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Abstract 

Reconfigurable hardware has been shown to provide 
an efficient compromise between the flexibility of 
software and the performance of hardware.  However, 
even coarse-grained reconfigurable architectures 
target the general case, and miss optimization 
opportunities present if characteristics of the desired 
application set are known.  We can therefore increase 
efficiency by restricting the structure to support a class 
or a specific set of algorithms, while still providing 
flexibility within that set.  By generating a custom 
array for a given computation domain, we explore the 
design space between an ASIC and an FPGA.  
However, the manual creation of these customized 
reprogrammable architectures would be a labor-
intensive process, leading to high design costs.  
Instead, we propose automatic reconfigurable 
architecture generation specialized to given 
application sets.  The Totem custom reconfigurable 
array generator is our initial step in this direction. 

Introduction 

One of the primary difficulties of using FPGAs and 
reconfigurable systems for DSP, networking, and other 
applications is the fine-grained nature of many of these 
devices.  Common operations such as multiplication and 
addition would greatly benefit from more efficient coarse-
grained components.  A number of reconfigurable systems 
have therefore been designed with a coarse-grained structure.  
These structures target the general case, attempting to fulfill 
the computation needs of any application that may be needed.  
However, because different application types have different 
requirements, this creates a large degree of wasted hardware 
(and silicon area) if the applications run on the system are 
constrained to a limited range of computations.  While the 
flexibility of general-purpose hardware has its place for 
situations where the computational requirements are not 
known in advance, frequently specialized on-chip hardware is 
used to obtain greater performance for a specific set of 
compute-intensive calculations. 

While general-purpose reconfigurable systems have exhibited 
their value in the applications mentioned above [Compton00], 
we believe that performance gains can be further improved 
within a smaller area if the algorithm types are known prior to 

fabrication.  By generating a custom reconfigurable array for a 
computation domain, we can reduce the amount of "useless" 
hardware and programming points that would otherwise 
occupy valuable area or slow the computations.  Architectures 
such as RaPiD [Ebeling96], PipeRench [Goldstein99], and 
Pleiades [Abnous96] have made progress in this direction by 
targeting multimedia and DSP domains.  The RaPiD group has 
also proposed the synthesizing of custom RaPiD arrays for 
different application sets [Ebeling98, Cronquist99b].  In many 
ways this effort can be viewed as a first step in this direction. 

We are working towards the automatic creation of custom 
reconfigurable architectures designed specifically for a given 
range of computations being performed.  These application 
domains could include cryptography, DSP or a subdomain of 
DSP, specific scientific data analysis, or any other compute-
intensive area.  This concept is different from traditional 
ASICs in that we retain some level of hardware 
programmability.  This programmability gives the custom 
architecture a measure of flexibility beyond what is available 
in an ASIC, as well as providing the benefits of run-time 
reconfigurability.  Run-time reconfiguration can then be 
employed to allow for near ASIC-level performance with a 
much smaller area overhead due to the re-use of area-intensive 
hardware components.  Essentially, depending on the needs of 
the algorithms and the stated parameters, this architecture 
generation could potentially provide a design anywhere within 
the range between ASICs and FPGAs.  Very constrained 
computations would be primarily fixed ASIC logic, while 
more unconstrained domains would require near-FPGA 
functionality.  This custom array would then be a 
computational unit within an ASIC fabricated for the tasks 
needed.  Because the ASIC will be custom-designed, we can 
also optimize the array for the application domain. 

Specialized reconfigurable architectures, while beneficial in 
theory, would be impractical in practice if they had to be 
created by hand for each group of applications.  Each of these 
optimized reconfigurable structures may be quite different, 
depending on the application set or sets desired.  
Unfortunately, this is contrary to one of the basic principals of 
FPGAs and reconfigurable hardware, which is quick time-to-
market with low design costs.  Therefore, we have started the 
Totem project – an endeavor to automatically generate custom 
reconfigurable architectures based on an input set of 
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applications, and therefore greatly decrease the cost of new 
architecture development.  This paper presents our initial 
progress in this arena. 

