
Designing an RD53B Trigger Pattern
Encoder for the YARR Readout System

by

Lucas Lopes Cendes

Supervised by Scott Hauck

A senior thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Science
With Departmental Honors

Paul G. Allen School of Computer Science & Engineering
University of Washington

June 2021

Presentation of work given on June 1st 2021

Thesis and presentation approved by ___________________________________

Date _6/3/21__________________________

hauck
Stamp

Abstract

The Large Hadron Collider (LHC) is currently undergoing the High-Luminosity (HL-LHC)
upgrade to increase the number of collisions per unit of time in the collider. This update
will require a new set of readout chips to be developed for the ATLAS detector used in the
LHC. As a result of this, the RD53B readout chip architecture was created. These chips
are designed to collect the data produced by the collisions that occur in the Hl-LHC. The
data collection is initiated when the RD53B chips receive a trigger command word that
specifies the specific set of data that should be sampled. These commands are produced
by a readout system that converts a series of trigger pulses into the proper command en-
codings. One of these systems is the Yet Another Rapid Readout (YARR) data acquisi-
tion system. This system is composed of both a software and a hardware component. The
YARR hardware is responsible for sending the properly encoded trigger commands to the
readout chip and sending the collision data produced by the chip to the YARR software.
This requires the YARR firmware to be loaded into an FPGA board that is connected to
a host computer running the YARR software. The YARR firmware is currently being up-
dated to support the command protocol used by the RD53B chip architecture. The project
described in this thesis mainly focuses on designing the logic needed to produce the trigger
commands used by the RD53B chips. This functionality is accomplished by adding a trig-
ger code generator and a trigger extender module to the YARR firmware. The trigger code
generator is mainly responsible for gathering 4-bit trigger patterns and converting them
into the proper 16-bit trigger command words. The trigger extender is mainly responsible
for extending the duration of a trigger pulse. To test these modules, a testbench that sim-
ulates a series of trigger pulses was designed. After that, the modified YARR firmware was
tested on a real RD53B chip by running a YARR software scan.

Contents

1 Background 1
1.1 Large Hadron Collider . 1
1.2 RD53B . 2

1.2.1 RD53B Command Protocol . 2
1.3 YARR . 4

1.3.1 YARR Firmware TX Core . 6
1.3.1.1 Wishbone interface . 6
1.3.1.2 Trigger Unit . 7
1.3.1.3 TX Channel . 7

2 Design 8
2.1 Trigger Code Generator . 8

2.1.1 Trigger Pulse Processing . 9
2.1.2 Trigger Command Generation . 10
2.1.3 Tag Generation . 10
2.1.4 Command Word Transmission . 10

2.2 Trigger Extender . 11
2.3 Modifications to Existing Code . 12

2.3.1 TX Core . 12
2.3.2 TX Channel . 12

3 Testing 13
3.1 Simulation Testbench Design . 13

3.1.1 Trigger Pattern Generation . 13
3.1.2 Wishbone Interface Configuration . 14
3.1.3 Test Cases . 14

3.2 Simulation Testbench Result Analysis . 14
3.3 YARR Scans on Real Hardware . 17

Acknowledgments 18

References 19

Appendices 20
A Tag Encodings . 21
B Simulation Results . 22

Chapter 1

Background

1.1 Large Hadron Collider

The Large Hadron Collider (LHC) is currently the most powerful and largest particle ac-
celerator in the world. It is maintained by the European Organization for Nuclear Re-
search (CERN), and it is located on the border between Switzerland and France. The LHC
mainly consists of a 27-kilometer ring composed of superconducting magnets. The particle
collisions are produced by having two high-energy particle beams travel in opposite direc-
tions inside the accelerator [6]. These beams are composed of several intense bunches of
protons and, when the two beams cross, the bunches on those beams collide. This event is
known as a bunch crossing, and it occurs at a rate of 40 MHz. When a bunch crossing oc-
curs, there is a chance that the individual protons contained in a given bunch will collide
with the protons present at another bunch [13].

One of the main experiments at the LHC is ATLAS. It is a general-purpose particle physics
experiment that intends to test the predictions of the Standard Model of particle physics
[5]. In order to perform this experiment, the ATLAS detector was created. The device is a
multi-layered instrument designed to detect the smallest and most energetic physical par-
ticles created by the collisions in the LHC. The innermost layer of the ATLAS detector is
known as the Inner Detector, which is composed of three different components, with one of
those being the Pixel Detector [4]. This device includes 1700 identical pixel modules, with
each one of those modules containing an array of over 40 000 pixels. Each module is con-
nected to the 16 front-end (FE) chips present in the Pixel Detector. These FE chips are
responsible for processing the data produced by each one of the pixels [10].

The LHC is currently undergoing the High-Luminosity (HL-LHC) upgrade. This upgrade
intends to increase the luminosity of the LHC by a factor of over ten times its current
value, which will increase the number of particle collisions per unit of time. This will ulti-
mately increase the amount of data gathered by the LHC experiments, thus enabling them
to observe rare physical processes [3]. Since the HL-LHC will operate at a luminosity that
is up to seven times higher than what the ATLAS detector was designed for, this upgrade
will require new detectors to be developed and installed [1]. As a result of this, the RD53

1

Collaboration was established in 2013 with the intent of designing a new generation of FE
chips for the pixel tracker. These efforts culminated in the creation of the RD53A proto-
type chip and its successor, the RD53B chip [2]. The latter chip will be discussed in more
detail in the next section.

