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Abstract

FPGA-based reprogrammable systems are revolutionizing some forms of computation and digital logic.
As a logic emulation system they provide orders of magnitude speedup over software simulation.  As a
custom-computing machine they achieve the highest performance implementation for many types of
applications.  As a multi-mode system they yield significant hardware savings and provide truly generic
hardware.

In this paper we discuss the promise and problems of reprogrammable systems.  This includes an
overview of the chip and system architectures of reprogrammable systems, as well as the applications of
these systems.  We also discuss the challenges and opportunities of future reprogrammable systems.

1.  Introduction

In the mid 1980s a new technology for implementing digital logic was introduced, the field-programmable gate
array (FPGA).  These devices could either be viewed as small, slow mask programmable gate arrays (MPGAs) or
large, expensive programmable logic devices (PLDs).  FPGAs were capable of implementing significantly more
logic than PLDs, especially because they could implement multi-level logic, while most PLDs were optimized for
two-level logic.  Although they did not have the capacity of MPGAs, they also did not have to be custom fabricated,
greatly lowering the costs for low-volume parts, and avoiding long fabrication delays.  While many of the FPGAs
were configured by static RAM cells in the array (SRAM), this was generally viewed as a liability by potential
customers who worried over the chip’s volatility.  Antifuse-based FPGAs also were developed, and for many
applications were much more attractive, both because they tended to be smaller and faster due to less programming
overhead, and also because there was no volatility to the configuration.

In the late 1980s and early 1990s there was a growing realization that the volatility of SRAM-based FPGAs was
not a liability, but was in fact the key to many new types of applications.  Since the programming of such an FPGA
could be changed by a completely electrical process, much as a standard processor can be configured to run many
programs, SRAM-based FPGAs have become the workhorse of many new reprogrammable applications.  Some
uses of reprogrammability are simple extensions of the standard logic implementation tasks for which the FPGAs
were originally designed.  An FPGA plus several different configurations stored in ROM could be used for multi-
mode hardware, with the functions on the chip changed in reaction to the current demands.  Also, boards
constructed purely from FPGAs, microcontrollers, and other reprogrammable parts could be truly generic
hardware, allowing a single board to be reprogrammed to serve many different applications.

Some of the most exciting new uses of FPGAs move beyond the implementation of digital logic, and instead
harness large numbers of FPGAs as a general-purpose computation medium.  The circuit mapped onto the FPGAs
need not be standard hardware equations, but can even be operations from algorithms and general computations.
While these FPGA-based custom-computing machines may not challenge the performance of microprocessors for
all applications, for computations of the right form an FPGA-based machine can offer extremely high performance,
surpassing any other programmable solution.  Although a custom hardware implementation will be able to beat the
power of any generic programmable system, and thus there must always be a faster solution than a multi-FPGA
system, the fact is that few applications will ever merit the expense of creating application-specific solutions.  An
FPGA-based computing machine, which can be reprogrammed like a standard workstation, offers the highest
realizable performance for many different applications.  In a sense it is a hardware supercomputer, surpassing
traditional machine architectures for certain applications.  This potential has been realized by many different



2

research machines.  The Splash system [Gokhale90] has provided performance on genetic string matching that is
almost 200 times greater than all other supercomputer implementations.  The DECPeRLe-1 system [Vuillemin96]
has demonstrated world-record performance for many other applications, including RSA cryptography.

One of the applications of multi-FPGA systems with the greatest potential is logic emulation.  The designers of a
custom chip need to verify that the circuit they have designed actually behaves as desired.  Software simulation and
prototyping have been the traditional solution to this problem.  However, as chip designs become more complex,
software simulation is only able to test an ever decreasing portion of the chip’s computations, and it is quite
expensive in time and money to debug by repeated prototype fabrications.  The solution is logic emulation, the
mapping of the circuit under test onto a multi-FPGA system.  Since the logic is implemented in the FPGAs in the
system, the emulation can run at near real-time, yielding test cycles several orders of magnitude faster than
software simulation, yet with none of the time delays and inflexibility of prototype fabrications.  These benefits
have led many of the advanced microprocessor manufacturers to include logic emulation in their validation
process.

In this paper we discuss the different applications and types of reprogrammable systems.  In section 2 we present
an overview of FPGA architectures, as well as FPICs.  Then, section 3 details what kinds of opportunities these
devices provide for new types of systems.  We then categorize the types of reprogrammable systems in section 4,
including coprocessors and multi-FPGA systems.  Section 5 describes in depth the different multi-FPGA systems,
highlighting their important features.  Finally, sections 6 and 7 conclude with an overview of the status of
reprogrammable systems and how they are likely to evolve.  Note that this paper is not meant to be a catalog of
every existing reprogrammable architecture and application.  We instead focus on some of the more important
aspects of these systems in order to give an overview of the field.

2.  FPGA Technology

One of the most common field-programmable elements is programmable logic devices (PLDs).  PLDs concentrate
primarily on two-level, sum-of-products implementations of logic functions.  They have simple routing structures
with predictable delays.  Since they are completely prefabricated, they are ready to use in seconds, avoiding long
delays for chip fabrication.  Field-Programmable Gate Arrays (FPGAs) are also completely prefabricated, but
instead of two-level logic they are optimized for multi-level circuits.  This allows them to handle much more
complex circuits on a single chip, but it often sacrifices the predictable delays of PLDs.  Note that FPGAs are
sometimes considered another form of PLD, often under the heading Complex Programmable Logic Device
(CPLD).
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Figure 1.  Actel’s Programmable Low Impedance Circuit Element (PLICE).  As shown at left, an
unblown antifuse has an oxide-nitride-oxide (ONO) dielectric preventing current from flowing between
diffusion and polysilicon.  The antifuse can be blown by applying a 16 Volt pulse across the dielectric.
This melts the dielectric, allowing a conducting channel to be formed (right).  Current is then free to flow
between the diffusion and the polysilicon [Actel94, Greene93].
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Figure 2.  Floating gate structure for EPROM/EEPROM.  The floating gate is completely isolated.  An
unprogrammed transistor, with no charge on the floating gate, operates the same as a normal n-transistor,
with the access gate as the transistor’s gate.  To program the transistor, a high voltage on the access gate
plus a lower voltage on the drain accelerates electrons from the source fast enough to travel across the gate
oxide insulator to the floating gate.  This negative charge then prevents the access gate from closing the
source-drain connection during normal operation.  To erase, EPROM uses UV light to accelerate electrons
off the floating gate, while EEPROM removes electrons by a technique similar to programming, but with
the opposite polarity on the access gate [Altera93, Wakerly94].

Just as in PLDs, FPGAs are completely prefabricated, and contain special features for customization.  These
configuration points are normally either SRAM cells, EPROM, EEPROM, or antifuses.  Antifuses are one-time
programmable devices (Figure 1), which when “blown” create a connection, while when “unblown” no current can
flow between their terminals (thus, it is an “anti”-fuse, since its behavior is opposite to a standard fuse).  Because
the configuration of an antifuse is permanent, antifuse-based FPGAs are one-time programmable, while SRAM-
based FPGAs are reprogrammable, even in the target system.  Since SRAMs are volatile, an SRAM-based FPGA
must be reprogrammed every time the system is powered up, usually from a ROM included in the circuit to hold
configuration files.  Note that FPGAs often have on-chip control circuitry to automatically load this configuration
data.  EEPROM/EPROM (Figure 2) are devices somewhere between SRAM and antifuse in their features.  The
programming of an EEPROM/EPROM is retained even when the power is turned off, avoiding the need to
reprogram the chip at power-up, while their configuration can be changed electrically.  However, the high voltages
required to program the device often means that they are not reprogrammed in the target system.

SRAM cells are larger than antifuses and EEPROM/EPROM, meaning that SRAM-based FPGAs will have fewer
configuration points than FPGAs using other programming technologies.  However, SRAM-based FPGAs have
numerous advantages.  Since they are easily reprogrammable, their configurations can be changed for bug fixes or
upgrades.  Thus they provide an ideal prototyping medium.  Also, these devices can be used in situations where
they can expect to have numerous different configurations, such as multi-mode systems and reconfigurable
computing machines.  More details on such applications are included later in this paper.  Because antifuse-based
FPGAs are only one-time programmable, they are generally not used in reprogrammable systems.
EEPROM/EPROM devices could potentially be reprogrammed in system, although in general this feature is not
widely used.  Thus, this paper will concentrate solely on SRAM-based FPGAs.
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Figure 3.  Programming bit for SRAM-based FPGAs (left) [Xilinx94], and a 3-input LUT (right).

There are many different types of FPGAs, with many different structures.  Instead of discussing all of them here,
which would be quite involved, this section will present two representative FPGAs.  Details on many others can be



4

found elsewhere [Brown92, Rose93, Chan94, Jenkins94, Trimberger94, Oldfield95].  Note that reconfigurable
systems can often employ non-FPGA reconfigurable elements;  These will be described in section 5.
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Figure 4.  The Xilinx 4000 series FPGA structure [Xilinx94].  Logic blocks are surrounded by horizontal
and vertical routing channels.

