
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 1999.

Don’t Care Discovery for FPGA Configuration
Compression

Zhiyuan Li, Scott Hauck
Department of Electrical and Computer Engineering,

Northwestern University, Evanston, IL 60208-3118 USA
{zl, hauck}@ece.nwu.edu

Abstract
One of the major overheads in reconfigurable computing is the
time it takes to reconfigure the devices in the system. The
configuration compression algorithm presented in our previous
paper [Hauck98c] is one efficient technique for reducing this
overhead. In this paper, we develop an algorithm for finding
Don’t Care bits in configurations to improve the compatibility of
the configuration data. With the help of the Don’t Cares, higher
configuration compression ratios can be achieved by using our
modified configuration compression algorithm. This improves
compression ratios of a factor of 7, where our original algorithm
only achieved a factor of 4.

1. Configuration Compression
FPGAs are often used as powerful hardware for applications that
require high speed computation. One major benefit provided by
FPGAs is the ability to reconfigure during execution. For systems
in which reconfiguration was done infrequently, the time to
reconfigure the FPGA was of little concern. However, as more
and more applications involve run-time reconfiguration, fast
reconfiguration of FPGAs becomes an important issue
[Hauck98a].

In most systems an FPGA must sit idle while it is being
reconfigured, wasting cycles that could otherwise be used to
perform useful work. For example, applications on the DISC and
DISC II system spend 25% [Withlin96] to 71% [Wirthlin95] of
their execution time performing reconfiguration. Thus, a reduction
in the amount of cycles wasted to reconfiguration can significantly
improve performance. Previously, we have presented methods for
overlapping reconfiguration with computation via configuration
prefetching [Hauck98b]. We have also presented a technique for
reducing the overhead by compressing the configuration
datastreams [Hauck98c]. In this paper, we will present a
technique for finding possible Don’t Cares in configuration data
such that higher compression ratios can be achieved.

2. Xilinx XC6200 Field Programmable Gate
Arrays

The XC6200 FPGA is an SRAM based high-performance Sea-Of-
Gates FPGA optimized for datapath designs. All user registers

and SRAM control store memories are mapped into a host
processor’s address space, thus making it easy to configure and
access the state of the chip. A simplified block diagram of the
XC6216 is shown in Figure 1.

R
ow

 D
ecode

64x64 Cell Array

Cntrl Column Decode

Figure 1. XC6216 simplified block diagram.

The XC6200 provides five types of programming control registers.
(1) The Device Configuration Register, which controls global
device functions and modes. (2) The Device Identification
Register, which controls when the computation starts. Usually the
ID Registers are written in the final step of the configuration. (3)
The Map Register, which can map all possible cell outputs from a
column onto the external data bus. By correctly setting the map
register, the state register can be easily accessed without
complicated mask operations. (4) The Mask Register, which can
control which bits on the data bus are valid and which bits are
ignored. (5) The Wildcard Register, which allows some cell
configuration memories within the same row or column of cells to
be written simultaneously. Since the Wildcard Registers are the
primary architectural component used by our algorithm, more
details are given below.

There are two Wildcard Registers, the Row Wildcard Register and
the Column Wildcard Register, which are associated with the row
address decoder and the column address decoder, respectively.
Each register has one bit for each bit in the row address or the
column address. The Wildcard Registers can be viewed as
“masks” for the row and column address decoder. Let us focus on
the effect of the Row Wildcard Register on row address translation
as the Column Wildcard Register has the same effect on column
address translation. A logic one bit in the Row Wildcard Register
indicates that the corresponding bit of the row address is a
wildcard, which means that the address decoder matches rows
whose addresses have either a “1” or a “0” on the wildcard bits.
Thus, if there are n logic one bits in the Wildcard Register, 2ncells
will be configured simultaneously. For example, suppose the Row
Wildcard Register is set as “010001” and the address to the row
address decoder is set as “110010”. In this case the row decoder
selects rows 100010, 100011, 110010, and 110011. If these
locations share the same computation, and thus would need to be

configured with the same value, all four could be configured with
a single write operation. Thus, by using Wildcard Registers faster
reconfiguration can be achieved.

