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Abstract 
Computer architecture and design is often taught by having 
students use software to design and simulate individual 
pieces of a computer processor.  We are working on a 
method that will take this classwork beyond software 
simulation into actual hardware implementation.  Students 
will be able to design, implement, and run a single-cycle 
MIPS processor on an FPGA.  This paper presents the first 
steps in this work: an FPGA-optimized MIPS processor, a 
debugging tool which provides complete control and 
observability of the processor, and the reduction of the 
MIPS instruction set into eight instructions that will be used 
by the processor. 
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1. Introduction 
Computer Design and Organization is a common upper-
level engineering course that is offered at universities 
throughout the world.  In this class students learn computer 
design by implementing individual pieces of a computer 
processor.  This approach has important limitations: while 
students can complete and simulate their designs using 
software, they do not get the chance to implement and run 
their designs.  Studies of engineering curriculums have 
shown that students learn better when given active, hands-
on projects [1], [2], suggesting that students would thrive 
on the opportunity to implement and run their processors in 
hardware.   

This paper presents a Field Programmable Gate Array 
(FPGA) implementation of a computer processor, a 
processor debugging tool, and the reduction of the MIPS 
instruction set into eight instructions.  The FPGA-optimized 
processor can be used to enhance computer architecture 
education by programming selected CPU parts onto the 
processor, giving the incomplete processors to students, and 
allowing the students to design and integrate the missing 
pieces.  The processor debugging tool would provide the 
students with complete control over their processor, 
allowing them to debug and fix their incomplete processors.  
Reducing the MIPS instruction set to eight instructions 

allows us to use a simpler implementation of the processor.  
Combined in the classroom, these tools would allow 
students to implement and run their processor designs on an 
actual chip. 

FPGAs are logic chips that can be programmed an 
indefinite number of times.  The area of an FPGA is 
devoted largely to reprogrammable logic, but vendors have 
recently added sizable memories to their chips in order to 
give them a wider range of capabilities.  In Xilinx Virtex 
devices [3] this memory is called Block Ram (BRAM) [4].  
This BRAM provides for shallow RAM structures to be 
implemented on the FPGA. 

The reprogrammable nature of FPGAs makes them perfect 
for educational purposes because they can be reused year 
after year, resulting in low overhead costs.  In addition, the 
reprogrammable nature of FPGAs allows computer 
architecture students to have as many iterations as 
necessary when implementing their processors. 

Our work is modeled on the single-cycle implementation of 
the MIPS processor, which is shown in Figure 1.  We also 
have a pipelined implementation of the MIPS processor, but 
most of the paper will focus on the single-cycle 
implementation as it will be our primary instructional tool.  
Both processors operate on the MIPS instruction set as 
described in Computer Organization and Design by David 
A. Patterson and John L. Hennessy [5].  This book is widely 
used in the teaching of computer architecture.  Using it 
means that the FPGA-optimized processor presented here 
will be easily incorporated into a large number of 
classrooms.   

It is important to note that we are not the first group to 
place a processor on an FPGA: companies such as Xilinx 
[6], Altera [7], [8], and Gray Research [9] have all 
succeeded in doing so.  Their work, however, has been 
aimed at obtaining high performance processors or efficient 
mapping strategies for processors on FPGAs.  Our design 
goals are quite different as we are trying to use FPGA-
optimized CPUs as tools for teaching computer architecture 
to students.  The focus of the class must be on CPU design, 
not on FPGAs. 

Our unique design goals did not allow us to use any of the 
preexisting FPGA-optimized CPUs.  One major drawback 
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Figure 1. Single Cycle MIPS Processor [5]

of existing implementations is that the processors are 
invariably tied to the FPGAs they are implemented on: to 
teach CPU design using any of them would require almost 
as much background in FPGAs as is would in processor 
design.  We want to keep the focus away from the 
FPGAs; they should simply be tools for learning CPU 
design.  As such, we wanted to create a simple CPU that 
would require almost no FPGA background. 

Other design requirements also led us to create our own 
CPUs.  In the classroom, our processors will need to be 
easily dissected and understood.  Also, since our students 
will be putting their processors together one part at a time, 
we needed a processor that can be externally tested and 
debugged, one which can be tested for correct operation 
even when incomplete.  Considering these requirements, 
we determined that the best course of action was to design 
the processor from scratch, allowing us to build in parallel 
a debugging tool that would be able to control and debug 
the processor. 

