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Abstract 
 
 Although domain-specialized FPGAs can offer 
significant area, speed and power improvements over 
conventional reconfigurable devices, there are several 
unique and unexplored design problems that complicate 
their development.  One source of these problems is that 
designers often opt to replace more universal, fine-grain 
logic elements with a specialized set of coarse-grain 
functional units to improve computation speed and reduce 
routing complexity.  One issue this introduces is that it is 
not obvious how to simultaneously consider all 
applications in a domain and determine the most 
appropriate overall number and ratio of the different 
functional units.  In this paper, we illustrate how this 
problem manifests itself during the development of an 
encryption-specialized FPGA architecture.  We present 
three algorithms that solve this problem by balancing the 
hardware needs of the domain while considering 
performance and area requirements.  We believe these 
concerns need to be addressed by future CAD tools in 
order to develop more sophisticated application-
specialized reconfigurable devices. 
 
1 Introduction  

 While flexibility is an important feature of 
reconfigurable devices, conventional FPGAs are simply 
too generic to provide high performance in many 
situations.  General-purpose reconfigurable devices, while 
well suited to small or irregular functions, typically suffer 
a stiff penalty when implementing wide and complex 
arithmetic operations.  These types of functions need to be 
built from too many small logical resources and end up 
being spread across too general a routing structure to be 
efficient. 
 However, if the range of applications that a device is 
intended for is known beforehand, a designer can 
specialize the logic, memory and routing resources to 
enhance the performance of the device while still 
providing adequate flexibility to accommodate all 
anticipated uses.  Common and complex operations can 
be implemented much more efficiently on specialized 

coarse-grain functional units while routing and memory 
resources can be tuned to better reflect the requirements.  
An example of such a specialized reconfigurable device is 
the RaPiD architecture [10], which was originally 
designed to implement applications in the DSP domain.  
This architecture consists of dedicated 16-bit multipliers, 
ALUs and RAM modules that are connected through a 
programmable and pipelined word-wise data bus.  While 
this architecture clearly lacks much of the flexibility of a 
more conventional FPGA, [8] has shown that it 
successfully improves performance while minimally 
affecting usability since it provides significant speed, area 
and power advantages across a wide range of DSP 
applications. 
 Although domain-specialized FPGAs such as RaPiD 
can offer great advantages over general-purpose 
reconfigurable devices, they also present some new and 
unique challenges.  While design choices that affect the 
performance and flexibility of classical FPGAs are 
relatively clearly defined and well understood, the effects 
that fundamental architecture decisions have on 
specialized reconfigurable devices are largely unknown 
and difficult to quantify.   
 
2 Implications of Domain-Specialized 

Devices 

 The development of a conventional reconfigurable 
array that can accommodate a group of applications is 
relatively straightforward.  Based upon the results of past 
research, consistently good results can be obtained using 
an array consisting of 4-LUT based CLBs [2] surrounded 
by a predetermined mix of short and long routing tracks 
[4].  Using existing CAD tools, the only real parameters 
that would need to be determined are the overall size of 
the array and the number of routing tracks in the system. 
 However, when developing domain-specialized 
reconfigurable devices, the sea of fine-grained logical 
resources found in conventional FPGAs is typically 
replaced with a clearly defined set of coarse-grained 
function units.  While this can greatly improve the 
performance of the system, developers need to closely 
consider the specific ways in which each algorithm uses 
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the provided resources since the logical elements are no 
longer universally flexible.  Merely given a domain of 
applications it is not obvious what the most appropriate 
set of functional units would be, much less what routing 
architecture would be appropriate, what implications this 
might have on necessary CAD tools, or how any of these 
factors might affect each other. 
 The first challenge we mentioned, the selection of 
functional units, can be subdivided into three steps.  First, 
the applications in a domain must be analyzed to 
determine what operations they require.  Crucial parts 
such as wide multipliers or fast adders should be 
identified. Next, this preliminary set of functional units 
can be distilled to a smaller set by capitalizing on 
potential overlap or partial reuse of other types of units.  
Different sizes of memories, for example, may be 
combined through the use of multi-mode addressing 
schemes.  Lastly, based upon design constraints, the exact 
number of each type of unit in the array should be 
determined.  For example, if the applications are memory-
intensive rather than computation-intensive, the relative 
number of memory units versus ALUs should reflect this.  
This paper will primarily focus on the problem of 
functional unit allocation – determining the most 
appropriate quantity and ratio of functional units across 
the domain.  We will use the 15 candidate algorithms of 
the Advanced Encryption Standard (AES) competition 
[12] to illustrate the issues that make component 
allocation difficult. 
 While operator identification and optimization are both 
complex problems unique to coarse-grain architectures, 
we will not address these issues here since the algorithms 
in the target domain often provide an obvious starting 
point.  Normally, algorithms are described using strongly 
typed functions such as multiplications or Boolean 
operations.  The logical optimization and technology 
mapping for such strongly typed operators is relatively 
simple to perform by hand.  Although this may overlook 
subtle optimizations, such as the exact tradeoffs between 
having a separate multiplier and adder versus creating a 
dedicated multiply-accumulate unit, manual analysis does 
provide an acceptable working set and offers a starting 
point for our discussion concerning functional unit 
allocation. 
 