Background 

We are designing the Totem generator to leverage the coarse-
grained nature of many compute-intensive algorithms.  This 
involves using large word-width computation structures such 
as adders and multipliers, as well as word-width routing 
structures.  Because we are operating on word-sized data, a 
one-dimensional structure is not only less complex to 
generate, but also efficient.  Essentially, the bit order of the 
data words does not change within the routing structure, 
leading naturally to a computational flow along one axis.  
Changing the direction of these buses would require additional 
routing area for the wire bends.  Also, using available RAM 
units, 2D computations can be transformed into the 1D 
domain [Cronquist99a]. 

This leads us to consider the RaPiD architecture [Ebeling96] 
as a basis for our first efforts in the Totem project.  RaPiD not 
only bears a strong similarity to the parameters mentioned 
above, but also has a compilation engine and a library of 
completed netlists for the architecture.  It uses components 
such as multipliers, adders, and RAMs to allow for efficient 
computation of algorithms operating on word-sized data.  
These components are arranged along a one-dimensional axis, 
as shown in Figure 1.  Signals travel horizontally along the 
routing, with vertical routing used only to provide connections 
between buses and computational components.  The RaPiD 
compiler operates on application descriptions, converting them 
to netlists mapped to component types present in the RaPiD 
architecture.  For more detail on the specifics of the RaPiD 
architecture and compiler, please refer to one of the papers on 
the subject [Ebeling96, Cronquist99a]. 
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Figure 1: A block diagram of a single cell from the 
RaPiD architecture [Ebeling96, Scott01].  16 cells are 
tiled along the horizontal axis to form the full 
architecture. 

Using the RaPiD netlists and architecture style as a starting 
point, we have created an architecture generator which reads 
in the compiled RaPiD netlists, performs profiling, and creates 

a custom one-dimensional datapath capable of executing any 
of the input netlists.  Because this hardware is optimized to the 
particular application set, it should have a smaller area and 
delay cost than a generic architecture implementing the same 
applications.  However, by providing a reconfigurable 
interconnect and programmable logic units many of the 
benefits of reconfigurability are retained. 

Architecture Generator 

We have created an initial Totem architecture generator for 
compiled RaPiD netlists (in standard RaPiD netlist format) 
that creates a computational structure and routing fabric 
optimized for the given group of netlists.  Like RaPiD, the 
architecture we generate is coarse-grained, consisting of 
components such as multipliers and adders, with a one-
dimensional routing structure.  Again, the motivating factor 
here is to automatically create architectures for input 
application sets that leverage the benefits of both ASICs and 
reconfigurable implementations.  These architectures aim to 
have a higher performance and smaller area than possible in a 
general-purpose reconfigurable architecture implementation.  
The custom architectures also use the reconfigurable aspect to 
retain a measure of flexibility within the architecture and the 
area advantages of hardware re-use. 

The architecture generation occurs in two distinct phases.  In 
the placement stage of the generation we determine the 
computation needs of the algorithms, create the computational 
components (ALUs, RAMs, multipliers, registers, etc), and 
order the physical elements along the one-dimensional 
datapath.  The individual instances of component use within 
the netlists must be assigned to the physical components.  This 
binding also occurs in the placement stage.  In the routing 
stage, we create the actual wires and muxing/demuxing 
needed to interconnect the different components, including the 
I/Os.  These phases are described in depth in the next sections. 

To determine the quality of our automatically generated 
structures, we measure the area of these specialized structures, 
and compare it to that of a basic, generic RaPiD architecture 
(pictured in Figure 1) implementing the same netlists.  In order 
to better analyze the results, we will consider a number of 
methods of routing structure generation.  We then compare the 
areas of the architectures we generate to a calculated lower 
bound value for each set of netlists. 

Placement 

The ordering of the physical elements within our generated 
structure is determined via simulated annealing.  This 
algorithm operates by taking a random initial placement of 
physical elements, and repeatedly attempting to move the 
location of a randomly selected element.  The move is 
accepted if it improves the overall "cost" of the placement.  In 
order to avoid settling into a local minima in the placement 
space, non-improving moves are also sometimes accepted.  
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The probability of accepting a "bad" move is governed by the 
current temperature.  This temperature is initially high, 
causing a larger number of bad moves to be accepted, and is 
gradually decreased until no bad moves will be accepted.  A 
large number of moves are attempted at each temperature. 