The Wildcard Registers and the address decoder can be viewed as
a configuration decompressor. Given a compressed configuration
file, which has Wildcard Register writes followed by address
writes, the address is decompressed such that several cells with the
same function get configured simultaneously. The Wildcard
Registers can inform the address decoder which bits in the address
can be Wildcarded and which bits cannot. Theoretically, up to
4096 cells can be configured by only 3 writes (two Wildcard
Registers writes and one address write) if we assume all 4096 cells
share the same function. With this “decompressor” hardware
available, there is the potential to achieve significant reductions in
the required configuration bandwidth. The key is to find an
algorithm that can efficiently use this decompression hardware.
An overview of our previous compression algorithm[Hauck98c] is
presented below.

3. Configuration Compression Algorithm
Our configuration compression algorithm contains two stages. In
the first stage of the algorithm we seek to find the minimum
number of writes necessary to configure the array for a given
configuration. This will create a series of writes with arbitrary
wildcards, meaning that these wildcard writes may add a
significant overhead. This is because a single wildcarded write
may require two writes to the wildcard registers and then one write
to the configuration memory. The second stage of the algorithm
attempts to reduce this wildcarding overhead by sharing the same
wildcard in a series of writes, thus reducing the number of times
the wildcard registers must be changed.

In our previous paper, we have proved that the configuration
compression problem is NP-complete. This problem is quite
similar to another NP-complete problem—2-level logic
minimization. The intuition behind this similarity is that if we can
find the minimum number of cubes that cover the required set of
minterms for a logic minimization problem, then we can find the
minimum number of wildcards that covers the FPGA locations
that correspond to those minterms. For the example in Figure 2,
normal configuration will need 4 writes to configure all cells with
the function “2”. However, by using logic minimization
techniques we can find a single cube that covers the corresponding
minterms. We then can compress the 4 configuration memory
addresses in the cube into one address “- -10”, where “-“ means
wildcard. Instead of configuring the cells with 4 writes, 2 writes
are sufficient (one for wildcard register write, one for address
write).

00 01 10 11

 00 1 1 2 5

01 1 1 2 5

10 1 3 2 3

11 3 3 2 5

Figure 2. Example for demonstrating the potential for
configuration compression

Since the XC6200 FPGA is a reconfigurable device, later writes
can overwrite the previous value for a location. Thus, by
considering the values of the cells that have not yet been written
into the FPGA as Don’t Cares, we may be able to find a smaller
number of cubes to cover the cells which need to be written to the
FPGA, reducing the number of writes in the configuration. For
the example in Figure 2, suppose value “1” is written before value
“3”. By considering the cells with value “3” as Don’t Cares, we
find a single cube “0---” to cover all the “1”s, instead of 2..

In the first stage of the configuration compression algorithm, the
logic minimization tool Espresso [Brayton84] is used. The basic
steps of the first stage algorithm are:

1. Read the input configuration file and group together all
configuration memory addresses with the same value. Mark
all address locations as unoccupied.

2. Sort the groups in decreasing order of the number of
addresses to be written in that group.

3. Pick the first group, and write the addresses in the group to
the Espresso input file as part of the On set.

4. Write all other addresses marked unoccupied to the Espresso
input file as part of the Don’t Care set.

5. Write all addresses marked occupied, yet with the same value
as the first group, to the Espresso input file as part of the
Don’t Care set.

6. Run Espresso.
7. Pick the cube from the Espresso output that covers the most

unoccupied addresses in the first group, and add the cube to
the compressed configuration file. Mark all covered
addresses as occupied, and remove them from the group.

8. If the cube did not cover all of the addresses in the group,
reinsert the group into the sorted list.

9. If any addresses remain to be compressed, go to step 2.

Once this stage of the algorithm is complete, a series of writes is
created. Since wildcards are contained in most of addresses,
before writing an address the Wildcard Registers must be set. The
Wildcard writes represent a significant overhead. In stage two of
the algorithm, we reduce this overhead by reordering writes,
creating Wildcard Register sharing between multiple configuration
memory writes.

