Advanced Topics: Bipartite Matching

Imagine you have two items that have to be assigned together:
- FPGA I/O signals and pins that can support specific protocols
- Men and women for arranged marriages

Graph form:
- Node sets A and B, and edges V from A to B representing compatibility

Possible goals:
1.) Find a perfect matching of elements from A to B, such that pairs are compatible.
2.) Find a maximum matching if a perfect matching not possible (more A’s than B’s? Not right compatibilities?).

Active Learning: Matchmaker

Find the most possible marriages that can be formed (no polygamy, etc).
Bipartite Matching Algorithm – Iterative Improvement

Max-flow/Min cut

Bipartite Matching Example
Dynamic Programming:
Solve problem by breaking them into problems, combine the sub-solutions
If some subproblems repeat, save the solutions to reuse instead of recalc.

Example: Fibonacci \(\text{Fib}(N) = \text{Fib}(N-1) + \text{Fib}(N-2), \text{Fib}(1) = 0, \text{Fib}(2) = 1 \)

Dynamic Programming solution:
\[
\text{Fib}(N) \{
\text{if not(saved(N))}
\qquad \text{saved(n)} = \text{Fib}(N-1) + \text{Fib}(N-2);
\qquad \text{return saved(N);}
\}
\]

Other examples from 541 of dynamic programming?

Dynamic Programming Requirements
Optimal Substructure: optimal solution can be found by combining optimal solutions to subproblems.

Overlapping Subproblems: space of subproblems is small recursive algorithm will solve the same subproblems over and over

Note: if subdivision reduces problem size significantly (i.e. halves), then it is referred to as “divide-and-conquer”. Merge-sort, etc.
Dynamic Programming Example

Map a circuit into 4-LUTs with the fastest design (fewest LUT levels in->out)
Assume input is already subdivided into <=4 input gates.

[Diagram of a circuit with labeled nodes A, B, C, D, E, G, J, B, L, O, M, N, H, K, I, F, D]