3 Difficulties of Functional Unit Allocation 

 Although it is relatively straightforward to establish 
the absolute minimum area required to support a domain 
of applications, determining the best way to allocate 
additional resources is more difficult.  While developers 
of conventional reconfigurable devices can determine the 
best overall size of the array for any set of design 
constraints by building performance versus area curves 

for each algorithm in the domain, these curves do not 
offer enough information to assist designers of coarse-
grained reconfigurable devices.  When developing 
domain-specialized FPGAs, the individual functional unit 
needs of every algorithm in the domain contends for 
control over what the overall architecture will look like. 
 To illustrate the complicated relationships between 
functional unit demands across a domain, we analyzed the 
15 candidate algorithms of the AES competition over a 
range of performance levels.  We identified the resource 
requirements to implement each of the algorithms at 
natural unrolling points, from relatively small, time-
multiplexed elements to completely unrolled 
implementations.  From this analysis, we demonstrate 
four main factors that obscure the relationship between 
hardware resources and performance. 
 First, although the algorithms in our domain share 
many common operations, the ratio of the different 
functional units varies considerably between algorithms.  
Without any prioritization, it is unclear how to distribute 
resources.  For example, if we consider the fully rolled 
implementations for six encryption algorithms, as in 
Figure 1, we can see the wide variation in RAM, crossbar, 
and runtime requirements among the different algorithms. 
 

Algorithm 
(Baseline) 

RAM 
Blocks 

XBars Runtime 

CAST-256 (1x) 16 0 48 
DEAL (1x) 1 7 96 
HPC (1x) 24 52 8 
Loki97 (1x) 40 7 128 
Serpent (1x) 8 32 32 
Twofish (1x) 8 0 16 
Average 16.2 16.3 54.7 
Std. Dev. 14.1 21.1 47.6 

 
Figure 1 – Ratio Complications 
This table compares the RAM, crossbar and runtime 
requirements for the baseline implementations of six 
encryption algorithms.  Notice that in all three categories 
the deviation in requirements is comparable to the average 
value. 

 
 To complicate matters, if we attempt to equalize any 
one requirement over the entire set, the variation among 
the other requirements becomes more extreme.  This can 
be seen in Figure 2.  In this case, if we consider the RAM 
resources that an architecture should provide, we notice 
that Loki97 requires at least 40 RAM modules.  If we 
attempt to develop an architecture that caters to this 
constraint and unroll the other algorithms to take 
advantage of the available memory, we see that the 
deviation in the number of crossbars and runtime 
increases sharply. 



