
1

Accelerating Photoshop Applications with Reconfigurable Hardware
Guangyu Gu

Department of Electrical and Computer Engineering
Northwestern University

Abstract

In this paper, we investigate the implementation
of reconfigurable computing in commercial
applications. A Reconfigurable Processing Unit,
the Xilinx XC6200 is introduced and our design
flow with the HOTWorks development system is
shown. We show the design of reconfigurable
computing versions of Photoshop plug-ins, and
compare various approaches of implementation.
We analyze the test result and make suggestions
to future designs.

1 Introduction

Introduced in the mid 1980s, the field
programmable gate array (FPGA) is now widely
used in different applications. The new uses of
FPGAs move beyond the implementation of
digital logic and the emulation of logic systems.
Due to the volatility of FPGAs, they can perform
as general-purpose computation machines. We
can map not only standard hardware circuits, but
also operations from algorithms and general
computations onto FPGAs.

While these FPGA-based custom-computing
machines may not beat the performance of
microprocessors for all applications, they can
offer extremely high performance for a wide
range of computations. Although a custom
hardware implementation can be more efficient
than any generic programmable system for a
specific problem, the fact is that few applications
will ever merit the expense of creating
application-specific solutions[11]. With the
flexibility to be reprogrammed, FPGA-based
computing machines can offer the highest
realizable performance for many different
applications with reasonable cost.

There are several ways in which reprogrammable
logic can be added to standard computer
systems: as a functional unit, as a coprocessor, as
attached processing units, or as standalone
processing units[11]. The functional unit
approach and the coprocessor approach will
generate low delay during communication with

the CPU, but they are not able to handle a large
computation task independently. They can beat
conventional coprocessors with their flexibility.
For example, in the Chimera Project at
Northwestern University, FPGA functional units
are integrated with a MIPS processor to form a
new processor[9]. In the NAPA adaptive
processing architecture, at each node, the
adaptive logic processor resource is connected to
a general purpose scalar processing unit through
a dedicated co-processor interface[12]. Also,
there is the Garp architecture from Berkeley, in
which the standard processor and the
reconfigurable coprocessor share a single
memory hierarchy, and the coprocessor is under
direct control of the main processor[13].

With the attached processing unit approach and
the standalone processing unit approach, we can
map complex operations onto multiple FPGAs.
Since the FPGA units are connected to the CPU
through certain memory and I/O interfaces, the
communication can be a bottleneck for the whole
system. Currently these two approaches are the
most common methods, in which
reprogrammable systems are put on computer
add-on cards or into separate cabinets.
Commercial reconfigurable computing cards for
PC and for workstation are already available,
such as HOTWorks PCI board from Virtual
Computer Corporation, and WildFire PCI board
from Annapolis Micro Systems Inc.

To introduce reconfigurable systems into
commercial applications, we need a specialized
compiler to distribute computation tasks to
different resources. There are many new
challenges for constructing this kind of
compilers. In the MATCH project[10] at
Northwestern University, a control processor is
used to distribute different computational tasks
to general processors, DSPs and FPGAs. In this
case, a dedicated and efficient compiler is
extremely important for a satisfactory result.

Alternatively, we can save the effort of
constructing a compiler. Some commercial
applications, such as Photoshop and Netscape,
have a built-in mechanism called plug-in
interface. This enables users to insert customized

2

functions into host processes. Implementing
reconfigurable computing in these commercial
applications depends on coordinating hardware
and software with instructions in the software
code.

2 The HOTWorks Development System

The HOTWorks development system is a
product from Virtual Computer Corporation. It
consists of a PCI board and the supporting
software[1]. On the PCI board, there is a
XC6200 RPU for reconfigurable computing.
There are also 2 Megabytes of SRAM on the
board as well as other logic devices to implement
the PCI interface between the host PC and the
XC6200.

The software package comprises a VHDL
compiler, a place and route tool for the XC6200,
and C++ classes for accessing the XC6200 from
the host processor. These programs are designed
for Windows 95.