While the general practice of simulated annealing is relatively 
straightforward, there is an additional consideration for our 
architecture generator. We would like to base our cost 
estimate of the quality of the placement on the area and delay 
of the completed circuit.  However, knowledge of the routing 
structure, which has not yet been created, is then required.  
Instead we base our calculations on the individual signals 
within the netlists.  But the extents and locations of these 
signals are not known until the instances of each netlist are 
assigned (bound) to physical components.  The best binding 
depends on the given placement, and the best placement 
depends on the given binding. 

This is different from typical placement problems where 
binding is either not applicable (ASIC) or is determined post-
fabrication (FPGA).  Our binding problem is also distinct from 
traditional binding of components within an FPGA because 
here we have the flexibility to perform physical movements 
(changing the location of specific hardware resources), 
whereas the architecture in standard FPGAs is traditionally 
fixed by the manufacturer.  Additionally, we know in advance 
at least a subset of our target netlists, and can use this 
information to judge the quality of the layout.  For our 
application, the best component binding and the best physical 
placement are interdependent, and therefore we perform these 
two operations simultaneously. 

Consequently, we extend the simulated annealing framework 
to solve not only the physical placement problem, but the 
binding problem.  The instances of each netlist are arbitrarily 
assigned initial bindings to corresponding physical 
components.  Then, we create an additional type of "move" to 
be attempted within the simulated annealing algorithm – 
rebinding an instance of a circuit component of a single netlist 
to a different physical component.  The probability of 
attempting a re-binding versus a physical component 
movement is equal to the fraction of total components that are 
instances instead of physical structures.  Figure 2 shows two 
netlists that could be used to generate a custom architecture, 
and Figure 3 shows a reasonable placement.  Note the 
difference between instances and physical components.  For 
example, instances D1 and D4 should likely be in the same 
physical register because they share an input and an output.  
But which physical register is immaterial, provided it is near 
the ALU. 

Our current Totem implementation uses the maximum number 
of each resource in any of the netlists to determine the number 
of that type of physical component to instantiate.  This 
represents the minimum number of these components 
necessary to execute the netlists.  Future Totem 
implementations will provide the potential to use a larger 
number of components than strictly required by the netlists if 
it will improve area (particularly routing and multiplexing) or 
delay results.  For now, however, using the minimum number 
of each type of component allows us to examine one end of 
the design space, and provides a simple method to determine 
the computational requirements of the circuit.  Once these 

Figure 2:  Two different netlists that could be implemented together on a custom architecture.  Netlist 0 is a multiply-
accumulate circuit, while netlist 1 is a simple 2-tap FIR filter, using constants stored in the registers. 
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components have been created, we can use simulated 
annealing to order them along the one-dimensional datapath. 

For the initial temperature calculation, number of moves per 
temperature, and cooling schedule, we used the guidelines 
presented for VPR [Betz97].  The cost metric used in our 
implementation of the simulated annealing algorithm attempts 
to create shorter wires in order to minimize the area and delay 
of the final placement.  Since the computation structures are 
fixed by the netlists at this point, area is directly related to the 
number of wires passing through a given cross-section of our 
architecture.  Delay is dependent on the length of the wires, 
and long wires will tend to cause larger cross-sections.  
Therefore, minimizing the cross-section routing width will aid 
in reducing both area and delay. 

In our cost metric, we relate signals, which are a desired 
interconnection within a given netlist, to wires, which are 
physical routing resources fabricated into the array.  As stated 
previously, we have not yet generated a routing structure.  We 
instead use the signals of the netlists to approximate the 
routing using the following method.  First we determine how 
many signals from each netlist pass through a given cross-
section.  For our purposes, we consider each physical element 
location to be a cross-section to examine.  Then we take the 
maximum width across all netlists at each of these cross-
sections as an estimate of the routing width required at that 
location.  In order to increasingly discourage wide overall 
cross-sections, we square the total widths at each component 
location.  To get the final cost value, we add up the squared 
overall cross-section widths from each cross-section location.  
This allows us to strongly penalize very wide areas, and 
lightly penalize more narrow areas. 

At the completion of the placement phase, we have obtained 
an ordering of the physical components along the one-
dimensional datapath, as well as a binding of each of the 
instances of the various netlists to those physical components.  
The next step is to then generate the routing structure needed 
to connect the physical components in order to best 
accommodate the interconnection requirements. 

Routing 

A custom routing structure, like a custom computational 
structure, will increase the efficiency for a reconfigurable 
structure used for a given class of algorithms.  By bounding 
the computation domain to a set of applications, we decrease 
the amount of extraneous hardware and routing, leading to a 
more area and delay efficient architecture.  The step of 
creating the custom routing structure is thus essential to our 
custom architecture generator. 