In SRAM-based FPGAs memory cells are scattered throughout the FPGA.  As shown in Figure 3 left, a pair of
cross-coupled inverters will sustain whatever value is programmed onto them.  A single n-transistor gate is
provided for either writing a value or reading a value back out.  The ratio of sizes between the transistor and the
upper inverter is set to allow values sent through the n-transistor to overpower the inverter.  The readback feature
is used during debugging to determine the current state of the system.  The actual control of the FPGA is handled
by the Q and Q  outputs.  One simple application of an SRAM bit is to have the Q terminal connected to the gate
of an n-transistor.  If a 1 is assigned to the programming bit, the transistor is closed, and values can pass between
the source and drain.  If a 0 is assigned, the transistor is opened, and values cannot pass.  Thus, this construct
operates similarly to an antifuse, though it requires much more area.  One of the most useful SRAM-based
structures is the lookup table (LUT).  By connecting 2N programming bits to a multiplexer (Figure 3 right), any N-
input combinational Boolean function can be implemented.  Although it can require a large number of
programming bits for large N, LUTs of up to 5 inputs can provide a flexible, powerful function implementation
medium.
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Figure 5.  Details of the Xilinx 4000 series routing structure [Xilinx94].  The CLBs (Configurable Logic
Blocks) are surrounded by vertical and horizontal routing channels containing Single-Length Lines,
Double-Length Lines, and Longlines.  Empty diamonds represent programmable connections between
perpendicular signal lines (signal lines on opposite sides of the diamonds are always connected).

One of the best known FPGAs is the Xilinx Logic Cell Array (LCA) [Trimberger93, Xilinx94].  In this section we
will describe their third generation FPGA, the Xilinx 4000 series.  The Xilinx array is an Island-style FPGA
[Trimberger94] with logic cells embedded in a general routing structure that permits arbitrary point-to-point
communication (Figure 4).  The only requirement for good routing in this structure is that the source and
destinations be relatively close together.  Details of the routing structure are shown in Figure 5.  Each of the inputs
of the cell (F1-F4, G1-G4, C1-C4, K) comes from one of a set of tracks adjacent to that cell.  The outputs are
similar (X, XQ, Y, YQ), except they have the choice of both horizontal and vertical tracks.  The routing structure
is made up of three lengths of lines.  Single-length lines travel the height of a single cell, where they then enter a
switch matrix (Figure 6 right).  The switch matrix allows this signal to travel out vertically and/or horizontally
from the switch matrix.  Thus, multiple single-length lines can be cascaded together to travel longer distances.
Double-length lines are similar, except that they travel the height of two cells before entering a switch matrix
(notice that only half the double-length lines enter a switch matrix, and there is a twist in the middle of the line).
Thus, double-length lines are useful for longer-distance routing, traversing two cell heights without the extra delay
and the wasted configuration sites of an intermediate switch matrix.  Finally, longlines are lines that go half the
chip height, and do not enter the switch matrix.  In this way, very long-distance routes can be accommodated
efficiently.  With this rich sea of routing resources, the Xilinx 4000 series is able to handle fairly arbitrary routing
demands, though mappings emphasizing local communication will still be handled more efficiently.
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Figure 6.  Details of the Xilinx CLB (left) and switchbox (top right) [Xilinx94].  The multiplexers, LUTs,
and latches in the CLB are configured by SRAM bits.  Diamonds in the switchbox represent six individual
connections (bottom right), allowing any permutation of connections among the four signals incident to
the diamond.

As shown in Figure 6 left, the Xilinx 4000 series logic cell is made up of three lookup-tables (LUTs), two
programmable flip-flops, and multiple programmable multiplexers.  The LUTs allow arbitrary combinational
functions of its inputs to be created.  Thus, the structure shown can perform any function of five inputs (using all
three LUTs, with the F & G inputs identical), any two functions of four inputs (the two 4-input LUTs used
independently), or some functions of up to nine inputs (using all three LUTs, with the F & G inputs different).
SRAM controlled multiplexers then can route these signals out the X and Y outputs, as well as to the two flip-
flops.  The inputs at top (C1-C4) provide enable and set or reset signals to the flip-flops, a direct connection to the
flip-flop inputs, and the third input to the 3-input LUT.  This structure yields a very powerful method of
implementing arbitrary, complex digital logic.  Note that there are several additional features of the Xilinx FPGA
not shown in these figures, including support for embedded memories and carry chains.

While many SRAM-based FPGAs are designed like the Xilinx architecture, with a routing structure optimized for
arbitrary, long-distance communications, several other FPGAs concentrate instead on local communication.  The
Cellular style FPGAs [Trimberger94] feature fast, local communication resources, at the expense of more global,
long-distance signals.  As shown in Figure 7, the CLi FPGA [Jenkins94] has an array of cells, with a limited
number of routing resources running horizontally and vertically between the cells.  There is one local
communication bus on each side of the cell.  It runs the height of eight cells, at which point it enters a repeater.
Express buses are similar to local buses, except that there are no connections between the express buses and the
cells.  The repeaters allow access to the express buses.  These repeaters can be programmed to connect together any
of the two local buses and two express buses connected to it.  Thus, limited global communication can be
accomplished on the local and express buses, with the local buses allowing shorter-distance communications and
connections to the cells, while express buses allow longer-distance connections between local buses.
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logic cell repeater

Figure 7.  The CLi6000 routing architecture [Jenkins94].  One 8x8 tile, plus a few surrounding rows and
columns, is shown.  The full array has many of these tiles abutted horizontally and vertically.

While the local and global buses allow some of the flexibility of the Xilinx FPGA’s arbitrary routing structure,
there are significantly fewer buses in the CLi FPGA than are present in the Xilinx FPGA.  The CLi FPGA instead
features a large number of local communication resources.  As shown in Figure 8, each cell receives two signals
from each of its four neighbors.  It then sends the same two outputs (A and B) to all of its neighbors.  That is, the
cell one to the north will send signals AN and BN, and the cell one to the south will send AS and BS, while both
will receive the same signals A and B.  The input signals become the inputs to the logic cell (Figure 9).

Instead of Xilinx’s LUTs, which require many programming bits per cell, the CLi logic block is much simpler.  It
has multiplexers controlled by SRAM bits which select one each of the A and B outputs of the neighboring cells.
These are then fed into AND and XOR gates within the cell, as well as into a flip-flop.  Although the possible
functions are complex, notice that there is a path leading to the B output that produces the NAND of the selected A
and B inputs, and sending it out the B output.  This path is enabled by setting the two 2:1 multiplexers to their
constant input, and setting B’s output multiplexer to the 3rd input from the top.  Thus, the cell is functionally
complete.  Also, with the XOR path leading to output A, the cell can efficiently implement a half-adder.  The cell
can perform a pure routing function by connecting one of the A inputs to the A output, and one of the B inputs to
the B output, or vice-versa.  This routing function is created by setting the two 2:1 multiplexers to their constant
inputs, and setting A’s and B’s output multiplexer to either of their top two inputs.  There are also provisions for
bringing in or sending out a signal on one or more of the neighboring local buses (NS1, NS2, EW1, EW2).  Note
that since there is only a single wire connecting the bus terminals, there can only be a single signal sent to or
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received from the local buses.  If more than one of the buses is connected to the cell, they will be coupled together.
Thus, the cell can take a signal running horizontally on an EW local bus, and send it vertically on a NS local bus,
without using up the cell’s logic unit.  However, by bringing a signal in from the local buses, the cell can
implement two 3-input functions.
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Figure 8.  Details of the CLi routing architecture [Jenkins94].
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Figure 9.  The CLi logic cell [Jenkins94].

The major differences between the Island style architecture of the Xilinx 4000 series and the Cellular style of the
CLi FPGA is in their routing structure and cell granularity.  The Xilinx 4000 series is optimized for complex,
irregular random logic.  It features a powerful routing structure optimized for arbitrary global routing, and large
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logic cells capable of providing arbitrary 4-input and 5-input functions.  This provides a very flexible architecture,
though one that requires many programming bits per cell (and thus cells that take up a large portion of the chip
area).  In contrast, the CLi architecture is optimized for highly local, pipelined circuits such as systolic arrays and
bit-serial arithmetic.  Thus, it emphasizes local communication at the expense of global routing, and has simple
cells.  Because of the very simple logic cells there will be many more CLi cells on a chip than will be found in the
Xilinx FPGA, yielding a greater logic capacity for those circuits that match the FPGA’s structure.  Because of the
restricted routing, the CLi FPGA is much harder to automatically map to than the Xilinx 4000 series, though the
simplicity of the CLi architecture makes it easier for a human designer to hand-map to the CLi’s structure.  Thus,
in general, cellular architectures tend to appeal to designers with appropriate circuit structures who are willing to
spend the effort to hand-map their circuits to the FPGA, while the Xilinx 4000 series is more appropriate for
handling random-logic tasks and automatically-mapped circuits.
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Figure 10.  The Aptix FPIC architecture [Aptix93a].  The boxed P indicates an I/O pin.

