebra (cont.)

Reducing the complexity of Boolean equations

Laws of Boolean algebra can be applied to carry out function to derive the following simplified expression:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Verify equivalence with the original Carry Out truth table:

- place a 1 in each truth table row where the product term is true
- each product term in the above equation covers exactly two rows in the truth table; a row can be "covered" by more than one term