
 1

Harnessing FPGAs for Computer Architecture Education

Mark Holland, James Harris, Scott Hauck
Department of Electrical Engineering

University of Washington, Seattle, WA 98195, USA
mholland@ee.washington.edu, harrisjs@u.washington.edu, hauck@ee.washington.edu

Abstract
Computer architecture and design is often taught by having
students use software to design and simulate individual
pieces of a computer processor. We are working on a
method that will take this classwork beyond software
simulation into actual hardware implementation. Students
will be able to design, implement, and run a single-cycle
MIPS processor on an FPGA. This paper presents the first
steps in this work: an FPGA-optimized MIPS processor, a
debugging tool which provides complete control and
observability of the processor, and the reduction of the
MIPS instruction set into eight instructions that will be used
by the processor.

Keywords
FPGAs, FPGA-optimized CPU, Reduced MIPS Instruction
Set, Debugging Tool, Communication Protocol

1. Introduction
Computer Design and Organization is a common upper-
level engineering course that is offered at universities
throughout the world. In this class students learn computer
design by implementing individual pieces of a computer
processor. This approach has important limitations: while
students can complete and simulate their designs using
software, they do not get the chance to implement and run
their designs. Studies of engineering curriculums have
shown that students learn better when given active, hands-
on projects [1], [2], suggesting that students would thrive
on the opportunity to implement and run their processors in
hardware.

This paper presents a Field Programmable Gate Array
(FPGA) implementation of a computer processor, a
processor debugging tool, and the reduction of the MIPS
instruction set into eight instructions. The FPGA-optimized
processor can be used to enhance computer architecture
education by programming selected CPU parts onto the
processor, giving the incomplete processors to students, and
allowing the students to design and integrate the missing
pieces. The processor debugging tool would provide the
students with complete control over their processor,
allowing them to debug and fix their incomplete processors.
Reducing the MIPS instruction set to eight instructions

allows us to use a simpler implementation of the processor.
Combined in the classroom, these tools would allow
students to implement and run their processor designs on an
actual chip.

FPGAs are logic chips that can be programmed an
indefinite number of times. The area of an FPGA is
devoted largely to reprogrammable logic, but vendors have
recently added sizable memories to their chips in order to
give them a wider range of capabilities. In Xilinx Virtex
devices [3] this memory is called Block Ram (BRAM) [4].
This BRAM provides for shallow RAM structures to be
implemented on the FPGA.

The reprogrammable nature of FPGAs makes them perfect
for educational purposes because they can be reused year
after year, resulting in low overhead costs. In addition, the
reprogrammable nature of FPGAs allows computer
architecture students to have as many iterations as
necessary when implementing their processors.

Our work is modeled on the single-cycle implementation of
the MIPS processor, which is shown in Figure 1. We also
have a pipelined implementation of the MIPS processor, but
most of the paper will focus on the single-cycle
implementation as it will be our primary instructional tool.
Both processors operate on the MIPS instruction set as
described in Computer Organization and Design by David
A. Patterson and John L. Hennessy [5]. This book is widely
used in the teaching of computer architecture. Using it
means that the FPGA-optimized processor presented here
will be easily incorporated into a large number of
classrooms.

It is important to note that we are not the first group to
place a processor on an FPGA: companies such as Xilinx
[6], Altera [7], [8], and Gray Research [9] have all
succeeded in doing so. Their work, however, has been
aimed at obtaining high performance processors or efficient
mapping strategies for processors on FPGAs. Our design
goals are quite different as we are trying to use FPGA-
optimized CPUs as tools for teaching computer architecture
to students. The focus of the class must be on CPU design,
not on FPGAs.

Our unique design goals did not allow us to use any of the
preexisting FPGA-optimized CPUs. One major drawback

 2

Figure 1. Single Cycle MIPS Processor [5]

of existing implementations is that the processors are
invariably tied to the FPGAs they are implemented on: to
teach CPU design using any of them would require almost
as much background in FPGAs as is would in processor
design. We want to keep the focus away from the
FPGAs; they should simply be tools for learning CPU
design. As such, we wanted to create a simple CPU that
would require almost no FPGA background.