The design flow for the hardware circuits on the
XC6200 is shown by the figure below. Firstly,
structural VHDL code can be edited in any text
editor. Next, a VHDL compiler called VELAB is
invoked and an EDIF file is generated. Then, a
place and route tool called XACT6000, which
reads the EDIF file, will be responsible for
placement and routing[6]. When the routing is
completed successfully, it outputs the design
configuration as a CAL file, which is loaded by
user programs at run-time. With the information
in the CAL file, the system will know how to
configure the XC6200.

 Figure 1. Hardware Design Flow

Although designs and circuits can be tested by a
program called "PCITest"[1], the interaction of
software and hardware and the realization of run-
time reconfiguration are implemented by some

C++ code. Because all of the configuration
registers in the XC6200 are mapped into the
memory and I/O spaces of the host PC, we can
access these registers just like we read or write to
memory locations. Also, the unique character of
the XC6200 enables access to individual logic
units in the XC6200. These operations have been
encapsulized by certain C++ classes from
Xilinx[1]. Thus, several low-level reads/writes
can be replaced by a simple call to some member
functions in certain classes.

Basically, users need to write their own C++
codes on the Visual C++ platform in their
applications. Those C++ classes from Xilinx
must be included and compiled along with the
user codes.

3 The XC6200 RPU

The reconfigurable computing power of the
HOTWorks System comes from the XC6200
Reconfigurable Processing Unit. The XC6200 is
a family of fine-grain, sea-of-gates, SRAM-
based FPGAs. These devices are designed to
operate in co-operation with a microprocessor or
microcontroller to provide an implementation of
functions normally placed on an ASIC [7].

The XC6200 architecture may be viewed as a
hierarchy. At the lowest level lies a large array of
simple cells. Each cell contains a computational unit
capable of simultaneously implementing one of a set
of logic functions, a D-type register and a routing area
through which inter-cell communication can take
place. There is no LUT in logic cells. Instead, there
are multiplexers in each cell, which are controlled by
bits within the configuration memory. The design uses
the fact that any function of two Boolean variables can
be computed by a 2:1 multiplexer if suitable values
from the inputs or their complements are chosen.

Neighbor cells are grouped into 4x4 blocks.
These blocks, communicating with neighboring
4x4 blocks, form a cellular array themselves.
Thus we can also have 16x16 arrays and 64x64
arrays, even 128x128 arrays. At each level,
corresponding routing resources are provided.
There are wires between neighboring cells, as
well as wires of length 4, length 16, and so on. It
appears that there are enough routing resources
in the XC6200. However, because the area
dedicated to routing is still limited, there is a
bottleneck for routing complex designs. This
also causes problems in system-level synthesis.

The unique character of the XC6200 is that it supports
direct access from the processor to nodes within the

VHDL
Code

EDIF
File

CAL
File

VELAB XACT
6000

Run-time
Program

Compile Map Load

3

user's circuits. Thus, the functional unit output of any
cell can be read and the flip-flop within any cell can
be written. These accesses are carried out through
the control store interface and involve no
additional wiring within the user's design. In
many applications, this access to internal nodes
is the main path through which data is
transferred to and from the processor, and in
some applications it may be the only external I/O
method.

4 Photoshop Plug-in Interface

Adobe Photoshop is a popular image processing
package with a modular architecture. Through
the plug-in interface, Photoshop plug-in modules
can be added or updated independently by end
users to customize Photoshop to their particular
needs[2]. We can regard plug-in modules as
helpers to the Photoshop host program, as shown
in figure 2.

 User Interface

 Display

Photoshop Host
Program Plug-in

Module

Source Data

 Result

Figure 2. Communication between Photoshop
Host and Plug-in

When we want to process an image in some
format not supported by the standard Photoshop
package, we may develop a plug-in module to
read in all the information contained in that
source file. All of the image information will be
put into the built-in data structures in Photoshop.
Thus, we are free to manipulate the image with
those functions from Photoshop.

