
Quantization Aware Training for RNNs in HLS4ML
Yihui Chen, Elham E Khoda, Scott Hauck

University of Washington

Department of Electrical and Computer Engineering

{yihuic, ekhoda, hauck}@uw.edu

1. Introduction

In the previous work ULTRA-LOW LATENCY RECURRENT NEURAL

NETWORK INFERENCE ON FPGAS FOR PHYSICS APPLICATIONS WITH

HLS4ML, we convert three RNN models in hls4ml and estimate its performance

and resource usage on FPGA. During the conversion, we introduce a process

called quantization. “The weights and biases in trained models are typically

stored with 32-bit floating-point precision. However, 32-bit 188 floating-point

calculations are often not required for optimal network inference and are costly to

implement on FPGAs. Other quantization techniques can offer more efficient

ways of compressing neural networks by reducing the number of bits used to

represent the weights and biases, ideally with no or minimal loss in

performance.”

The quantization we did in previous work is called posted training quantization,

which is the process of quantizing the whole keras model after it is trained. Post

training quantization process is embedded in hls4ml process but it is less

accurate in same number of bits compared to quantization aware training. In this

paper, we focus on doing quantization aware training for the keras RNN model

and fit the quantized model into our hls4ml workflow. Therefore we implement a

workflow from floating point machine learning model to quantized machine

learning model to hls4ml.

2. Qkeras (can highlight autoqkeras)
Qkeras is a quantization extension to Keras that provides a drop-in replacement

for some of the Keras layers. In this project, we use Qkeras to replace all of the

layers in our RNN model with quantized layer and train the Qkeras model(which

is how we do quantization aware training). The way Qkeras does quantization is

to add a quantized layer after each original layer. Therefore for qkeras model, it

is not fully running at fixed point numbers. Most of the calculation for each layer

is still running at floating point numbers but after the calculation, the layer will

quantize the output of each layer into fixed point numbers.

 When it comes to bits selection, we are now trying all the possible bits

combinations and find the sweet point where using the least number of bits to

achieve comparable accuracy (above 95% of the Keras model accuracy). We did

this because we want to make the bit selection through our whole model

consistent.

However, Qkeras also offers a feature called autoqkeras. By using autoqkeras, it

will help us to find the most suitable bits for quantization but this will cause each

layer of the model using different bits for quantization. Also using autoqkeras is

more time-consuming and requires more calculation resources.

3. Implemented Details
Right now the hls4ml still not support qkeras model directly. However we can

stilluse the quantized model in hls4ml by loading the weight of qkeras model

back into the original keras model and convert the keras model into hls4ml.

4. Performance
4.1 Models

The 3 models we selected as demonstrations are the Top Quark Tagging

model, Jet Flavor Tagging model, and Quick Draw model.

Top quark tagging models utilize deep learning algorithms to identify and

classify top quark events from complex collision data. By analyzing the kinematic

and geometric properties of particles produced in collisions, these models can

accurately distinguish top quark events from background noise.

Jet flavor tagging models, which goal is similar to the quark tagging model,

employ machine learning techniques to identify and categorize the flavors of jets

produced in high-energy collisions.

The Quick Draw model is a remarkable application of machine learning

that enables users to sketch objects, which are then recognized and classified by

an artificial intelligence algorithm. By leveraging deep learning techniques, the

Quick Draw model can learn to interpret a wide variety of hand-drawn sketches

and identify the corresponding objects with impressive accuracy.

4.2 Quantization Performance

For top-tag model, after quantization, the accuracy of model can achieve

nearly identical to keras model at 2 int bits and 6 fractional bits, which is in toal 9

bits. This is smaller than the 32 bits we use in keras model. Also the model with

LSTM layer performances better than GRU layer with 0 or 2 integer bits but not

with 4 integer bits. After convert it into HLS model, hls4ml perdicts its estimated

utlization and performance.(model with GRU is on the left and model with LSTM

is on the right)

For b-tagging model, after quantization, the accuracy of model can

achieve nearly identical to keras model at 2 int bits and 2 fractional bits, which is

in toal 5 bits. This is smaller than the 32 bits we use in keras model. Also the

model with LSTM layer performances mostly identical compares to GRU layer

when fractional bits are larger than 2 bits.