Other design requirements also led us to create our own
CPUs. In the classroom, our processors will need to be
easily dissected and understood. Also, since our students
will be putting their processors together one part at a time,
we needed a processor that can be externally tested and
debugged, one which can be tested for correct operation
even when incomplete. Considering these requirements,
we determined that the best course of action was to design
the processor from scratch, allowing us to build in parallel
a debugging tool that would be able to control and debug
the processor.

The FPGA-optimized processor and debugging tool are
described in Sections 2 and 3 respectively. Section 4
discusses the reduction of MIPS into eight instructions.
In Section 5 we discuss the integration of our work into
the classroom. Section 6 offers results and discussion of

the implementation, and Section 7 gives conclusions.
Section 8 provides a description of future work that could
be done to improve the educational effectiveness of the
work presented in this paper, and lastly, Section 9
provides additional notes.

2. FPGA Implementation of the Processor
The most important task in our work was to implement a
single-cycle processor onto an FPGA so that it would
look and behave like the processor presented in
Hennessey and Patterson. We chose to do our
implementation on a XESS-XSV board [10], shown in
Figure 2. The board components used in this
implementation are as follows: one XILINX Virtex
XCV300 FPGA [3], two independent 512K x 16 SRAM
banks [11], one parallel port interface [12] that will allow
communication between a PC and the FPGA, and one
push-button switch. The Virtex XCV300 FPGA contains
322,970 system gates and 65,535 BRAM bits.

The FPGA is used for nearly all of the control and
datapath of the processor. The only exceptions are the
data and instruction memories, which due to a lack of
space on the FPGA, are implemented in SRAM. The
parallel port is used for loading configurations to the

 3

READ A
DATA [31:16] READ A

DATA [15:0]

READ B
DATA
[31:16]

READ B
DATA [15:0]

Figure 2. The XSV Board Schematic [10]

FPGA as well as communicating with the PC, which is
necessary for the debugging tool. The push-button is used
to reset the processor.

While many of the smaller aspects of the processor are
trivial to design and implement on the FPGA1,
considerable effort was needed to implement the
processor’s memories. This is because FPGAs are
primarily designed to handle logic, not memories, and are
therefore fabricated with a very small amount of memory
space. Thus the register file, instruction memory, and
data memory must be carefully implemented so that the
chip’s resources are not overused.

The register file is a 32-bit, 32-address memory that has
two read ports and one write port. This means that during
any clock cycle, the processor must be able to read values
from two different memory addresses as well as write a
value to a third address. In order to avoid taxing the
standard logic resources of the FPGA, we implemented
the register file using Block Ram (BRAM). A single
BRAM can have data widths of no greater than 16 bits
and has a maximum of two ports; so multiple BRAMs
were needed in order to implement the 32-bit, three-
ported register file.

1 The ALUs, shifters, control logic, sign extenders, and
multiplexors can all be described in very few lines of verilog
code.

Figure 3 shows the implementation of the register file
using four dual-ported 16-bit BRAMs. These four 16-bit
BRAMs functionally combine to create two 32-bit
BRAMs, which is what the processor requires. It is
necessary that writes be performed on both of these 32-bit
BRAMs so that a read from either of the BRAMs will
return the proper value. One read port can then be
assigned to each of the 32-bit BRAMs, providing us with
a 32-bit, 32-address register file complete with two read
ports and one write port.

Figure 3. Register File Implementation

By itself, the FPGA does not have enough storage area to
hold the instruction and data memories, so we chose to
put these memories into off-chip SRAM. The instruction
and data memories need to be large enough to hold a
complete program in them, and the 2K addresses that are
available in the FPGA’s BRAM are insufficient.
Combining the two SRAM banks results in 512K
addresses, which is sufficiently large for the purposes of
our instructional processor.

