FPGAs & Multi-FPGA Systems

Fit logic into a prefabricated system
 Fixed inter-chip routing
 Fixed on-chip logic & routing

FPGA Abstract Model

Logic cells imbedded in a general routing structure

- Logic cells usually contain:
 - 6-input Boolean function calculator
 - Flip-flop (1-bit memory)

All features electronically (re)programmable
Real FPGA Architecture – Altera Stratix V

Note: Most pictures following courtesy of Mike Hutton/Altera Inc.

Alterna Stratix V Device Floorplan

- Logic Blocks
- Multipliers & DSP
- Embedded Memories
- Clocking Logic
- I/O Protocols
The k-Input LUT (e.g. k=4)

\[a'b'c'd' + abcd + abc'd' = 1000 0000 0000 1001 = 0x8009 \]

Adaptive Logic Module
LAB Interface

Hierarchy: LAB / Cluster
Global Routing

Routing (Detailed)

Xilinx 4000 Series
Altera Stratix V Device Floorplan

- Logic Blocks
- Multipliers & DSP
- Embedded Memories
- Clocking Logic
- I/O Protocols

Memory in Stratix Devices

MLABs
- Change LABs into dual port memories
 - 10x32addr by 2bit
 - 10x64addr by 1bit

- FIFO Buffers
- Shift Registers
- Delay Lines
- Small ROMs

M20K Blocks
- 20Kbit on-chip blocks
dual port w/parity
- 16Kaddr by 1bit
- 8Kaddr by 2bit
- 512addr by 32bit
- Large on-chip storage
- Intermediate results
- Caching & data reuse

External Memory
- DRAM, SRAM, & FLASH interfaces
 - Multiple Gbytes

- Huge Datasets
- Longer-term storage

More Bits for Larger Memory Buffering

More Data Ports for Greater Memory Bandwidth
DSP Blocks (18-bit mode)

DSP Blocks (High-precision mode)
Putting it all Together

Stratix V Statistics (5SGSD5H2F35I3LN)

Logic
- ALMs (4xReg, 4x4LUT, ...): 172K
- DFFs: 690K
- 4-LUTs: 690K
- Hard Multipliers: 3,180 (18x18), 1,590 (27x27)

Memory
- 64x10b MLABs (uses ALMs): 4.3K (344KBytes)
- M20K blocks: 2,014 (4.9MBytes)

I/O, Clocks
- PCIe hard IP blocks: 1
- DDR3 Interfaces: 4
- 14.1Gbps transceivers: 24
- Clock Generators (PLLs): 24
FPGA Roles

- Digital logic implementation & prototyping
- Multi-mode systems
 - Change functionality for different applications
- Logic emulation
- Stream-based computing

![FPGA Diagram]

Processor acceleration

![Processor Diagram]

Partitioning

For Multi-FPGA System:
- Break logic into individual FPGAs
- Respect inter-FPGA communications
- Similar to placement

Techniques
- Multi-level partitioning (xbars)
- Simulated Annealing

Generally an unsolved problem

![Partitioning Diagram]
Virtual Wires

Multi-FPGA systems typically pin-limited, not logic limited
FPGA: up to 1 Million logic gates, 512 I/Os.
Partitioned circuit components might be:
10x(1 Million gates, 5,000 I/Os)
100x(100,000 gates, 500 I/Os)
Solution:
20x(1/2 Million gates, 2,500 I/Os + time division multiplexing on I/Os)

Global (Inter-FPGA) Routing

Route from source to destination FPGA using fixed resources
Similar to Aphyds Global Routing, but with fixed capacities
Maze, Steiner, etc. all can be applied
Must deal with potentially non-geometric distances
Technology Mapping

Take circuit and map it into the basic elements of the FPGA
5-LUTs
Must consider multiple factors
 logic decomposition
 logic replication
 reconvergent fanout

Placement

Assign logic blocks to specific chip locations
 Virtually identical to Aphyds Placement
Seek to minimize routing distance, congestion
FPGA Routing

Must pick the individual resources to use to carry a signal
- fixed capacity
- potentially non-geometric distances
- balance demands of multiple routes

Pathfinder (McMurchie, Ebeling)
- Convert routing architecture to graph
- Ignore congestion – change penalties and iterate
- Use maze + A* routing
- Integrate performance and congestion avoidance into one algorithm

Pathfinder

Represent all interconnection resources as a directed graph
- Pin permutations on LUT inputs also captured

Routing sketch:
- Each iteration rip-up and reroute all signals independently.
- Resources currently used by another net cost more
- Between iterations increase cost of resources that are shared

-> Over time, signals “bid” on preferred route, negotiating a compromise
FPGAs & Multi-FPGA Systems

- Fit logic into a prefabricated system
- Fixed inter-chip routing
- Fixed on-chip logic & routing

CAD & Physical Design

- CAD = Computer Aided Design
- Complexity of today’s circuits requires computer support for most design tasks
- CAD split into Synthesis, Physical Design
 - Synthesis = translating designer requirements into a circuit graph
 - PD = translating circuit graph into layout (“blueprint”) for fabrication
- Partitioning
- Global Routing
- Technology Map
- Placement
- Routing
- Floorplanning
- Placement
- Global Routing
- Detailed Routing
- Compaction