1.2 RD53B

The first readout chip produced by the RD53 Collaboration was the RD53A. This chip
achieves all of the required functionality needed by the pixel upgrades that will be installed
on the ATLAS detector. The RD53A, however, was never intended for production as it
was simply designed to demonstrate the technology needed to produce readout chips for
the ATLAS experiment. As a result of this, the RD53 Collaboration started working on
the development of the RD53B chip architecture with the intent of developing a chip de-
sign that is suitable for production. The RD53B design builds upon the architecture of the
RD53A with several technological advances that facilitate the integration of the RD53B
into the Pixel Detector [2].

The availability of the physical RD53B is currently very limited, and making changes to
the physical architecture of the chip is a complicated process. Because of that, the ACME
laboratory at the University of Washington has developed an RD53B emulator that will
facilitate the process of modifying and testing the architecture of the chip. Although the
RD53B chip contains both physical and digital components, the emulator only simulates
the digital components of the chip [11].

The two main components of the RD53B emulator are the TTC data processing block and
the Command Processor. These blocks are mainly responsible for receiving and decoding
the data sent through the serial input port of the emulator and operate in accordance with
the RD53B command protocol, which is explained in detail in the next section [11].

1.2.1 RD53B Command Protocol

RD53B commands are sent as a continuous stream of serial data with a bitrate of 160
Mbps. Each command is composed of 16-bit frames that consist of two 8-bit symbols. Com-
mands can span multiple frames, but this thesis will only focus on single-frame commands.
Each 16-bit frame is DC balanced, which means that a single frame contains the same
number of 0’s and 1’s, which ultimately results in every frame having a total of eight 0’s
and eight 1’s. In addition, no command words start or end with more than two repeated
bits. This ensures that, in most situations, the signal received from the data input port of
the RD53B chip is set to the same value for at most four consecutive clock cycles. These
properties guarantee that the input signal is constantly changing, which facilitates the pro-
cess of recovering the clock signal used to send the data. This encoding also enables error
detection since a single bit flip will result in an imbalance in the number of 0’s and 1’s [7].

There are three types of commands that are relevant for this project. One of them is the
PLL LOCK command, which ensures that the data input circuitry is locked to the correct
160 MHz clock frequency. This command is composed of an alternating series of 0’s and

2

1’s that mimics a clock signal. This command must be continuously sent to the TTC data
processing block at the start of operation until a stable chip clock signal is produced. The
PLL LOCK command also functions as an idle pattern that is continuously sent to the
TTC data processing block when no commands are being transmitted. Because of this, the
PLL Lock command will be referred to as the idle command from now on. The other rel-
evant short command is the sync command. This command must be continuously sent at
the start of operation of the TTC data processing unit for it to determine the proper frame
boundaries. The input signal of the RD53B chip is held at the same value for exactly six
clock cycles while sync commands are being sent, which means that this is the only situa-
tion in which the input signal is set to the same value for more than four consecutive clock
cycles. This bit pattern cannot be produced through any combination of command words,
which makes this command easily identifiable by the TTC data processing block [7]. The
encoding of the sync and PLL LOCK commands are shown in table 1.

Command Binary Encoding Hexadecimal Encoding

PLL LOCK 1010 1010 1010 1010 0xAAAA
Sync 1000 0001 0111 1110 0x817E

Table 1: Binary and hexadecimal encoding of the PLL LOCK and sync commands [7].

The third type of command that will be discussed in this section consists of trigger com-
mands. These command words are composed of an 8-bit trigger encoding and an 8-bit tag
encoding. The trigger encoding is used to determine if the chip should sample the data
from a given bunch crossing. Since bunch crossings occur at a rate of 40 MHz and com-
mands are transmitted at a bitrate of 160 Mbps, each command encoding represents a se-
quence of 4 consecutive bunch crossings, which means that a total of 16 clock cycles are
needed to produce the command words. Since command words are 16-bit long and each
bit is transmitted individually, the encoding used for these command words ensures that
it also takes 16 clock cycles to transmit a single command word. This constraint guar-
antees that the transmission of command words is always aligned to the 40 MHz bunch
crossing clock. The sequence of four bunch crossing that a command word refers to can be
thought of as a 4-bit trigger pattern in which the presence of a trigger indicates that the
chip should sample the data produced by the respective bunch crossing. Each one of those
trigger patterns is mapped to an 8-bit trigger encoding [7]. The exact encoding for each
pattern is shown in table 2.

3

Trigger Pattern Binary encoding Hexadecimal Encoding

000T 0010 1011 0x2B
00T0 0010 1101 0x2D
00TT 0010 1110 0x2E
0T00 0011 0011 0x33
0T0T 0011 0101 0x35
0TT0 0011 0110 0x36
0TTT 0011 1001 0x39
T000 0011 1010 0x3A
T00T 0011 1100 0x3C
T0T0 0100 1011 0x4B
T0TT 0100 1101 0x4D
TT00 0100 1110 0x4E
TT0T 0101 0011 0x52
TTT0 0101 0101 0x55
TTTT 0101 0110 0x56

Table 2: Encoding for each trigger pattern. For each trigger pattern, a T represents the
presence of a trigger and a 0 represents the absence of a trigger [7].