In order to reduce the overhead, we reorder the sequence of writes
found in stage one such that the address writes that have potential
wildcard sharing are placed next to each other. In order to do this,
we convert the totally ordered sequence of writes from the first
stage into a partial order that captures only those ordering
constraints necessary to maintain correctness. We have rules for
creating the partial order graph (for details, refer to [Hauck98c]).
Each node represents an address write, and an edge from node A
to node B means that B must be scheduled later than A. Only
those nodes without any incoming edges can be scheduled first.
After a node is scheduled, that node and any edges connected to it
are removed, potentially allowing other nodes to be scheduled. All
nodes that become schedulable once a given node is removed from
the partial order are called the children of that node.

At any given point in the scheduling process the partial order
graph determines which nodes are candidates to be scheduled.
Now, we must develop an algorithm for choosing the best
candidate node to schedule. We use the following rules as our
scheduling heuristics. The rules are applied in order, with ties at
an earlier rule broken by the rules that follow. Thus, losers at any

rule are eliminated, and only the winners are compared with the
following rules.

1. Candidate can share both row and column wildcards with the
preceding writes.

2. A child of the candidate can share both wildcards with a
different current candidate.

3. Candidate can share either the row or column wildcard with
the preceding writes.

4. Candidate with the greatest number of other candidates and
children that can share both row and column wildcards with
it.

5. Candidate with the greatest number of other candidates and
children that can share either the row or column wildcard
with it.

6. Candidate with the greatest number of children.

Rules 1 and 3 measure the immediate impact of scheduling the
candidate on the number of wildcard writes. Rule 2 adds some
lookahead, scheduling a candidate early in order to allow its
children to share wildcards with another current candidate. Rules
4 – 6 attempt to increase the number of good candidates, hoping
that the greater flexibility will result in lower Wildcard overheads.

4. Don’t Care Discovery Algorithm
In the initial configuration compression algorithm we noticed that
the Don’t Care set is important to the compression ratio.
Intuitively, the larger the Don’t Care set is, the higher the
compression ratio we can achieve. In the following sections we
present techniques for finding more Don’t Cares.

The XC6200 is partially reconfigurable, meaning that a
configuration file may contain writes to only a portion of the logic
array. Thus, there are regions of the array that are not modified by
input configuration. We treat these regions as “Don’t Touches” in
our configuration algorithm, meaning that we do not allow our
algorithm to write these locations since these regions may contain
data from previous configuration that must be maintained. Of
course, if we can turn these Don’t Touches into Don’t Cares,
higher compression ratio can be achieved. For example, assume
addresses 0, 1, and 2 contain the same configuration value, while
other regions are not specified. If address 3 can be considered as a
Don’t Care, we will find one cube that contains addresses 0, 1, and
2, one less than considering address 3 as a Don’t Touch.
However, in some cases we are not allowed to write anything into
the unspecified locations because these locations may contain
useful information for other configurations.

Up to now we have discussed Don’t Cares at the word level,
meaning that if a location is said to be Don’t Care, then all data
bits for that location can be viewed as Don’t Cares. We call these
locations “True Don’t Cares”. For locations that are not True
Don’t Cares, not all configuration bits contained in these locations
are important, since some bits can be turned into Don’t Cares
without causing incorrectness. For example, each cell is capable of
routing signals in 4 different directions, but in most cases only 1
or 2 directions are actually used for the computation, so the
configuration for unused directions can be treated as Don’t Cares.
Even though none of these locations are True Don’t Cares, the
compatibility of data for different locations may increase, and thus
we are able to have fewer cubes to cover the necessary
configuration. For example, suppose there are only two locations
specified in a configuration, with address 1 containing data
“00101000” and address 2 containing data “00100000”.

Obviously, two configuration writes are necessary by our
configuration compression algorithm. However, assume that we
are allowed to modify the value in address 1 to “0010-000”, where
“-“ means Don’t Care. Without considering the overhead of the
Wildcard Register write, one write is now sufficient to complete
the configuration of both locations. From this we can see that
multiple locations can be configured by a common value if they
are compatible with each other. The following condition
determines if two data values are compatible.

Condition 1: Two data values A and B are said to be compatible if,
for all i, Ai = “-“, or Bi = “-“ or Ai = Bi , where Ai is the ith bit of A
and Bi is the ith bit of B.

If all pairs of data in a set are compatible, then we say the
locations contained in that set are compatible.

