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Neural Data – Sleep Spindles

By removing the gaussian sampling layer, LFADs are 
converted to an autoencoder, which is easier to be pushed 
through HLS4ML flow.

Implementing the gaussian sampling layer in HLS4ML is 
also a current on-going project.

Thanks to everyone in the HLS4ML community, Hardware team and the Neural teams.
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The negative poisson log-likelihood is the evaluation metric 
of the LFADs. Minimized negative poisson log-likelihood 
indicates an optimal performance.

For the same testing dataset, the numerical value of the 
negative poisson log-likelihood from the modified LFADs 
matches to the original LFADs, which indicates that 
removing the gaussian sampling from LFADs is acceptable.

Fig. 1. Brain signal – Sleep Spindles[1]

Sleep Spindles Introduction [1]

> Rare low-frequency brain signals
> Primarily occur during sleep or rest
> Are believed to contribute to learning
> Lack of mechanistic understanding

Our goal

> Design and build a system that can help neuroscientists to 
understand the mechanism behind the theory

The Proposed System

Head-Mounted Device components

> Headstage: Records brain signals from the subject
> Programmed FPGA: Processes brain signals and interacts with 
sleep spindles

Fig. 2. Head-Mounted Device on Subject[2]

Baseline Deep Learning Model

Modified LFADs Architecture Performance Comparison per Trial

HLS4ML Implementation

Methods (HLS4ML & TinyML)

The brain signals will be analyzed by 
a deep learning model, which will be 
pushed through the HSL4ML. 

TinyML will help us to deploy the 
model on an ultra low power FPGA.

Fig. 3. HLS4ML Flow

Fig. 4. LFADs architecture[3]

Latent Factor Analysis via Dynamical Systems (LFADs)

> RNN variational autoencoder (VAE) in tf.keras API
> Input: Neural spiking data
> Output: Firing Rates & LFADs Latent Factors 

Fig. 8. Modified LFADs Model Summary

Fig. 9. Modified & Original LFADs Performance comparison

> Bidirectional layer: contains two GRU layers. One processes input data 
in the original sequence, the other processes input data in the reverse 
sequence. The output from two GRU layers will be concatenated.

Future Work

Fig. 10. Bidirectional Layer Structure
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HLS Model Performance & FPGA Deployment

> When the integer bit is larger than 6 and the fractional bit is larger than 10, 
the HLS model performs the same as the floating-point model.
> Deployed onto Xilinx U55C with precision ap_fixed <16,6>, frequency at 
200 MHz.
> Latency: 41.97 μs. 
> Recourse utilization: 23.51% BRAM; 20.71% DSP; 5.79% FF; 12.64% 
LUT.
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> GRU initial state: a new feature that allows the user to set specific 
values other than 0 to the initial state of HLS4ML GRU layer.

Fig. 12. Multi-block RNN Autoencoders (MRAE)[4]

> MRAE contains multiple LFADs-like models, which are separated to different 
sections to process neural data in different frequency. 
> Deploy MRAE onto FPGA.

Fig. 11. HLS Model Performance