The 8-bit tag encoding in each trigger command is used to identify the specific bunch cross-
ings that correspond to a given trigger command. The data sampled from a bunch crossing
is then associated with its respective tag. There are a total of 54 8-bit tag encoding that
can be used in a trigger command. Each tag encoding is associated with a 6-bit tag base.
This 6-bit value is used as an index into the rows of a master trigger table. Each trigger
word received by the RD53B chip is placed at the row of the trigger master table that cor-
responds to the 6-bit tag base associated with the command [7]. The exact mappings for
each one of those tags are shown in table A of appendix A.

Since all data sent to the RD53B chip must be properly encoded, the serial data input port
of the chip must be connected to a readout system that converts the raw trigger pattern
into the proper encoding. One of these readout systems is YARR, which will be explained
in detail in the next section.

1.3 YARR

The Yet Another Rapid Readout (YARR) system is a data acquisition system designed for
the pixel readout chips used in the Pixel Detector. The overall architecture of YARR is
discussed in detail at [8]. The system is composed of both a software and a hardware part
that work together to convert a trigger pattern into the proper data encoding. YARR also
analyzes the data that is outputted by the chip. The YARR system receives a set of trigger
patterns and then uses them to send the properly encoded command words to the read-
out chip. The data that is produced by the readout chip is then sent back to the YARR
system. Most of the data processing is done through software, which makes YARR less de-
pendent on the hardware being used to host it, making it more portable across different
hardware platforms [8] [14]. Figure 1 shows a diagram of the YARR system.

4

Figure 1: Diagram of the YARR system. Based on the diagram found at [8]

The YARR software is responsible for configuring the YARR hardware and performing
most of the data analysis. Data is collected through the usage of scan procedures that ac-
complish a number of different actions. Firstly, the registers of the readout chip and the
YARR hardware are configured by the YARR software. The YARR hardware then reads
the data associated with each pixel in the readout chip. This data is then analyzed and
processed by the YARR software [8] [14].

The YARR hardware layer mainly consists of a firmware loaded into an FPGA that is con-
nected to a host computer through its PCIe port. The data sent through the PCIe port
is then translated into the format used by the Wishbone bus used in the firmware. The
Wishbone bus will be explained in more detail in section 1.3.1.1. The raw trigger pulse sig-
nal received by the firmware is sent to the TX Core, with the latter being responsible for
encoding it and transmitting the encoded command words through a serial port. The data
received from the readout chip is sent to the RX Core, which is responsible for sending the
data to the host computer [8].

The YARR hardware firmware is currently being updated to support the RD53B chip ar-
chitecture. The project work discussed in this thesis focuses on developing a suitable trig-
ger code generator that can convert a series of trigger pulses into the 16-bit command words
expected by the RD53B command protocol. This trigger code generator will be placed on
the TX Core of the firmware and will depend on the existing functionality of that block.
The overall architecture of the TX Core and all of its relevant components will be explained
in the next section.

5

1.3.1 YARR Firmware TX Core

Currently, the TX core is mainly composed of a trigger unit and a TX channel. The TX
core hosts a series of registers that can be used to configure its functionality. These regis-
ters can be configured through a Wishbone bus, with each register being associated with a
specific Wishbone address. An external trigger pulse can be sent to the TX Core through
one of its input ports [9]. Each relevant component of the TX core will be discussed in de-
tail in the following sections.

1.3.1.1 Wishbone interface

The configuration registers of the TX core can be read and written to using the Wish-
bone interface. More information about how the Wishbone interface works can be found at
[12]. In order to write to a register, a couple of Wishbone input ports must be configured.
Firstly the Wishbone address port must be set to the address of the respective register.
The Wishbone data port must then be set to the data that should be written to the regis-
ter. Finally, the Wishbone write enable, strobe, and cycle signals must be asserted. When
the write operation is completed, the Wishbone acknowledgment signal is asserted. The
Wishbone address values used for the TX Core registers relevant to this project are shown
in table 3 [9].

Address in hexadecimal Register Name Description

0x01 Command Enable If set to 1, any command words received by
the TX Channel will be outputted through
its serial port. Otherwise, only sync and
idle commands will be outputted.

0x03 Trigger Enable If set to 1, the trigger unit will output trig-
ger pulses. Otherwise, no trigger pulses are
outputted.

0x05 Trigger Configuration Used to configure the trigger unit. A value
of 0 corresponds to internal mode, 1 cor-
responds to internal time mode and 2 cor-
responds to internal count mode. This is
discussed in more detail in the trigger unit
section.

0x18 TX Polarity If set to 1, the bits transmitted by the out-
put port of the TX channel are inverted.

0x20 Sync Interval Sets the interval at which sync commands
are sent. By default, this register is set to a
value of 16, which means that a sync com-
mand will be sent after every 16 command
frames.

Table 3: Wishbone address and description of each register used used in this project [9]

Additional Wishbone addresses were added to support the additional registers needed by

6

the new modules developed in this project. This is discussed in more detail in chapter 2.