Our goal was to present the processor exactly as it is
shown in Patterson and Hennessy, which suggests that we
should have implement the memories as two distinct
units. Using one bank of off-chip SRAM for the
memories therefore presented a problem: how would we
make one memory appear to be two memories? Also,
since we were now using resources that are not on the
FPGA, how would we hide the complicated
communications between the FPGA and the SRAM so
that the students would be unaware that it is occurring?

In the normal operation of the processor, it is common
that the instruction memory and the data memory would
both be accessed during the same clock cycle. Since both
of these memories are implemented in the same SRAM
and cannot be accessed simultaneously, this requires that
the processor clock be divided into multiple clock cycles:
one period for reading instructions, period for reading
data, and one period for storing data.

In addition, any memory reference requires that the FPGA
send multiple signals to the SRAM at specific times in

WRITE DATA
[15:0]

WRITE DATA
[31:16]

READ A
ADDRESS

READ B
ADDRESS

READ A
DATA [31:0]

READ B
DATA [31:0]

WRITE
ADDRESS

 4

CLOCK

order to instigate a read or a write to memory. The read
and write waveforms for the SRAM, as implemented in
our processor, are shown in Figure 4. These waveforms
can each be produced using 4 clock cycles, with signals
being changed on the rising edges of the clocks.

Figure 4. (a) Read, (b) Write Waveforms for the
SRAM

Each communication with the SRAM requires a minimum
of 4 clock cycles itself, which means that the memory
now requires 12 clock cycles per CPU clock cycle in
order to behave like two memories. To accommodate
this, we use a clock of 16 times the frequency of the
processor to control the instruction and data memory
communications, supplying extra time where
combinational delays exist. The 16-cycle sub-clock is
hidden from the students so that the memory will look and
behave like the idealized data and instruction memories
from Patterson and Hennessy.

The overall timing diagram for our processor, including
clocks and operations, is shown in Figure 5. In the single-
cycle implementation the clock is always started prior to
the current instruction fetch, is run for a certain number of
cycles, and then stopped after a memory load. In this way
the clock can be run for 0 cycles, which would load an
instruction and perform a memory load but would not
commit any values to memory, allowing only
combinational effects to occur. Another thing to notice is
that the memory store and register write backs are timed
so that they are edge triggered with respect to the CPU
clock. This is another example of how we designed the
processor so that it would behave just as in described in
Patterson and Hennessy.

The pipelined implementation of the processor had to use
a slightly different clocking scheme than the single-cycle
implementation. Using the single-cycle clocking scheme
for the pipelined processor, a conflict occurs when a
specific register is being written to and read from during
the same clock cycle. The fact that the clock is always
started before the instruction fetch means that the read

would occur before the write, resulting in the wrong value
being read from the register. In the pipelined processor,
therefore, the write back must occur before the read
occurs. This is accomplished by always starting the
pipelined clock at the write back, allowing the proper
value to be read from the same register during the same
clock cycle.

Figure 5. Processor Timing Diagram

3. The Debugging Tool
The debugging tool is necessary for making our FPGA-
optimized processor usable in the classroom. The tool
allows the students to observe and control the internal
states of their processors, a necessity for the designing
and debugging processes.

We chose to create the debugging tool using Visual Basic.
Communications between the PC and the FPGA are
carried out over the parallel port. The parallel port
provides a total of twelve signals that can be seen by both
the PC and the FPGA. Eight of these signals (bits) are
changeable only by the PC and four of them only by the
FPGA. Both the PC and the FPGA can thus put bits onto
the parallel port that can be seen by the other device.

Of these parallel port bits, we use one bit in each direction
as an acknowledge signal. When the PC wants the FPGA
to accept new data it changes the value of its acknowledge
bit, which the FPGA recognizes as a prompt to read the
other seven PC-controlled bits. When the FPGA has
successfully read the bits, it changes the value of its own
acknowledge bit, which tells the PC that the transaction
was successful. This leaves seven actual data bits to be
controlled by the PC, and three data bits to be controlled
by the FPGA.

The PC initiates all communications used by the
debugging tool. All transaction consists of the PC giving
the FPGA a 64-bit command, the FPGA carrying out the
command, and the FPGA returning 32 bits to the PC. The
list of commands, along with send and receive fields, is
shown in Table 1. The communication protocol currently
operates at only 300 bytes/second, but work is being done
to increase this rate.

