
Ultra Fast Transformers on FPGAs for Particle
Physics Experiments

Anonymous Author(s)
Affiliation
Address
email

Abstract

This work introduces a highly efficient implementation of the transformer architec-1

ture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given2

the demonstrated effectiveness of transformer models in addressing a wide range of3

problems, their application in experimental triggers within particle physics becomes4

a subject of significant interest. In this work, we have implemented critical com-5

ponents of a transformer model, such as multi-head attention and softmax layers.6

To evaluate the effectiveness of our implementation, we have focused on a particle7

physics jet flavor tagging problem, employing a public dataset. We recorded latency8

under 2 µs on the Xilinx UltraScale+ FPGA, which is compatible with hardware9

trigger requirements at the CERN Large Hadron Collider experiments.10

1 Introduction11

Accelerated Machine Learning (ML) inference is necessary to run the algorithms in the online event12

selection systems of the particle physics experiments. Due to the extremely high particle collision13

frequency of 40 MHz at the Large Hadron Collider (LHC) [1] at CERN [2], it is impossible to read14

out and store all the collision events. As a result, the LHC experiments [3, 4, 5, 6], try to read out only15

the interesting via an online selection system called the trigger. Most of the LHC experiments use a16

two-stage trigger system, hardware-based Level-1 trigger and software-based High-Level trigger. The17

Level-1 trigger operates at 40 MHz, so the algorithms usually run on application-specific integrated18

circuits (ASICs) or FPGAs. As the average number of collisions at the LHC is expected to increase19

with time, sophisticated ML algorithms will be crucial for Level-1 triggers to efficiently filter events.20

There have been numerous efforts to port ML algorithms like Deep Neural Networks [7], Convolution21

Neural Networks [8], Recursive Neural Networks [9, 10], Graph Neural Networks [11] onto FPGAs22

for physics applications using High-Level Synthesis (HLS) languages with the hls4ml package23

[7, 12]. hls4ml is an HLS-based compiler for a neural network to FPGA firmware conversion.24

In recent years, the transformer [13] architecture became popular for their great performance in25

language modeling tasks like encoder-only BERT [14], decoder-only GPT [15], etc. Over time, the26

utility of transformer models extended beyond language modeling, impacting a wide range of ML27

applications. They are now widely used in particle physics for offline computing tasks like particle28

reconstruction [16], identification [17, 18, 19], etc. Often the transformer-based models show better29

performance over other architecture, but they are very computing intensive and suffer from a slow30

inference rate. Because of the computationally intensive nature, it becomes challenging to implement31

[20, 21, 22, 23] them on hardware like FPGAs, where a limited amount of resources is available.32

Another previous work [24] explored this design space in the context of a particle physics experiment33

by studying a small transformer for jet classification.34

In this work, we present a flexible and efficient implementation of transformers written in HLS for the35

hls4ml package. This integration into hls4ml opens the door for wider low-latency applications of36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

the Transformer models. Here the main focus is on the trigger applications in the LHC experiments.37

However, our implementation is very general and it is relevant to many real-time detector systems38

across fundamental science where low-latency high throughput inference is necessary.39

2 Benchmark study40

To benchmark our implementations, we study the open data samples from the Compact Muon41

Solenoid (CMS) experiment which contain top quark pairs decaying hadronically with center-of-mass42

energy of 7 TeV [25]. These events contain many bottom quark jets (b jets), charm quark jets (c43

jets) and jets from light quarks, and gluons (light jets) originating from top quark decay. The jets44

in the dataset are labeled as b, c, and light jets depending on whether they contain bottom quarks,45

charm quarks, or neither, respectively. The main feature that separates b jets (and c jets) from light46

jets is the presence of the displaced vertex corresponding to the decay of the hadron containing the b47

(or c) quark. These hadrons are long-lived due to their mass, and the decay time depends on their48

momenta. Our proposed algorithm aims to identify the presence of tracks that are consistent with49

these displaced vertices using a transformer architecture.50

All the jets are reconstructed using the anti-kt algorithm with a distance parameter of R = 0.5. The51

jets are required to have transverse momenta (pT) larger than 30 GeV and absolute pseudorapidities52

less than 2.0. Charged particle tracks with pT larger than 1 GeV are associated with the nearest jet53

if they are within the angular distance ∆R (track, jet) of 0.5. Tracks within a jet are ordered by the54

significance of their transverse impact parameter (S(d0)), and only the first 15 tracks are used for55

this study. Each track is represented by a vector of six features: transverse and longitudinal impact56

parameters (d0, dz) and their significances (S(d0), S(dz)), ∆R(track, jet), and relative transverse57

momentum between the track and the jet (pT(track)/pT(jet)).58

The flavor tagging classifier model is constructed using Keras+TensorFlow, using a transformer59