The FPGA-optimized processor and debugging tool are 
described in Sections 2 and 3 respectively.  Section 4 
discusses the reduction of MIPS into eight instructions.  
In Section 5 we discuss the integration of our work into 
the classroom.  Section 6 offers results and discussion of 

the implementation, and Section 7 gives conclusions.  
Section 8 provides a description of future work that could 
be done to improve the educational effectiveness of the 
work presented in this paper, and lastly, Section 9 
provides additional notes. 

2. FPGA Implementation of the Processor 
The most important task in our work was to implement a 
single-cycle processor onto an FPGA so that it would 
look and behave like the processor presented in 
Hennessey and Patterson.  We chose to do our 
implementation on a XESS-XSV board [10], shown in 
Figure 2.  The board components used in this 
implementation are as follows: one XILINX Virtex 
XCV300 FPGA [3], two independent 512K x 16 SRAM 
banks [11], one parallel port interface [12] that will allow 
communication between a PC and the FPGA, and one 
push-button switch.  The Virtex XCV300 FPGA contains 
322,970 system gates and 65,535 BRAM bits. 

The FPGA is used for nearly all of the control and 
datapath of the processor.  The only exceptions are the 
data and instruction memories, which due to a lack of 
space on the FPGA, are implemented in SRAM.  The 
parallel port is used for loading configurations to the 
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Figure 2. The XSV Board Schematic [10] 

FPGA as well as communicating with the PC, which is 
necessary for the debugging tool.  The push-button is used 
to reset the processor. 

While many of the smaller aspects of the processor are 
trivial to design and implement on the FPGA1, 
considerable effort was needed to implement the 
processor’s memories.  This is because FPGAs are 
primarily designed to handle logic, not memories, and are 
therefore fabricated with a very small amount of memory 
space.  Thus the register file, instruction memory, and 
data memory must be carefully implemented so that the 
chip’s resources are not overused. 

The register file is a 32-bit, 32-address memory that has 
two read ports and one write port.  This means that during 
any clock cycle, the processor must be able to read values 
from two different memory addresses as well as write a 
value to a third address.  In order to avoid taxing the 
standard logic resources of the FPGA, we implemented 
the register file using Block Ram (BRAM).  A single 
BRAM can have data widths of no greater than 16 bits 
and has a maximum of two ports; so multiple BRAMs 
were needed in order to implement the 32-bit, three-
ported register file. 

                                                             
1 The ALUs, shifters, control logic, sign extenders, and 
multiplexors can all be described in very few lines of verilog 
code. 

Figure 3 shows the implementation of the register file 
using four dual-ported 16-bit BRAMs.  These four 16-bit 
BRAMs functionally combine to create two 32-bit 
BRAMs, which is what the processor requires.  It is 
necessary that writes be performed on both of these 32-bit 
BRAMs so that a read from either of the BRAMs will 
return the proper value.  One read port can then be 
assigned to each of the 32-bit BRAMs, providing us with 
a 32-bit, 32-address register file complete with two read 
ports and one write port. 

 

 

 

 

 

 

 

 

 

Figure 3. Register File Implementation 

By itself, the FPGA does not have enough storage area to 
hold the instruction and data memories, so we chose to 
put these memories into off-chip SRAM.  The instruction 
and data memories need to be large enough to hold a 
complete program in them, and the 2K addresses that are 
available in the FPGA’s BRAM are insufficient.  
Combining the two SRAM banks results in 512K 
addresses, which is sufficiently large for the purposes of 
our instructional processor. 

Our goal was to present the processor exactly as it is 
shown in Patterson and Hennessy, which suggests that we 
should have implement the memories as two distinct 
units.  Using one bank of off-chip SRAM for the 
memories therefore presented a problem: how would we 
make one memory appear to be two memories?  Also, 
since we were now using resources that are not on the 
FPGA, how would we hide the complicated 
communications between the FPGA and the SRAM so 
that the students would be unaware that it is occurring? 

In the normal operation of the processor, it is common 
that the instruction memory and the data memory would 
both be accessed during the same clock cycle.  Since both 
of these memories are implemented in the same SRAM 
and cannot be accessed simultaneously, this requires that 
the processor clock be divided into multiple clock cycles: 
one period for reading instructions, period for reading 
data, and one period for storing data. 

