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Abstract—In-time particle trajectory reconstruction in the
Large Hadron Collider is challenging due to the high collision
rate and numerous particle hits. Using GNN (Graph Neural
Network) on FPGA has enabled superior accuracy with flexible
trajectory classification. However, existing GNN architectures
have inefficient resource usage and insufficient parallelism for
edge classification. This paper introduces a resource-efficient
GNN architecture on FPGAs for low latency particle tracking.
The modular architecture facilitates design scalability to support
large graphs. Leveraging the geometric properties of hit detectors
further reduces graph complexity and resource usage. Our
results on Xilinx UltraScale+ VU9P demonstrate 1625x and 1574x
performance improvement over CPU and GPU respectively.

I. INTRODUCTION

Particle trajectory reconstruction in Large Hadron Collider
(LHC) is a vital task for collision analysis, which requires
accurate and in-time reconstruction to decide which collision
events to read out [1]. The existing reconstruction algorithms
are based on Kalman filter [2], [3], [4], [5], which are difficult
to meet strict latency requirements due to the quadratically
increasing complexity. The High-Luminosity LHC project [6],
[7] aims to boost the instantaneous luminosity by 5x to 7x in
2027, even exacerbating the design challenges for trajectory
reconstruction. Recent research shows that edge-classifying
GNNs (Graph Neural Networks) achieve high accuracy in
trajectory reconstruction and are scalable with the increased
luminosity [8], [9], [10], [11], [12], [13], making them a
preferred solution for future collision analysis in LHC.

One of the main concerns for GNNs to be implemented in
the LHC system is the long processing latency with irregular
data accesses. Recently proposed GNN accelerators [14], [15],
[16], [17], [18], [19] are designed to focus on node data,
such as Graph Convolutional Networks (GCNs) [20] and
GraphSAGE [21]. These cannot be applied directly to the
edge classifying GNNs in trajectory reconstruction, which uses
edge embedding and predicts the results on edges. Moreover,
preprocessing on graphs is not fit for trajectory reconstruction
which has relatively smaller but dynamic graph properties.
State-of-the-art accelerators optimize their performance by
reducing irregularity, such as rearranging processing patterns
and order to better fit with their architectures [15], [19], or

monitor the utilization of processing elements (PEs) to balance
the workload [17]. These techniques are beneficial for static
and large graphs, where stable graph characteristics can be
reused. However, it is not efficient to spend long preprocessing
time for one-time use on small graphs with dynamic features.

In this paper, we propose an efficient architecture on FPGAs
to support edge-classifying GNNs, meeting the timing require-
ment of LHC tasks. There are three novel contributions in the
proposed architecture. First, a modular parallel architecture
facilitates the design and scaling of the architecture with
the size of the graphs. Second, efficient data allocation and
buffer arrays considerably reduce memory conflicts during
parallel data accesses. Third, exploitation of the geometry
of collision events significantly lowers the graph irregularity
by constraining the node connections, and thus increases
processing parallelism.

This work is implemented with the high-level-synthesis
framework, hls4ml [22], [23], which enables an automatic
translation of machine learning models to FPGA designs. The
experiments were performed on real collision graphs. The
results on a Xilinx Virtex UltraScale+ VU9P FPGA show that
the proposed GNN architecture achieves 1,625x and 1,574x
speedup respectively compared with a Intel Xeon W-2125
CPU and an NVIDIA RTX2080 GPU. Section II of this
paper discusses the background of particle tracking. Section
III introduces the proposed GNN architecture. Section IV
evaluates the performance and Section V concludes this work.

II. BACKGROUND

A. Large Hadron Collider System

The Large Hadron Collider (LHC) is the largest and most
powerful particle accelerator in the world [6]. For high-energy
particle physics collider experiments in the LHC, proton-
proton collisions occur at a frequency of 40MHz and produce
data at a rate of roughly 40 TB/s [1]. After the collision, the
trackers record the locations of particle detections (“hits”) and
transfer this information to the trigger systems. The trigger
system will perform trajectory reconstruction to recognize
which hits belong to the same particle, as shown in Fig. 1. The
collision events are processed by 18 FPGAs in a multiplexed
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manner, where each FPGA needs to handle 2.22 million graphs
per second (MGPS) [24].