Compared with technologies such as full-custom, standard cells, and MPGAs, FPGAs will in general be slower and
less dense due to the configuration points, which take up significant chip area, and add extra capacitance and
resistance (and thus delay) to the signal lines.  Thus, the programming bits add an unavoidable overhead to the
circuit, which can be reduced by limiting the configurability of the FPGA, but never totally eliminated.  Also, since
the metal layers in an FPGA are prefabricated, while the other technologies custom fabricate the metal layers for a
given circuit, the FPGA will have less optimized routing.  This again results in slower and larger circuits.
However, even given these downsides, FPGAs have the advantage that they are completely prefabricated.  This
means that they are ready to use instantly, while mask-programmed technologies can require weeks to be
customized.  Also, since there is no custom fabrication involved in an FPGA, the fabrication costs can be amortized
over all the users of the architecture, removing the significant NREs of other technologies.  However, per-chip
costs will in general be higher, making the technology better suited for low volume applications.  Also, since
SRAM-based FPGAs are reprogrammable, they are ideal for prototyping, since the chips are reusable after bug
fixes or upgrades, where mask-programmed and antifuse versions would have to be discarded.

A technology similar to SRAM-based FPGAs is Field-Programmable Interconnect Components (FPIC) [Aptix93a]
and Devices (FPID) [I-Cube94] (we will use FPIC from now on to refer to both FPIC & FPID devices).  Like an
SRAM-based FPGA, an FPIC is a completely prefabricated device with an SRAM-configured routing structure
(Figure 10).  Unlike an FPGA, an FPIC has no logic capacity.  Thus, the only use for an FPIC is as a device to
arbitrarily interconnect its I/O pins.  While this is not generally useful for production systems, since a fixed
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interconnection pattern can be achieved by the printed circuit board that holds a circuit, it can be quite useful in
prototyping and reconfigurable computing (these applications are discussed later in this paper).  In each of these
cases, the connections between the chips in the system may need to be reprogrammable, or this connection pattern
may change over time.  In a reconfigurable computer, many different mappings will be loaded onto the system, and
each of them may desire a different interconnection pattern.  In prototyping, the connections between chips may
need to be changed over time for bug fixes and logic upgrades.  In either case, by routing all of the I/O pins of the
logic-bearing chips to FPICs, the interconnection pattern can easily be changed over time.  Thus, fixed routing
patterns can be avoided, potentially increasing the performance and capacity of the prototyping or reconfigurable
computing machine.

There is some question about the economic viability of FPICs.  The problem is that they must provide some
advantage over an FPGA with the same I/O capacity, since in general an FPGA can perform the same role as the
FPIC.  One possibility is providing significantly more I/O pins in an FPIC than are available in an FPGA.  This
can be a major advantage, since it takes many smaller I/O chips to match the communication resources of a single
high-I/O chip (i.e., a chip with N I/Os requires three chips with 2/3 the I/Os to match the flexibility).  However,
because the packaging technology necessary for such high I/O chips is somewhat exotic, high-I/O FPICs can be
expensive.  Another possibility is to provide higher performance or smaller chip size with the same I/O capacity.
Since there is no logic on the chip, the space and capacitance due to the logic can be removed.  However, even with
these possible advantages, FPICs face the significant disadvantage that they are restricted to a limited application
domain.  Specifically, while FPGAs can be used for prototyping, reconfigurable computing, low volume products,
fast time-to-market systems, and multi-mode systems, FPICs are restricted to the interconnection portion of
prototyping and reconfigurable computing solutions.  Thus, FPICs may never become commodity parts, greatly
increasing their unit cost.

3.  Reprogrammable Logic Applications

With the development of FPGAs there are now opportunities for implementing quite different systems than were
possible with other technologies.  In this section we will discuss many of these new opportunities, especially those
of multi-FPGA systems.

When FPGAs were first introduced they were primarily considered to be just another form of gate array.  While
they had lower speed and capacity, and had a higher unit cost, they did not have the large startup costs and lead
times necessary for MPGAs.  Thus, they could be used for implementing random logic and glue logic in low
volume systems with non-aggressive speed and capacity demands.  If the capacity of a single FPGA was not
enough to handle the desired computation, multiple FPGAs could be included on the board, distributing the
computation among these chips.

FPGAs are more than just slow, small gate arrays.  The critical feature of (SRAM-based) FPGAs is their in-circuit
reprogrammability.  Since their programming can be changed quickly, without any rewiring or refabrication, they
can be used in a much more flexible manner than standard gate arrays.  One example of this is multi-mode
hardware.  For example, when designing a digital tape recorder with error-correcting codes, one way to implement
such a system is to have separate code generation and code checking hardware built into the tape machine.
However, there is no reason to have both of these functions available simultaneously, since when reading from the
tape there is no need to generate new codes, and when writing to the tape the code checking hardware will be idle.
Thus, we can have an FPGA in the system, and have two different configurations stored in ROM, one for reading
and one for writing.  In this way, a single piece of hardware handles multiple computations.  There have been
several multi-configuration systems built from FPGAs, including the just mentioned tape machine, generic printer
and CCD camera interfaces, pivoting monitors with landscape and portrait configurations, as well as others
[Xilinx92, Fawcett94, Mayrhofer94, Shand95].

While the previous uses of FPGAs still treat these chips purely as methods for implementing digital logic, there are
other applications where this is not the case.  A system of FPGAs can be seen as a computing substrate with
somewhat different properties than standard microprocessors.  The reprogrammability of the FPGAs allows one to
download algorithms onto the FPGAs, and change these algorithms just as general-purpose computers can change
programs.  This computing substrate is different from standard processors, in that it provides a huge amount of
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fine-grain parallelism, since there are many logic blocks on the chips, and the instructions are quite simple, on the
order of a single five bit input, one bit output function.  Also, while the instruction-stream of a microprocessor can
be arbitrarily complex, with the function computed by the logic changing on a cycle by cycle basis, the
programming of an FPGA is in general held constant throughout the execution of the mapping (exceptions to this
include techniques of run-time reconfigurability described below).  Thus, to achieve a variety of different functions
in a mapping, a microprocessor does this temporally, with different functions executed during different cycles,
while an FPGA-based computing machine achieves variety spatially, having different logic elements compute
different functions.  This means that microprocessors are superior for complex control flow and irregular
computations, while an FPGA-based computing machine can be superior for data-parallel applications, where a
huge quantity of data must be acted on in a very similar manner.  Note that there is work being done on trying to
bridge this gap, and develop FPGA-processor hybrids that can achieve both spatial and limited temporal function
variation [Ling93, Bolotski94, DeHon94, Maliniak94, DeHon96, Mirsky96].

There have been several computing applications where a multi-FPGA system has delivered the highest
performance implementation.  An early example is genetic string matching on the Splash machine [Gokhale90].
Here, a linear array of Xilinx 3000 series FPGAs was used to implement a systolic algorithm to determine the edit
distance between two strings.  The edit distance is the minimum number of insertions and deletions necessary to
transform one string into another, so the strings “flea” and “fleet” would have an edit distance of 3 (delete “a” and
insert “et” to go from “flea” to “fleet”).  As shown in [Lopresti91], a dynamic-programming solution to this
problem can be implemented in the Splash system as a linear systolic circuit, with the strings to be compared
flowing in opposite directions through the linear array.  Processing can occur throughout the linear array
simultaneously, with only local communication necessary, producing a huge amount of fine-grain parallelism.
This is exactly the type of computation that maps well onto a multi-FPGA system.  The Splash implementation was
able to offer an extremely high performance solution for this application, achieving performance approximately
200 times faster than supercomputer implementations.  There have been many other applications where a multi-
FPGA system has offered the highest performance solution, including: mathematics applications such as long
multiplication [Bertin89, Vuillemin96], modular multiplication [Cuccaro93], and RSA cryptography
[Vuillemin96]; physics applications such as real-time pattern recognition in high-energy physics [Högl95], Monte
Carlo algorithms for statistical physics [Monaghan93, Cowen94], second-level triggers for particle colliders
[Moll95], and Heat and Laplace equation solvers [Vuillemin96]; general algorithms such as the Traveling
Salesman Problem [Graham95], Monte Carlo yield modeling [Howard94b], genetic optimization algorithms
[Scott95, Graham96], region detection and labeling [Rachakonda95], stereo matching for stereo vision
[Vuillemin96], hidden Markov Modeling for speech recognition [Schmit95], and genetic database searches
[Lopresti91, Hoang93, Lemoine95].

One of the most successful uses for FPGA-based computation is in ASIC logic emulation.  The idea is that the
designers of a custom ASIC need to make sure that the circuit they designed correctly implements the desired
computation.  Software simulation can perform these checks, but does so quite slowly.  In logic emulation, the
circuit to be tested is instead mapped onto a multi-FPGA system, yielding a solution several orders of magnitude
faster than software simulation.