1.3.1.2 Trigger Unit

The trigger unit is responsible for generating the trigger pulses that will be processed by
the trigger code generator module developed in this project. If set to external mode, the
external trigger signal inputted into the TX core will be used to generate trigger pulses.
If that is the case, the trigger unit will wait for a rising edge in the external trigger pulse
signal. When that happens, the trigger unit will wait a total of four clock cycles, and then
it will output a trigger pulse through its output port. It will then set a dead time in which
all external trigger pulses are ignored, and no trigger pulses are outputted. When this dead
time elapses, the trigger unit will wait for another rising edge in its external trigger pulse
input port [9].

If the trigger unit is set to any of the two other modes, the trigger unit will output trigger
pulses at regular intervals. If that is the case, the module will extract a trigger frequency
value from one of its input ports, and a counter will be initialized to 0. When the value of
the counter is equal to the trigger frequency value inputted into the module, a trigger pulse
will be generated, and the counter will be reset to 0 [9].

1.3.1.3 TX Channel

The TX channel is responsible for outputting the command words that are produced in the
TX core. Any data sent to the TX channel must be 32-bit wide. When a command word
is ready, it is sent to a priority encoder. When that happens, the command word with the
highest priority is serialized and outputted through the serial port of the TX core. Sync
command words have the second-lowest priority and are outputted at regular intervals.
Idle command words have the lowest priority and are outputted whenever there are no
other command words to transmit. If the TX channel is disabled, all command words other
than sync and idle words are ignored [9]. A diagram of the priority encoder can be seen at
figure 2.

Figure 2: Circuit diagram of the priority encoder at the TX Channel [9].

7

Chapter 2

Design

In this project, two new modules were added to the TX core of the YARR firmware. One
of them is the trigger code generator, which is responsible for converting 4-bit trigger pat-
terns into 16-bit command words. The other module developed in this project is the trig-
ger extender, which extends a trigger pulse for a given number of clock cycles. The follow-
ing two sections will give a thorough description of the architecture of each one of those
modules. The last section will explain the changes made to the existing YARR firmware
code to ensure that these new modules are fully integrated into the TX core.

2.1 Trigger Code Generator

The trigger code generator module is responsible for converting a series of trigger pulses
into a trigger command word. Each 16-bit command word is composed of an 8-bit trigger
encoding and an 8-bit tag. The trigger encoding is produced by converting a sequence of 4
trigger bits into a DC balanced encoding. The trigger bits are received in a serial fashion,
and the 4-bit binary value represented by those bits is mapped to a specific encoding. In
order to produce the tags, the module keeps track of a 6-bit counter that is incremented
every time a new trigger word is produced. The value of this counter is then converted into
the appropriate DC balanced tag encoding.

A total of two 16-bit command words are outputted every 32 clock cycles. If no triggers
are received during that interval, the command word output port is set to the idle com-
mand word, and the command word ready port is set to 0 until the next 32 clock cycle in-
terval. If only one command word is produced during that interval, one of the 16-bit words
in the command word output port is set to the idle pattern. The trigger code generator
module can be enabled or disabled by the YARR software at any time.

A diagram of the trigger code generator can be seen in figure 3. The following sections will
go over each of the essential components of the trigger code generator module in detail.

8

Figure 3: Circuit diagram of the trigger code generator

2.1.1 Trigger Pulse Processing

Since the bunch crossings occur at a 40 MHz frequency and the trigger code generated
module uses a 160 Mhz clock, each trigger pulse will take up a total of 4 clock cycles. A
trigger is detected if the trigger input port is set to 1 at any of the four clock cycles within
that interval. Otherwise, if the value of the port is set to 0 throughout the entire interval,
no triggers are detected.

In order to accomplish this functionality, the module keeps track of a 2-bit trigger counter
and a 4-bit shift register. At each clock cycle, the current value of the trigger input port is
shifted into the shift register and the counter is incremented. When the value of the trigger
counter rolls back to 0, the module will set the value of the next trigger bit to the result of
ORing all bits in the shift register.

9

2.1.2 Trigger Command Generation

In order to keep track of each 4-bit trigger pattern received, the module keeps track of a
2-bit command counter, a 4-bit trigger shift register, and a 4-bit trigger pattern register.
Whenever the trigger counter described in the previous section is set to 3, a new trigger bit
is shifted into the trigger shift register, and the command counter is incremented. When
the command counter rolls back to 0, the trigger pattern register is set to the current value
of the trigger shift register. The 4-bit trigger pattern stored in the trigger pattern regis-
ter is then converted into an 8-bit DC balanced trigger encoding. The encodings for each
respective trigger pattern are shown in table 2

2.1.3 Tag Generation

Tags are generated by converting a 6-bit tag base into an 8-bit DC balanced tag encoding
according to table A of appending A. The tag base is represented by a 6-bit counter that is
incremented whenever a new command word is produced. The maximum possible base tag
value is 49, and the counter rolls back to 0 whenever it is incremented past that value.