architecture with 9135 trainable parameters. The padded sequence of tracks, with a maximum length60

of 15, is directly fed into a transformer encoder block. No positional encoding is used, as the ordering61

is not crucial for this problem. Each encoder block contains a multi-head attention (MHA) layer with62

two heads, running two scaled dot-product attention layers in parallel, and a feed forward network63

with two dense layers. Outputs of the MHA layer are passed through a feed forward block where64

the layer dimensions are 8 and 6, respectively. Due to the simplicity of the flavour tagging problem,65

we did not include a layer normalization after the MHA layer. The structure of the encoder block is66

shown in Fig. 1a. The outputs of the encoder blocks are flattened and passed through three dense67

layers with 32, 16, and 8 units. The output layer uses a softmax function and predicts three class68

probabilities corresponding to b, c, and light jets. The model contains three encoder blocks and the69

architecture is shown in Fig. 1b. The training is performed with a categorical cross-entropy loss, with70

30% of the training data retained for validation and testing.71

3 Implementations72

One of the main focuses of this work is to implement the MHA layer in HLS. The implementation73

of the MHA layer is divided into four sequential pipeline stages shown in Fig. 1c. Each stage is74

explained below.75

The first stage is the Linear projection step where the inputs are transformed into Query (Q), Key76

(K), and Value (V) vectors using separate weight matrices. A matrix times a vector operation is77

performed at each time step as a pipeline. To optimize FPGA resources, the vectors from this stage78

are stored in a First In, First Out (FIFO) memory structure. This aligns perfectly with our sequential79

data processing, ensuring efficient memory utilization and fostering an effective data flow for the80

subsequent stages. Multiple FIFO memories are stacked together to increase the bandwidth.81

The second stage starts computing the attention mechanism by taking the dot product of the Q and K82

vectors, producing a relevance score for each element of the input sequence. This score determines83

how elements influence each other in the sequence. The product is then divided by the dimension of84

the key vectors,
√
dk, before passing it through a lookup table-based softmax function. The softmax85

output is stored in FIFO memory. Simultaneously, the matrix V is reshaped into a fully accessible86

array for later stages.87

2

The third stage involves the matrix multiplication of the scores matrix and the corresponding V88

vectors. The V vectors are stored in a fully accessible register for the parallel multiplication process.89

The results are stored back in the FIFO memory and passed to the next stage of processing.90

The fourth stage includes two key processes: the concatenation of the output from all attention heads91

and the subsequent linear transformation of the concatenated result. Each attention head provides an92

output vector loaded row by row, aligning with the temporal sequencing of the data. Once loaded,93

the outputs are concatenated together to form a single, unified data stream. Then the data stream is94

passed through a linear layer. The linear layer is also pipelined, and it inputs and outputs one row of95

data at a time. This stage manages the output from all heads and efficiently generates the final output.96

Inputs

Multi-Head Attention
of heads = 2, head size = 32

Add

Feed Forward (2 Dense)
Units = [8, 6]

Add

Intermediate output

(a) Transformer encoder block

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output
class probability: b / c / light

x 3

(b) Model architecture

Linear Linear Linear

Q K V

Inputs

Matrix Multiply

Matrix Multiply

Scaling &
Softmax

Matrix
Reshape

Concat and Linear

Stage
2

Stage
1

Stage
3

Stage
4

(c) Pipeline stages

Figure 1: The encoder block used for the transformer model is shown in (a). The full model
architecture is shown in (b). The pipeline stages for the multi-head attention layer is shown in (c).

Apart from implementing the MHA layer, we have also optimized the softmax HLS implementation97

inside the hls4ml tool to reduce the computational cost. Softmax is used many times in the model,98

so it is crucial to have an efficient HLS implementation to run inference on an FPGA.99

4 Results100

The flavour tagging model described in Sec. 2 is translated into an HLS model using the hls4ml101

framework. Our tests were done using Vivado HLS 2020.1 with a Xilinx UltraScale+ FPGA VU13P102

(part number xcvu13p-fhga2104-2L-e) as the target device. For the HLS implementation two103

different optimizations are studied: quantization and parallelization.104

The quantization process reduces the numerical precision of the model parameters, such as weights105

and biases, as well as inputs. Typically, ML model parameters are stored as 32-bit floating-point106

numbers Although floating-point numbers offer an extensive dynamic range, they consume significant107

computing resources when implemented on an FPGA. Therefore, for FPGA implementation, fixed-108

point numbers with fixed precision are preferred. This shift to fixed-point representation greatly109

accelerates computation by reducing both computational resource usage and memory utilization. In110

our study, we systematically explore fractional bit variations while maintaining a fixed precision of 6,111

7, 8, 9, or 10 bits for the integer part. We evaluate the receiver operating characteristic (ROC) curve112

for the transformer-based classifier employing the area under the curve (AUC) as a performance113

metric. The ratio of the AUCs (fixed-point HLS model / floating-point Keras model) is shown in Fig.114