The routing structure of the custom generated architecture will 
depend on the results obtained in the placement phase.  At this 
point, the physical locations of the components will be fixed, 
as well as the bindings of the netlist instances to those 
components.  From the netlist information, we have the list of 
signals, with their respective source and sink instances (the 
signal’s ports).  These instances have been bound in the 
placement stage, so we know the physical location of the ports 
of the signals.  We must create wires and connections in order 
to allow each netlist to execute individually on our custom 
hardware. 

This also may involve generating multiplexers on the inputs 
and demultiplexers on the outputs of components to 
accommodate the different requirements of the various 
netlists.  For example, if netlist A needs the output of the 
adder to route to a register, but netlist B sends the adder's 
output to a multiplier, then a demultiplexer is instantiated on 
the output of the adder to allow for the signals to be directed 
properly for each netlist.  Additionally, if netlist A receives an 
adder input from a register, while netlist B receives the same 
input from another adder, a multiplexer is instantiated to 
choose between these two sources based on which netlist is 
currently active in the architecture.   Figure 4 continues the 
example from the placement section, showing the generated 
routing structure for the given placement.  Because several of 
the wires here contain more than one signal, it is evident that 
the routing cross-section width is less in Figure 4 than if each 
line from Figure 3 was made into a wire. 

The object of the routing generation phase is to minimize area 
by sharing wires between netlists while keeping the number of 

Figure 3:  A reasonable placement for a custom architecture with both netlists from Figure 2.  Netlist 0's signals are shown 
as dotted, and Netlist 1's signals are solid.  The bold I/O lines connect to both netlists.  Wires have not yet been created.  
The instance names from Figure 2 are shown inside the boxes in italics, while the bold capital labels on components refer 
to the component name.  The muxes and demuxes to provide configurable routing have not yet been added. 
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muxes and demuxes required low.  We have developed a 
number of routing algorithms that explore different parts of 
this design space.  Two of the algorithms, greedy and clique 
partitioning, use heuristics to group similar signals from 
different netlists into wires.  For comparison, the maximum 
sharing algorithm gives the results for the generated placement 
if the wires are shared as much as possible (minimizing 
routing cross-section width).  Finally, a lower-bound 
calculation for area is presented in the results section in order 
to provide a reference against which we may measure the 
performance of the other algorithms. 

In order to understand the motivations for the algorithms 
presented below, we must first discuss the routing problem 
itself.  As in the placement problem, creating the routing is 
two problems combined into one.  First, how should the wires 
be created, and second, which signals should be mapped to 
which wires.  In many current FPGA architectures, wire 
lengths can be adjusted for each netlist by taking advantage of 
programmable connections between lengths of wire, 
potentially forming a single long wire out of a few or many 
short wires.  However, for the current Totem architecture 
generator we only provide for this type of wire segmentation 
in the maximum sharing algorithm.  While future versions of 
our application will use segmentation as a means to provide 
more flexibility within a given area, we begin with non-
segmented wires for simplicity. 

Unless signals from different netlists share the exact same 
source and sinks, we must somehow determine which sets of 
signals belong together within a wire.  One method is to 
simply not share at all, which is explored in the minimum 
sharing algorithm.  As stated above, the maximum sharing 
algorithm uses segmented wires to allow for the maximum 
amount of wire sharing between netlists, and therefore 
minimum routing area.  The remaining two algorithms, greedy 
and clique partitioning, use heuristics to determine how the 
wires should be shared between signals.  The heuristics 
operate by placing signals with a high degree of similarity 
between ports (source and sinks) together into the same wire.  
This not only reduces area by sharing the wire, but also 
reduces the size of the muxes and demuxes off of the shared 
ports.  The exact methods used by each algorithm to determine 
wire sharing are described below. 

Greedy 

The concept of correlation between wires or signals is critical 
to both the greedy and clique partitioning algorithms, and is 
also used to some extent in the low-area algorithm.  The idea 
is that we wish to merge the different netlists' signals onto 
physical wires so as to minimize the number and size of 
multiplexers on the inputs to functional units, and 
demultiplexers on the outputs. 