2.1.4 Command Word Transmission

New code words are produced in 16 clock cycle intervals. A code production interval ends
whenever both the trigger and command counters are set to 0. Whenever that happens,
the module will update the value of the register that keeps track of the last command word.
In order to do that, the module will first check if any trigger pulses were received during
the last code production interval. If no triggers were detected, the register is set to the idle
command word. Otherwise, the higher-order bits of the register are set to the last 8-bit
trigger encoding produced, and the lower-order bits are set to the respective 8-bit tag en-
coding.

In order to conform with the 32-bit width of the serial port in the TX channel module, the
trigger code generator must output two 16-bit command words at the same time. Because
of that, the output of the trigger code generator is only updated after two new command
words have been produced. This, therefore, means that new command word pairs are out-
putted in 32 clock cycle intervals, which will be defined as a code output interval.

To ensure that the code words are transmitted properly, a number of steps need to be
taken. Whenever a new 16-bit trigger command word is produced, we must determine if
the given command word is the first one produced in the current code output interval. In
order to do that, the module keeps track of a first word done flag and 16-bit first word reg-
ister. If the flag is set to 0, this means that the current command word is the first one pro-
duced during the current code output interval. If that is the case, the first word register
is set to the current command word, the first word done flag is set to 1, and the output
ports of the module remain unchanged. When the next command word is produced, the
module will check the first word done flag again. Since the flag is set to 1, the module will
start taking the necessary steps needed to update the output ports of the module. Firstly,
the higher-order bits of the 32-bit code output port are set to the value of the first word

10

register and the lower-order bits of the port are set to the last command word produced.
The module will then check the value of the two command words produced during the cur-
rent code output interval. If both command words are set to the idle command word, this
means that no command words should be transmitted during the current code output in-
terval. This, therefore, means that the module will set the command word ready output
port to 0. Otherwise, if at least one of the two command words is not an idle word, the
module will check if it is enabled. If the trigger code generator module is enabled, the com-
mand word ready output port is set to 1, and the newly produced command word pair is
transmitted to the TX channel. Otherwise, the command word ready signal is set to 0 and
the command words are not transmitted.

2.2 Trigger Extender

The trigger extender module allows the YARR software to extend the duration of a trigger
pulse for a given number of clock cycles. If the extension interval input port is set to 0, the
module will work as a pass-through that outputs whatever trigger pulse it receives. Other-
wise, if the extension interval is set to a non-zero value, the module will check if its pulse
input port is set to 1. If that is the case, it will initialize a cycle counter to the value sent
through the extension interval port. The counter is then decremented at each clock cycle,
and the module will set its pulse output port to 1 until the counter reaches 0. When that
happens, the counter will stop being decremented and it will go back to its pass-through
behavior until it receives a new pulse. Changes to the extension interval input port will
only have an effect after a new pulse is received and cycle counter has reached 0. The out-
put pulse signal of the trigger extender is connected to the trigger code generator. A dia-
gram of the trigger extender can be seen in figure 4.

Figure 4: Circuit diagram of the trigger extender

11

2.3 Modifications to Existing Code

2.3.1 TX Core

Two additional entries were added to the address map of the Wishbone bus at the TX
core. These entries are shown in table 4.

Address in hexadecimal Register Name Description

0x20 Trigger Extension Interval The duration of trigger pulses
are entended according to the
value of this register. For exam-
ple, if this register is set to 2,
any triggers issued by the trig-
ger unit will have their duration
extended by 2 clock cycles.

0x21 Trigger Code Generator Enable If set to 1, command words pro-
duced by the trigger code gener-
ator are transmitted through the
serial port. Otherwise, no trigger
commands are transmitted.

Table 4: Wishbone address and description of the registers added to the TX core.

2.3.2 TX Channel

The outputs of the trigger code generator were connected to the TX channel and were
mapped to the highest priority entry in the priority encoder. The serial port is set to trans-
mit the 32-bit code double word outputted by the trigger code generator whenever the
trigger code ready signal is asserted.

12

Chapter 3

Testing

Two separate tests were done to verify the operation of the two modules designed in this
project. The first one of these tests was a simulation of both the TX core of the YARR
firmware and the RD53B emulator. This was accomplished through the development of a
VHDL testbench. The other tests involved running a YARR scan with the modified YARR
firmware loaded in an FPGA. A real RD53B chip was connected to the FPGA board used
in this test. These tests are described in more detail in the following sections.

3.1 Simulation Testbench Design

A VHDL testbench was used to simulate the functionality of the trigger code generator
and the trigger extender. The testbench instantiates both the TX core module and the
top-level module of the RD53B emulator. The testbench simulates a series of trigger pulses
and trigger extender interval configurations. In order to test that code words produced by
the trigger code generator are being correctly outputted by the serial port of the TX core,
the data output port of the TX core is connected to the data input port of the RD53B em-
ulator. The following sections describe the functionality of the testbench in more detail.

3.1.1 Trigger Pattern Generation

A 5-bit pulse synchronization counter is used to synchronize the trigger pulses generated
by the testbench with the code output intervals of the trigger code generator module. The
counter is initialized to a value of 11 and it is incremented at every clock cycle. This en-
sures that the counter will have a value of 0 at the beginning of a code output interval.

The trigger pattern generator procedure takes an arbitrarily sized binary string and gener-
ates the appropriate series of trigger pulses with the correct timing. When the procedure is
called, it will first wait until the pulse synchronization counter has a value of 0. When that
happens, the procedure will start iterating through the binary string. For each bit of the
string, the procedure will firstly set the trigger pulse signal to the value of the current bit
for one clock cycle. Then, in the next clock, the value of the trigger pulse signal is set to 0.