 3

Algorithm 
(Unrolling Factor) 

RAM 
Blocks 

XBars Runtime 

CAST-256 (2x) 32 0 24 
DEAL (32x) 32 104 3 
HPC (1x) 24 52 8 
Loki97 (1x) 40 7 128 
Serpent (8x) 32 32 4 
Twofish (4x) 32 0 4 
Average 32 32.5 28.5 
Std. Dev. 5.6 40.6 49.4 

 
Figure 2 – Equalization Difficulties 
This table displays the compounded problems that occur 
when attempting to normalize the RAM requirements 
across algorithms.  The other algorithms are unrolled to 
make use of the memory ceiling set by Loki97.  Notice that 
the total deviation in crossbars roughly doubles as 
compared to the baseline comparison and that the 
deviation in runtime becomes almost twice the new 
average value. 

 
 The second factor that complicates the correlation 
between hardware availability and performance is that the 
algorithms have vastly different complexities.  This 
means that the hardware requirement for each algorithm 
to support a given throughput differs considerably.  In 
Figure 3 we see an example of five different encryption 
algorithms that are implemented to have similar 
throughput, but then have a wide variation in hardware 
requirements.  It is difficult to fairly quantify the 
performance-versus-hardware tradeoff of any domain that 
has a wide complexity gap. 
 

Algorithm  
(Unrolling Factor) 

RAM  
Blocks 

XBars Runtime 

CAST-256 (2x) 32 0 24 
DEAL (4x) 4 16 24 
Loki97 (8x) 320 7 16 
Magenta (4x) 64 0 18 
Twofish (1x) 8 0 16 
Average 85.6 4.6 22.8 
Std. Dev. 133.2 7.1 6.3 

 
Figure 3 – Complexity Disparity 
An illustration of the imbalance that occurs when 
attempting to equalize throughput across algorithms.  In 
this case we choose Twofish as a baseline and unrolled 
the rest of the algorithms to best match its throughput.  
Notice that the deviation in RAM and crossbar 
requirements is well above the average value. 

 
 The third problem of allocating hardware resources is 
that the requirements of the algorithms do not necessarily 
scale linearly or monotonically when loops are unrolled.  
See Figure 4 for an example of this non-uniform behavior.  
This phenomenon makes it difficult to foresee the effect 
of decreasing the population of one type of functional unit 
and increasing another. 

Algorithm 
(Unrolling Factor) 

RAM  
Blocks 

Muxes Runtime 

FROG (1x) 8 23 512 
FROG (4x) 8 72 128 
FROG (16x) 8 256 32 
FROG (64x) 16 120 8 
FROG (256x) 64 30 2 

 
Figure 4 – Scaling Behavior 
An example of the unpredictable nature of hardware 
demands when unrolling algorithms. 

 
 The last problem of estimating performance from 
available resources is that if a particular implementation 
requires more functional units of a certain type than is 
available, the needed functionality can often be emulated 
with combinations of the other, under-utilized units.  For 
example, a regular bit permutation could be accomplished 
with a mixture of shifting and masking.  Although this 
flexibility may improve resource utilization, it also 
dramatically increases the number of designs to be 
evaluated. 
 
4 Function Unit Allocation 

 To produce an efficient platform for a diverse group of 
applications, an effective solution to the functional unit 
allocation problem must have the flexibility needed to 
simultaneously address the multi-dimensional hardware 
requirements of the entire domain while maximizing 
usability and maintaining hard or soft area and 
performance constraints.  In the following sections we 
propose three solutions to this problem.  The first 
algorithm addresses hard performance constraints.  The 
second and third algorithms attempt to maximize the 
overall performance given softer constraints. 
 