Logic emulation shares many of the advantages (and disadvantages) of both prototyping and software simulation.
Like a prototype, the circuit to be evaluated is implemented in hardware so that it can achieve high performance
test cycles.  However, like software simulation, the emulation can easily be observed and altered to help isolate
bugs.  Logic emulation takes a gate-level description of a logic circuit and maps it onto a multi-FPGA system.
This multi-FPGA system is a prefabricated, reprogrammable compute engine that can be configured to implement
the desired circuitry in a matter of seconds.  However, to transform the circuit description into a mapping suitable
for this multi-FPGA system can take many hours to complete.  This mapping process is usually completely
automated by the emulator’s system software.  Once the circuit is mapped to the multi-FPGA system, the emulator
provides a complete, functional implementation of the circuit that can evaluate millions of circuit cycles per
second.  This is orders of magnitude faster than even simulation-accelerators, since the multi-FPGA system can
implement the complete circuit in parallel, while accelerators simply provide one or more sequential logic
evaluation processors.
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Emulators provide a middle-ground between software simulation and prototyping.  Compared to software
simulation, an emulation executes much faster than a simulation.  However, it can take a long time to map a circuit
onto the emulator, and it is more difficult to observe and modify the behavior of the circuit.  Thus, software
simulation is a better choice for testing small subcircuits or small numbers of complete circuit cycles, where the
software’s flexibility and ease of use outweighs the performance penalties.  Compared to a prototype, an emulation
is much easier and faster to create, and it has much greater observability, controllability, and modifiability than a
prototype.  However, the emulation cannot run at the same speed as the target system.  Thus, the emulator is a
much better choice for providing a huge number of test cycles than a prototype when one expects to find bugs in
the system, but it is no replacement for final checkout of the system via a prototype.  For circuits that will execute
software programs, an emulator can be used to debug this software much earlier in the design process than a
physical prototype.  This is because an emulation can be created from a high-level specification of the circuit, while
prototyping must wait until the complete circuit has been designed.  Simulation in general cannot be used for
software development, since it is much too slow to execute enough cycles of the software.  Also, just like a
prototype, an emulation can be given to the end-user so that the circuit can be evaluated before the design is
completed.  In this way, the user can get a much better feeling for whether the design will fulfill the user’s needs,
something that is difficult with just a written specification.  The emulation can be inserted into the target
environment (as long as some method for reducing the performance demands on the system can be provided
[Quickturn93, Hauck95a, Hauck95b]), and the system can be evaluated in a more realistic setting.  This helps both
to debug the circuit, and also to test the circuit interfaces and environment.  For example, often a custom ASIC and
the circuit board that will contain it will be developed simultaneously.  An emulation of the ASIC can be inserted
into this circuit board prototype, testing both the ASIC functions and the board design.

One limitation of emulation is that it retains only the functional behavior of the circuit, which means that
validation of the performance and timing features of a circuit cannot be performed on a logic emulator.  Once a
prototype is constructed, both logic emulation and software simulation are still valuable tools [Gateley94].  When
an error is found in a physical prototype, it can be difficult to isolate the exact cause in the circuit.  An emulator
can be used to reproduce the failure, since it can execute nearly as many cycles as the prototype, and the emulator’s
observability can be used to isolate the failure.  Then, detailed testing can be performed by software simulation.
Thus, logic emulation plays a complementary role to both software simulation and prototyping in logic validation.

An emerging application of FPGA-based computing is the training and execution of neural networks.  A neural
network is a powerful computational model based on the structure of neurons in the brain.  These systems have
proven effective for tasks such as pattern recognition and classification.  One important aspect of these nets is that
each of the basic elements in the network must be configured for a given problem.  This configuration (or
“learning”) process revolves around exposing the network to situations where the correct answer is known, and
adjusting the network’s configuration so that it returns the correct answer.  The execution of a neural network can
be time consuming on a standard processor, especially for the repeated execution runs required during the training
process.  Thus, there is great interest in implementing neural networks in reprogrammable systems, both because
of the speed benefits, as well as because the reprogrammability of the FPGAs can support the reconfiguration
necessary to program a neural network.

Systems like the just mentioned neural-network implementations, as well as multi-mode systems, take advantage of
an FPGA’s reprogrammability by changing the chip’s programming over time, much as a standard processor
context-switches to a new program.  However, it is possible to make more aggressive use of this ability to develop
new types of applications.  The FPGA can be viewed as a demand-paged hardware resource, yielding “virtual
hardware” similar to virtual memory in today’s computers.  In such systems (usually grouped under the term
Dynamically Reconfigurable or Run-Time Reconfiguration) an application will require many different types of
computations, and each of these computations has a separate mapping to the reprogrammable logic.  For example,
an image processing application for object thinning may require separate pre-filtering and thresholding steps
before running the thinning operation, each of which could be implemented in a separate FPGA mapping
[Wirthlin96].  Although these mappings could be spread across multiple FPGAs, these steps must take place
sequentially, and in a multi-FPGA system only one mapping would be actively computing at a time.  Run-time
reconfiguration saves hardware by reusing the same resource.  It also relaxes the upper limit on the number of
configurations allowed, since in a multi-FPGA system the number of FPGAs available is usually fixed (either by
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the architecture or by the current hardware instantiation), while a run-time reconfigured system can have as many
configurations as there is storage space to hold them.  Because of these advantages there has been a lot of work on
run-time reconfigurable systems, applications, and support tools [Lysaght91, French93, Eldredge94, Lysaght94b,
Koch94a, Razdan94, Ross94, Gokhale95, Hadley95, Jones95, Schoner95, DeHon96, Luk96, Villasenor96,
Wittig96].  Note that this approach can be taken even further to local run-time reconfiguration [Lysaght94a,
Singh94, Hutchings95, Brebner95, Lysaght95, Wirthlin95, Clark96, Wirthlin96].  In a locally run-time
reconfigurable system different phases of an algorithm can have mappings to just a portion of the FPGA.  Multiple
configurations can be loaded into the system, with each configuration occupying different portions of the FPGA.
In this way, the FPGA becomes a hardware cache, with the set of loaded mappings varying over time based on the
requirements of the algorithm.  When a configuration is needed that is currently not in the FPGA, it is loaded into
the FPGA, replacing other mappings that are no longer required.  In this way multiple small mappings can coexist-
exist in the FPGA, potentially eliminating most of the time overhead of complete FPGA reprogramming for each
small mapping.

Reprogrammable systems have a great deal of potential for providing higher-performance solutions to many
different applications.  However, just as it is important to carefully select the type of application mapped to a multi-
FPGA system, it is also crucial to carefully construct the reprogrammable system to support these applications.  In
section 4 we discuss the types of reprogrammable systems.

4.  Reprogrammable Systems

There is a wide variety of different roles for reprogrammable logic, and these roles can require very different types
of reprogrammable systems.  Some are isolated, small capacity systems used for the replacement of small digital
logic systems.  Others have hundreds or thousands of FPGAs, with capacities into the millions of gates, which rival
supercomputers for certain types of applications.

One of the most common types of reprogrammable systems is a one-FPGA or two-FPGA system used for
interfacing and other standard logic tasks.  With the addition of memory resources and the appropriate interface
circuitry, these systems provide a much greater flexibility than traditional implementations.  These systems can be
prefabricated and used for multiple applications, reducing both design time and inventory risk.  When a new
application must be developed, the designer need only specify the logic required to handle the new functions.  This
logic can then be automatically mapped to the FPGAs, and the prefabricated system can be used immediately.  This
contrasts with traditional approaches, which have the extra time and complexity costs of custom board design and
fabrication.

Reprogrammable systems need not be prefabricated.  In fact, there is a great deal of interest in automatic creation
of custom application-specific reprogrammable systems [Kuznar93, Woo93, Kuznar94, Chan95, Huang95].  In
such an approach, the logic is again specified by the designer, and automatic tools map this circuitry into FPGA
logic.  However, instead of being constrained to a predefined topology, the mapping tools are instead allowed to
develop a custom multi-chip solution.  Because the chips are interconnected in response to the needs of a specific
application, a much more highly optimized solution can be developed.  This can be a significant savings, since
premade systems often present the designer or the mapping tools with a very constrained system, greatly
complicating the mapping process.  However, there are two downsides to this approach.  First, if a reprogrammable
system is custom designed in response to a specific application, then obviously this system cannot be premade.
Thus, the user must wait for the new board to be fabricated.  Also, there is little chance of reusing this system for
other applications.  This increases the hardware costs since these expenses cannot be amortized over multiple
designs.  The second problem with this approach may be more significant: the final logic design may not be ready
when the board layout must be finalized, meaning that much of the advantage of a custom designed system is lost.
In some cases, the need to get the system completed is significant enough that the board design cannot wait for the
FPGA’s logic to be completely specified.  In others, even though a mapping may have been generated for the
FPGAs before the board was designed, new functions or bug fixes may mandate revisions to the FPGA mappings.
In either case, the final mapping to the FPGAs must fit within the constraints of a fixed reprogrammable system,
and thus must deal with most of the issues and inefficiencies of premade systems, without a premade system’s
benefits of reduced time and expense.
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Some of the most interesting uses for reprogrammable systems are where the system is viewed not as an isolated
entity, but instead as an extension of a computer system.  Specifically, reprogrammable logic resources can be
added to a standard workstation or personal computer, greatly increasing the processing power for some
applications.  By using the reprogrammable logic for tasks that work well on these devices, while leaving the rest
of the computation on standard processors, the benefits of both models can be realized.