Given a configuration file, the discovery of the Don’t Care bits is a
major goal. Once this stage is complete, with minor
modifications, our configuration compression algorithm can be
applied to find a compressed version of a configuration. In the
Don’t Care discovery algorithm we start from the output cells
(user defined registers) and output IOBs, backtracing all
configuration bits that contribute to the correct computation. This
will determine all programming bits necessary for correct
computation, meaning that all other bits don’t matter, and thus can
be considered as Don’t Cares.

Before discussing the details for this algorithm, we first describe
the format of the configuration files we use. The standard Xilinx
XC6200 configuration file (.cal file) consists of a series of
configuration address-data pairs. In order to do the backtracing,
we need information about output locations. One set of our
benchmarks are compiled by the XACT6000 tools, which
produces a symbol table file (.sym file) that specifies the locations
of all circuit inputs and outputs. For another set of benchmarks
that are not created by XACT6000 tools, we create the symbol
files that consist of output information.

In the Don’t Cares discovery algorithm, we are given the
information about the FPGA output locations, which includes
IOBs and cells configured as registers. From the user point of
view these locations contain the information that the user really
needs. The outputs of these locations are computed by logic
operations on the inputs to these locations, meaning that the
locations providing these inputs could affect the results of the
outputs. Thus only some fields of these newly identified locations
are critical to the computation result. We backtrace the inputs to
these fields and get another set of important fields. This
backtracing process is repeated until all important fields for the
computation are traversed. Notice that these traversed fields
normally represent a subset of the given configuration. This is
because some configuration bits specified in the configuration file
become Don’t Cares, meaning that we can assign arbitrary values
to these bits.

Since new values can be assigned to the newly discovered Don’t
Care bits, the given configuration can be changed to a different
configuration. However the resulting computation of the two
configurations is identical. This is because from the user’s point of
view, if the outputs of both configurations produces the same
result, we can safely say that both configurations meet the user’s
needs. Since the backtracing starting from the outputs for a given
configuration covers all fields necessary to the outputs, the
computation is maintained. One final concern is that the new

configuration will overwrite locations that may be used by other
configurations. Since the locations traversed during backtracing
contain the information for the correct computation, those
locations must be specified by the original configuration or by
initialization (Reset) values. In either case, if the given
configuration does not overwrite any locations that are used by
other computations the new configuration also will not, since the
new configuration is a subset of the given configuration.

Clock
Mux

D Q D Q

D Q

O
B
C A

D

1

2

3

4

Clock
mux

In 1

In 2

Figure 3. Example circuit for backtracing.

During backtracing we seek to find all portions of a circuit that
help produce a given signal. Once these regions are found for
each circuit output, we have identified all locations that must be
configured with a specified value. Thus all other locations can be
treated as Don’t Cares. For example, consider the circuit in Figure
3. From the .sym file we find that the only circuit output is “O”.
We backtrace this signal, discovering that it is computed by a
register. This means that its clock circuitry and its input “A” are
important. Backtracing A will show that the function block of this
cell is important, requiring B and C to be backtraced. Eventually,
we will reach the registers in cells 1 and 2 that start this
computation. With this recursive backtracing process we will
identify the entire circuity shown. For this example all other
configuration data is irrelevant to the proper circuit funtioning,
and thus can be considered as Don’t Care. Thus, all Northward
and Westward routing, the logic functions of cells 1 and 2, and the
register in cell 3 can be configured arbitrarily. It is this flexibility
which will help significantly boost compression ratios.

Before discussing the algorithm further, we first briefly describe
some of the features of the XC6200 architecture that are important
to our algorithm. There are 3 major components in the array:
cells, switches and IOBs. There are 4096 cells arranged in a 64 ×
64 array, and each cell has 3 separate 8-bit configuration bytes.
One of these bytes controls the neighbor routing multiplexers and
two others control the functionality. Switches are located at the
boundary of blocks of 4 × 4 cells, and they are labeled according

to the signal travel direction. Each of the east and west switches
has one configuration byte controlling neighbor routing, length 4
wire routing and length 16 wire routing. Each north and south
switch has multiple configuration bytes controlling neighbor
routing and length 4 and length 16 routing as well as global
signals, including clock and clear lines. Each IOB consists of
multiple configuration bytes controlling routing and some circuit
control signals. A configuration can be viewed as the
configurations of the multiplexers in cells, switches, and IOBs. If
any multiplexer in a specified unit (cells, switches and IOBs) is
not used for the computation, then the corresponding configuration
bits for that multiplexer are considered Don’t Cares. We now give
some details on how to find Don’t Cares for cells, switches and
IOBs respectively.