In addition, any memory reference requires that the FPGA 
send multiple signals to the SRAM at specific times in 
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CLOCK 

order to instigate a read or a write to memory.  The read 
and write waveforms for the SRAM, as implemented in 
our processor, are shown in Figure 4.  These waveforms 
can each be produced using 4 clock cycles, with signals 
being changed on the rising edges of the clocks. 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) Read, (b) Write Waveforms for the 
SRAM 

Each communication with the SRAM requires a minimum 
of 4 clock cycles itself, which means that the memory 
now requires 12 clock cycles per CPU clock cycle in 
order to behave like two memories.  To accommodate 
this, we use a clock of 16 times the frequency of the 
processor to control the instruction and data memory 
communications, supplying extra time where 
combinational delays exist.  The 16-cycle sub-clock is 
hidden from the students so that the memory will look and 
behave like the idealized data and instruction memories 
from Patterson and Hennessy. 

The overall timing diagram for our processor, including 
clocks and operations, is shown in Figure 5.  In the single-
cycle implementation the clock is always started prior to 
the current instruction fetch, is run for a certain number of 
cycles, and then stopped after a memory load.  In this way 
the clock can be run for 0 cycles, which would load an 
instruction and perform a memory load but would not 
commit any values to memory, allowing only 
combinational effects to occur.  Another thing to notice is 
that the memory store and register write backs are timed 
so that they are edge triggered with respect to the CPU 
clock.  This is another example of how we designed the 
processor so that it would behave just as in described in 
Patterson and Hennessy. 

The pipelined implementation of the processor had to use 
a slightly different clocking scheme than the single-cycle 
implementation.  Using the single-cycle clocking scheme 
for the pipelined processor, a conflict occurs when a 
specific register is being written to and read from during 
the same clock cycle.  The fact that the clock is always 
started before the instruction fetch means that the read 

would occur before the write, resulting in the wrong value 
being read from the register.  In the pipelined processor, 
therefore, the write back must occur before the read 
occurs.  This is accomplished by always starting the 
pipelined clock at the write back, allowing the proper 
value to be read from the same register during the same 
clock cycle. 

 

 

 

 

 

Figure 5. Processor Timing Diagram 

3. The Debugging Tool 
The debugging tool is necessary for making our FPGA-
optimized processor usable in the classroom.  The tool 
allows the students to observe and control the internal 
states of their processors, a necessity for the designing 
and debugging processes. 

We chose to create the debugging tool using Visual Basic.  
Communications between the PC and the FPGA are 
carried out over the parallel port.  The parallel port 
provides a total of twelve signals that can be seen by both 
the PC and the FPGA.  Eight of these signals (bits) are 
changeable only by the PC and four of them only by the 
FPGA.  Both the PC and the FPGA can thus put bits onto 
the parallel port that can be seen by the other device. 

Of these parallel port bits, we use one bit in each direction 
as an acknowledge signal.  When the PC wants the FPGA 
to accept new data it changes the value of its acknowledge 
bit, which the FPGA recognizes as a prompt to read the 
other seven PC-controlled bits.  When the FPGA has 
successfully read the bits, it changes the value of its own 
acknowledge bit, which tells the PC that the transaction 
was successful.  This leaves seven actual data bits to be 
controlled by the PC, and three data bits to be controlled 
by the FPGA. 

The PC initiates all communications used by the 
debugging tool.  All transaction consists of the PC giving 
the FPGA a 64-bit command, the FPGA carrying out the 
command, and the FPGA returning 32 bits to the PC.  The 
list of commands, along with send and receive fields, is 
shown in Table 1.  The communication protocol currently 
operates at only 300 bytes/second, but work is being done 
to increase this rate. 

The interface of the debugging tool is shown in Figure 6.  
The tasks that it can perform can be broken into 5 basic 
categories: clock manipulation, reading of data lines, 
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writing the program counter, reading or writing the 
register file, and reading or writing the instruction or data 
memory.  These tasks provide the user with control of all 
vital parts of the processor as well as complete 
observability of the processor’s internal state. 

OPERATION SENT FIELDS RETURNED FIELD 

READ PROGRAM COUNTER - PROGRAM COUNTER 

READ INSTRUCTION - INSTRUCTION 

READ DATA MEMORY OUTPUT  - MEMORY OUTPUT  

READ REGISTER 1 OUTPUT  - REGISTER 1 OUTPUT  

READ REGISTER 2 OUTPUT  - REGISTER 2 OUTPUT  

READ ALU OUTPUT  - ALU OUTPUT  

READ LINE MISCELLANEOUS 1 - MISC 1 OUTPUT  

READ LINE MISCELLANEOUS 2 - MISC 2 OUTPUT  

RUN CLOCK # OF CYCLES FINAL PC VALUE 

START CLOCK - INITIAL PC VALUE 

STOP CLOCK - FINAL PC VALUE 

WRITE PROGRAM COUNTER WRITE VALUE NEW PC VALUE 

WRITE REGISTER WRITE ADDRESS & VALUE NEW REG VALUE 

WRITE MEMORY WRITE ADDRESS &VALUE NEW MEM VALUE 

READ FROM REGISTER READ ADDRESS REGISTER VALUE 

READ FROM MEMORY READ ADDRESS MEMORY VALUE 

 