13

The procedure will then wait for 3 clock cycles before moving on to the next bit.

3.1.2 Wishbone Interface Configuration

A few TX core registers have to be configured before the pulses are generated. Firstly, the
trigger configuration register has to be set to the external mode to allow the testbench to
generate the trigger pulses and send them to the TX core. After that, both the trigger unit
and the trigger code generator are enabled by setting the respective registers to a value of
1. The TX polarity is then set to 0 to ensure that the TX core outputs the data correctly.

After those preliminary steps are done, the command protocol between the YARR firmware
and the RD53B emulator must be initialized. To do that, the YARR firmware must keep
sending a series of sync frames until the RD53B emulator locks to the correct channel.
To accomplish this, the testbench will firstly set the sync interval register of the YARR
firmware to 0. The testbench will then wait for a total of 300 clock cycles. After this time
has elapsed, it will set the sync interval register back to its default value of 16. This results
in the TX core constantly sending sync signals throughout the 300 clock cycles in which
the sync interval register is set 0. The TX core then returns to its regular operation after
the sync interval is set to its default value. After the synchronization is done, the com-
mand enable register is set to 1, allowing the serial port to output any command words
sent to it. Once this is done, the testbench will start simulating the trigger pulses.

3.1.3 Test Cases

The first part of the test involves sending a series of individual trigger pulses without con-
figuring the trigger extender. Firstly, the patterns 1000, 0001, 0000, and 1001 are sent con-
secutively. After that, the testbench waits for a few clock cycles, and then it sends the pat-
terns 0010 and 0100. When this step is done, the testbench will start testing the trigger
extender. To do that, the testbench will first set the trigger extender register to 7 and then
issue a 1000 trigger pattern. After that, the testbench will set the trigger extender interval
to 11, and it will resend the 1000 trigger pattern. Finally, the trigger extender interval is
set to 15 and the 1000 trigger pattern is sent one more time.

3.2 Simulation Testbench Result Analysis

The waveforms produced by the simulation of the testbench are shown in appendix B. In
each of the figures, waveforms shown in green are the clock signals used by the testbench.
The blue waveforms are the signals used to configure the wishbone interface. The wave-
forms shown in cyan represent the signals used by the trigger extender module. The wave-
forms represented in yellow show the signals that are present in the trigger code genera-
tor module. Finally, the waveforms shown in magenta represent the signals present in the
RD53B emulator.

Figures A to D show the TX core configuration process. As seen in figure A, the first part
of this process sets the trigger configuration to external mode. The wishbone address, rep-

14

resented by the wb addr i signal, is set to a value of 5. In addition, the wishbone input
data port, represented by the wb dai i signal, is set to a value of 0. Finally, the wishbone
write-enable flag, represented by the wb we i is asserted. After that, the same process is
repeated for the trigger enable and trigger code generator enable registers. Figure B shows
the setup of the TX polarity and the TX configuration registers. After the sync interval is
set to 0, the TX core will repeatedly send sync frames to the RD53B. Figure C shows that
these frames being received by the RD53B emulator through its data input port, which is
represented by the magenta datain signal. After 300 clock cycles have elapsed, the sync
interval register is set to its default value of 16 and the TX channel enable register is set to
1. These last two configuration steps can be seen in figure D.

After the configuration is done, the testbench starts simulating the pulse signal. Figure
E shows the process of generating the 1000, 0001, 0000, and 1001 trigger patterns. The
trigger extender interval input port, which is represented by the cyan ext interval i sig-
nal, is set to its default value of 0 throughout this process. As a result, the trigger exten-
der module is simply outputting the pulses that it receives from the trigger unit. This is
demonstrated by the fact that pulses being sent through the pulse output port of the trig-
ger unit, represented by the cyan trig pulse o signal, are identical to the pulses being
received by the trigger code generator module, which is represented by the yellow pulse i

signal. In addition, these pulses are being interpreted correctly. This is demonstrated by
the fact that the value of the command word register used by the trigger code generator
module is being set to the value of the trigger patterns produced by the testbench. In ad-
dition, the trigger code generator is incrementing the base tags correctly, which is demon-
strated by the fact that the yellow base tag register is only being incremented when a new
trigger pattern containing at least one trigger is received. Furthermore, the value of the
yellow code o output port of the trigger code generator module demonstrates that trig-
ger patterns and base tags are being encoded correctly. It can also be seen that the second
code double-word produced by the module has its higher order bits set to the idle pattern.
This demonstrates that the code generator module correctly outputs idle patterns when no
triggers are received during a code production interval. Finally, the yellow code ready o

flag is being set to 1 when a new command double-word is ready.