Figure 4 shows the basic XC6200 cell in detail, with the function
unit at left and cell routings at right. Input multiplexers select
outputs from neighbors or from length 4 wires to connect to X1,
X2, and X3. The Y2 and Y3 multiplexers provide for conditional
inversion of the inputs. The CS multiplexer selects a
combinatorial or sequential output. The RP multiplexer controls
the contents of the register to be “protected”. If the register is
configured as “protected”, then only the user interface can write
the register.

There are two configuration bytes controlling the multiplexers for
the function unit. Don’t Care Discovery depends on the
functionality of the cell. For example, if the CS multiplexer
selects the sequential output and the RP multiplexer configures the
register as protected (feeds the register output back into its input),
then all X multiplexers and Y multiplexers can be set as Don’t
Cares because the user interface is the only source that can change
the F output. If either the Y2 or Y3 mux selects the output of the
register, then the corresponding X multiplex can be set as Don’t
Care. The X1 multiplexer can be set as Don’t Care if Y2 and Y3
both select the same signal. For any of the 4 neighbor routing
multiplexers not used for computation or routing, the bits for
controlling the multiplexer can be considered as Don’t Care.

Figure 5 shows the north switch at a 4 × 4 block boundaries. Two
multiplexers control neighbor routing and length 4 routing to the
North, and there is an additional length 16 multiplexer at each 16
× 16 boundary. South, East and West switches are similar to the
North switches in structure. Generally, if any of the multiplexers
are not used, then the configuration bits for that multiplexer can be
set as Don’t Cares. However, the configuration bits for the Nout
multiplexer cannot be set as Don’t Cares if the N4out multiplexer
selects NCout, since the same programming bits control the upper
and lower 4 input multiplexers. For the case that NCout and Nout
select different inputs, both inputs need to be backtraced.

Each North switch contains an additional Clock multiplexer. This
multiplexer is traversed only if a cell in the same column within
the 4 × 4 block is configured as register. Each South switch at the
16 × 16 boundary contains a Clear multiplexer. This multiplexer
is traversed only if any cell at the same column within the 16 × 16
block is configured as a register.

X1

 X2

X3

Y2

Y3

1

0 RP Mux

D Q

Q

C

S
F

Function
Unit

N S E W N4 S4E4 W4

S E W F X2 X3

N
S
E
W
N4
S4
E4
W4

N
S
E
W
N4
S4
E4
W4

N E W F

N
S
W
F

N
S
E
F

X2X1

X3

Nout

EoutWout

Sout Magic

F

Clk

Figure 4. XC6200 Function Unit and Cell Routings.

SCIn

NCL
N16
NCOut
ClkIn
N4In
MNA
PS16
SCL
MN
MS

N4Out

F
Nin
E
W

N4In
N16
PS4
MN

Nout

NCOut
NCL
SCL
N16In
N4In

PS4
NCOut
SCIn

MN

N16Out

P P P

Figure 5. Contents of Nswitch.

Our algorithm does not attempt to find Don’t Cares in IOBs. This
is because: 1) There are only 64 IOBs at each side of the array,
meaning that we will not benefit much from finding Don’t Cares.
2) The architecture of IOB involves many circuit control signals
that cannot be turned to Don’t Care. However our algorithm does
traverse through the identified IOBs to backtrace other units.
Thus, our algorithm is conservative (since it may not discover
Don’t Cares in IOBs) but always produces a valid output.

We now present the basic steps of our Don’t Care Discovery
algorithm, the terminology “unit” used below is defined as the
basic circuit element, not the full logic cell.

1. Read the input .cal file and mark a unit as touched if any part
of the unit is specified in the .cal file. Mark all configuration
bits as Don’t Care.

2. Read the .sym file and put all output units (IOBs and registers
used as outputs) into a queue.

3. Remove a unit from the queue. If it has already been
backtraced, ignore it. Otherwise, mark its configuration bits
as no longer Don’t Care, and insert its important inputs into
the queue. Mark the unit as touched.