.

5. Discussion
5.1 Super high accuracy in qkeras quantization aware training ?

 For people who try to do the quantization aware training using qkeras,

they might find it surprising that the model can achieve nearly identical accuracy

with very tiny bits (such as only 2 integer bits, 4 fractional bits and 1 sign bits,

total of 7 bits). The reason for such high accuracy in qkeras is that qkeras does

not fully quantized our model. Instead, for most of the quantized layers, qkeras

just combine the original layer with a quantizer after it to quantize the output of

the layer. Therefore for most of the quantized layers (especially for activation

layers), the calculation is still running in floating point numbers but qkeras just

make the output of them to be fixed point numbers.

5.2 How to convert qkeras model into hls4ml ?

 Right now, hls4ml is still not offically supported qkeras. When we trying to

do so the error shows hls4ml couldn’t recongize layers in qkeras. Instead, the

trick I did is to load the weights of qkeras model back into the keras model and

use the keras model with quantized weight and covert it into hls4ml.

5.3 Accuracy of qerkas model drops a lot in hls4ml ?

 When we convert the model into hls4ml, the accuracy will drop a lot

compares to what we got in qkeras. This happens for all qkeras model but the

accuracy drops more when there are RNN layers in qkeras model. As we

discussed in 5.1, the way qkeras quantize the model is not fully quantized but

normally just quantizes the output of each layer. However, in hls4ml, we are

doing fully quantized since floating point calculation is not supported on FPGA.

The plot below shows the changes in accuracy when we give different numbers

of bits for qkeras model.

 Taking quantized activation functions as an example, when we see the

code in qkeras activation function, we will find that there is no difference inside

the calculation of the activation function.

 When it comes to RNN layers, the two RNN layers in our models are GRU

and LSTM. For GRU layer, there are two different activation layers inside it: tanh

and sigmoid. Sigmoid is for calculating the update gate and reset gate and Tanh

is for calculating candidate hidden state in GRU. For LSTM layer, there are also

using tanh and sigmoid functions. Sigmoid is for calculating the forgetting and

input gate and Tanh is for calculating the candidate cell state. Both of them are

for calculating output. Since activation functions in qkeras are all calculated in

floating point numbers, the accuracy difference between qkeras and hls mode

will be huge.

6. Conclusion

This project is mainly for adding quantization aware trianing process before

hls4ml process. By doing so we will need to use less bits in calculation and

therefore decerease the resouce useage while maintaining similiar performance.

Above the three models we disscussed as benckmark for RNN models, toptag is

the smallest one and should be the first one to train for people who want to try it.

Quickdraw model is the largest one and doing quantization aware training to it

takes a lot of time and need a really good GPU. Due to the limited computational

resource, I didn’t finish the quantization aware training for quickdraw model and

the HLS conversion for b-tagging model and toptag model.

7. Code and Data
quantiaztion aware training for above three models: https://github.com/uw-

acme/HLS4ML_RNN

Hls4ml conversion:

https://github.com/yihuiccc/hls4ml-RNN-test

Qkeras tutorial for starters:

https://github.com/uw-acme/acme-lab-

documentation/blob/main/quantization/Qkeras-Tutorial-AndrewChen.ipynb

toptag dataset:

 https://cernbox.cern.ch/s/0CBn5SsUPb5KDnX?redirectUrl=%2Ffiles%2Fli

nk%2Fpublic%2F0CBn5SsUPb5KDnX

btag dataset (pwd:hls-btag):

https://cernbox.cern.ch/s/dYrWPhWQFbAgjh1?redirectUrl=%2Ffiles%2Flink%2F

public%2FdYrWPhWQFbAgjh1

quickdraw dataset:

https://console.cloud.google.com/storage/browser/quickdraw_dataset/sketchrnn;t

ab=objects?pli=1&prefix=&forceOnObjectsSortingFiltering=false