As shown in Figure 11, there are several ways in which reprogrammable logic can be added to standard computer
systems:  as a functional unit, as a coprocessor, as attached processing units, or as standalone processing units (A
somewhat similar classification can be found in [Guccione95]).  The most common methods are attached
processing units, which are reprogrammable systems on computer add-on cards, and standalone processing units,
which are separate reprogrammable cabinets.  In these models, a complex reprogrammable system is built out of
multiple FPGAs and perhaps memories and other devices.  We will refer to these systems jointly as multi-FPGA
systems.  Because of their size, these multi-FPGA systems can accommodate huge logic or computation demands,
allowing them to add significant capabilities to the system.  However, because these systems are relatively distant
from the computer’s CPU, and thus there is a large communication delay from the processor to the
reprogrammable system, to be effective these systems must handle large chunks of the computation.  Specifically,
even if a multi-FPGA system can perform the equivalent of 40 processor instructions in a single clock cycle, if it
takes 100 cycles to get the data to and from the reprogrammable system the performance advantages of the multi-
FPGA system could be swallowed by the communication times.  However, if the multi-FPGA system can execute
even 40 cycles (of 40 instruction-equivalents per cycle) before needing to communicate with the CPU, the system
can achieve speedups over standard processor-only systems.  Thus, successful multi-FPGA systems tend to take
over large portions of the application’s computation, particularly those portions that have only limited
communication with other parts of the algorithm.  Examples of this include multi-cycle simulation of circuit
designs, complete major inner loops of software algorithms, and others.  Note that multi-FPGA systems can be
viewed as hardware supercomputers, providing a centralized resource for high-performance computation, but only
for those applications that fit their computation model.  We will discuss multi-FPGA system hardware structures in
depth later in this paper.

Workstation

CPU
FU

Attached Processing UnitCoprocessor Standalone Processing Unit

Memory 
Caches

I/O 
Interface

Figure 11.  Types of reprogrammable systems.

One way to overcome the communication bottleneck, and potentially achieve wider applicability, is to move the
reprogrammable logic closer to the CPU.  The reprogrammable logic can be viewed as a coprocessor, akin to a
standard FPU, connected directly to the processor.  This coprocessor would be used to implement, on a per-
application basis, one or more short code sequences from the application.  Instead of performing these instructions
on the processor, the reprogrammable coprocessor would instead perform the computation.  These computations
potentially could be performed on the reprogrammable coprocessor much faster than on the CPU, thus speeding up
the algorithm.  Although communication overheads can still be significant, by placing the reprogrammable logic
closer to the CPU (at least in the bus hierarchy) these delays will be much lower, meaning that the coprocessor can
handle much smaller portions of the computation than a multi-FPGA system and still achieve performance
improvements.  This model has already been successful with special-purpose coprocessors for floating-point
calculations, graphics acceleration, and many other applications.  While a reprogrammable coprocessor cannot
match the performance of these application-specific coprocessors, since reprogrammability can add significant
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delay to the system, the advantage of a reprogrammable coprocessor is that it can act as a “generic” coprocessor,
handling the demands of many different application domains.  Specifically, although an FPU can improve the
performance for some scientific computations, other applications may never use floating point numbers.  Thus, the
FPU is wasted for these applications.  A reprogrammable, generic coprocessor can have a different configuration
for each application, providing functions designed to accelerate each algorithm.  Thus, while an application-
specific coprocessor can achieve significant performance improvement for some or most applications, a
reprogrammable coprocessor can achieve some performance gain for a wider range of applications.  This includes
accelerating infrequently used or niche algorithms, algorithms for which it will never be cost-effective to include
custom acceleration hardware in a general-purpose computer.  There has already been work on such generic
coprocessors [Athanas93, Cuccaro93, Filloque93, Wazlowski93, Agarwal94, Churcher95, Lawrence95, Clark96,
Wirthlin96] which have shown some promising results.  Note that a coprocessor need not use only a single FPGA,
and many coprocessors are multi-FPGA systems.

A final alternative is to integrate the reprogrammable logic into the processor itself.  This reprogrammable logic
can be viewed as another functional unit, providing new functions to the processor.  Like a reprogrammable
coprocessor, a reprogrammable functional unit can be configured on a per-algorithm basis, providing one or more
special-purpose instructions tailored to the needs of a given application.  If chosen well, these special-purpose
instructions can perform in one or two cycles operations that would take much longer in the processor’s standard
instruction set.  Thus, the addition of these new instructions yields an application-specific instruction set on
application-independent hardware, yielding a much faster implementation of many different applications.
However, this benefit does not come without a cost.  Processor real-estate is still a precious commodity, and the
inclusion of reprogrammable logic into a processor means that there is less room for caches or other architectural
features.  Thus, a reprogrammable functional unit need not only yield some performance improvement, but must
yield a larger benefit than that of the other features that could have been placed into the processor in the space
taken up by the reprogrammable functional unit.  This can be especially difficult because the reprogrammable logic
must synchronize with the cycle period of the custom processor hardware, meaning that the overhead of
reprogrammable logic forces the unit to perform less complex functions than a custom functional unit could
achieve.  Also, a reprogrammable functional unit makes context-switches more complex, and increases the external
bandwidth requirements, since the configurations of the reprogrammable functional units must somehow be
changed for different algorithms.  While there has been some work done on reprogrammable functional units
[French93, Albaharna94, DeHon94, Razdan94, Albaharna96, Rajamani96, Wittig96], there is still much left to do.

While there has been some work on reprogrammable coprocessors and functional units for standard computer
systems, by far the majority of reprogrammable systems have been multi-FPGA systems.  In section 5 we discuss
many of the different multi-FPGA system architectures, highlighting their important features.

5.  Multi-FPGA Systems

In previous sections we discussed the applications of multi-FPGA systems.  In this section we will explore some of
the existing multi-FPGA systems themselves.  A large number of systems have been constructed, for many
different purposes, using a wide range of structures.  Note that this section is intended to illustrate only the types of
systems possible, and is not meant to be an in-depth discussion of all the details of existing systems.  Thus, some
details of the topologies, as well as the number of wires in each link in the systems, have been omitted.
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Figure 12.  Mesh (left) and crossbar (right) topologies.  In the crossbar, chips A-D are routing-only, while
W-Z hold all the logic in the system.

The most important distinguishing characteristic among multi-FPGA systems is in the topology chosen to
interconnect the chips.  The most common topologies are mesh and crossbar (or bipartite graph) topologies.  In a
mesh, the chips in the system are connected in a nearest-neighbor pattern (Figure 12 left).  These topologies have
the advantage of simplicity, because of the purely local interconnection pattern, as well as easy expandability, since
meshes can be grown by adding resources to the edge of the array.  Numerous 2D mesh-based systems have been
built [Kean92, Shaw93, Bergmann94, Blickle94, Hauck94b, Tessier94, Yamada94], as well as 3D meshes
[Sample92, Quénot94].  Linear arrays, which are essentially 1-dimensional meshes, have also been made
[Gokhale90, Filloque93, Raimbault93, Monaghan94].  Note that the design of a mesh topology can involve several
subtle tradeoffs, with some constructs yielding significantly improved topologies [Hauck94a].

Crossbar topologies separate the elements in the system into logic-bearing and routing-only chips (Figure 12 right).
The logic-bearing FPGAs contain all the logic in the system, while the routing-only chips are used purely for inter-
FPGA routing.  Routing-only chips are connected only to logic-bearing FPGAs, and (usually) have exactly the
same number of connections to all logic-bearing FPGAs.  Logic-bearing FPGAs are connected only to routing-only
FPGAs.  The idea behind this topology is that to route between any set of FPGAs requires routing through exactly
one extra chip, and that chip is one of the routing-only chips.  Because of the symmetry of the system, all routing-
only chips can handle this role equally well.  This gives much more predictable performance, since regardless of
the locations of the source and destinations the delay is the same.  In a topology like a mesh, where it might be
necessary to route through several intermediate chips, there is a high variance in the delay of inter-FPGA routes.
There are two negative features of the crossbar topology.  First, crossbar topologies are not expandable, since all
routing-only chips need to connect to all logic-bearing FPGAs, and thus the system is constrained to a specific size
once the connections to any specific routing-only chip are determined.  Second, the topology potentially wastes
resources, since the routing-only chips are used purely for routing, while a mesh can use all of its chips for logic
and routing.  However, since the bottleneck in multi-FPGA systems is the inter-chip routing, this waste of
resources may be more than made up for by greater logic utilization in the logic-bearing chips.  Also, some of the
cost of the wasted resources can be avoided by using less expensive devices for the routing-only chips.  Possibilities
include FPICs, crossbars, or cheaper FPGAs (either because of older technology or lower logic capacity).  Several
pure crossbar topologies have been constructed [Chan92, Ferrucci94, Kadi94, Weiss94, Li95].
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Figure 13.  A hierarchy of crossbars.  FPGAs M-T hold all the logic in the system.  Chips E-H and I-J
form two first-level crossbars, and chips A-D form a second-level crossbar.