4. If the queue is not empty, goto 3.
5. Produce a new target configuration where:

a.) All locations that were not marked as touched are
considered as Don’t Touch.

b.) All bits that were marked as no longer Don’t Care are
assigned their value from the .cal file.

c.) All other bits are Don’t Cares.

Note that in situations where the configuration given to the
compression algorithm represents the entire logic that will be

mapped to the array, it does not matter what happens to the unused
cells in the FPGA. In such a case, step 5a instead sets locations
not marked as touched as Don’t Care.

5. The Modification of the Configuration
Compression Algorithm

Once the Don’t Care discovery algorithm is complete, we have a
list of address data pairs, with Don’t Care bits contained in many
of the data values. In order to take advantage of these Don’t Cares
we need to make some modifications to our configuration
compression algorithm.

In our original configuration compression algorithm locations with
the same data value are placed in the same group. This is because
the addresses with the same value represent an On set in the
corresponding logic minimization problem. However, by
discovering the Don’t Care bits, each On set can be represented by
a set of locations that not necessarily consist of the same value.
After modifying the Don’t Cares to “1” or “0”, the locations with
different values in the given configuration can be placed into the
same group since these locations are compatible. Notice that it is
possible that an address can now fit into multiple groups instead of
fitting just one group in our original compression algorithm
because of the Don’t Cares, meaning that the flexibility for our
configuration compression algorithm is increased. For example,
suppose that after the discovery of the Don’t Care bits address A
contains data “00-000-0”. Assume there are 3 groups, where
group 1 has value “00000000”, group 2 has value “00000010” and
group 3 has value “00100000”. Address A is compatible with the
value of each of the 3 groups and is placed into all 3 groups.
Writing any value representing the 3 groups into address A
properly configures it. This is because any of the 3 values can
create the necessary configuration for the computation. Even
though address A may be overwritten by values from the other two
groups, the necessary configuration for computation for that
location is maintained. Our original algorithm can take advantage
of this feature to find fewer cubes covering the necessary
configuration.

In our original configuration compression algorithm the data
associated with an address has a fixed value, so the locations are
grouped by their values. However, after running the Don’t Care
discovery algorithm, a location with Don’t Cares can be placed
into multiple groups dependent on their compatibility. Thus we
need to develop an algorithm to group the locations such that the
addresses (locations) in each group are compatible. An address
(location) can appear in as many as 2n groups, where n is the
number of Don’t Care bits contained in its data value. Notice that
compatibility is not transitive. That is, if A and B are compatible,
and B and C are compatible, it is not always true that A and C are
compatible. For example, assume A, B and C have values
“000100-0”, “0-0-0000” and “0100-000” respectively. A and B
are compatible, and B and C are compatible, but A and C are not
compatible. This non-transitivity property is an important
consideration, making grouping decisions complex.

For 8-bit data, the simplest method for grouping is to create 256
groups, with the values 0 to 255. For each address data pair, place
it into every group with a compatible value. However, this
technique has exponential time complexity, and if we want to
extend this technique to a 32-bit data bus the number of groups

needed is 232. It is obvious that a heuristic method is needed. We
present our heuristic grouping algorithm as following:

1. Once Don’t Care discovery is complete, put those addresses
with Don’t Care data bits into a list. For those addresses
without Don’t Care Data bits, group them according to their
data values.

2. Search the list, removing those addresses that can be fit into
any of the current groups, and put them into all compatible
groups.

3. Repeat until the list is empty:
a.) Pick a location from the list with the fewest Don’t Care

bits.
b.) The value for the group is equal to the value for the

picked location, but with all Don’t Care bits converted
to “0” or “1”. These bits are converted iteratively,
converting to the value that has the most compatible
other locations.

c.) Add all locations compatible to this value to the group.
If they are on the unassigned list, remove them.

We also need to make modifications to other steps of the
configuration compression algorithm. To make it clear, we
present the modified algorithm:

1. Apply the Don’t Care Discovery algorithm to find Don’t
Cares. Group the address data pair by using our grouping
algorithm. Mark the address locations specified in given .cal
file as unoccupied. Mark the address locations not specified
in the .cal file, but used in the backtrace, as occupied.