4.1 Performance-Constrained Algorithm 

 The first algorithm we developed uses a hard minimum 
throughput constraint to guide the functional unit 
allocation.  As described earlier, we began the exploration 
of this domain by establishing the hardware requirements 
of all of the algorithms for a variety of performance 
levels.  We use this table of results in all of our functional 
unit allocation techniques to determine the minimum 
hardware that each algorithm needs in order to support a 
given throughput. 
 Our first algorithm begins by determining the 
hardware requirements to run each algorithm at a 
specified minimum throughput.  We then examine these 
requirements to establish the maximum necessary number 
of each type of functional unit.  To calculate the overall 
performance for this superset of resources, we reexamine  
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Algorithm X Algorithm Y Algorithm Z

16 8 4 8 4 1 9 3 1

# of
Functional

Units
Required

# of Clock
Cycles

Determine the slowest implementation for each
algorithm that still satisfies the minimum throughput 

requirement, then eliminate implementations below the 
performance threshold

# of Clock
Cycles

If possible, further unroll the algorithms to better 
utilize available resources.  Final Cost = 4 + 1 + 3 = 8

Algorithm X Algorithm Y Algorithm Z

16 8 4 8 4 1 9 3 1
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Functional
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# of Clock
Cycles

Algorithm X Algorithm Y Algorithm Z

4 4 1 3 1

# of
Functional

Units
Required

Based on this subset of implementations, determine the 
minimum number of each resource type.

We are given the functional unit requirements of three 
encryption algorithms in a range of performance levels.  

We are also given a hard throughput constraint –
4 clock cycles / block in this example.

# of Clock
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We are given the functional unit requirements of three 
encryption algorithms in a range of performance levels.  

We are also given a hard throughput constraint –
4 clock cycles / block in this example.
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# of
Functional
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Figure 5 – Performance-Constrained Functional Unit Selection 
Illustration of performance-constrained selection algorithm. 

 
each algorithm to determine if there are sufficient 
resources to allow for greater throughput, then apply the 
cost function described by this equation: 
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 In this equation, N is the total number of algorithms in 
the domain and CCi is the number of clock cycles 
required to encrypt a single block of text in the highest 
throughput configuration of algorithm i that will fit on the 
architecture.  See Figure 5 for an illustrated example of 
the performance-constrained functional unit selection 
process.   
 Note that this is a greedy algorithm and, due to the 
non-linear and non-monotonic behavior of hardware 
requirements, does not necessarily find the minimum area 
or maximum performance for the system.  Because the 
starting point is chosen solely on the basis of throughput 
without considering hardware requirements, it is possible 
that higher throughput implementations of a given 
algorithm may have lower resource demands for 
particular functional unit types.  If that algorithm becomes 
the limiting factor when determining the number of any 
resource type, it will likely affect the overall area and 
performance results. 

4.2 Area-Constrained Algorithm 

 The next two algorithms we developed use simulated 
annealing to provide more sophisticated solutions that are 
able to capitalize on softer constraints to improve average 
throughput.  The second algorithm begins by randomly 
adding functional units to the architecture until limited by 
a given area constraint.  The quality of this configuration 
is evaluated by determining the highest performance 
implementation for each algorithm, given the existing 
resources, then applying the cost function described by 
this equation: 

 

�
−

= �
�
�

=
1

0 ,

N

i

 i

otherwise A*  PC
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Cost

 
 In this equation, N is the total number of algorithms in 
the domain and CCi is the number of clock cycles 
required to encrypt a single block of text in the highest 
throughput configuration of algorithm i that will fit on the 
array.  However, if an algorithm cannot be implemented 
on the available hardware, we impose an exclusion 
penalty proportional to A, the additional area necessary to 
map the slowest implementation of the algorithm to the  
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Unit Type 1 Unit Type 2 Unit Type 3
Unit Type 4 Unit Type 5

1) Starting Config.

2) Remove Unit 4 

3) Add Unit 5

4) Evaluate & Accept

5) Remove Unit 5

6) Add Unit 2

7) Evaluate & Reject Maximum
Area

Unit Type 1 Unit Type 2 Unit Type 3
Unit Type 4 Unit Type 5

1) Starting Config.

