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Abstract

The time it takes to reconfigure FPGAs can be a significant overhead for reconfigurable computing.  In this
paper we develop new compression algorithms for FPGA configurations that can significantly reduce this
overhead.  By using runlength and other compression techniques, files can be compressed by a factor of 3.6
times.  Bus transfer mechanisms and decompression hardware are also discussed.  This results in a single
compression methodology which achieves higher compression ratios than existing algorithms in an off-line
version, as well as a somewhat lower quality compression approach which is suitable for on-line use in
dynamic circuit generation and other mapping-time critical situations.

Configuration Compression

Reconfigurable computing is an exciting new area that harnesses the programmable power of FPGAs.  In the past,
FPGAs were used in applications that required them to be configured only once or a few times.  The infrequency in
which the FPGAs were programmed meant that these applications were not limited by the device's slow
configuration time [Hauck98a].  However, as reconfigurable computing is becoming more popular, the
configuration overhead is becoming a true burden to the useful computation time.  For example, applications on the
DISC and DISC II systems have spent 25% [Wirthlin96] to 71% [Wirthlin95] of their execution time performing
reconfiguration.

Reconfigurable computing demands an efficient configuration method.  In order for reconfigurable computing to be
effective, there must be a method to quickly configure the device with a minimal amount of data transfer.  However,
the amount of information needed to configure an entire FPGA can be quite large.  Sending this large amount of
information to the FPGA can be quite time consuming, in addition to power consuming.

A logical solution would be to compress the data stream sent to the FPGA.  This would reduce the amount of
external storage needed to hold the configuration, reduce the amount of time needed to send the configuration
information to the device, and reduce the amount of communication through the power-hungry off-chip I/O of the
FPGA.  Once the configuration information arrives to the decompression hardware in the FPGA, it can be written to
the configuration memory at a faster rate than would have been possible through the slow I/O of the device.

In previous work [Hauck98b, Li99] we developed a technique using the wildcard feature of the Xilinx XC6200
series FPGA [Xilinx97].  While this algorithm provided good compression results, it also requires a very complex
compression algorithm, and may not achieve the best possible compression results.

In this paper we explore the configuration information of the Xilinx XC6200 series.  Based on the nature of the data,
several compression techniques will be proposed.  Using these compression techniques, algorithms and support
hardware structures are developed to compress the address/data pairs sent to the device.  Next, these compression
strategies are performed on a group of Xilinx XC6216 configurations to determine their performance.  Finally,
conclusions will be drawn on the capabilities of these techniques.

Configuration Information

The Xilinx XC6200 FPGA is an SRAM based, high performance Sea-Of-Gates FPGA optimized for reconfigurable
computing.  All configuration resources are accessed by addressing the SRAM through a standard memory interface.
The Xilinx XC6200 series are partially reconfigurable devices.  The configuration file consists of a set of
address/data pairs.  Since the device is partially reconfigurable, the target addresses written to may not be
contiguous.  Therefore, if the data is compressed the addresses must be compressed as well.

The configuration data falls into four major areas: cell function, routing, input/output buffers, and control.  The
addresses which configure the cell function, routing, and the input/output buffers will normally never be written to
more than once in a configuration.  The control data may be written to multiple times in a configuration, but this
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data represents a very small fraction of the total configuration.  In addition, the addresses that are accessed usually
fall in sequential order, or into a series with a certain offset.  The compression technique chosen for the addresses
should take advantage of the consistent offsets, in addition to not requiring the repetition of identical data.

FPGAs configurations often exhibit a great deal of regularity, which is reflected in the configuration data.  Upon
examining a XC6200 configuration file, it is clear that many structures are duplicated by the repetitive sequences of
data.  For this reason, the compression technique chosen for the data should take advantage of the repetitive
sequences.

Ordering Restrictions

The ability of the XC6200 series to perform partial reconfiguration allows for almost arbitrary reordering of the
configuration data.  Reordering the data may facilitate some additional compression techniques.  However, a few
restrictions do apply.  These restrictions logically divide the data into three sections.  These sections will be
programmed to the device in order.

The first section contains part of the control configuration that must be written before any of the cell and routing
configuration.  This configuration data defines how the remaining cell, routing, and IOB configuration data will be
interpreted.  This data can be reordered.

The second section contains cell, routing, and IOB configuration data which is not bound to any control
configuration data.  There are no restrictions as to how this data can be reordered.

The third section contains control information that is bound to cell, routing, and IOB configuration data.  This data
cannot be reordered without affecting the result of the configuration.  In addition, this section will contain control
information that must be written at the very end of the entire configuration.

Note that although the address/data pairs can be reordered, each pair must be kept together, since if the addresses
and data moved independently the data will be assigned to the wrong location in the chip.  This can lead to
conflicting optimization goals, since an ordering that may maximize address compression may hurt data
compression and vice-versa.

Compression Considerations

The data compression for FPGA configurations must normally be lossless.  Although the use of don’t cares, based
on research by Li and Hauck [Li99], may allow for lossy compression, this is an area of future work and will not be
investigated in this paper.  The chosen compression strategy must be able to completely recover the exact data that
was compressed.