2. Sort the groups in decreasing order of the number of
addresses unoccupied in that group.

3. Pick the first group, and write the addresses in the group to
the Espresso input file as part of the On set.

4. Write all other addresses marked unoccupied to the Espresso
input file as part of the Don’t Care set.

5. Write all addresses marked occupied, yet with a value
compatible with the group, to the Espresso input file as part
of the Don’t Care set.

6. Run Espresso.
7. Pick the cube from the Espresso output that covers the most

unoccupied addresses in the first group, and add the cube to
the compressed configuration file. Mark all covered
addresses as occupied.

8. If the cube did not cover all of the addresses in the group,
reinsert the group into the sorted list.

9. If any addresses remain unoccupied, go to step 2.

In this new algorithm there are several classes of locations:
configured, initialized, and untouched. Configured locations are
those whose value is set in the input .cal file, and our algorithm
will generate a write to set these values. Untouched locations,
which are not found in either the backtrace or the .cal file, can be
viewed as either Don’t Touch, if these unused cells may be used
for other functions, or Don’t Care, if the cells will be left unused.
Initialized locations are locations that are not set in the .cal file,
but are discovered to be important during backtracing. Thus the
initialization value must be used. Our algorithm handles these
locations as potential group members, but which are already set as
occupied. Thus, compatible values can overwrite these locations
to achieve better compression, but the algorithm is not required to
write to these locations if it is not advantageous.

Original compression algorithm New algorithm (Don’t Touch) New algorithm (Don’t Care)Bench-
mark

Input
size

Ctrl

Cnfg Wcrd Ratio1 Ratio2 Cnfg Wcrd Ratio1 Ratio2 Cnfg Wcrd Ratio1 Ratio2

Counter 199 40 53 13 53.2% 41.5% 29 5 37.2% 21.4% 22 4 33.2% 16.4%

parity 208 16 9 3 13.5% 6.3% 6 2 11.5% 4.2% 6 2 11.5% 4.2%

Add4 214 40 43 14 45.3% 32.7% 24 7 33.2% 17.8% 16 6 29.0% 12.6%

zero32 238 42 12 3 23.9% 7.7% 8 3 22.3% 5.6% 6 3 21.4% 4.5%

adder32 384 31 28 14 19.0% 11.9% 20 13 16.7% 9.3% 20 13 16.7% 9.3%

Smear 696 44 224 37 43.8% 40.0% 150 36 33.0% 28.5% 121 32 28.3% 23.5%

Add4rm 908 46 473 45 62.1% 60.1% 279 78 44.3% 41.4% 203 65 34.6% 31.1%

Gray 1201 44 530 74 53.9% 52.2% 378 53 39.5% 37.3% 311 44 33.2% 30.4%

Top 1367 70 812 87 70.8% 69.3% 531 65 48.7% 46.0% 419 57 39.9% 36.7%

demo 2233 31 423 91 24.4% 23.3% 281 77 17.4% 16.3% 241 66 15.1% 13.9%

ccitt 2684 31 346 84 17.2% 16.2% 235 55 12.0% 11.0% 204 50 10.6% 9.6%

t 5819 31 834 192 18.2% 17.7% 567 176 13.3% 12.8% 492 162 11.8% 11.3%

correlator 11011 38 1663 225 17.4% 17.2% 1159 187 12.6% 12.3% 1004 176 11.0% 10.8%

Totals:

 w/ctrl 27162 6836 (25.2%) 4928 (18.1%) 4249 (15.6%)

 w/o ctrl 26658 6332 (23.8%) 4424 (16.6%) 3745 (14.0%)

Table 1. The results of the compression algorithms.

6. Experimental Results
The results are shown in Table 1. The size of the initial circuit is
given in the “Input size” column. This size includes all writes
required to configure the FPGA, including both compressible
writes to the array, as well as non-compressible control register
writes. The “Ctrl” column represents the number of non-
compressible writes, and is a fixed overhead for both the original
and compressed file. The results of the compressed version by our
original algorithm are shown in the column “Original
Compression”. The results of the compressed version by our new
algorithm are shown in the column “New algorithm”, with
unspecified locations considered as Don’t Touch or Don’t Care
(which is appropriate depends on the details of the use of these
configurations). The number of writes to configure the logic array
is shown in the column “Cnfg”, the number of wildcard register
writes is shown in “Wcrd”, the “Ratio1” is the ratio of the total
number of writes (the summation of “Ctrl”, “Cnfg” and “Wcrd”)
to the size of the input configurations. Notice that the “Ctrl”
writes represent a fixed startup cost that often can be ignored
during Run-Time reconfiguration. Thus, to reflect the
compression ratio without this initial startup cost, we use
“Ratio2”, which equals to (“Cnfg” + “Wcrd”)/(“Input size” –
“Ctrl”), to represent the compression ratio for the compressible
part of the circuits. In last two rows, the total number of writes
and compression ratios of all benchmarks are calculated for two
cases, with and without counting the “Ctrl” writes.