The interface of the debugging tool is shown in Figure 6.
The tasks that it can perform can be broken into 5 basic
categories: clock manipulation, reading of data lines,

CHIP ENABLE

CHIP ENABLE

OUTPUT ENABLE

WRITE ENABLE

ADDRESS

DATA OUT

OUTPUT ENABLE

WRITE ENABLE

ADDRESS

DATA IN

(a)

(b)

FPGA CLOCK

CPU CLOCK

PREVIOUS STORE INSTRUCTION FETCH MEMORY LOAD

REG WRITE BACK

 5

writing the program counter, reading or writing the
register file, and reading or writing the instruction or data
memory. These tasks provide the user with control of all
vital parts of the processor as well as complete
observability of the processor’s internal state.

OPERATION SENT FIELDS RETURNED FIELD

READ PROGRAM COUNTER - PROGRAM COUNTER

READ INSTRUCTION - INSTRUCTION

READ DATA MEMORY OUTPUT - MEMORY OUTPUT

READ REGISTER 1 OUTPUT - REGISTER 1 OUTPUT

READ REGISTER 2 OUTPUT - REGISTER 2 OUTPUT

READ ALU OUTPUT - ALU OUTPUT

READ LINE MISCELLANEOUS 1 - MISC 1 OUTPUT

READ LINE MISCELLANEOUS 2 - MISC 2 OUTPUT

RUN CLOCK # OF CYCLES FINAL PC VALUE

START CLOCK - INITIAL PC VALUE

STOP CLOCK - FINAL PC VALUE

WRITE PROGRAM COUNTER WRITE VALUE NEW PC VALUE

WRITE REGISTER WRITE ADDRESS & VALUE NEW REG VALUE

WRITE MEMORY WRITE ADDRESS &VALUE NEW MEM VALUE

READ FROM REGISTER READ ADDRESS REGISTER VALUE

READ FROM MEMORY READ ADDRESS MEMORY VALUE

Table 1. Debugger Commands and OP Fields

We supply two methods for controlling the clock: one
which runs the clock for a specified number of cycles and
one which runs the clock until the user gives a stop signal.
The student can read data lines simply by selecting one of
the provided lines: PC, INST, DATA (data memory
output), REG1, REG2, ALU, MISC1, or MISC2. MISC1
and MISC2 are lines that the student can hook up to any
part of the processor, providing added debugging
flexibility. Students can write to the program counter,
register file and memories by supplying the address and
data value to be written, with the exception of the
program counter which does not require an address. They
can then perform reads of the register file and memory
simply by supplying the read address.

4. Reduction of MIPS Instruction Set
We determined that it would not be ideal to implement a
processor that ran the complete MIPS instruction set: it
would be too time consuming and too taxing on our
FPGA resources while providing negligible educational
value to the students. At the same time we want our
processor to be able to load and run programs, which
would seem to require the ability to execute any

Figure 6. The Debugging Interface

 6

instruction. To accommodate these goals we searched for
a small set of instructions that could be used to describe
the complete set, but that would allow us to retain the
flavor of a real microprocessor.

At the far end of the spectrum, it is possible to create a
“one instruction computer” using only one instruction to
build the rest of the instruction set [13]. Another option
we considered was using an 8-bit implementation rather
than a 32-bit set. Both of these options, however, would
oversimplify the processor to a point where it no longer
behaved like a standard processor. Since the processor
will be used solely for educational purposes, we wanted to
make sure that it would retain enough characteristics of a
standard processor that it would be useful in the
classroom.

Other methods of reducing the instruction set proved
themselves too inefficient. For example, we could have
pre-loaded our processor with all 232 possible 32-bit
values: a negation could then have been accomplished
simply by loading the proper value from memory. The
memory overhead from a scheme like this is ridiculously
large, however, which makes it impractical to use.

In the end, we chose to reduce MIPS to the eight
instructions shown in Table 2. All of these are standard
instructions from the MIPS instruction set.