2) Remove Unit 4 

3) Add Unit 5

4) Evaluate & Accept

5) Remove Unit 5

6) Add Unit 2

7) Evaluate & Reject Maximum
Area

 
Figure 6 – Area-Constrained Function Unit Selection 
Illustration of our area-constrained selection algorithm. 

 
array.  In  our  evaluations, we used a large constant 
penalty scaling factor (PC) since we wanted our system 
include all of the candidate algorithms.  However, this 
factor is completely application-dependent and must be 
tuned depending on the size of the functional units, how 
many algorithms are in the domain, what the average 
runtime is, and how critical it is that the system is able to 
implement the entire domain.  While this penalty system 
does not necessarily guide the simulated annealing to the 
best solution, since a higher throughput implementation 
may be closer to the existing configuration, it does 
provide some direction to the tool to help prevent the 
potentially unwanted exclusion of some of the algorithms 
in the domain. 
 After calculating the quality of the configuration we 
perturb the system by randomly picking two types of 
components, removing enough of the first type to replace 
it with at least one of the second, then adding enough of 
the second type to fill up the available area.  Finally, the 
quality of the new configuration is evaluated in the same 
manner as before.  If the new configuration provides the 
same or better throughput, it is accepted.  If it does not 
provide better performance, based on the current 
temperature and relative performance degradation, it may 
or may not be accepted.  This process is based on the 
simple acceptance function and adaptive cooling schedule 
described in [5].  See Figure 6 for an illustration of this 
procedure.   
 Note that, as described earlier, some operations may be 
emulated by combinations of other functional units.  For 
simplicity, in this example we do not directly deal with 
this possibility, but there is no inherent limitation in either 
of the area-constrained solutions that would prevent this 

from being addressed with a larger hardware/throughput 
matrix. 
 
4.3 Improved Area-Constrained Algorithm 

 Our last functional unit selection algorithm attempts to 
balance performance and area constraints.  First, we 
eliminate implementations from the hardware/throughput 
matrix that do not provide enough throughput to meet a 
specified minimum performance requirement.  Then, we 
randomly select one of the remaining implementations of 
each algorithm for our current arrangement.  We 
determine the minimum hardware and area requirements 
necessary to fit all of the algorithms at their current 
settings, and then establish if any algorithms can be 
expanded to a higher performance level given the 
calculated hardware resources.  The quality of this 
arrangement is determined by the number of clock cycles 
required to run all of the algorithms at their current 
settings and a penalty based on any excess area needed by 
the system.  The cost function is described by this 
equation: 
 

Penalty AreaCCCost
N

i
 i += �

−

=

1

0
 

 
 In this equation, N is the total number of algorithms in 
the domain and CCi is the number of clock cycles 
required to encrypt a single block of text in the highest 
throughput configuration of algorithm i that will fit on the 
architecture.  If the area required for the current 
configuration is larger than the specified maximum 
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Eliminate any implementations below the given 
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Randomly choose a new implementation for one 
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Figure 7 – Improved Area-Constrained Functional Unit Selection 
Illustration of our improved area-constrained selection algorithm. In this example we assume the throughput threshold is set at 10 
cycles/block.  

 
allowable area, we also add an area penalty that is 
described by this equation: 
 

)/(* MACAPC Penalty  Area =  

 
 In this case, PC is a constant penalty scaling factor, CA 
is the calculated area requirement of the current 
configuration and MA is the specified maximum 
allowable area.  Again, since we wanted a hard area 
constraint for our evaluation, we set PC to a large value.  
However, similar to the previous functional unit selection 
algorithm, this term is application-specific and must be 
tuned depending on how hard or soft an area constraint is 
desired.  After calculating the quality of the configuration, 
we then perturb the system by arbitrarily choosing one 
algorithm and randomly changing the setting to a different 
performance level.  Finally, the quality is re-evaluated and 
compared to the original arrangement in the same 
simulated-annealing manner as described in Section 4.2.  
See Figure 7 for an illustration of this process. 
 