Trackers are composed of cylindrical detecting layers [6],
[13]. These layers are immersed in an axis-aligned magnetic
field, and their geometry is naturally described by cylindrical
coordinates. We focus on the innermost layers, a highly
granular set of 4 barrel and 14 endcap layers [25].

1. collision occurred

Z < 0 Z > 0

2. node detection on trackers

3. reconstruction of particles track
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Z
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Fig. 1: Illustration of trajectory reconstruction

B. GNN-based Algorithms for Track Reconstruction

The edge classifying GNN algorithm is based on interaction
networks (IN) [26]. IN is a physics-motivated GNN capable
of analyzing objects and their relations. Hit information is
embedded in the node feature, and trajectory segment infor-
mation is embedded in the edge feature. The index set stores
the sender and receiver node indexes of each edge. There
are three types of functions in IN: Edgeblock, Aggregate,
and Nodeblock. Functions in Edgeblock and Nodeblock are
multi-layer perceptrons (MLPs) that re-embed edge and node
features according to their input. Aggregate accumulates edge
features to their receiver nodes.

C. Designs of GNN Accelerators on FPGAs

Several studies have implemented GNNs on FPGAs for
particle physics [8], [25], [27]. [8] focuses on jet tagging,
which targets fully connected graphs and aims to predict
features of the entire graph instead of each individual edge.
While [8] addresses the issue of irregular access with fully
connected graph properties, it is not suitable for the LHC
application. The graphs generated from the LHC consist of
hundreds of nodes per graph. Utilizing the methods from [8]
may generate excessive unnecessary connections which may
be tens to hundreds of times greater than the original graph,
leading to a significant impact on processing time.

III. A LOW LATENCY GNN ARCHITECTURE FOR
TRAJECTORY RECONSTRUCTION

A. Overview Architecture

Based on the GNN computation flow of IN in Section
II-B, the computation can be split into pipeline stages at the
function level. We use the Vivado HLS dataflow architecture to
implement the pipeline. Fig. 2a shows the proposed pipeline.
We design a modularized parallel architecture for each func-
tion, including Edgeblock, Aggregate and Nodeblock. Each
function is composed of several processing elements (PEs) as
basic compute units. Between these functions, we insert FIFO

buffers with different depths to ensure that data would not be
stuck in the dataflow paths. With this architecture, users can
configure the pipeline and scale the system throughput with
the available resources on FPGAs.

B. Modular Parallel Architecture

The modular parallel architecture enables parallel process-
ing of each function. The following introduces the design and
optimizations of these functions.

1) Edgeblock: The Edgeblock computation involves ac-
cessing edge features, edge indexes, and connected node
features. The access of node features changes dynamically
according to the edge indexes. To address this irregularity, we
added node arrays, which contain the features of all the nodes
in the graph, into each PE to support concurrent accesses to
node features. As shown in Fig. 2b, during the computation,
the edge features (ei,j) and edge indexes (i, j) of each edge
will be sent to PEs. In each PE, node features (Xi and Xj)
are accessed based on the edge indexes. After the above steps,
multiplier engines in PEs will process the MLP computation
and output the updated edge features.

2) Aggregate: The purpose of Aggregate is to send the up-
dated edge features to their receiver nodes. During this process,
the aggregate function first reads updated edge features and
edge indexes. Based on the edge indexes, the aggregated edge
features are accessed and added to the updated edge features,
and then stored back to internal registers. The architecture
of Aggregate PE is shown in Fig. 2c. After aggregating all
updated edge features, the parallel adder tree accumulates the
values of the same node indexes. With this architecture, multi-
ple Aggregate PEs can process multiple edges simultaneously.

3) Nodeblock: The Nodeblock is used for re-embedding
node features by the original and aggregated node features.
The data access of the Nodeblock computation is more regular
when compared with Edgeblock and Aggregate. For each
node, Nodeblock collects node features and aggregated node
features, and then uses MLPs to obtain updated node features.

C. Exploiting Geometric Property of LHC Trackers

While the architecture in the previous section successfully
enables significant parallelism between processing elements
(PEs), the individual memory in PEs costs considerable
amount of BlockRAMs (BRAM) in an FPGA. Therefore, we
propose a method that can reduce memory utilization and
enable a more parallel architecture by taking advantage of the
data properties of LHC detectors.