INSTRUCTION / FORMAT OPERATION

NOR rd, rs, rt
(Nor)

perform bit-wise logical NOR on the contents of
register rs and rt, place the result in rd

SUBU rd, rs, rt
(Subtract Unsigned)

subtract the contents of rt from rs and place in rd
(unsigned)

LW rt, offset(base)
(Load Word)

load into rt the value from memory location that is the
sum of offset and the value in register base

SW rt, offset(base)
(Store Word)

Store the value from register rt into the memory
location that is the sum of offset and the value in

register base
BGEZ rs, offset

(Branch on Greater Than or Equal to
0)

if the contents of rs >= 0, branch to (PC + offset) (offset
is shifted two bits and sign extended)

JALR rd, rs
(Jump and Link Register)

jump to the address in register rs, placing the next
instruction in rd

SYSCALL
(System Call)

a system call exception transferring control to the
exception handler

BREAK
(Break)

a breakpoint trap occurs, transferring control to the
exception handler

Table 2. Reduced MIPS Instruction Set

We can describe any MIPS instruction by some
combination of these eight instructions. This set of
instructions maintains the feel of a real processor by
providing a wide range of functionality. It contains a
logical operator (NOR), an arithmetic operator (SUBU),
loading and storing instructions (LW, SW), branching and
jumping capabilities (BGEZ, JALR), and exceptions
(SYSCALL, BREAK). In practice, programs will be run
through a pre-assembler that will reduce all instructions
down to this set of eight. Instructions will then be turned
into machine code, loaded onto the processor, and run.

Different approaches were needed for each type of

instruction that we wanted to reduce out of the set. For
example, an ADDU (add unsigned) can be accomplished
by subtracting one of the values from 0 and then
subtracting that value from the other. Similarly, an AND
is accomplished by negating both values and then
performing a NOR.

Many instructions make use of the fact that adding a
number to itself is the same as shifting the number once to
the left. Shift lefts and shift rights are easily
accomplished using this concept, and multiplies are also
aided by this fact. We perform our multiplies by shifting
the multiplier left one bit at a time, each time checking the
MSB. If the MSB is 1, the multiplicand is added to the
product, which is also shifted each time we check the
multiplier. Thus, a multiply is carried out in the same
manner that a human would multiply two numbers by
hand. (The multiplier is forced to be positive so that this
will work. If a negative multiplier is present, we negate
both the multiplier and multiplicand to achieve this.
Checking the MSB of a number is done via BGEZ.)

The divide instruction is also implemented in the same
way that a person would do it by hand. The dividend is
shifted one bit at a time and is compared to the divisor
upon each shift. At any step, if the dividend is greater
than or equal to the divisor, the divisor is subtracted from
the dividend and the quotient is incremented by one. Just
like with the multiply, the quotient is shifted along with
the dividend in order to keep the answer correct. At the
end, the remaining dividend is placed into the remainder
register.

Table 3 shows how many instructions must be used to
replace each MIPS instruction, supplying the total number
of instructions as well as the average number of
instructions that must be executed. LUI and LI (load
upper immediate and load immediate, which load 16-bit
constants into a register) require only one instruction
because the assembler assists them by placing the value to
be loaded into memory prior to operation.