We use a modified version of the weight equation for a clique-
partitioning heuristic [Dorndorf94].  The original equation is: 
correlation = 2 * <# of identical attributes> - <total # 
attributes>.  Here, items that are completely dissimilar will 
have a correlation of -<total # attributes>.  In our program, an 
"attribute" is a port, and a "shared attribute" is when two wires 
share an input or output location.  Rather than use the total 
number of ports in the architecture or the total number of ports 
for any one wire (which would both create many negative 
edge weights, penalizing wires with few ports), we instead use 
the union of the ports of the two signals being correlated.  
Therefore, the above equation will yield a positive value if 
more than half of the total number of ports among two signals 
are shared by those signals. 

The greedy algorithm operates by merging wires that share 
ports together.  To begin, the signals are assigned individually 
to their own wires.  Next, a list of correlations between all 
compatible wire pairs (wires that are not both used in the same 
netlist) is created.  The highest correlation value is selected at 
each iteration, and those two wires are merged.  All other 
correlations related to either of the two wires that have been 
merged are updated according to the ports in the shared wire.  
If any of the correlations now contain a conflict due to the new 
attributes of the merged wire, these correlations are deleted 
from the list.  This process continues until the correlation list 
is empty, and no further wires may be merged. 

Clique Partitioning 

Although the greedy method will place highly correlated 
signals together into a wire, this is not necessarily the best 
solution.  A higher degree of sharing may be possible, or 
perhaps the delay would be much better (and the area not 

Figure 4:  The desired routing architecture for the example of Figure 2 and Figure 3.  Each line is a wire.  The bold lines 
indicate a wire that is shared by both netlists.  Wires used by only one netlist are shown dotted for Netlist 0 and solid for 
Netlist 1.  The shaded components are routing muxes and demuxes added to allow sharing of components between netlists. 

0

R
E

G
1

A
L

U
1

M
U

X
3

R
E

G
3

M
U

X
2

R
E

G
2

M
U

X
1

MULT1 MULT2

D3B3A2
A1

D4
D1C1

C2B1A3D2B1

IN1

IN2

OUT



 

 6

much worse) if a signal was not shared at all.  The clique 
partitioning heuristic uses a more sophisticated algorithm to 
address these issues. 

Clique partitioning is a concept from graph algorithms 
whereby vertices are divided into completely connected 
groups.  In our algorithm each wire is represented by a vertex, 
and the "groups", or cliques, represent physical wires.  We use 
a weighted-edge version of clique partitioning [Dorndorf94], 
as we wish to group highly correlated signals together into 
wires, where the correlation value between signals is used as 
the edge weight.  The cliques are then partitioned such that the 
weight of the edges connecting vertices within the same clique 
is maximized.  Signals that cannot occupy the same wire 
(signals from the same netlist) carry an extremely large 
negative weight that will prevent them from being assigned to 
the same clique.  Therefore, although signal A may be highly 
correlated with signal B, and signal B is highly correlated with 
signal C, they will not all be placed into the same wire (clique) 
if signal A conflicts with signal C, due to the large negative 
weight between those vertices. 

Given that weighted clique partitioning of a graph with both 
negative and positive edge weights is NP-Complete, we use an 
ejection chain heuristic [Dorndorf94] based on tabu search.  
We start with a random assigning of vertices to cliques (where 
the number of cliques equals the number of vertices).  We 
allow cliques to be empty, but all vertices must be assigned.  
The algorithm then uses multiple iterations in which each 
vertex is moved from its current clique to a different one.  This 
is done by each time selecting a non-tabu vertex and a new 
clique for that vertex that will produce the maximum overall 
(not necessarily positive) gain in total weight for the graph.  
Once a vertex is moved, it is marked tabu until the next 
iteration. 

At the end of the iteration after all vertices have been moved, 
the list of cumulative solutions after each move is examined, 
and the one with the highest total weight is chosen.  The 
moves leading to this solution are kept, and the remainder 
discarded.  This solution is then used as the base for the next 
iteration of moves, and all vertices are marked non-tabu.  This 
loop continues until none of the cumulative solutions in an 
iteration produces a total weight greater than the base solution 
for that iteration. 