Table 1. Debugger Commands and OP Fields 

 

We supply two methods for controlling the clock: one 
which runs the clock for a specified number of cycles and 
one which runs the clock until the user gives a stop signal.  
The student can read data lines simply by selecting one of 
the provided lines: PC, INST, DATA (data memory 
output), REG1, REG2, ALU, MISC1, or MISC2.  MISC1 
and MISC2 are lines that the student can hook up to any 
part of the processor, providing added debugging 
flexibility.  Students can write to the program counter, 
register file and memories by supplying the address and 
data value to be written, with the exception of the 
program counter which does not require an address.  They 
can then perform reads of the register file and memory 
simply by supplying the read address. 

4. Reduction of MIPS Instruction Set 
We determined that it would not be ideal to implement a 
processor that ran the complete MIPS instruction set: it 
would be too time consuming and too taxing on our 
FPGA resources while providing negligible educational 
value to the students.  At the same time we want our 
processor to be able to load and run programs, which 
would seem to require the ability to execute any

 

 

Figure 6. The Debugging Interface
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instruction.  To accommodate these goals we searched for 
a small set of instructions that could be used to describe 
the complete set, but that would allow us to retain the 
flavor of a real microprocessor. 

At the far end of the spectrum, it is possible to create a 
“one instruction computer” using only one instruction to 
build the rest of the instruction set [13].  Another option 
we considered was using an 8-bit implementation rather 
than a 32-bit set.  Both of these options, however, would 
oversimplify the processor to a point where it no longer 
behaved like a standard processor.  Since the processor 
will be used solely for educational purposes, we wanted to 
make sure that it would retain enough characteristics of a 
standard processor that it would be useful in the 
classroom. 

Other methods of reducing the instruction set proved 
themselves too inefficient.  For example, we could have 
pre-loaded our processor with all 232 possible 32-bit 
values: a negation could then have been accomplished 
simply by loading the proper value from memory.  The 
memory overhead from a scheme like this is ridiculously 
large, however, which makes it impractical to use. 

In the end, we chose to reduce MIPS to the eight 
instructions shown in Table 2.  All of these are standard 
instructions from the MIPS instruction set. 

INSTRUCTION / FORMAT OPERATION 

NOR rd, rs, rt  
(Nor) 

perform bit-wise logical NOR on the contents of 
register rs and rt, place the result in rd 

SUBU rd, rs, rt  
(Subtract Unsigned) 

subtract the contents of rt from rs and place in rd 
(unsigned) 

LW rt, offset(base) 
(Load Word) 

load into rt the value from memory location that is the 
sum of offset and the value in register base  

SW rt, offset(base) 
(Store Word) 

Store the value from register rt into the memory 
location that is the sum of offset and the value in 

register base 
BGEZ rs, offset 

(Branch on Greater Than or Equal to 
0) 

if the contents of rs >= 0, branch to (PC + offset) (offset 
is shifted two bits and sign extended) 

JALR rd, rs 
(Jump and Link Register) 

jump to the address in register rs, placing the next 
instruction in rd 

SYSCALL 
(System Call) 

a system call exception transferring control to the 
exception handler 

BREAK 
(Break) 

a breakpoint trap occurs, transferring control to the 
exception handler 

 

Table 2. Reduced MIPS Instruction Set 

We can describe any MIPS instruction by some 
combination of these eight instructions.  This set of 
instructions maintains the feel of a real processor by 
providing a wide range of functionality.  It contains a 
logical operator (NOR), an arithmetic operator (SUBU), 
loading and storing instructions (LW, SW), branching and 
jumping capabilities (BGEZ, JALR), and exceptions 
(SYSCALL, BREAK).  In practice, programs will be run 
through a pre-assembler that will reduce all instructions 
down to this set of eight.  Instructions will then be turned 
into machine code, loaded onto the processor, and run. 