7. Extensions
The algorithm presented in this paper is optimized for the Xilinx
6200 series architecture. It makes use of the fact that short-

circuits cannot be created in the programming of the FPGA
because of safeguards in the architecture. Also, since these chips
are primarily intended for reconfigurable computing, their power
dissipation is not critical. Because of this application domain, our
algorithm does not need to be concerned about the programming
of the unused portions of the FPGA. Thus, arbitrary circuitry
could be created in the unused portions of a mapping, such as a
ring-oscillator, since these regions may be overwritten by arbitrary
data due to their treatment as Don’t Cares.

In systems where the power consumption is a major consideration,
or where a bad configuration could cause a short-circuit on the
device, the side effects of Don’t Care discovery on unused circuit
components must be considered. However, we believe that a
simple post-processor could take care of these concerns without
significantly impacting compression results. Specifically, once
Don’t Care-based compression is done, the resulting circuit could
be analyzed for combinational cycles or short-circuits. Then, a
small number of additional writes could be employed to break all
combinational cycles and other problems. These writes will likely
represent a small overhead to the algorithm’s operations. This is
especially true because the random circuitry created in unused
portions will be similar to that in the working circuit (since
Wildcards merely replicate circuit structures), and thus in most
circumstances will be benign. Note that these additional writes
might even be performed after the chip is fully configured,
allowing the simultaneous execution of the chip while these last
details are addressed.

8. Conclusions
One of the primary problems in reconfigurable computing is the
time overhead due to reconfiguration. Reducing this overhead is

an important consideration for current systems. In our previous
paper, we presented a general-purpose compression algorithm for
reconfigurable computing configurations by using the
decompression hardware in the Xilinx XC6200 FPGA. In this
paper, we have presented a Don’t Care discovery algorithm to
increase the size of the Don’t Care set. By combining this
technique with our modified version of the compression algorithm,
compressed file sizes are about 14% of the original file sizes. This
represents a compression ratio of a factor of 7, where our original
algorithm only achieved a factor of 4 compression on these
benchmarks.

9. Acknowledgments
This research was funded in part by DARPA contract DABT63-
97-C-0035 and NSF grants CDA-9703228 and MIP-9616572.

References
[Brayton84] R. K. Brayton, G. D. Hachtel, C. T. McMullen

and A. L. Sangiovanni-Vincentelli, “Logic
Minimization Algorithms for VLSI
Synthesis”, Kluwer Academic Publishers,
1984.

[Hauck98a] S. Hauck, “The Roles of FPGAs in
Reprogrammable Systems”, Proceedings of
the IEEE, Vol. 86, No. 4, pp. 615-638, April,
1998.

[Hauck98b] S. Hauck, “Configuration Prefetch for Single
Context Reconfigurable Coprocessors”, to
appear in ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays, pp. 65-74, 1998.

[Hauck98c] S. Hauck, Z. Li, E. Schwabe, “Configuration
Compression for the Xilinx XC6200 FPGA”,
to appear in IEEE Symposium on FPGAs for
Custom Computing Machines, 1998.

[Wirthlin95] M. J. Wirthlin, B. L. Hutchings, “A Dynamic
Instruction Set Computer”, IEEE Symposium
on FPGAs for Custom Computing Machines,
pp. 99-107, 1995.

[Wirthlin96] M. J. Wirthlin, B. L. Hutchings, “Sequencing
Run-Time Reconfigured Hardware with
Software”, ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays, pp. 122-128, 1996.

[Xilinx97] Xilinx, Inc., “XC6200 Field Programmable
Gate Arrays Product Description”, April 1997.

.