Maximum Sharing 

In the current version of Totem, the previous two algorithms 
do not allow more than one signal from a given netlist to share 
the same wire through the use of segmented routing.  This 
results in a larger routing area than strictly necessary.  In order 
to provide some sort of measure of what the routing area 
might be if segmented wires were to be used, the maximum 
sharing algorithm is used.  In this algorithm we actually assign 
signals to tracks, with a modified version of the standard left-
edge algorithm.  The signals are sorted based on their leftmost 
endpoint.  Signals are taken in order from the list, leftmost 

first, and assigned to a track.  The track with empty space 
furthest to the left for the current signal's netlist is selected.  If 
more than one track fits this description, the track with the 
highest correlation to the current signal is chosen.  In this 
manner, we aim to pack the signals into as few tracks as 
possible, while still considering some amount of correlation to 
reduce the number of input multiplexers and output 
demultiplexers. 

This algorithm only represents an attempt at a minimum 
routing area, not a minimum total area.  The difficulty here is 
that each optional connection in a track requires the 
instantiation of a bus connector component within the 
datapath.  In the maximum sharing algorithm we do not 
consider bus connector placement or minimization, and 
therefore although the routing area may be significantly 
reduced, the logic area is increased. 

Results 

In order to form an initial evaluation of our Totem architecture 
generator, we compare architectures it generates within the 
DSP domain to RaPiD, a reconfigurable architecture designed 
specifically for DSP [Ebeling96].  We have obtained a number 
of compiled RaPiD netlists for testing our architecture 
generator.  These netlists were designed before Totem was 
written, and hence are not targeted to our generator.  The 
names of these netlist files, along with a short description are 
listed in  

.  The table also lists the datapath area required to implement 
each netlist on the standard RaPiD architecture, as it appears 
in [Cronquist99a].  It should be noted, however, that these 
areas are based on the computational requirements of the 
netlists.  These applications were not routed onto the RaPiD 
architecture, only placed.  Several of the applications, such as 
filter_img and filter_med, will not be able to be routed onto 
the RaPiD architecture due to heavy routing needs.  Therefore, 
this comparison is somewhat biased in favor of RaPiD (and 
thus is a conservative estimate of Totem’s benefits). 

 

# 
Cells

Area

filter_img 21 644.07
filter_med 15 460.05
firsm 9 276.03
firsymeven 17 521.39
matmult 6 184.02
sort2 9 276.03

DescriptionBenchmark
RaPiD area

FIR Filter
Median Filter
Image Filter

FIR Filter
Matrix Multiplier

Sorter  

Table 1: The RaPiD netlists used for our benchmarking.  
The number of RaPiD cells required to implement each 
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of these netlists on a traditional RaPiD architecture is 
given, followed by the resulting area in Mλ2. 

Given that each RaPiD cell is identical, a combination of 
RaPiD netlists can be implemented on the maximum number 
of cells required by any one of those netlists.  This is the area 
calculation used to compare to the results of our generated 
architectures. 

The area of a generated architecture can be considered in 
terms of logic area and routing area.  Logic area includes all 
computational components, as well as any muxes or demuxes 
that we may have generated for netlist sharing.  For the 
maximum sharing algorithm, logic area also includes the area 
required for any bus connectors used within the generated 
tracks.  In all generated architectures, the size of the generated 
muxes and demuxes, as well as the size of any muxes that the 
netlist compiler may have instantiated, are reduced to the 
smallest number of inputs or outputs required to route the 
needed signals from/to the appropriate location.  In other 
words, if there are 5 signals entering a multiplexer, but 2 of 
them share the same wire, then the multiplexer has 3 
<shouldn’t this be 4?> physical inputs, and is sized 
accordingly.  The equations for the mux and demux sizes were 
obtained through the analysis of the layouts of the RaPiD 

multiplexer and driver objects.  In the traditional RaPiD 
architecture, all multiplexers have 14 inputs, frequently 
resulting in needlessly large multiplexers.  The routing area of 
the Totem architectures is somewhat more complex to 
compute.  The RaPiD architecture has 14 buses that run over 
the computational components.  Therefore, we assume that 
any wire cross-section width up to 14 does not add any height 
to the layout (it is included in the logic area).  However, some 
areas of the circuit may contain a larger width, and this must 
be accounted for.  In order to compute the additional area 
beyond the logic area required for the routing, we examine the 
wire cross-section at each physical component.  If this cross 
section is larger than 14, then the additional routing is 
translated to the height in lambda required for the extra buses.  
This height is multiplied by the width in lambda of the 
corresponding computational unit.  The total routing area is 
obtained by summing this value at each component location. 