In Section II-A, we introduced the architecture of the LHC
particle trackers and how hit data is applied to the input graphs
of GNNs. In the original graph constructed from LHC trackers,
an edge from a node could connect to any other node in
a graph. This assumption could cause excessive number of
edges in the graph. Since the LHC trackers are composed
of cylindrical layers surrounding the colliding beams, the
particles have to pass through the inner tracker layer first and
then move out, as shown in Fig. 3a. These trajectories exhibit
similar connection behaviors. For example, hits on the B1 layer
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Fig. 2: (a) Overview architecture of the system processing block. (b) An architecture of Edgeblock with two PEs. (c) The
architecture of Aggregate with two FEs

only connect to the B2 layer or E1 layer. The relationship
between hits and legal edges can be applied to a geometry-
constrained graph. We reorganize the input graph structure by
grouping hits based on their layer locations. We partition the
graphs into 13 parallel sub-graphs, each containing only two
node groups, as shown in Fig. 3b and 3c.
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Fig. 3: (a) Possible trajectories of particles, (b) Partition layers
into two types of node group (c) Partition a graph into sub-
graphs

With the geometry-constrained approach, an edge can only
exist between specific node groups. This reduces the number
of candidate nodes in node arrays used in Edgeblock PEs and
Aggregate PEs, resulting in significant reduction of memory
usage. Furthermore, since these 13 sub-graphs are independent
of each other, they can be assigned to different PEs and
computed in parallel. By relieving memory usage pressure and
improving parallelism, the performance is greatly enhanced
compared to the original design.

IV. EVALUATION

A. Experiment Setup

We implemented our design with Vivado HLS 2019.2 and
loaded it onto a Xilinx Virtex UltraScale+ VU9P FPGA. The
clock frequency of the design runs at 200 MHz. The resource
utilization is from the v-synthesis report. The performance is
based on the simulation result of the generated HDL code.
We use the metric of Million Graphs Per Second (MGPS) to
measure the system throughput.

We evaluate our architecture with the TrackML dataset [28]
generated by CERN. All the data points are based on a fixed
point format of 7 integer bits and 7 fractional bits. This is
the same format used in [25] to ensure acceptable accuracy.

A system PE in the experiment contains an Edgeblock PE,
an Aggregate PE, and a Nodeblock PE. The graph size of the
dataset will be elaborated in Section IV-B. The performance of
our proposed architecture will be evaluated in Sections IV-C
to IV-E. In Section IV-F, we compare the performance of our
architecture with the CPU, GPU, and prior FPGA designs.

B. Supporting In-time Graph Processing of Collision Events

The ultimate goal of this work is to perform in-time trajec-
tory reconstruction based on the graphs generated from LHC
collision events. Input graphs are prepared based on the same
flow as the prior work [25]. Each graph is divided into two
sectors based on the position z of hits. We use the graph size
that can cover 95 percentile of collision events as the nominal
size, which contains 739 nodes with 1252 edges. According
to [24], these graphs should be computed at the throughput
higher than 2.22 MGPS.

Table I compares the three proposed architectures. The
architecture MPA represents the Modular Parallel Architecture
introduced in Section III-B. MPAgeo and MPAgeo rsrc are the
extended designs of MPA with the proposed techniques of
geometry-constrained optimization and data-aware resource
allocation respectively. The designs of MPAgeo and MPAgeo rsrc
will be elaborated in Section IV-D and IV-E. Latency measures
the time from input graph to the output result. The design can
take a new input in every Interval time and attain throughput in
MGPS. As shown in Table I, the proposed MPAgeo rsrc meets
the LHC requirement by supporting graphs of 739 nodes with
1252 edges at throughput of 3.225 MGPS.

TABLE I: Performance of the proposed architectures

Architectures Latency(µs) Interval(µs) Throughput(MGPS)

MPA 3.165 0.48 2.083

MPAgeo 2.69 0.425 2.352

MPAgeo rsrc 2.07 0.31 3.225

C. Scalability of MPA (Modular Parallel Architecture)

In Section III-B, we introduced the MPA architecture.
The processing throughput of the architecture can scale by
deploying more PEs. To evaluate the scalability of MPA, Fig. 4
illustrates the performance and resource utilization of MPA



from one PE to eight PEs. The results show the latency and
interval can be reduced by deploying more PEs. However,
when scaling up the number of PEs, BRAMs will become
the limiting factor of FPGA resources.
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Fig. 4: Scalability of the modular architecture

D. MPA with Geometry-constrained Optimization

By taking advantage of the geometry-constrained property
described in Section III-C, MPAgeo not only relieves the
constraints of the range of node in each PE, but also makes
node groups independent to others. MPAgeo alleviates the
resource demand of BRAM and allows the deployment of
more PEs for greater processing parallelism. There are 11 node
groups and 13 edge groups. We allocate one PE for each of
these groups and result in a total of 11 Nodeblock PEs, 13
Edgeblock PEs, and 13 Aggregate PEs. As shown in Table I,
MPAgeo achieves 13% improvement in throughput compared
to the original MPA architecture.