2a as a function of fraction bits for integer bits. From the figure, it is clear that we need at least 10115

integer bits and 10 fractional bits to get a similar performance as the floating-point model.116

The hls4ml offers a valuable feature known as the “reuse factor" parameter, which plays a pivotal role117

in governing the optimization of parallelization and the efficient utilization of computing resources.118

This factor determines the number of times each multiplier is used for computing the neuron values119

within a given layer. If the reuse factor is set to 1, the computation becomes fully parallel, as each120

3

multiplication operation is executed independently by a dedicated digital signal processing (DSP)121

block. As we increase the reuse factor the computing resource utilization decreases, but the latency122

increases proportionally. To study the resource-latency trade-off and find an optimal implementation123

for our model, we have synthesized (full Vivado synthesis) it with varying values of the reuse factor124

and fractional bit precision. For each case, we quantified the utilization of FPGA resources of different125

categories like memory (BRAM), DSPs, flip-flops (FFs), and lookup tables (LUTs). The utilization126

of DSPs and LUTs are shown in Fig. 2b and Fig. 2c, respectively, as a function of fractional bits127

(integer bit = 10) for reuse factors of 1, 2, or 4. As anticipated, the resource utilization goes up as we128

reduce the reuse factor. It’s worth noting that the target board has a total of 12288 DSPs and 1.72129

million LUTs, providing us with flexibility in selecting any of the three reuse factors to achieve the130

optimal precision of (int. = 10, frac. = 10) during the model synthesis.131

Remarkably, the observed latency aligns with the requirements of the LHC hardware trigger. For132

the fully parallel scenario with a reuse factor 1, the model’s inference latency is 2.077 µs. Here, the133

clock period is 6.58 ns, resulting in output generation every 49 clock cycles or 322.42 ns. However,134

the latency increases to 3.467 µs and 5.853 µs for reuse factors of 2 and 4, respectively.135

2 3 4 5 6 7 8 9 10 11
Fractional bits

0.0

0.2

0.4

0.6

0.8

1.0

HL
S

AU
C

/ F
lo

at
in

g-
po

in
t A

UC

6 int. bits
7 int. bits
8 int. bits
9 int. bits
10 int. bits
Optimal precision

(a) AUC ratio

2 3 4 5 6 7 8 9 10
Fractional bits

0

2

4

6

8

10

12

DS
P

us
ag

e
(x

 1
03)

hls4ml: DSP usage (x 103)
Reuse Factor = 1
Reuse Factor = 2
Reuse Factor = 4

(b) DSP usage

2 3 4 5 6 7 8 9 10
Fractional bits

0

1

2

3

4

5

6

7

8

LU
T

us
ag

e
(x

 1
05)

hls4ml: LUT usage (x 105)
Reuse Factor = 1
Reuse Factor = 2
Reuse Factor = 4

(c) LUT usage

Figure 2: (a) Ratios of the fixed-point and floating-point AUCs as function of fractional bits. Five
different values between 6 and 10 bits are chosen for the integer precision. Utilization of (b) DSP and
(c) Lookup tables are shown as a function of fractional bits while keeping the integer part fixed to 10.
Three different configurations with reuse factor of 1 (blue), 2 (orange), or 4 (green) are shown. The
target board (part number xcvu13p-fhga2104-2L-e) has a total of 12288 DSPs and 1.72 million
LUTs.

5 Summary and Outlook136

We have successfully implemented a transformer architecture with multi-head attention in HLS137

for FPGA inference. This implementation has been seamlessly incorporated into the hls4ml pack-138

age, which facilitates the automatic translation of transformer models for low-latency inference139

applications. It is essential to note that some critical features, including positional encoding and140

layer normalization, have been left for future work. To demonstrate the effectiveness of the current141

implementation, we conducted a study using a flavor tagging model. Notably, the model’s inference142

latency falls within a range of 2 to 6 µs, fully complying with the stringent timing constraints of the143

hardware triggers. What sets our implementation apart is its exceptional versatility. It can readily144

adapt to models with different configurations, such as varying sequence lengths and the number of145

attention heads, without the need for extensive customization. As a result, this integration represents146

a pivotal development, and paves the way for the widespread utilization of low-latency applications147

employing transformer models.148

6 Broader Impact149

Although we demonstrate the performance of one specific algorithm here, this work could be used150

to accelerate other reconstruction algorithms in particle physics experiments. In fact, hls4ml151

transformer can be used for low latency inference for other scientific domains like neuroscience,152

gravitational wave, material science, etc., and various non-scientific domains.153

4

References154

[1] Lyndon Evans and Philip Bryant. LHC machine. JINST, 3(08):S08001–S08001, aug 2008.155