Different approaches were needed for each type of 

instruction that we wanted to reduce out of the set.  For 
example, an ADDU (add unsigned) can be accomplished 
by subtracting one of the values from 0 and then 
subtracting that value from the other.  Similarly, an AND 
is accomplished by negating both values and then 
performing a NOR. 

Many instructions make use of the fact that adding a 
number to itself is the same as shifting the number once to 
the left.  Shift lefts and shift rights are easily 
accomplished using this concept, and multiplies are also 
aided by this fact.  We perform our multiplies by shifting 
the multiplier left one bit at a time, each time checking the 
MSB.  If the MSB is 1, the multiplicand is added to the 
product, which is also shifted each time we check the 
multiplier.  Thus, a multiply is carried out in the same 
manner that a human would multiply two numbers by 
hand.  (The multiplier is forced to be positive so that this 
will work.  If a negative multiplier is present, we negate 
both the multiplier and multiplicand to achieve this.  
Checking the MSB of a number is done via BGEZ.) 

The divide instruction is also implemented in the same 
way that a person would do it by hand.  The dividend is 
shifted one bit at a time and is compared to the divisor 
upon each shift.  At any step, if the dividend is greater 
than or equal to the divisor, the divisor is subtracted from 
the dividend and the quotient is incremented by one.  Just 
like with the multiply, the quotient is shifted along with 
the dividend in order to keep the answer correct.  At the 
end, the remaining dividend is placed into the remainder 
register. 

Table 3 shows how many instructions must be used to 
replace each MIPS instruction, supplying the total number 
of instructions as well as the average number of 
instructions that must be executed.  LUI and LI (load 
upper immediate and load immediate, which load 16-bit 
constants into a register) require only one instruction 
because the assembler assists them by placing the value to 
be loaded into memory prior to operation. 

INST TOT AVG INST TOT AVG INST TOT AVG INST TOT AVG 

LB 13 12.5 J 2 2 ORI 3 3 DIVU 30 352.5 

LBU 8 8 JAL 2 2 OR 2 2 SLTI 9 5.83 

LH 15 9 JR 1 1 XORI 6 6 SLTIU 9 6 

LHU 9 6.5 JALR 1 1 XOR 5 5 SLT 8 4.83 

LW 1 1 BEQ 5 4 NOR 1 1 SLTU 9 5 

LWL 22 47.25 BNE 6 3.63 ADDI 2 2 SLL 9 51.53 

LWR 54 81.75 BLEZ 4 2.5 ADDIU 2 2 SRL 16 64.13 

LUI 1 1 BGTZ 5 2.75 ADD 17 5.9 SRA 17 65.09 

LI 1 1 BLTZ 2 1.5 ADDU 2 2 SLLV 8 50.53 

SB 29 17.75 BGEZ 1 1 SUB 2 2 SRLV 15 63.13 

SH 15 9.5 BLTZAL 3 2.5 SUBU 1 1 SRAV 16 64.09 

SW 1 1 BGEZAL 2 2 MULT 39 212 SYSCALL 1 1 

SWR 25 14 AND 3 3 MULTU 26 336.8 BREAK 1 1 

SWL 26 16.25 ANDI 4 4 DIV 38 356.8    

 

Table 3. Instruction Inflation due to Reducing Set 
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It is clear that by reducing the number of usable 
instructions we are consequently inflating the overall 
instruction count and thus reducing our processor’s 
performance. Remember, however, that performance is 
not one of our major design goals.  A simpler 
implementation is more valuable to us than fast 
processing, so we believe the instruction inflation shown 
in Table 3 is acceptable. 

5. Classroom Integration 
We will provide the students with access to the following 
items: an XSV board, access to a computer with Xilinx 
Foundation Software, our processor debugging tool, a 
parallel port connector, a Foundation project containing 
an incomplete version of our processor, and a power 
supply for powering the board.  With these tools the 
students will be able to design and produce a processor on 
their FPGA.  A possible set of projects is suggested here 
in order to illustrate the use of our tools. 

An early assignment for the students will likely be the 
designing of the register file.  Each student will design 
their register file and add it to the Foundation project, 
then implement the design onto their FPGAs.  Once done, 
they can use their debugging tool to verify their register 
file design in multiple ways.  The simplest way will be to 
write values directly to the register file and then read them 
to assure correct operation, but they could also use the 
debugging tool to simulate a specific instruction and see 
that the instruction has the proper effects on the register 
file. 