The different benchmark combinations, along with RaPiD area 
requirements and Totem area requirements, are listed in Table 
2.  The results of the three different routing methods are given 
for each benchmark combination in terms of logic area, 
routing area, and total area. 

Table 2:  The results of executing different sets of RaPiD netlists on Totem, along with comparison RaPiD areas and 
calculated lower bound areas.  All areas listed are in terms of Mλ2. 

# 
Cells

Area
Logic 
Area

Route 
Area

Total 
Area

Clique 243.85 58.77 302.62 2.13 1.56
Greedy 238.75 57.34 296.09 2.18 1.53

Max Share 583.72 1.38 585.10 1.10 3.02
Clique 322.04 84.90 406.94 1.58 1.60
Greedy 315.38 81.98 397.36 1.62 1.56

Max Share 699.10 1.39 700.49 0.92 2.75
Clique 250.40 55.19 305.59 2.11 1.54
Greedy 248.64 54.62 303.26 2.12 1.52

Max Share 576.21 2.23 578.44 1.11 2.91
Clique 158.19 25.34 183.53 2.51 1.58
Greedy 156.80 24.88 181.68 2.53 1.57

Max Share 380.77 1.41 382.18 1.20 3.30
Clique 168.79 20.97 189.76 2.75 1.30
Greedy 167.58 20.72 188.30 2.77 1.29

Max Share 385.64 1.26 386.90 1.35 2.65
Clique 216.09 35.15 251.24 2.08 1.40
Greedy 214.54 34.48 249.02 2.09 1.39

Max Share 473.39 2.01 475.40 1.10 2.66
Clique 150.50 21.16 171.66 1.61 1.55
Greedy 147.10 20.48 167.58 1.65 1.51

Max Share 346.13 0.19 346.32 0.80 3.12
Clique 357.10 99.35 456.45 1.41 1.79
Greedy 348.05 93.59 441.64 1.46 1.73

Max Share 744.01 3.85 747.86 0.86 2.93

Benchmark 
Netlists

Totem 
Method

Factor 
Improved

Lower 
Bound 
Area

Factor 
Off 

Bound

RaPiD area Totem Area

193.77

filter_img         
filter_med        
firsymeven

21 644.07 255.04

filter_img        
filter_med

21 644.07

115.81

filter_img         
firsm

21 644.07 198.93

179.01

firsm          
firsymeven

17 521.39 145.88

255.04

firsm      
matmult      

sort2
9 276.03 110.92

ALL 21 644.07

firsm      
firsymeven     

matmult
17 521.39

filter_med          
firsm

15 460.05
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For a lower bound on the area requirements of any generated 
circuit for the input netlists, we consider only the minimum 
number of circuit elements required to implement all of the 
desired circuits.  We assume that no additional multiplexing is 
required on the inputs or outputs to a component due to the 
presence of multiple netlists.  We also assume that all routing 
will fit within the 14 tracks that are routed over the 
computational components.  In most situations this represents 
an unachievable lower bound.  This lower bound is also given 
in Table 2. 

There are a number of interesting conclusions we can draw 
from Table 2.  First, in both the clique and greedy algorithms, 
we obtain some area improvement for all netlist combinations, 
sometimes above a factor of 2.  In light of the primitive nature 
of our first Totem implementation, these results are quite 
promising.  By comparing the routing areas given by greedy 
and clique to the routing area of maximum sharing, we can 
infer that the clique and greedy algorithms could be improved 
a great deal by the introduction of segmented routing.  This 
feature is currently only present in the maximum sharing 
algorithm, which has led directly to its lower routing area. 

Second, we see that sharing wires as much as possible 
(maximum sharing) may yield the lowest routing area, but 
does not give the lowest overall area.  In fact, for each of our 
benchmark combinations, maximum sharing resulted in the 
worst total area of the three algorithms tested.  This result is 
unsurprising, as by requiring maximum sharing we are 
introducing a large number of bus connectors to form 
segmented routing.  Therefore, when we are adding the ability 
to create segmented routing to the Totem generator, it will be 
important to weigh the reduction of wire area against the 
increase of bus connector area in order to obtain a lower 
overall area. 