[2] Cern accelerating science. (n.d.). https://home.cern/science/accelerators/156

large-hadron-collider, 2016.157

[3] ATLAS Collaboration. The atlas experiment at the cern large hadron collider. JINST, 3:S08003,158

2008.159

[4] ALICE Collaboration. The ALICE experiment at the CERN LHC. JINST, 3(08):S08002–160

S08002, aug 2008.161

[5] CMS Collaboration. The CMS experiment at the CERN LHC. JINST, 3(08):S08004–S08004,162

aug 2008.163

[6] LHCb Collaboration. The LHCb detector at the LHC. JINST, 3(08):S08005–S08005, aug 2008.164

[7] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini, R. Rivera,165

N. Tran, and Z. Wu. Fast inference of deep neural networks in fpgas for particle physics. Journal166

of Instrumentation, 13(07):P07027, jul 2018.167

[8] Thea Aarrestad, Vladimir Loncar, Nicolò Ghielmetti, Maurizio Pierini, Sioni Summers, Jennifer168

Ngadiuba, Christoffer Petersson, Hampus Linander, Yutaro Iiyama, Giuseppe Di Guglielmo,169

Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Kevin Pedro, Nhan Tran, Mia Liu,170

Edward Kreinar, Zhenbin Wu, and Duc Hoang. Fast convolutional neural networks on fpgas171

with hls4ml. Machine Learning: Science and Technology, 2(4):045015, jul 2021.172

[9] Elham E. Khoda et al. Ultra-low latency recurrent neural network inference on FPGAs for173

physics applications with hls4ml. Mach. Learn. Sci. Tech., 4(2):025004, 2023.174

[10] Zhiqiang Que et al. Accelerating Recurrent Neural Networks for Gravitational Wave Experi-175

ments. In 32nd IEEE International Conference on Application-specific Systems, Architectures176

and Processors, 6 2021.177

[11] Abdelrahman Elabd et al. Graph Neural Networks for Charged Particle Tracking on FPGAs.178

Front. Big Data, 5:828666, 2022.179

[12] Farah Fahim et al. hls4ml: An Open-Source Codesign Workflow to Empower Scientific180

Low-Power Machine Learning Devices. In tinyML Research Symposium 2021, 3 2021.181

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,182

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.183

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of184

deep bidirectional transformers for language understanding, 2019.185

[15] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language186

understanding by generative pre-training. 2018.187

[16] Alexander Shmakov, Michael James Fenton, Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson,188

and Pierre Baldi. SPANet: Generalized permutationless set assignment for particle physics189

using symmetry preserving attention. SciPost Phys., 12(5):178, 2022.190

[17] Huilin Qu, Congqiao Li, and Sitian Qian. Particle Transformer for Jet Tagging. 2 2022.191

[18] V. Mikuni and F. Canelli. Abcnet: an attention-based method for particle tagging. The European192

Physical Journal Plus, 135(6):463, 2020.193

[19] Vinicius Mikuni and Florencia Canelli. Point cloud transformers applied to collider physics.194

Machine Learning: Science and Technology, 2(3):035027, jul 2021.195

[20] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang Chen, Mimi Xie, Lipeng196

Wan, Hang Liu, and Caiwen Ding. Ftrans: Energy-efficient acceleration of transformers using197

fpga, 2020.198

5

https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider

[21] Hongwu Peng, Shaoyi Huang, Tong Geng, Ang Li, Weiwen Jiang, Hang Liu, Shusen Wang,199

and Caiwen Ding. Accelerating transformer-based deep learning models on fpgas using column200

balanced block pruning. In 2021 22nd International Symposium on Quality Electronic Design201

(ISQED), pages 142–148, 2021.202

[22] Georgios Tzanos, Christoforos Kachris, and Dimitrios Soudris. Hardware acceleration of203

transformer networks using fpgas. In 2022 Panhellenic Conference on Electronics Telecommu-204

nications (PACET), pages 1–5, 2022.205

[23] Seongmin Hong, Seungjae Moon, Junsoo Kim, Sungjae Lee, Minsub Kim, Dongsoo Lee, and206

Joo-Young Kim. Dfx: A low-latency multi-fpga appliance for accelerating transformer-based207

text generation, 2022.208

[24] Filip Wojcicki, Zhiqiang Que, Alexander D Tapper, and Wayne Luk. Accelerating transformer209

neural networks on fpgas for high energy physics experiments. In 2022 International Conference210

on Field-Programmable Technology (ICFPT), pages 1–8, 2022.211

[25] Mc: Ttbar sample from the cms hep tutorial. http://opendata.cern.ch/record/204.212

6

http://opendata.cern.ch/record/204

	Introduction
	Benchmark study
	Implementations
	Results
	Summary and Outlook
	Broader Impact