5 Function Unit Allocation Results 

 The evaluation of the functional unit allocation 
techniques began by using the performance-constrained 
method as a baseline for comparison.  We first identified 

all of the distinct throughput levels between all of the 
algorithms in the domain. Then, each of these distinct 
throughput constraints was fed into the performance-
constrained functional unit selection algorithm.  The area 
requirements for each were recorded and then used as 
inputs to the two area-constrained techniques. 
 The three techniques we developed produce very 
different results when applied to our example domain.  As 
expected, the hard throughput constraint of the 
performance-driven approach has limitations.  In Figure 8 
and Figure 9 we plot the results of all three functional unit 
selection algorithms over ten area scenarios.  Figure 8 
shows the maximum number of clock cycles per block 
required by any algorithm in the domain as a function of 
the area of the system.  Since the number of clock cycles 
needed to encrypt each block of data is inversely 
proportional to the throughput, we can see from this graph 
that, for the majority of the architectures we examined, 
the performance-constrained algorithm indeed produces 
the best minimum performance among the three 
allocation methods.  Also, as expected, the limitations of 
the performance-driven algorithm regarding non-linear 
and non-monotonic hardware requirements allow the 
improved area-constrained technique to occasionally 
obtain somewhat better minimum performance. 
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Figure 8 – Minimum Throughput Results of Functional Unit Selection 
Graph of maximum number of clock cycles required by any application in the domain as a function of area.  Notice that while the 
improved area-constrained allocation technique occasionally produces better results, the performance-constrained method obtains 
the best worst-case performance over the majority of the design space. 
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Figure 9 – Performance Results of Functional Unit Selection Across the Domain 
Graph of the total number of clock cycles required to run all of the applications in the domain as a function of area.  Notice that the 
overall performance of the higher throughput systems produced by the performance-constrained algorithm lag considerably behind 
that of the architectures generated by either of the area-constrained techniques. 



 8

 In contrast, though, when we plot the total number of 
clock cycles required by all of the algorithms in the 
domain as a function of area, as in Figure 9, we see a 
completely different picture for the performance-
constrained selection method.  The results in this graph 
directly reflect the average performance of the system for 
a given configuration.  Figure 9 shows that the average 
performance of the system across the domain is reduced 
by as much as almost 50% when using the performance-
constrained selection method as compared to using either 
of the area-driven techniques.  The poor average 
throughput is particularly apparent in the larger 
architectures.  This means that if the design constraints 
allow for some flexibility in terms of the minimum 
acceptable performance, better average throughput may 
be obtained by using either of the area driven approaches. 
 When comparing the two area-constrained techniques, 
Figure 9 shows that the average performance results of 
the improved area-constrained technique are marginally 
better than those from the original area-driven method 
Furthermore, when we consider the area requirements for 
the generated architectures, the improved area-constrained 
method generally produces architectures with equal or 
smaller area requirements. In addition, Figure 8 shows 
that the improved area-constrained method consistently 
produces architectures with an equal or lower maximum 
number of clock cycles for the worst-case encryption 
algorithm compared to the basic area constrained 
technique.   
 All of these observations can likely be attributed to the 
same source.  Because the original area-constrained 
functional unit selection algorithm is based upon 
randomly adding and subtracting different types of 
components to the system, it is likely that none of the 
applications in the domain fully utilize any of the 
functional unit types in the resultant architecture.  
Conversely, since the improved area-constrained 
technique is based upon choosing sets of particular 
implementations, it is guaranteed that at least one 
application will fully utilize each of the functional unit 
types.  It is likely that this fundamental difference creates 
more noise in the original area-constrained selection 
technique and thus makes it more difficult for the 
algorithm to converge.  In addition, even if the original 
area-constrained technique were to converge on a similar 
mixture of components as the improved method, it is very 
possible that there may still be some functional unit types 
that are not fully utilized by any implementation.  Of 
course, this will result in a larger architecture than is 
necessary. 
 To better illustrate the quality of the proposed 
algorithms we could compare them to the optimal 
architectures found by brute-force search.  Unfortunately, 
the original set of 15 algorithms from the AES 
competition, with up to 10 implementations each, is too 
complex to solve via such methods.  However, the AES 