INST TOT AVG INST TOT AVG INST TOT AVG INST TOT AVG

LB 13 12.5 J 2 2 ORI 3 3 DIVU 30 352.5

LBU 8 8 JAL 2 2 OR 2 2 SLTI 9 5.83

LH 15 9 JR 1 1 XORI 6 6 SLTIU 9 6

LHU 9 6.5 JALR 1 1 XOR 5 5 SLT 8 4.83

LW 1 1 BEQ 5 4 NOR 1 1 SLTU 9 5

LWL 22 47.25 BNE 6 3.63 ADDI 2 2 SLL 9 51.53

LWR 54 81.75 BLEZ 4 2.5 ADDIU 2 2 SRL 16 64.13

LUI 1 1 BGTZ 5 2.75 ADD 17 5.9 SRA 17 65.09

LI 1 1 BLTZ 2 1.5 ADDU 2 2 SLLV 8 50.53

SB 29 17.75 BGEZ 1 1 SUB 2 2 SRLV 15 63.13

SH 15 9.5 BLTZAL 3 2.5 SUBU 1 1 SRAV 16 64.09

SW 1 1 BGEZAL 2 2 MULT 39 212 SYSCALL 1 1

SWR 25 14 AND 3 3 MULTU 26 336.8 BREAK 1 1

SWL 26 16.25 ANDI 4 4 DIV 38 356.8

Table 3. Instruction Inflation due to Reducing Set

 7

It is clear that by reducing the number of usable
instructions we are consequently inflating the overall
instruction count and thus reducing our processor’s
performance. Remember, however, that performance is
not one of our major design goals. A simpler
implementation is more valuable to us than fast
processing, so we believe the instruction inflation shown
in Table 3 is acceptable.

5. Classroom Integration
We will provide the students with access to the following
items: an XSV board, access to a computer with Xilinx
Foundation Software, our processor debugging tool, a
parallel port connector, a Foundation project containing
an incomplete version of our processor, and a power
supply for powering the board. With these tools the
students will be able to design and produce a processor on
their FPGA. A possible set of projects is suggested here
in order to illustrate the use of our tools.

An early assignment for the students will likely be the
designing of the register file. Each student will design
their register file and add it to the Foundation project,
then implement the design onto their FPGAs. Once done,
they can use their debugging tool to verify their register
file design in multiple ways. The simplest way will be to
write values directly to the register file and then read them
to assure correct operation, but they could also use the
debugging tool to simulate a specific instruction and see
that the instruction has the proper effects on the register
file.

The next design project might be the ALU. After
designing the ALU and implementing it onto the FPGA
along with their register files, the students would again be
offered with a number of ways to test their designs. First,
they could simply use the debugging tool to stimulate the
ALU’s inputs and control values, observing that the
proper value is outputted. They could also hook up the
register file outputs to the ALU inputs, testing the two
units together by giving addresses to the register file and
observing the ALU output. A third option is to simulate a
specific instruction and observe its propagation through
the register file and ALU. Again, the debugging tool will
provide many testing options to the students, allowing
them to debug in almost any manner they wish.

When the students have designed a complete single-cycle
processor, the debugging tool will then be used not only
to stimulate inputs and read outputs, but also to control
the CPU clock. Students will be able to read or write any
of the processor’s memories in order to obtain the state
they want, and then they will be able to walk the CPU
clock in any increment they wish. For example, a student
might load a specific instruction into memory and then
run the processor for 0 cycles, thereby loading the
instruction and observing the propagation of values

through the combinations paths of the CPU. The student
could also run the processor for a full cycle, committing
to memory whatever the instruction specifies, thereby
making certain that the memories are working correctly.
Again, a number of debugging options are made
available, giving the students the freedom to debug
however they wish.

Beyond a single-cycle implementation, the students might
also be asked to design a multi-cycle or pipelined
processor. In reality, these and almost any projects
relating to processor design can be completed because the
debugging tool supplies complete control and
observability of the processor’s internal state.

6. Results and Discussion
The results of our implementation of two FPGA-
optimized processors appear in Table 4. For the single-
cycle implementation we were able to fit our design quite
easily into our XILINX Virtex XCV300 PFGA, using
only 22% of the LUTs and 25% of the BRAMs. Our
FPGA runs at a maximum frequency of 25MHz, which
means that the actual processor runs at 1.5MHz (25/16).
The pipelined processor produced similar utilization
numbers, using 29% of the LUTs, 25% of the BRAMs,
and running at 23 MHz (1.4MHz for the processor).

The debugging tool has also been tested, and successfully
supplies a user with complete control of the processor
even when it is incomplete.