Sometimes, to create a certain visual effect, we
need to process a source image in fashions not
supported by Photoshop. We hope to focus on
developing our own function to process a 2-D
pixel array, i.e., the bit map. We do not want to
bother with opening an image file,
decompressing the image, and writing back the
result. To achieve this, we can write a plug-in for

Photoshop, which is only concerned with that
kind of image processing, and the Photoshop
host program will implement all the other
functions.

Some plug-in modules contain computationally
intensive operations. If we succeed in
accelerating these modules, then the whole
application has been significantly accelerated as
well. We can choose better algorithms and apply
efficient data structures in our plug-in module.
Alternatively, we can map some computation
onto reconfigurable hardware.

5 The Grayscale Problem

We have chosen Adobe Photoshop as our
platform for reconfigurable computing
applications. There is one category of plug-in
modules called filter, which enables inserted
code to process image data prepared by
Photoshop.

Obviously, some image processing procedures
consist of intensive computation, such as fix-
point multiplication, coding, DCT and other
transforms. These computations normally take a
large amount of time on conventional processors.
If we introduce the XC6200, and exploit the
inherent parallelism of operations, considerable
time may be saved.

In some cases, it is desired to convert a color
image into a grayscale image, either for less
storage size or for specific visual effects. Any
color image can be converted to an RGB mode
image. Usually, eight bits are used for a color, so
the intensity of each color can take one of the
256 discrete values. For RGB mode images, the
color of each pixel is described by 24 bits.

It is pretty straightforward to turn RGB mode
images into grayscale images. Simply, we have

3/3/3/ BGRGrayscale ++= [4]

Since human eyes have different sensitivity to
the frequencies of red, green and blue, the
grayscale of a pixel can be computed more
accurately as

BGRGrayscale ×+×+×= 114.0587.0299.0
[5]

4

When set to RGB mode, Photoshop will
represent any image as an RGB pixel array, or
bitmap, after it has opened that image. Once we
get the information of a pixel from Photoshop,
we have the intensity of red, green, and blue.
With the XC6200, the computation of 0.299×R,
0.587×G, and 0.114×B can be done in parallel. It
is feasible to build a pipeline for each multiplier
and for the final addition stage to further
improve performance.

6 Evaluation of Hardware Approaches

6.1 Direct Access
Since the XC6200 supports direct access within
the whole user circuit, we may eliminate all the
I/O buffers and pads in our design. Basically, the
user's code gets all the input data and writes to
certain columns in the XC6200, where we put
input buffer registers to hold the source data. The
output of those input buffer registers is fed into
some complex logic network. The network
output is routed to certain output buffer registers,
and is then read by the host PC.

 Figure 3. Direct Access Approach

In user code, there are C++ function calls to
write to the input buffer registers, and to read the
output buffer registers. These functions are
translated into several software instructions and
moreover, it will take multiple cycles to access
those logic units in the XC6200. The reason is
that several additional configuration registers
need to be updated to make sure the reads and
writes are only applied to related logic units.
These operations in software take considerable
time, and they result in heavy PCI traffic
between the host PC and the XC6200.

With direct access, we are liberated from
building input and output sub-circuits for our
design. On the other hand, we have to spend
more time coordinating the software operations
and the hardware circuits when we are designing
complex sequential circuits, because the software
code visits the buffer registers during the state
transitions of the sequential circuits.

In fact, a test version of our logic has been
implemented with direct access approach. It
takes 16 seconds to process 1×106 pixels.
Compared with x seconds for a purely software
version, this is intolerably slow.

6.2 The On-board SRAM Approach
There is two Megabytes of fast SRAM on the
HOTWorks Board. The memory is organized
into two banks. Each bank of the SRAM can be
accessed from either the PCI Interface
(controlled by PC Host) or the XC6200. The
memory banks have two separate address buses
and four read/write signals to control the SRAM.
Thus the development system provides a flexible
architecture in order to implement a wide variety
of algorithms.

Obviously the on-board memory can act as a
system input/output buffer. The host PC can
transfer a large amount of input data in one
function call, filling the SRAM with input data.
When the XC6200 is working, it retrieves input
data from the SRAM and also writes the result
back to the SRAM. Finally, the host PC reads the
content of the SRAM, which is the result from
the XC6200.