Another topology, which combines the expandability of meshes and the simpler routing of crossbars, is
hierarchical crossbars [Varghese93].  As shown in Figure 13, crossbars can be stacked together hierarchically,
building up multiple levels of routing chips.  There are two simple crossbars in the system, one consisting of
routing-only chips E-H and logic-bearing FPGAs M-P, and a second one consisting of routing-only chips I-L and
logic-bearing FPGAs Q-T.  Routing chips E-L will be called the first-level crossbars, since they connect directly to
the logic-bearing FPGAs.  To build the hierarchy of crossbars, the simple crossbars in the system can be thought of
as logic-bearing chips in an even larger crossbar.  That is, a new crossbar is built with routing-only chips and
logic-bearing elements, but in this crossbar the logic-bearing elements are complete, simple crossbars.  Note that
the connections within this higher-level crossbar go to the routing-only chips in the simple crossbars, so first-level
and second-level routing-only chips are connected together.  This hierarchy can be continued, building up other
crossbars with third-level and higher routing-only chips.  In an N-level hierarchical crossbar, the chips are
arranged as above, with routing-only chips at the Ith level connected to chips at the (I+1)th and (I-1)th level, where
the 0th level is the logic-bearing chips.  Note that in contrast to the simple crossbar topology, in a hierarchical
crossbar the logic-bearing FPGAs are not connected to all the routing-only chips (even those at the first-level).
Full connectivity occurs at the top (Nth) level, where all Nth-level routing chips are connected to all (N-1)th level
routing chips.

Routing between two logic-bearing FPGAs in the system simply requires determining the level at which the source
and destination share an ancestor, and then routing from the source up to one of these shared ancestors and down
to the destination.  The routing from the source to the shared ancestor requires routing through exactly one
routing-only chip in each of the intervening levels, as does the routing from the ancestor to the destination.
Because of the symmetry of the topology, any of the ancestors of the source (for the route up) or destination (for the
route down) at a given level can be used to handle the routing, regardless of what other chips are part of the route.
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Figure 14.  The Aptix AXB-AP4 topology [Aptix93b].  Logic-bearing FPGAs are connected only to
routing-only FPICs, but the FPICs connect to both FPGAs and other FPICs.

As mentioned earlier, the advantage of a hierarchical crossbar topology is that it has much of the expandability of a
mesh, yet has much of the simplified routing of a crossbar.  Since levels of hierarchy can be added to a hierarchical
crossbar, it can easily grow larger to handle bigger circuits.  Levels of the hierarchy tend to map onto components
of the system, such as having a complete first-level crossbar on a single board, a complete second-level crossbar
contained in a cabinet, and a complete third-level crossbar formed by interconnecting cabinets [Butts91].  The
routing simplicity, as shown above, demonstrates a large degree of flexibility in the routing paths, as well as
significant symmetry in the system.  How easy it is to route between logic-bearing FPGAs is simple to determine,
since if two logic-bearing chips are within the same first-level crossbar, then they are as easy to route between as
any other pair of logic-bearing chips within that crossbar.  Thus, when mapping onto the topology, the system tries
to keep most of the communication between chips in the same first-level crossbar, and most of the rest of the
communication between chips in the same second-level crossbar, and so on.

There are two downsides to this topology.  First, signals may have to go through many more routing-only chips
than in a simple crossbar, since they could potentially have to go all the way up to the top level of the hierarchy to
make a connection.  However, the maximum routing distance is less than in a mesh, since the length in chips

routed through of the maximum route in a mesh grows by O N( ) (where N is the number of logic-bearing FPGAs

in the system), while the length in a hierarchical crossbar grows by O log N( ) .  The other problem is that the

hierarchical crossbar topology requires a large number of resources to implement the routing-only chips in the
system.  If one could instead use the routing-only chips as logic-bearing chips, the capacity of the system might be
greatly increased.  However, if this extra logic capacity cannot efficiently be used, it will be of little value.
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Some systems use a two-level topology, which is somewhat similar to the crossbar and hierarchical crossbar
topologies.  Just as in the crossbar topologies, FPGAs in the system are connected only to routing-only chips.
However, unlike the pure crossbar, the routing-only chips in the system are connected to both logic-bearing and
routing-only chips.  That is, there is a topology of connections between the routing-only chips in the system, and
the FPGAs connect to these chips.  Thus, these systems are similar to multiprocessors, in that for two processing
elements to communicate (the FPGAs in a two-level topology), they must send signals through a router connected
to the source (an FPIC or crossbar).  The signal then travels through intervening routers until it reaches the router
connected to the destination, at which point it is sent to that processor (an FPGA in our case).  An example of such
a system is the Aptix AXB-AP4 [Aptix93b].  As shown in Figure 14, five FPGAs are connected to each FPIC, and
all the FPICs are connected together.  In this system, the longest route requires moving through 2 FPICs, and no
intermediate FPGAs are used for routing.  If instead a mesh was built out of the 20 FPGAs in this system, it
potentially could require routing through many FPGAs to reach the proper destination, increasing the delay, and
using up valuable FPGA I/Os.  However, whether the routing flexibility of the two-level topology justifies the
substantial cost of the FPICs is unclear.  Other two-level systems have been constructed with a variety of topologies
between the routing-only chips [Adams93, Galloway94, Njølstad94].
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Figure 15.  The Splash 2 topology [Arnold92].  The linear array of FPGAs (A-H) is augmented by a
routing-only crossbar (R).  Note that the real topology has 16 FPGAs in the linear array.
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Figure 16.  The Anyboard topology [Thomae91, Van den Bout92].  The linear array of FPGAs is
augmented with a global bus.
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Figure 17.  The DECPeRLe-1 topology [Vuillemin96].  The central 4x4 mesh (A-P) is augmented with
global buses to four support FPGAs (Q-T), which feed to three other FPGAs (U-W).

Some systems are more of a hybrid between different topologies than a single topology.  One example of this is the
Splash 2 architecture [Arnold92].  The Splash 2 machine takes the linear array of its predecessor Splash
[Gokhale90], and augments it with a crossbar interconnecting the FPGAs (Figure 15).  In this way the system can
still efficiently handle the systolic circuits that Splash was built to support, since it retains the nearest-neighbor
interconnect, but the crossbar supports more general communication patterns, either in support of or as
replacement to the direct interconnections.  There are several other augmented linear arrays [Benner94, Box94,
Darnauer94, Carrera95].  One example is the Anyboard [Thomae91, Van den Bout92], which has a linear array of
FPGAs augmented by global buses (Figure 16).  Another hybrid topology is the DECPeRLe-1 board [Vuillemin96],
which has a 4x4 mesh of FPGAs augmented with shared global buses going to four support FPGAs (Figure 17).
These are then connected to three other FPGAs that handle global routing, connections to memory, and the host
interface.  The DECPeRLe-0 board is similar [Bertin93].
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Figure 18.  The Marc-1 topology [Lewis93].  The complete topology consists of two copies of the left
subsystem (A-I, Memory & FPU), and one copy of the right (1-5).  Numbers by themselves indicate
connections to the FPGAs at right.

Some topologies are unique [Engels91, Cox92, Erdogan92, Suganuma92, Casselman93, Herpel93, Iseli93,
Lewis93, Wazlowski93, Howard94a, Jantsch94, Nguyen94, Saluvere94, Dunn95, Hayashi95, Herple95, Högl95,
Van den Bout95, Bakkes96, Knittel96].  These are often machines primarily built for a specific application, and
their topology is optimized for the features of that application domain.  For example, the Marc-1 (Figure 18)
[Lewis93] is a pair of 3x3 meshes of FPGAs (A-I), where most of the mesh connections link up to a set of FPGAs
intended to be used as crossbars (1-5).  While the vertical links are nearest-neighbor, the horizontal links are
actually buses.  There is a complex memory system attached to some of the FPGAs in the system, as well as a
floating point unit.  This machine architecture was constructed for a specific application - circuit simulation (and
other algorithms) where the program to be executed can be optimized on a per-run basis for values constant within
that run, but which may vary from dataset to dataset.  For example, during circuit simulation, the structure of the
gates in the circuit is fixed once the program begins executing, but can be different for each run of the simulator.
Thus, if the simulator can be custom compiled on a per-run basis for the structure of the circuit being simulated,
there is the potential for significant speedups.  Because of the restricted domain of compiled-code execution, the
topology was built to contain a special-purpose processor, with the instruction unit in FPGAs A-C, and the
datapath in the FPGAs D-I.

Another example of a system optimized for a specific task is the RM-nc system [Erdogan92].  As shown in Figure
19, the system has a controller chip A, and two linear arrays of FPGAs B-E and F-I.  Each FPGA has a local
memory for buffering data.  The system contains three major buses, with the outside buses going to only one linear
array each, while the center bus is shared by all FPGAs in the system.  This system is optimized for neural network
simulation, with the controller chip handling global control and sequencing, while the FPGAs in the linear array
handle the individual neuron computations.  A similar system for neural-network simulation, with buses going to
all FPGAs in the system, and with no direct connections between neighbors, has also been built [Eldredge94].
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Figure 19.  The RM-nc system [Erdogan92].  The linear arrays can be grown larger than the system
shown.
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Figure 20.  System similar to the Mushroom processor prototyping system [Williams91].