E. Data-aware Resource Allocation

We further analyze the distribution of graph sizes in the
dataset and propose the design MPAgeo rsrc which applies
data-aware resource allocation. After applying the geometry-
constrained property, the number of nodes are not evenly
distributed across different layers. The barrel layers (B1 to B4)
contain more nodes and connections than endcap layers (E1 to
E7). To address this issue, we propose the design MPAgeo rsrc
which classifies the node groups into two types. As shown in
Fig. 3b, the layers B1 to B4 contain relatively more nodes and
belong to type A, while layers E1 to E7 with fewer nodes are
assigned to type B. We will assign two PEs to process each
node group of type A, and one PE to handle each node group
in type B. For the edge groups, we apply the same allocation
principle as for node groups.

TABLE II: Allocate PEs based on different sizes of data

Node Edge

A B A-A A-B B-B

#data 138 62 277 77 87

#PE 2 1 4 1 1

F. Comparison with Previous Designs

1) Comparison with Previous GNN Trajectory Reconstruc-
tion on FPGA: There are two architectures in the previous

work [25] of GNN for trajectory reconstruction on FPGA.
The throughput-optimized design (ThrpOpt) focuses on at-
taining high throughput, but would reduce the graph size it
can handle. The resource-optimized design (RsrcOpt) aims
to accommodate large graphs, but would suffer from low
throughput. Table III compares the performance between these
two architectures and our proposed architecture. The platform
of all the three architectures is XCVU9P, and the frequency is
200 MHz. ThrpOpt design can achieve a higher throughput of
200 MGPS, but can only handle small graphs of 28 nodes with
56 edges. RsrcOpt architecture can accommodate large graphs
of 448 nodes with 896 edges, but with lower throughput than
the ThrpOpt design. Our proposed MPAgeo resrc can handle
the largest graph (739 nodes with 1252 edges) among all
the designs, and attains higher throughput than the RsrcOpt
design.

TABLE III: Comparison with previous FPGA designs

ThrpOpt [25] RsrcOpt [25] MPAgeo rsrc (proposed)

Graph Size 28 nodes/56 edges 448 nodes/896 edges 739 nodes/1252 edges

Throughput 200 MGPS 1.14 MGPS 3.17 MGPS

2) Comparison with CPU and GPU: We execute the same
particle-tracking GNN algorithm on an Intel(R)Xeon(R) W-
2125 CPU and an NVIDIA GeForce RTX 2080 Ti (CUDA
10.2) based on PyTorch (1.11.0) and the PyTorch Geometric
2.0.4 framework. We ran 1000 graphs on each platform.
Each graph contains 739 nodes and 1252 edges. Table IV
shows the details of experiment and normalized throughput.
Our proposed design on FPGA achieved significantly higher
throughput of 1,625x and 1,574x when compared with CPU
and GPU respectively.

TABLE IV: Comparison with CPU and GPU

CPU GPU FPGA

Platform Intel(R) Xeon(R) NVIDIA GeForce XCVU9P
W-2125 RTX 2080 Ti

Compute Unit 4.00 GHz@8 cores 1.63 GHz@4352 cores 200 MHz

Technology 14 nm 12 nm 14 nm

Normalized Thrp. 1 1.03 1625

V. CONCLUSION

We propose a novel architecture for particle-tracking GNNs
on FPGAs. By utilizing LHC detector geometry, our design
reduces graph complexity and FPGA resource requirements.
The modular architecture of processing units and buffers also
efficiently handle the irregular data access patterns and facili-
tate design scalability to support large graphs while attaining
high parallelism and computation throughput. Experiment re-
sults show that our design achieves 1,625x speedup compared
to the CPU, and 1,574x speedup compared to the GPU.
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