The next design project might be the ALU.  After 
designing the ALU and implementing it onto the FPGA 
along with their register files, the students would again be 
offered with a number of ways to test their designs.  First, 
they could simply use the debugging tool to stimulate the 
ALU’s inputs and control values, observing that the 
proper value is outputted.  They could also hook up the 
register file outputs to the ALU inputs, testing the two 
units together by giving addresses to the register file and 
observing the ALU output.  A third option is to simulate a 
specific instruction and observe its propagation through 
the register file and ALU.  Again, the debugging tool will 
provide many testing options to the students, allowing 
them to debug in almost any manner they wish. 

When the students have designed a complete single-cycle 
processor, the debugging tool will then be used not only 
to stimulate inputs and read outputs, but also to control 
the CPU clock.   Students will be able to read or write any 
of the processor’s memories in order to obtain the state 
they want, and then they will be able to walk the CPU 
clock in any increment they wish.  For example, a student 
might load a specific instruction into memory and then 
run the processor for 0 cycles, thereby loading the 
instruction and observing the propagation of values 

through the combinations paths of the CPU.  The student 
could also run the processor for a full cycle, committing 
to memory whatever the instruction specifies, thereby 
making certain that the memories are working correctly.  
Again, a number of debugging options are made 
available, giving the students the freedom to debug 
however they wish. 

Beyond a single-cycle implementation, the students might 
also be asked to design a multi-cycle or pipelined 
processor.  In reality, these and almost any projects 
relating to processor design can be completed because the 
debugging tool supplies complete control and 
observability of the processor’s internal state. 

6. Results and Discussion 
The results of our implementation of two FPGA-
optimized processors appear in Table 4.  For the single-
cycle implementation we were able to fit our design quite 
easily into our XILINX Virtex XCV300 PFGA, using 
only 22% of the LUTs and 25% of the BRAMs.  Our 
FPGA runs at a maximum frequency of 25MHz, which 
means that the actual processor runs at 1.5MHz (25/16).  
The pipelined processor produced similar utilization 
numbers, using 29% of the LUTs, 25% of the BRAMs, 
and running at 23 MHz (1.4MHz for the processor). 

The debugging tool has also been tested, and successfully 
supplies a user with complete control of the processor 
even when it is incomplete. 

 

PROCESSOR TYPE 
FPGA CLOCK 

FREQ 
PROC. CLOCK 

FREQ 
% LUTS 
USED 

% BRAM 
USED 

SINGLE-CYCLE MIPS 25 MHz 1.5 MHz 22% 25% 

PIPELINED MIPS 23 MHz 1.4 MHz 29% 25% 

 

Table 4. Implementation Results 

The work presented in this paper describes a completely 
functional and debuggable processor.  While we have 
offered an outline of some possible class projects, 
instructors who wish to use our implementation will 
ultimately make the decision on what aspects of 
architecture to teach.  By providing the students with a 
Foundation file that already has most parts of the 
processor, instructors will be able to have their students 
design and replace the missing parts.  Upon completion, 
students will have a working processor that they can 
actually operate. 

7. Conclusion 
The FPGA-optimized processor, debugging tool, and 
reduced instruction set presented in this paper represent 
the primary step in our goal of introducing FPGAs into 
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the teaching of computer architecture.  The processor and 
debugging tool should be easy to integrate into the 
classroom, where they will provide students with a hands-
on experience that was previously unavailable to them.  
We are convinced that when teachers incorporate these 
tools into their classrooms that students will display better 
retention of the intended lessons as well as increased 
enthusiasm about the work performed.    

8. Future Work 
The next logical step for this research is to integrate it into 
the classroom.  The work presented here will be polished 
into a workable lesson plan that will likely be tested by a 
pair of students in the fall of 2001.  With their comments 
and critiques, the lessons will then be revamped with the 
intent of incorporating this work into the teaching of 
Computer Design and Organization at the University of 
Washington in the spring of 2002. 

There also exists the possibility of merging this work with 
student-built compilers and operating systems.  By 
combining the teachings of processor design, compilers, 
and operating systems, students will eventually be able to 
turn chips into complete working computers.  By doing 
this, the interactions and tradeoffs between these various 
fields can be explored in real terms, with concrete results. 

9. Notes 
Along with the previously mentioned eight instructions, 
our processor also supports the instructions that are 
presented in Patterson and Hennessy: BEQ, ADD, SUB, 
AND, OR, SLT, and J.  This set includes simple and 
easily understood instructions, and supporting them will 
provide the students a larger range of instructions with 
which to test and debug their processor.  Thus in total our 
processor supports 15 instructions. 
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