One of the most common domains for the development of a custom multi-FPGA system is the prototyping of
computers.  A good example of this is the Mushroom system [Williams91], which is a system of FPGAs,
memories, and computation chips meant to be used for processor prototyping (the exact interconnection pattern is
unavailable, but an approximate version is shown in Figure 20).  Seven FPGAs are included in the system, and
each of these has a specific role.  FPGA A is a cache controller, B & C serve as a VMEbus interface, D handles
register accesses, E is for processor control, F performs instruction fetches, and G is for tag manipulation and
checking.  Memories are included for caches and the register file, while an ALU and FPU chip are present for
arithmetic operations.  The advantage of this system is that the FPGAs can be reprogrammed to implement
different functions, allowing different processor structures to be explored.  The arithmetic functions and memory,
features that are inefficient to implement in FPGAs and which are standard across most processors, are
implemented efficiently in chips designed specifically for these applications.  Other systems have adopted a similar
approach, including another system intended for developing application-specific processors [Wolfe88], a
workstation design with FPGAs for I/O functions and for coprocessor development [Heeb93], and a multiprocessor
system with FPGA-based cache controllers for exploring different multiprocessor systems and caching policies
[Öner95].  A somewhat related system is the CM-2X [Cuccaro93], a standard CM-2 supercomputer with the
floating-point unit replaced with a Xilinx FPGA.  This system allows custom coprocessors to be built on a per-
algorithm basis, yielding significant performance increases for some non-floating-point intensive programs.
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Figure 21.  Expandable mesh topology similar to the Virtual Wires Emulation System [Tessier94].
Individual boards are built with edge connectors and limited logic resources, and can be interconnected to
form a larger mesh.

There are important features of multi-FPGA systems beyond just the interconnect topology.  One of these is the
ability to increase the size of the multi-FPGA system.  As described previously, systems based on hierarchical
crossbars [Varghese93] can grow in size by adding extra levels of hierarchy.  Other systems provide similar
expandability, with special interconnection patterns for multi-board systems [Amerson95, Högl95].  In the case of
meshes and linear arrays, the systems can be built of a basic tile with external connectors and limited on-board
logic resources (Figure 21), and the system can be expanded by connecting together several of these boards
[Thomae91, Arnold92, Van den Bout92, Filloque93, Shaw93, Hauck94b, Tessier94, Drayer95, Bakkes96].  The
GERM system [Dollas94] is similar, except that the four external connectors are built to accommodate ribbon
cables.  In this way, fairly arbitrary topologies can be created.

Multi-FPGA systems are often composed of several different types of chips.  The majority of systems are built from
Xilinx 3000 or 4000 series FPGAs [Xilinx94], though most commercial FPGAs have been included in at least one
multi-FPGA system.  There are some system designers that have chosen to avoid commercial FPGAs, and develop
their own chips.  Some have optimized their FPGAs for specific applications, such as general custom-computing
and logic emulation [Amerson95, Amerson96], emulation of telecommunication circuits [Hayashi95], or image
processing [Quénot94].  Another system uses FPGAs optimized for inter-chip communication on an MCM
substrate [Dobbelaere92], since MCMs will be used to fabricate the system to achieve higher density circuits.

Reconfigurable systems do not need to use traditional FPGAs as their main computation unit, but can instead
develop new FPGA-like architectures to serve the same role.  These architectures can take advantage of
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architectural features from other computation domains, such as DSPs, multiprocessors, systolic arrays, and other
systems to provide a better resource structure than standard commercial general-purpose FPGA architectures.
Examples include the Pegasus system [Maliniak94], which uses a hybrid processor/FPGA chip with multiple
configurations, and MATRIX [Mirsky96], a more coarse-grained architecture with similarities to SIMD processor
systems.

Many multi-FPGA systems include non-FPGA chips.  By far the most common element to be included is memory
chips.  These chips are usually connected to the FPGAs, and are used as temporary storage for results, as well as
general-purpose memories for circuit emulation.  Other systems have included integer and/or floating point ALUs
[Wolfe88, Williams91, Lewis93, Benner94, Bakkes96, Knittel96], DSPs [Engels91, Bergmann94, vom Bögel94,
Zycad94, Pottinger95], and general-purpose processors [Filloque93, Shaw93, Raimbault93, Benner94, Koch94b,
vom Bögel94, Zycad94] to handle portions of computations where dedicated chips perform better than FPGA
solutions.  Another common inclusion into a multi-FPGA system is crossbars or FPICs.  For example, a multi-
FPGA system with a crossbar or hierarchical crossbar topology requires chips purely for routing.  An FPIC or
crossbar chip can handle these roles.  If the FPIC or crossbar has a lower unit cost, is capable of higher
performance or higher complexity routing, or has a larger number of I/O pins, then it can implement the routing
functions better than a purely FPGA-based solution.  There have been several systems that have used crossbar chips
or FPICs in crossbar [Kadi94, Weiss94] and hierarchical crossbar topologies [Varghese93], as well as hybrid
crossbar/linear array topologies [Arnold92, Darnauer94, Carrera95] and other systems [Adams93, Aptix93b,
Casselman93, Galloway94, Njølstad94, Herpel95, Högl95, Van den Bout95].
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D E

B C

F

Host Interface

Figure 22.  The MORRPH topology [Drayer95].  Sockets next to the FPGAs allow arbitrary devices to be
added to the array.  Buses connected to external connectors allow multiple boards to be hooked together to
build an arbitrarily large system.
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Figure 23.  The G800 board [Giga95].  The base board has two FPGAs and four sockets.  The socket at
left holds four computing module boards (the maximum allowed in a socket), while the socket at right has
none.

While adding fixed, non-FPGA resources into a multi-FPGA topology may improve quality for some types of
mappings, it is possible to generate a more general-purpose solution by allowing the inclusion of arbitrary devices
into the array.  For example, in the MORRPH topology [Drayer95] sockets are placed next to the FPGAs so that
arbitrary devices can be inserted (Figure 22).  Thus, in a mapping that requires extra memory resources, memories
can be plugged into the array.  In other circumstances, DSPs or other fixed-function chips can be inserted to
perform complex computations.  In this way, the user has the flexibility to customize the array on a per-mapping
basis.  Other systems have adopted a similar strategy [Butts91, Sample92, Aptix93b], with a limited ability to
insert arbitrary chips into the multi-FPGA system.
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Figure 24.  Base module (upper left) and example topology built in the COBRA system [Koch94b].  The
mapping includes a tower of three base modules surrounded by three bus modules (top), a base module
(center), a RAM module (bottom), and an I/O module (right).

Some systems are more of an infrastructure for bringing to bear the best mix of resources rather than a specific,
fixed multi-FPGA system.  One example of this is the G800 system [Giga95].  The board contains two FPGAs,
some external interface circuitry, and four locations to plug in compute modules (Figure 23).  Compute modules
are cards that can be added to the system to add computation resources, and can be stacked four deep on the board.
Thus, with four locations that can be stacked four deep, a total of 16 compute boards can be combined into a single
system.  These compute boards are connected together, and to the FPGAs on the base board, by a set of global
buses.  Compute modules can contain an arbitrary mix of resources.  Examples include  the X210MOD-00, which
has two medium Xilinx FPGAs, and the X213MOD-82, which has two large FPGAs, 8MB of DRAM, and 256 KB
of SRAM.  The users of the system are free to combine whatever set of modules they desire, yielding a system
capacity ranging from only two medium FPGAs (a single X210MOD-00), to 32 large FPGAs (16 X213MOD-82s)
and a significant RAM capacity.  Similar systems include DEEP [vom Bögel94] and Paradigm RP [Zycad94].  The
Paradigm RP has locations to plug in up to eight boards.  These boards can include FPGAs, memories, DSPs, and
standard processors.  In the G800 and Paradigm RP systems, cards with new functions or different types of chips
can easily be accommodated.

Even more flexible systems are possible.  One example is the COBRA system [Koch94b].  As shown in Figure 24,
the system is made up of several types of modules.  The standard base module has four FPGAs, each attached to an
external connection at one of the board’s edges.  Boards can be attached together to build a larger system,
expanding out in a 2D mesh.  Other module types can easily be included, such as modules bearing only RAM, or a
host interface, or a standard processor.  These modules attach together the same way as the base module, and will
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have one to four connectors.  One somewhat different type of module is a bus module.  This module stacks other
modules vertically, connecting them together by a bus.
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Figure 25.  The Springbok interconnection pattern (left), and two connected Springbok baseplates with
four daughter cards (right).  The card at front is similar to the other daughter cards (with an FPGA on one
side and an arbitrary device on the other), but is shown upside-down.

Systems like COBRA allow an arbitrary resource mix to be brought to bear on a problem.  Thus, a custom
processing system can quickly be built for a given task, with FPGAs handling the general logic, while standard
processors handle complex computations and control flow.  Thus, the proper resource is always used for the
required computation.  One of the earliest such systems, which combines COBRA’s flexible topology with
MORRPH’s ability to add arbitrary devices, is the Springbok system [Hauck94b, Hauck95b].  Springbok is
designed to support the rapid-prototyping of board-level designs, where numerous premade components must
efficiently be embedded in an FPGA-based structure.  The FPGAs in the system are used both for routing and
rerouting of signals, as well as the implementation of random logic (Figure 25).  To allow a specific circuit to be
implemented in this structure, the system is comprised of a baseplate with sites for daughter cards.  The daughter
cards are large enough to contain both an arbitrary device on the top, as well as an FPGA on the bottom.  Note that
the device can be a chip, such as a processor or memory, I/O elements such as switches and LCD interfaces, or
whatever else is necessary to implement the system.  If necessary, daughter cards can be built that span several
locations on the baseplate to handle higher space or bandwidth requirements.  The daughter cards plug into the
baseplate, which handles power, ground, and clock distribution, FPGA programming, and inter-daughter card
routing.  The baseplates include support for communicating with a host computer, both for downloading
programming and for uploading data captured during prototype runs.  The baseplates are constructed such that
they can be connected together with each other, forming an arbitrarily large surface for placing daughter cards.  In
many ways, this approach is similar both to mesh-connected multiprocessors, as well as the approach suggested in
[Seitz90].
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Figure 26.  Non-device daughter cards and extender cards, including cards to add more FPGA logic
(lower left), bandwidth (double-sized card in the second row), long-distance communication (third row),
and edge bandwidth (two cards at front right).  All but the edge bandwidth cards have FPGAs on the
bottom.