 Figure 4. On-Board SRAM Approach

The SRAM is mapped transparently into a region
of PCI memory address space. The function calls
writing and reading SRAM through the PCI
Interface consist of a large amount of PCI bus

PCI Interface

In
Buffer
Reg.

Out
Buffer
Reg.

Logic Network

Circuits

 PCI Interface

On-Board
SRAM

5

transfers and a few accesses to configuration
registers.

This approach is clearly a winner over the direct
access approach when the block of traffic data is
large enough. For example, if we want to transfer
more than 64 bytes (16 words) of data to the
XC6200, the SRAM approach takes less time.

7 Basic Design Flow of Plug-in Modules

The framework of our plug-in module is based
on the C code obtained from Photoshop Plug-in
SDK. In this framework, we specify how many
iterations are needed to process the image data,
in what order we want to process the pixels, and
some other conditions.

There are several C++ classes provided by
Xilinx to access and control the XC6200 from
the host PC. We initialize an object of the
XC6200 class, which has full access to various
resources on the XC6200 and the HOTWorks
board. A pointer to that object is passed to the
plug-in framework. With that pointer, we can
read and write arbitrary columns in the XC6200,
manipulate the on-board SRAM memory, and
control the behavior of the XC6200 as well as
the clock rate of the system from within the
plug-in module.

The code to filter image data is located in certain
functions in the plug-in framework. Basically, all
the operations not suitable for hardware have
been implemented in software. Computationally
intensive operations are assigned to the XC6200.
Software controls writing data to the on-board
SRAM and then writes to certain columns in the
XC6200, signaling it to start computing. While
the XC6200 is working, it processes the source
data in the SRAM, and writes back results. At
the same time, the host PC is free and can keep
on processing data. When the XC6200 finishes
computing, the software code on the host PC
invokes instructions to read back the results from
the on-board SRAM.

Once the plug-in module finishes its task, the
control will be returned to the Photoshop host
program, and we are free to manipulate the
image with all the functions within Photoshop.

8 Implementation of On-board SRAM
Version of the Grayscale Plug-in

8.1 Design of Circuit
For each term in 0.299×R+0.587×G+0.114×B,
an 8-bit by 8-bit multiplier is needed. Building
three 8-bit by 8-bit multipliers will take
considerable resources on the XC6200. An
alternative approach is to use hardwired shift
registers and add up all the partial results. For
example,

)6()5()2(

)64/132/14/1(

299.0

>>+>>+>>=
×++=

×

RRR

R

R

Several 8-bit adders and 9-bit adders are built to
accumulate all the partial results from shift
registers, and pipeline registers are placed
between two stages to enable a high clock rate.

Since the source data is read from the SRAM
and the results are sent back to the SRAM, we
need some sub-circuits to take care of the
interaction between the SRAM and the XC6200,
since the XC6200 does not provide built-in
control mechanism for memory access.

8.2 SRAM Interface
Generally speaking, to process one pixel, the R,
G, and B values need to be passed to the
XC6200 through the SRAM, at a rate of
24bits/pixel from the host PC to the on-board
SRAM.

For our instance of grayscale conversion, the
transfer rate from host PC to the on-board
SRAM is 24bits/pixel, while the rate from on-
board SRAM to host PC can be reduced to
8bits/pixel.

Since there are several modes of SRAM
operation, we have two possible schedules for
the data traffic.

Schedule 1: First, the PCI Interface has a 32-bit
bandwidth to the SRAM, then it gives up the
control of data bus, and lets the XC6200 RPU
have a 32-bit bandwidth to the SRAM. This
procedure will be repeated until all the data has
been processed[1]. These two connections are
shown in Figure 5.

Schedule 2: First, PCI interface controls bank1,
the XC6200 controls bank2, then they swap their
banks, and so on[2]. These two connections are
shown in Figure 6.

6

The benefit of schedule 1 is that we can
minimize the number of PCI reads and PCI
writes. On the other hand, schedule 2 overlaps
computation on XC6200 with the PCI reads and
writes.