The results of transmitting the command words produced in the previous part can be seen
in both figures E and F. The magenta datain signal present in both of those figures shows
the serial data that was transmitted to the RD53B emulator. Figure F demonstrates that
the command words have been recognized and decoded by the RD53B emulator. This is
demonstrated by the fact that the magenta trig data signal used by the RD53B emulator
is equal to the decimal representation of the binary trigger patterns produced by the test-
bench. In addition, the fact that the magenta trig detect signal is being set to 1 when
a new code word is decoded further demonstrates that the RD53B is detecting the trigger
command words. The results of sending the 0010 and 0100 trigger patterns can be seen in
figures F to H. These figures demonstrate that these trigger patterns are also being cor-
rectly encoded and outputted by the YARR firmware. A simplified waveform diagram of
the process of generating all of the previously mentioned trigger patterns can be seen in
figure 5.

15

Figure 5: Simplified waveform diagram of the process of generating trigger patterns

After the first trigger patterns are sent, the testbench starts testing the trigger extender
module. Figure F shows the wishbone bus configuration used to set the trigger extender
module to a value of 7. Furthermore, the waveform for the cyan ext interval shows that
the trigger extender is receiving the new trigger extender interval value. The results of
sending the 1000 pattern can then be seen in figure G. The aqua waveform for the trig pulse o

demonstrates that the trigger extender is receiving the trigger pulse. Also, the yellow pulse i

signal shows that the trigger extender is extending the trigger for seven additional clock
cycles, and the trigger code generator is receiving the extended signal. In addition, the
value of the yellow waveform of the code word register used by the trigger code genera-
tor demonstrates that the extended pulse is correctly being interpreted as the 1100 trigger
pattern. The yellow waveform for the code o signal in Figure I demonstrates that the 1100
trigger pattern is being encoded correctly, and the trigger code generator is outputting the
respective command word. Finally, the magenta waveform for the trig data in the same
figure demonstrates that the code word is being detected and correctly decoded by the
RD53B emulator. The results of setting the trigger extender interval to 11 and sending
the 1000 trigger pattern are being shown in figures G to K. The results of setting the trig-
ger extender interval and sending the same trigger pattern as before are shown in figures I
to M. These figures demonstrate that, in both of these cases, the trigger pulses are being
extended correctly, and the resulting trigger pattern is being encoded correctly. A simpli-
fied waveform diagram of the process of testing the trigger extender module can be seen in
figure 6

Figure 6: Simplified waveform diagram of the process of testing the trigger extender

16

3.3 YARR Scans on Real Hardware

Due to the difficulty of simulating trigger pulses on real hardware, the RD53B scans done
for this test only check if the additions done to the YARR firmware in this project do not
interfere with the functionality already present in the firmware. These scans simply inject
100 digital pulses into each pixel of a real RD53B chip and then produce an occupancy
map showing the number of hits in each pixel. If the YARR firmware is functioning cor-
rectly, the resulting occupancy map should report that every pixel of the RD53B chip has
received 100 hits.

To run these scans, a Trenz Electronic TEF1001 board was connected to one of the PCIe
ports of a computer. The YARR firmware was then flashed into the Xilinx Kintex-7 FPGA
contained in the TEF1001 board. An Ohio adapter card was then connected to the TEF1001
board, and port A of the Ohio adapter card was connected to the CMD/DATA port of the
RD53B chip board using a display port cable. Finally, a custom power cable was then con-
nected to the RD53B chip and a voltage of 1.6 V was supplied to the board. The scans
were then run from the computer to which the TEF1001 board is connected. The occu-
pancy map obtained is shown in figure 7

Figure 7: Occupancy map produced by the RD53B scans

Figure 7 shows that every pixel in the RD53B chip used for testing received a total of 100
hits. This indicates that changes made to the YARR firmware in this project did not inter-
fere with the existing functionality of the firmware.

17

Acknowledgments

Firstly, I would like to thank my advisor Scott Hauck for giving me the opportunity to
work at the ACME laboratory. His guidance was essential for the completion of this the-
sis. The weekly lab meetings organized by him significantly helped me to take steps that
needed to be taken to complete this project successfully.

I would also like to thank Timon Heim for guiding me through developing and testing the
project described in this thesis. His guidance was essential for me to understand the YARR
firmware and the RD53B command encoding. I would not have been able to complete this
project without Timon’s help in debugging the issues encountered while I was developing
this project.

Next, I would like to thank Geoff Jones for helping me to code in VHDL. The code review
sections I had with him were essential for me to catch bugs present in the code I wrote.
I am also very grateful for his help in writing the testbench used to test the modules de-
signed in this project.

Finally, I would like to thank Lauren Choquer and Donavan Erickson for giving me the
necessary background for the project discussed in this thesis. Lauren was extremely helpful
in getting me started with the project and getting me up to speed with everything that I
needed to know. Donavan’s help in explaining the basics of the command processor of the
RD53B emulator was essential for me to be able to integrate it into the testbench used in
the project.

18

References

[1] K. Anthony. “Preparing ATLAS for the future”. In: CERN (Dec. 20, 2018). url:
https://atlas.cern/updates/news/preparing-ATLAS-for-future.

[2] F. Arteche Gonzalez et al. Extension of RD53. Tech. rep. Geneva: CERN, Sept. 2018.
url: https://cds.cern.ch/record/2637453.

[3] CERN. High-Luminosity LHC. url: https://home.cern/science/accelerators/
high-luminosity-lhc (visited on 05/14/2021).

[4] CERN. The ATLAS Detector. url: https://atlas.cern/discover/detector
(visited on 05/14/2021).