As in most other FPGA systems, there is the potential that Springbok’s simple connection scheme will not be able
to accommodate all of the logic or routing assigned to a given location.  However, as opposed to a fixed multi-
FPGA system, Springbok can insert new extender cards between a daughter card and the baseplate to deal with
these problems (Figure 26).  For example, if the logic assigned to a given FPGA simply will not fit, an extender
card with another FPGA can be inserted so that it can handle some of the logic.  If too many signals need to be
routed along a given link in the mesh structure, an extender card spanning several daughter card positions can be
added, with new routing paths included on the inserted card.  For signals that must go long distances in the array,
sets of extender cards with ribbon cable connections can be inserted throughout the array to carry these long-
distance wires.  Also, at the edge of the mapping where edge effects can limit available bandwidth, dummy
daughter cards which simply contain hardwired connections between their neighbors can be inserted.  Thus, the
Springbok approach to resource limitations is to add resources wherever necessary to map the system.  In contrast,
a fixed array cannot afford a failure due to resource limitations, since it would then have to redo the costly step of
mapping to all of the constituent FPGAs.  Thus fixed arrays must be very conservative on all resource assignments,
underutilizing resources throughout the system, while Springbok simply fixes the problems locally as they arise.

While Springbok and Cobra provide an FPGA-intensive approach to the prototyping of board-level designs,
another approach is possible.  Instead of relying on FPGAs to handle the inter-chip routing, FPICs can be used in
their place.  In the systems developed by Aptix Corporation [Aptix93a, Aptix93b], the user is provided with a
Field-Programmable Circuit Board (FPCB).  The board is simply a sea of holes, similar to a wire-wrap board.
However, instead of requiring the user to manually complete the wiring like a wire-wrap system, all the holes in an
FPCB are connected to FPICs.  These FPICs serve as central, programmable routing hubs.  If there is more than
one FPIC on the FPCB, the FPCB’s holes are divided up among the FPICs, with each hole connecting up to a
specific FPIC.  Connections between holes going to the same FPIC are handled by that FPIC, while connections
between holes going to different FPICs requires using one of a limited number of inter-FPIC wires.  Thus, simply
by programming the FPICs the connection patterns between chips in the prototype can be made, and later
alterations are much simpler than in a non-programmable system.
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Figure 27.  The Aptix FPCB.  Holes in each of the two shaded regions are connected to the corresponding
FPIC.

6.  The Challenges of Reprogrammable Systems

In the past ten years FPGAs have grown from a simple glue-logic replacement to the basis of a huge range of
reprogrammable systems.  We have seen multi-FPGA systems deliver world record performance for many key
applications, and logic emulation systems raise testing performance by several orders of magnitude.  Multi-mode
hardware has reduced inventory risk and development time for many standard logic applications, providing truly
generic hardware systems.  However, while these examples have shown much of the promise of reprogrammable
systems, there is much yet to be done to reach their full potential.

While this paper has focused on reprogrammable hardware systems, many of the problems are actually in the
software used to map circuits and algorithms onto these systems.  While simple one or two-chip multi-mode
systems can easily be developed by hardware designers using current tool suites, for multi-FPGA systems with
hundreds or thousands of reprogrammable components the job becomes much more complex.  Even worse, many
of these systems are targeted towards general computation, where the users will not be skilled hardware designers,
but will instead be software programmers.  Thus, one of the keys to unlocking the full potential of these systems is
developing truly automatic mapping tools.  This software must be able to quickly and efficiently map logic
descriptions into the appropriate configuration files.  Not only must this result in fast and compact
implementations, but it must be able to generate these mappings very quickly.  Traditional mapping tools designed
for custom chip implementations, where the fabrication time can be measured in weeks to months, can take hours
or days to complete their tasks.  For many reprogrammable systems, especially logic emulation systems where
alterations to accommodate bug fixes will be common, waiting hours or days for the software to complete is
unreasonable.  Any performance gain from executing on a reprogrammable system will be swallowed up by the
time necessary to map to the system in the first place.  A survey of software for reprogrammable systems can be
found elsewhere [Hauck97].

In order to drive future deployment of reconfigurable systems, commercial “killer applications” for this technology
must also be developed.  Although there have been many impressive demonstrations of reconfigurable systems, it is
not clear that any application has already been developed which can drive wide-scale adoption of this technology.
The one major exception to this is logic emulation, which has created a viable commercial market for FPGA-based
compute engines, but much of the more advanced possibilities of reconfigurable computing have not yet reached
the end user.  Finding these applications, and creating compelling implementations that are ready for immediate
commercial use, will be another key to the success of reconfigurable computing.
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Another significant issue in the design of reprogrammable systems is the structure of the components used in these
systems.  Primarily, current reprogrammable systems are built from FPGAs that were designed to handle standard
logic implementation tasks.  Thus, these chips have not been optimized for the needs of reprogrammable systems.
This mismatch can cause significant inefficiencies.  For example, the time to program an FPGA isn’t that
important for standard applications, but a reprogrammable system may need to context switch often in some
environments, making the reconfiguration time a critical issue.  This is especially important for techniques such as
run-time reconfiguration.  Run-time reconfiguration views an FPGA as a logic cache, paging in only those portions
of logic needed to execute at a given time, and thus the reprogramming time is important.  Standard FPGAs also
may lack hardware support for some common structures in reprogrammable systems.  While there are FPGAs
which support internal RAMs [Xilinx94, Wilton95], other constructs such as multiplication and floating point
arithmetic cannot be efficiently accommodated in today’s FPGAs.  Finally, the I/O capacities of current FPGAs are
much lower than what is demanded by reprogrammable systems.  For example, current logic emulation systems
often achieve only 10%-20% logic utilization because there are simply too few I/O pins available.

The temptation is to develop FPGAs specifically for reprogrammable systems, and as mentioned before, several
groups have done specifically that.  However, whether it is cost-effective to develop a custom FPGA, and no longer
take advantage of the economies of scale provided by using standard chips, is an open question.  This issue is even
more crucial for FPICs.  Since FPICs in general are only useful for reprogrammable systems, and may require non-
standard packaging to achieve high pin counts, they are quite expensive.  Whether their advantages are worth the
added cost is unclear, especially when FPGA manufacturers are providing ever higher pincount packages on their
standard products.

A final issue is whether some of the new directions in reprogrammable system research are viable.  Specifically,
there is interest in moving reprogrammable logic much closer to the processors in standard computers.  This can
involve generic coprocessors built from FPGAs, or even reprogrammable functional units inside the processors
themselves.  The argument is that by tightly coupling reprogrammable logic with the processor one can add custom
instructions to the instruction set for a given application, yielding application-specific processor performance in an
application-generic manner.  While this model has much promise, it is unclear whether these opportunities exist in
practice, whether the benefits will be worth the chip resources consumed, and whether we can even develop
compilers capable of recognizing and optimizing for these opportunities.

7.  Conclusions

Reprogrammable systems have provided significant performance improvements for many types of applications.
Logic emulation systems are providing orders of magnitude better performance than software simulation, providing
virtual prototypes without the delays of creating true prototype designs.  FPGA-based custom-computing machines
have achieved world-record performance for many applications, providing near application-specific performance in
an application-generic system.  Finally, multi-mode systems reduce the complexity and inventory risk for logic
implementation, providing truly generic hardware systems

The hardware structures used to achieve these results are quite varied.  Built from general-purpose FPGAs, or
perhaps even custom reprogrammable devices, they differ greatly in structure and complexity.  Some are one or
two-chip systems providing small logic capacities.  Others are capable of expanding up to a system of hundreds or
thousands of FPGAs, providing a huge capacity for high-performance logic implementation.  There is also great
variation in the types of resources employed, with some systems including memories, DSPs, or CPUs, and others
even allowing the user to include arbitrary devices into the system.

While these systems provide high-performance implementations, there are several problems with today’s systems.
Mapping software is critical to widespread deployment of these systems, yet current software is much slower and
provides lower quality than is often required.  Also, current systems primarily use off-the-shelf FPGAs, which
while they provide some economies of scale they also present the system designer to significant inefficiencies.

There is much left to be done with reprogrammable systems, with much promise yet to be fulfilled.
Reprogrammable functional units in standard processors may yield application-specific processors in an
application-generic manner.  Reprogrammable coprocessors could become generic coprocessors, yielding custom
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accelerators for arbitrary applications, including niche needs for which custom hardware will never be cost-
effective.  In these ways FPGAs may become the cornerstone of many future computation systems.
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