We have noticed some facts of the PCI bus
traffic. It takes about 0.1 seconds for the host PC
to write to 1×106 consecutive locations on
SRAM, while it takes about 0.5 seconds to read
the contents of those 1×106 consecutive
locations. We may suppose that the XC6200
always works at 20MHz, and it always takes
1.25 cycles for the XC6200 to process one
pixel(One read cycle per pixel, and one write
cycle every four pixels). Therefore, it takes about
0.06sec to process the data in 1×106 memory
locations.

Since each pixel has an 8-bit result, and 32 bits
may be read back in one PCI read operation, we
needs 1 PCI write, and 0.25 PCI reads for each
pixel with schedule 1. Therefore it takes 0.1 +
0.06 + 0.5/4 = 0.285 seconds to process 1×106

pixels.

With schedule 2, two 16-bit PCI writes are
needed for the 24 bits input data of one pixel,
and the result from two pixels can be read back
in one 16-bit PCI read. It takes MAX(2 PCI
write time + 0.5 PCI read time, average time for
the XC6200 to process one pixel) to process one

XC6200 RPU

Bank 2

 Bank1

PCI

Interface
16

16

Address

Data

Connection 1

XC6200 RPU

Bank 2

 Bank1

PCI

Interface

Data

16

 16

 Data

Address
Address

Data

32

Connection 2
Figure 5. Schedule 1 for the SRAM Connections

XC6200 RPU

Bank 2

 Bank1

PCI

Interface

Data

Address

Data

Address

Connection 1

XC6200 RPU

Bank 2

 Bank1

PCI

Interface Data

Address

Data

Address

Connection 2
Figure 6. Schedule 2 for the SRAM Connections

pixel. Therefore it takes 0.1×2 + 0.5/4×2 =0.45
seconds to process 1×106 pixels.

Schedule 1 has better performance than schedule
2. Therefore, in our design, both the PCI
interface and the XC6200 RPU access the on-
board SRAM with 32-bit bandwidth.

We can also conclude that schedule 1 is better in
most of the applications for this system. Suppose
that for a certain algorithm, 4×106 bytes of data
need to be transferred to the XC6200. With
schedule 1, we need at 0.1 seconds, while with
schedule 2, we need 0.2 seconds. When the
circuit can process 32 bits in less than 2 clock
cycles, the computation will take less than 0.1
seconds. Therefore with schedule 1, we need less
than 0.2 seconds for the whole process. With
schedule 1, we will need 0.2 seconds in total.
When we take more facts into consideration, the
results will remain the same for most cases. This
is because the computation time is much less
than the data transferring time.

An SRAM macro design from Xilinx basically
satisfies the requirement of schedule 1[3]. It is a
circuit dedicated to the communication between
user circuits and the SRAM module. Additional
logic is added to make timing clear for the
SRAM read and write operations. Two 32-bit

7

registers serve as the from-SRAM buffer and the
to-SRAM buffer to make all the operations
synchronized to a global clock signal. Once we
feed the SRAM macro with RDWR, CLK, and
CLK2 (it has a doubled rate when compared to
CLK), the SRAM macro will generate all the
control signals for the SRAM. Therefore the
operations on the SRAM module have been
encapsulized by the SRAM macro. Figure 7
shows the working of SRAM Macro. This
SRAM macro can be reused in many other
applications.

CLK

CLK2

RDWR

OUT

IN

 Main
 Circuit

 SRAM
 Macro Memory

 Implemented
 on XC6200

 Implemented on
 HOTWorks Board

Figure 7. Interface to SRAM Macro

8.3 Finite State Machine
For the grayscale problem, R, G and B takes 24
bits, while the result for a pixel takes 8 bits. For
improved performance, the results of four pixels
can be transferred at the same time.

An FSM is built to guide the XC6200's access to
the SRAM. The circuit is designed to perform
four read operations at consecutive locations in
lower address spaces, followed by one write in
upper address spaces for four pixels' grayscale.
Corresponding addresses and the RDWR control
signals will be generated at the same time.