[5] CERN. The ATLAS Experiment. url: https://atlas.cern/about (visited on
05/14/2021).

[6] CERN. The Large Hadron Collider. url: https://home.cern/science/accelerators/
large-hadron-collider (visited on 05/14/2021).

[7] CERN. The RD53B Pixel Readout Chip Manual. May 27, 2020.
[8] T. Heim. “YARR - A PCIe based Readout Concept for Current and Future AT-

LAS Pixel Modules”. In: Journal of Physics: Conference Series 898 (Oct. 2017),
p. 032053. doi: 10.1088/1742-6596/898/3/032053. url: https://doi.org/
10.1088/1742-6596/898/3/032053.

[9] T. Heim, A. Sautaux, and V. Baratham. Yarr Firmware. Aug. 31, 2020. url: https:
//github.com/Yarr (visited on 05/16/2021).

[10] F. Hugging. “The ATLAS pixel detector”. In: IEEE Transactions on Nuclear Science
53.3 (2006), pp. 1732–1736. doi: 10.1109/TNS.2006.871506.

[11] N. Mittal. “Development of an FPGA emulator for the RD53B chip”. MSc Thesis.
University of Washington, Aug. 14, 2020. url: http://hdl.handle.net/1773/45785
(visited on 05/14/2021).

[12] A. Sautaux. Wishbone Express Core. Aug. 30, 2017. url: https://github.com/
Yarr/Yarr-fw/blob/master/rtl/kintex7/wbexp-core/README.md (visited on
05/14/2021).

[13] B. Schmidt. “The High-Luminosity upgrade of the LHC: Physics and Technology
Challenges for the Accelerator and the Experiments”. In: Journal of Physics: Con-
ference Series 706 (Apr. 2016), p. 022002. doi: 10.1088/1742-6596/706/2/022002.
url: https://doi.org/10.1088/1742-6596/706/2/022002.

[14] N. L. Whallon et al. “Upgrade of the YARR DAQ system for the ATLAS Phase-II
pixel detector readout chip”. In: PoS TWEPP-17 (2018), 076. 5 p. doi: 10.22323/1.
313.0076. url: https://cds.cern.ch/record/2312402.

19

Appendices

20

A Tag Encodings

Base Tag Binary Encoding Hex Encoding Base Tag Binary Encoding Hex Encoding

0 0110 1010 0x6A 27 1100 1010 0xCA
1 0110 1100 0x6C 28 1100 1100 0xCC
2 0111 0001 0x71 29 1101 0001 0xD1
3 0111 0010 0x72 30 1101 0010 0xD2
4 0111 0100 0x74 31 1101 0100 0xD4
5 1000 1011 0x8B 32 0110 0011 0x63
6 1000 1101 0x8D 33 0101 1010 0x5A
7 1000 1110 0x8E 34 0101 1100 0x5C
8 1001 0011 0x93 35 1010 1010 0xAA
9 1001 0101 0x95 36 0110 0101 0x65
10 1001 0110 0x96 37 0110 1001 0x69
11 1001 1001 0x99 38 0010 1011 0x2B
12 1001 1010 0x9A 39 0010 1101 0x2D
13 1001 1100 0x9C 40 0010 1110 0x2E
14 1010 0011 0xA3 41 0011 0011 0x33
15 1010 0101 0xA5 42 0011 0101 0x35
16 1010 0110 0xA6 43 0011 0110 0x36
17 1010 1001 0xA9 44 0011 1001 0x39
18 0101 1001 0x59 45 0011 1010 0x3A
19 1010 1100 0xAC 46 0011 1100 0x3C
20 1011 0001 0xB1 47 0100 1011 0x4B
21 1011 0010 0xB2 48 0100 1101 0x4D
22 1011 0100 0xB4 49 0100 1110 0x4E
23 1100 0011 0xC3 50 0101 0011 0x53
24 1100 0101 0xC5 51 0101 0101 0x55
25 1100 0110 0xC6 52 0101 0110 0x56
26 1100 1001 0xC9 53 0110 0110 0x66

Table A: Tag encodings used in trigger command words [7]

21

B Simulation Results

Figure A: Process of setting the trigger configuration, trigger enable and trigger code
generator registers to the appropriate values

Figure B: Process of setting the trigger code generator, TX polarity and sync interval
registers to the appropriate values

Figure C: Initialization of the command protocol between the YARR firmware and the

22

RD53B emulator

Figure D: Process of setting the sync interval register and the TX channel registers to the
appropriate values

Figure E: Results of sending the 1000, 0001, 0000 and 1001 trigger patterns

Figure F: Results of sending the 0010 and 0100 trigger patterns

23

Figure G: Results of setting the trigger extender interval to 7 and sending the 1000 pattern

Figure H: Results of setting the trigger extender interval to 11

Figure I: Results of sending the 1000 pattern after setting the trigger extender interval to
11

24

Figure J: Results of setting the trigger extender interval to 15

Figure K: Results of sending the 1000 pattern after setting the trigger extender interval to
15

Figure L: Results of waiting for the RD53B emulator to receive the command generated
from the 1110 trigger pattern

25

Figure M: Results of waiting for the RD53B emulator to receive the command generated
from the 1111 trigger pattern

26