PROCESSOR TYPE
FPGA CLOCK

FREQ
PROC. CLOCK

FREQ
% LUTS
USED

% BRAM
USED

SINGLE-CYCLE MIPS 25 MHz 1.5 MHz 22% 25%

PIPELINED MIPS 23 MHz 1.4 MHz 29% 25%

Table 4. Implementation Results

The work presented in this paper describes a completely
functional and debuggable processor. While we have
offered an outline of some possible class projects,
instructors who wish to use our implementation will
ultimately make the decision on what aspects of
architecture to teach. By providing the students with a
Foundation file that already has most parts of the
processor, instructors will be able to have their students
design and replace the missing parts. Upon completion,
students will have a working processor that they can
actually operate.

7. Conclusion
The FPGA-optimized processor, debugging tool, and
reduced instruction set presented in this paper represent
the primary step in our goal of introducing FPGAs into

 8

the teaching of computer architecture. The processor and
debugging tool should be easy to integrate into the
classroom, where they will provide students with a hands-
on experience that was previously unavailable to them.
We are convinced that when teachers incorporate these
tools into their classrooms that students will display better
retention of the intended lessons as well as increased
enthusiasm about the work performed.

8. Future Work
The next logical step for this research is to integrate it into
the classroom. The work presented here will be polished
into a workable lesson plan that will likely be tested by a
pair of students in the fall of 2001. With their comments
and critiques, the lessons will then be revamped with the
intent of incorporating this work into the teaching of
Computer Design and Organization at the University of
Washington in the spring of 2002.

There also exists the possibility of merging this work with
student-built compilers and operating systems. By
combining the teachings of processor design, compilers,
and operating systems, students will eventually be able to
turn chips into complete working computers. By doing
this, the interactions and tradeoffs between these various
fields can be explored in real terms, with concrete results.

9. Notes
Along with the previously mentioned eight instructions,
our processor also supports the instructions that are
presented in Patterson and Hennessy: BEQ, ADD, SUB,
AND, OR, SLT, and J. This set includes simple and
easily understood instructions, and supporting them will
provide the students a larger range of instructions with
which to test and debug their processor. Thus in total our
processor supports 15 instructions.

Acknowledgments
Thank you to Jered Aasheim for his preliminary work on
this project, also to Tim Midget for his work on the

reduced MIPS instruction set. This project was funded in
part by a donation from Xilinx. Scott Hauck was
supported by an NSF Career Award and a Sloan
Foundation Fellowship. Mark Holland was supported by
an NSF Graduate Fellowship.

References
[1] Courter, S.S., S. B. Millar, and L. Lyons, “From

the Students’ Point of View: Experiences in a
Freshman Engineering Design Course”, Journal of
Engineering Education, vol. 87, no. 3, 1998.

[2] Mahendran, M, “Project-Based Civil Engineering
Courses”, Journal of Engineering Education, vol.
84, no. 1, 1995.

[3] Xilinx Inc., The Programmable Logic Data Book,
pp. 3.3-3.12, 1999.

[4] Xilinx Inc., Dual Port Block Memory: Product
Specification, May 28 1999.

[5] Patterson, D. A., J. L. Hennessy, Computer
Organization and Design: The Hardware/Software
Interface, San Francisco, 1998.

[6] Alliance Core, ARC 32-Bit Configurable RISC
Processor: Datasheet, July 3 2000.

[7] Altera Corporation, ARM-Based Embedded
Processor Device Overview: Datasheet, ver. 1.2,
February 2001.

[8] Altera Corporation, MIPS-Based Embedded
Processor Device Overview: Datasheet, ver. 1.2,
February 2001.

[9] Gray, J., “Designing a Simple FPGA-Optimized
RISC CPU and System-on-a-Chip”, 2000.

[10] XESS Corporation, XSV Board V1.0 Manual,
March 1 2000.

[11] Alliance Semiconductor, 5V/3.3V 512K x 8 CMOS
SRAM: Datasheet, ver. 1.0, January 12 2001.

[12] XESS Corporation, XSV Parallel Port Interface:
Application Note by D. Vanden Bout, ver. 1.0,
April 10 2000.

[13] Styer, Eugene, “One Instruction Computers”,
http://eagle.eku.edu/faculty/styer/oisc.html, 1996.