All the input data (R, G, and B) are located in the
lower end of address space, while all the results
(grayscales) are stored in the upper end of the
address space. We also built a version in which
the read address and the write address both start
at 0. The data is safe because there are four reads

along with one write, so the writing back will not
erase any useful source data.

8.4 Address Generation
A counter with enable port has been built to
provide addresses. Its output is used to generate
the read address and write address for the SRAM
macro. A 19-bit MUX controlled by the FSM
selects the read address or the write address and
sends the output to the address port in the SRAM
macro.

8.5 Circuit Layout
The final design is in structural VHDL. The code
has been compiled and the resulted EDIF file has
been routed. The layout is shown in Figure 8.

In Figure 8, the blocks on the left are adders and
shifters. The blocks on the right are counters,
multiplexers and the finite state machine. Only
parts of the SRAM macro have been shown in
this figure.

Figure 8. Circuit Layout for XC6200

The layout figure shows that only a small part of
logic units has been utilized, but the routing in
certain areas is intensive. It was limited routing
resources that made the design more difficult.

9 Test Results

8

Because there is a long carry chain in the address
counter and the SRAM needs good timing
signals, the HOTWorks board works at 20MHz,
processing 262,144 pixels in an iteration. On
average, it takes 1.25 cycles to process each
pixel. The computation of grayscale is nearly 10
times faster than the C++ operations in software.

To demonstrate how the computation on
hardware cooperates with the PCI interface and
the software in plug-in framework, an SRAM-
based reconfigurable version of grayscale plug-in
was completely implemented for Photoshop. An
enhanced reconfigurable version was
implemented, in which the host PC processes
data when the XC6200 is computing. Finally,
two pure software version of plug-in were
developed. In one of them, we compute the
grayscale with multiplication and addition as we
normally do in software code. In the other,
shifting and accumulation are used instead. All
the plug-ins were running on our Micron PC
(Pentium II 400) with a FAT HOTWorks Board,
which contains an XC6200 chip with a 128x128
cell array. It takes about 0.7 to 1 seconds for
each version to process a 1280x1024 color
image, and the difference of run time is very
small.

The grayscale values obtained in the
reconfigurable computing version contain certain
truncation errors introduced in shifting and
addition. About 5% of the results are 1 less than
the results in the software version doing
multiplication. We are putting more bits into the
computation circuit to reduce truncation errors.

To determine the system speedup, the grayscale
filter operations were repeated 100 times, and the
run time recorded in the table below. The result
showed that the first reconfigurable version was
10% slower than the pure software version doing
multiplication. But the second reconfigurable
version is 15% faster than that software version.
The software version doing shifting takes least
time to finish.

Software
(multiplication)

1st

Reconf.
2nd

Reconf.
Software
(shifting)

 44 sec 49 sec 37 sec 31 sec

It’s very feasible to implement multipliers on the
XC6200, to achieve the same high throughput
rate for the computation of grayscale. Therefore
we may beat the software doing multiplication.
When the software simply does shifting and

addition, all the operations can be completed in
several clock cycles, therefore the high CPU rate
helps to achieve a faster solution than the
reconfigurable computing method.

It appears easy to obtain great speedup with
hardware, because some operations may be
simpler when implemented on hardware, and it is
quite easy to exploit the inherent parallelism of
applications with hardware circuits. But the
difficulty arises as we need to tell the hardware
when to start computing and when to stop, what
input to be fed to the RPU, and what output to be
read back. With the Direct Access approach, we
have to perform lots of read and write operations
on the control registers and configuration
registers of the XC6200 for each piece of input
data. This consumes a considerable amount of
time by producing heavy traffic on the PCI bus.
With the on-board SRAM approach, there is less
PCI traffic, but the total speedup still depends on
efficient implementation of PCI transfers.

10 More Analysis of Test Results

10.1 Components of Execution Time
The total execution time can be divided into the
following parts.

The preparation time: the time elapsed when the
Photoshop host program prepares data for the
filter plug-in. It is the same for both the pure
software plug-ins and our reconfigurable
computing solutions. For large images, this time
can be neglected.