competition also produced a smaller set of 5 finalists.  We 
have run this set though each of our algorithms, and 
compare them to the optimal results found by a brute-
force search.  Figure 10 and Figure 11 show the results of 
the testing repeated for this smaller domain.  In this case, 
the allocation problem is much simpler and both the 
performance-constrained and improved area-constrained 
techniques find the optimal architecture for all area 
scenarios.  In addition to showing that our allocation 
methods can achieve optimal results, this test also 
confirms the suspicion that the original area-constrained 
method does not perform as well as the improved 
technique.  While this domain does not present all of the 
same challenges as the full set of AES candidates, it is 
likely that our earlier results at least approach the optimal 
architecture.   
 
6 Future Work 

 In addition to the operator identification and 
optimization problems described earlier, domain-
specialized reconfigurable devices also raise several 
completely new concerns.  One interesting question 
surrounds the issue of adaptability.  While a carefully 
designed architecture will likely perform well on the 
limited set applications that directly affected the design, 
what methodology is needed to sufficiently encapsulate 
the needs of the applications as a domain?  Extending this 
to the example of encryption, would algorithm updates or 
completely different ciphers also perform well on this 
system? 
 Another issue, related to adaptability, is specialization.  
It is expected that the larger the group of applications 
used to develop a domain-specialized reconfigurable 
device, the better it will handle unanticipated netlists.  
However, the size of the target domain is also connected 
to the specificity of the array and its overall performance.  
It is vital that developers understand how these factors 
affect each other. 
 
7 Conclusions 

 In this paper we have shown that the development of a 
coarse-grained reconfigurable architecture raises several 
unique and un-addressed design problems.  We presented 
three techniques to allocate functional units that attempt 
to balance performance and area constraints on domains 
that have vastly different hardware requirements.  While 
taking special consideration for stable, high-performance 
implementations and the possibility for future flexibility, 
designers can use these functional unit allocation 
techniques to develop future coarse-grained 
reconfigurable devices. 
 The first algorithm produces architectures under a 
guaranteed hard performance requirement.  The second 
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Figure 10 – Minimum Throughput Results of Functional Unit Selection on a Limited Domain 
Graph of maximum number of clock cycles required by any of the five finalist algorithms as a function of area.  Both the 
performance-constrained and improved area-constrained techniques achieve the optimal results. 
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Figure 11 – Performance Results of Functional Unit Selection Across a Limited Domain  
Graph of the total number of clock cycles required to run all five of the AES finalist ciphers as a function of area.  Again, both the 
performance-constrained and improved area-constrained techniques achieve the optimal results. 
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algorithm allows designers to trade versatility for better 
average throughput.  The third algorithm produces 
efficient architectures that can take advantage of softer 
area constraints.  While the performance-constrained 
algorithm can be used when designers are only concerned 
with the minimum performance of a system, the area-
constrained algorithms were shown to produce better 
average performance given similar area.  Although the 
original area-constrained technique allows designers to 
potentially improve overall performance by excluding 
very demanding applications, the improved area-
constrained technique consistently produced better results 
when considering the entire domain.  It is likely that the 
improved area-constrained method would be the most 
appropriate choice unless the minimum performance of 
the system needs to be absolutely guaranteed. 
 Although we encountered the difficulties of functional 
unit selection while exploring an encryption-specific 
domain, we believe that the causes of the problem are not 
exclusive to encryption and can be expected to be 
common in many complex groups of applications.  The 
functional unit selection problem will become more 
difficult as reconfigurable devices are expected to offer 
better and better performance over large domain spaces.  
Increased specialization of function units and growing 
domain size combined with the need for resource 
utilization optimization techniques such as functional unit 
emulation will soon complicate architecture exploration 
beyond that which can be analyzed by hand.  In the 
future, designers will need CAD tools that are aware of 
these issues in order to create devices that retain the 
flexibility required for customization over a domain of 
applications while maintaining good throughput and area 
characteristics. 
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