Third, the architecture generator has the best performance 
when the netlists used are highly similar.  The two 
combinations using only FIR filters and the matrix multiplier 
most closely approach the lower bound area.  Intuitively, this 
makes sense, as similar netlists will use many of the same 
computational units in much the same order.  The placement 
and routing phases take advantage of this similarity.  Note that 
when all of the netlists are combined to generate one 
architecture, we have the poorest performance (though still 
better than the traditional RaPiD architecture for greedy and 
clique). 

Conclusions 

FPGAs provide effective solutions for many coarse-grained 
applications, such as digital signal processing, encryption, 
scientific data processing, and others.  However, commercial 
FPGAs are fine-grained, and miss many optimization 
opportunities.  Coarse-grained reconfigurable architectures 
have been designed to improve efficiency for these types of 
applications, but they still target a broad spectrum of coarse-

grained computations.  By creating reconfigurable 
architectures specialized for the application domain(s) being 
used, we can reap the benefits of custom computational and 
routing resources, similar to an ASIC, while still leveraging 
the assets of reconfigurable computing.  These custom 
reconfigurable architectures can then be embedded into an 
SOC environment, yielding a high-performance computing 
solution. 

Because it is unreasonable to expect a custom FPGA layout 
for each set of applications needed we have begun work on 
Totem, a custom reconfigurable architecture generator.  This 
architecture generator will provide the ability to generate the 
specialized reconfigurable hardware in a fraction of the time 
required to create an architecture by hand. 

We have shown area comparisons between the circuit areas of 
the architectures generated by the first Totem implementation 
and the traditional RaPiD architecture areas required for the 
same combinations of netlists.  All but one of our generating 
algorithms provided a measure of circuit area reduction, even 
with the initial simplified implementations described in this 
paper.  More than half of the test showed more than a factor of 
2 improvement for those algorithms.  The results also hint at 
guidelines for future algorithm development, such as the 
reduction of segment points in addition to wire cross-section 
width for segmented routing. 

Finally, the improvement of the custom architecture area over 
the traditional RaPiD area requirements, coupled with the fact 
that the custom architectures are on average only 1.5 times 
larger than the absolute lower bound, indicates that custom 
FPGA architecture generation has a great deal of potential. 

Future Work 

Currently, we target only area reduction in the creation of our 
custom reconfigurable architectures.  We plan to expand our 
algorithms to also provide delay optimization.  This will allow 
users of Totem to generate an architecture that will be 
customized not only for their computation and area needs, but 
that also meets their delay constraints. 

The Totem Custom Reconfigurable Array Generator has a 
great deal of expansion potential.  Because this is the first 
version, we have made simplifications to the problem in order 
to obtain our initial results.  We can therefore increase the 
power of this generator in a large number of ways. 

First, the cost function for the simulated annealing, while 
effective, can be further expanded.  A more powerful cost 
function would encourage mappings using the same 
component type that share a source or destination to be bound 
to the same resource.  This has the benefit of increasing 
correlations between wires prior to the actual routing structure 
creation, decreasing the size and/or amount of muxes 
generated. 
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Second, at the moment we only create the minimum number 
of computational units required by the union of the input 
netlists.  Future versions of the Totem generator should 
provide the flexibility to include resources in excess of the 
minimum.  This could potentially improve delay values by 
shortening wires and reducing muxing.  The routing method 
we have initially taken is also on the simplistic side.  We 
provide only point-to-point connections.  Future work will 
entail the creation of segmented routing structures.  This will 
greatly reduce routing area compared to our current 
implementation, where wires cannot be split. 

Additionally, we would like to provide some ability for new 
netlists with similar characteristics to also be able to be 
executed on our custom architectures.  Currently, the 
generated architecture is optimized only for the input 
application netlists, and would likely not perform as well if 
additional netlists were used post-fabrication.  Future  versions 
of the generator will allow users to control where their custom 
architecture will lie along the spectrum between ASIC and 
FPGA in order to provide for post-fabrication flexibility of the 
design. 

Finally, to bring our Totem generator to a finished, 
commercially viable state, we are also working on providing 
automatic VLSI layout creation of our generated architecture 
descriptions.  Using the output of the architecture generator, 
this will provide a layout ready for detailed simulation and 
fabrication.  We are also creating automatic methods for 
generating placement and routing tools for these custom-
generated FPGA architectures, enabling Totem to be a 
complete start-to-finish tool for custom array generation. 
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