The writeRAM time: the time needed to call the
writeRAM function to move the data from a
user-specified area to the on-board SRAM.

The readRAM time: the time needed to call the
readRAM function to move the data from on-
board SRAM back to a user-specified area.

The writeRAM and readRAM time is dominated
by PCI traffic time. Normally, they are the
largest fractions of the total execution time. For
some reason, with the same traffic, readRAM
time is much longer than writeRAM time.
Therefore, readRAM is the dominant fraction of
the total execution time.

The auxiliary-moving time: the time consumed
when the data are moved to and from the
Photoshop data structure. It can be saved if we

9

add considerable complexity to our XC6200
configuration. Normally, we need to copy the
source data to a temporary location and pack
them in specified order before we call the
writeRAM function. The reason is that
Photoshop packs the source data in its own way,
which will cause inconvenience for the XC6200
to process the data.

The software time: the time consumed by the
operations having to remain on the host PC. It
can not be completely removed for some
complex computations, because some functions
will take too much resource to be mapped to
hardware, or there is no more space to hold them
in the XC6200. These functions can be regarded
as part of the pure software version, which can
not be parallelized or pipelined by hardware.

The hardware time: the time consumed by the
operations on the XC6200 RPU. It is affected by
the SRAM interface on the XC6200 board, since
in each clock cycle, at most 32 bits can be read
or written. This presents a bottleneck for our
parallel processing on the board.

In Photoshop filter plug-ins, this restriction
normally means that only one combination of R,
G, and B values can be transmitted in one clock
cycle. Therefore, to keep the process stable, the
best case we can expect is one pixel processed in
every one to two clock cycles. Figure 9 shows
the major components of the execution time in
Photoshop plug-in.

Figure 9. Major components of plug-in
execution time in pure software version and
reconfigurable computing version

10.2 Comparison of Reconfigurable-
Computing Version to Pure Software Version
Suppose we have a software version of a
Photoshop plug-in, which takes n seconds on a
Pentium II 233 PC to process an image
containing 1×106 pixels. Also, suppose that we
developed a reconfigurable computing version
on the XC6200.

For our grayscale application only, some
simulation results are as follows. It takes 0.09
seconds to move data to the write buffer, and
0.12 seconds to call the writeRAM function. Also
it takes 0.13 seconds to call the readRAM
function, and 0.04 seconds to get data from the
read buffer.

To make the SRAM interface work correctly, the
main part of the circuit works at 20MHz. For
1×106 pixels, we need to perform 1.25×106

read/write operations. This will take 0.0625
seconds.

If we neglect the software time and preparation
time, and we neglect the fact that the host PC can
process data during the hardware time, the total
execution time will be 0.09 + 0.12 + 0.13 + 0.04
+ 0.06 = 0.44 seconds.

If the software version is worse than the
reconfigurable computing version, it will take n
seconds, in which n > 0.44 seconds. Suppose
these 0.44 seconds are all used by image
processing functions, then it takes at least

61044.0 −× seconds to process each pixel.
Therefore, on average, the software version
needs at least 103 cycles to process each pixel.

Thus, we may conclude that, to beat the software
version, we have to put certain computation
tasks, which take at least 103 cycles on the host
PC, onto the XC6200. We also need to make
sure that the pipeline structure has a throughput
of 1 result every 1.25 clock cycles, because we
expect the FPGA take 0.0625 seconds to process
1×106 pixels.

10.3 Achieve More Speedup and Introduce
the Software Time
In this example, we assume that 1/4 of the
computation task can not be mapped onto the
XC6200, but we still want to achieve a speedup
of 2. We still suppose the pure software version
takes n seconds to process 1×106 pixels.

WriteRAM
Time

Hardware Time

ReadRAM
Time

Computation Time in Software

Auxiliary-
Moving Time

10

For best result, we can overlap the FPGA
hardware time with the host PC software time,
therefore we will not considerate the hardware
time. Furthermore, we neglect any possible
auxiliary-moving time and the PCI traffic is as
low as the case in the grayscale example. We
have n n/ . . /4 012 013 2+ + < , that is, n > 1
second. This means that we need to put the
computation tasks, which take 233 cycles on the
host PC, onto the XC6200, and the pipeline
structure must have a high throughput.

Obviously, the computation of grayscale is not
so complex, and we can not exploit so much
inherent parallelism. We may conclude that with
the HOTWorks system, it is very difficult to
enjoy a speedup of 2 while placing only 3/4 of
the total computation tasks onto the XC6200 and
considering all the potential overhead.

We can explain this with Amdahl's Law:
T p Tp = + − ×(() /)α α1 [8]

When we need more speedup, α α+ −() /1 p
should be small. When software time can not be
eliminated, we have α > 0 . Then, we have to
make p large enough. But p depends on the
characters of different computation tasks.

10.4 Some Conclusions
Great speedup is only available in the cases
where software versions comprise lots of
computations for each pixel. Also, in order to
achieve that speedup, a hardware configuration
which exploits considerable parallelism and
pipelining must be found. Moreover, a better PCI
transfer rate can greatly reduce the time
consumed by the whole process.

Fortunately, better PCI transfer solutions are
available in the market. If the PCI transportation
is improved, our reconfigurable-computing
version plug-ins will clearly beat pure software
version plug-in.

11 Summary

With the plug-in interfaces, reconfigurable
hardware can be used in commercial
applications. With efficient implementations,
reconfigurable computing can accelerate those
applications, even if the pure software version is
running on fast high-end PC/workstations. To
make the reconfigurable-computing approach
more appealing, vendors need to improve their

development system with better PCI BUS
performance, and users must find suitable
applications and come out with an efficient, tight
circuit design.
Acknowledgements

This research was funded in part by DARPA
contract DABT63-97-C0035 and NSF grants
CDA-9703228 and MIP-9616572.

Special thanks to Doug Wilson, who contributed
a lot to this project.

Reference

[1] VCC, HOTWorks User's Guide

[2] Adobe Systems Inc., Photoshop 4.0 SDK

[3] Xilinx Inc., Parameterized Libraries Project

[4] Satnum Singh and Robert Slous,
Accelerating Adobe Photoshop with
Reconfigurable Logic, IEEE Symposium on
FPGAs for Custom Computing Machines, pp.
236-244, 1998

[5] Richard Jackson, Lindsay MacDonald and
Ken Freeman, Computer Generated Color, John
Wiley & Sons Ltd, Chichester, England, 1994,
pp.28-29.

[6] Xilinx, Series 6000 User Guide, Chapter 4

[7] Xilinx, XC6200 Field Programmable Gate
Arrays, pp. 3-7

[8] David Patterson and John Hennessy,
Computer Architecture, A Quantitative
Approach, Second Edition, Morgan Kaufmann
Publishers, Inc., 1996, pp. 29-32

[9] Scott Hauck, Thomas W. Fry, Matthew M.
Hosler, and Jeffrey P. Kao, The Chimaera
Reconfigurable Functional Unit, IEEE
Symposium on FPGAs for Custom Computing
Machines, pp. 87-96, 1997

[10] Prithviraj Banerje, Alok Choudhary, Scott
Hauck and Nagaraj Shenoy, A MATLAB
Compilation Environment for Distributed
Heterogeneous Adaptive Computing Systems,
http://www.ece.nwu.edu/cpdc/Match/Match.html

11

[11] Scott Hauck, The Roles of FPGAs in
Reprogrammable Systems, Proceedings of the
IEEE, Vol. 86, No. 4, pp. 615-638, April, 1998

[12] Charle R. Rupp, Mark Landguth, Tim
Garverick, Edson Gomersall, Harry Holt, Jeffrey
M. Arnold and Maya Gokhale, The NAPA
Adaptive Processing Architecture, IEEE
Symposium on FPGAs for Custom Computing
Machines, pp. 28-37, 1998

[13] J. R. Hauser and J. Wawrzynek, Garp: A
MIPS Processor with a Reconfigurable
Coprocessor, IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 12-21, 1997.