The compression technique chosen must allow for online decompression.  Although compression will normally
occur offline, where the entire configuration sequence is available, the entire compressed configuration sequence
will not be available upon decompression.  If off-line decompression were implemented, it would greatly increase
the configuration time, in addition to requiring significant amounts of on chip memory.  The chosen compression
strategy must be able to decompress the data as it is received with a limited amount of special-purpose hardware.
Finally, the compression technique may reorder the data, but it must stay within the guidelines previously described.

Run-Length Compression

A variation of Run-Length encoding perfectly meets the requirements for the address compression.  A series of
addresses with a common offset can be compressed into a codeword of the form: base, offset, length.  Base is the
base address, offset is the offset between addresses, and length is the number of addresses beyond the base with the
given offset.  For example, the following sequence of addresses: 100, 103, 106, 109, 112 can be compressed into the
codeword: base = 100, offset = 3, and length = 4.  This compression technique does not require repetitive data, and
will take advantage of the sequences of addresses sharing a common offset.

The configuration data sometimes repeats data values many times.  For this reason, we will attempt to compress the
data streams with Run-Length encoding as well, although the compression may not be as great as that achieved with
the addresses.

Lempel-Ziv Compression

Lempel-Ziv takes advantage of repetitive series of data.  A series of data that is repeated can be replaced with a
single compressed codeword.  This codeword will tell when the series previously occurred, how long it is, and will
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give a new piece of data that is not part of the series.  The codeword will consist of the form: pointer, length, and
lastSymbol.  The pointer will represent where the start of the series previously occurred within a window of time
[Ranganathan93].

For example, assume the window size is eight data items, and the window currently contains: C, B, A, D, A, F, A, L.
These would be the last 8 values decompressed, with the most recent in the first position (the C in position 1).  If the
next four pieces of data are A, B, M, then we can send the codeword: pointer = 3, length = 2, and lastSymbol = M.
This indicates that we start with the value decompressed 3 cycles ago (pointer = 3), take 2 values (A & B), and
append M (lastSymbol = M).  The new window, after this codeword is received, will be: M, B, A, C, B, A, D, A.

We have made a variation to the basic Lempel-Ziv algorithm that will allow for the length to exceed the window
size.  Therefore if a particular piece of data or a particular series of data is repeated many times, this hardware will
be able to handle it.  For example, assume the same window size and contents as before: C, B, A, D, A, F, A, L.  If
the next 13 pieces of data are: B, C, B, C, B, C, B, C, B, C, B, C, D, then we can send the codeword: pointer = 2,
length = 12, and lastSymbol = D to represent this entire series.  Since the number of characters copied (length = 12)
exceeds the pointer value, some of the characters duplicated will be recycled and duplicated multiple times.

This will meet the requirements for the data compression.  This cannot be used for the address compression since the
address stream has almost no repetition.

Compression Strategies for Address/Data Pairs

There are several options as to how to compress the address and data pairs.

1) Basic Run-Length

This strategy begins by ordering the address data pairs within series one and two (described under Ordering
Restrictions above) in numerical order by address.  The three address series and three data series are
compressed using Run-Length compression.  This software compression requires a very minimal amount of
time to run, and could even be done on-line.

2) Lempel-Ziv

This strategy begins by ordering the address data pairs within series one and two (described under Ordering
Restrictions above) in numerical order by address.  The three address series are then compressed using Run-
Length compression and the three data series are compressed using Lempel-Ziv compression.  Although this
software compression is slightly slower than the Run-Length/Run-Length strategy, it is still very fast.

3) Run-Length with Reordering

This strategy uses a more intensive compression algorithm.  It attempts to reorder the address data pairs in a
more optimal manner.  The algorithm performs the following reordering:

1) Sort the address/data list such that all alike data occurs together.
NOTE: This logically separates the addresses into lists that belong to a certain data value.

2) Within each list of identical data values, order the addresses according to the following scheme:

a) find the longest possible address series which can be compressed into a single runlength statement.

b) create a codeword from that series and remove those addresses from the list.

c) repeat a) and b) until no more addresses remain uncompressed.

NOTE: At this point, each address list corresponding to a certain data value has been formed into
codewords.

3) Attempt to order the data series groups such that address lists within them may cross boundaries (i.e. the
last runlength of one series and the first of another can be fused into a single runlength statement).

4) Compress the data lists according to a Run-Length variation in which all codewords have a zero offset (i.e.
the data must be identical, and no bits are wasted on sending the increment).

This algorithm runs at least an order of magnitude slower than the previous two strategies.
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Bus Transactions

In order to implement these compression algorithms, we must determine a method for sending address and data
codewords across the configuration bus to the FPGA.  In order to make a fair comparison with other approaches we
must guarantee that these transactions use only as many wires as the standard communication method.

Multiplexing of the Address Bus

Since the addresses must be compressed and sent in addition to the data, our compression strategies use both the
address and data buses to send the compressed codewords.  In other words, once the decompression sequence is
initiated, there is no longer a concept of address, but instead all available address and data bits are used to send the
data of the compressed codewords (be it compressed address or data).  To initiate the decompression sequence one
would either write the number of address/data pairs to the compression hardware, signaling it to take control of the
address and data bus, or turn on and off compression by writing to a specific known address.  Upon completion of
the decompression, the decompression hardware would relinquish control of the two buses.

The XC6200 series has the ability to be configured with an 8 bit, 16 bit, or 32 bit data bus.  The compression
strategies will be tested on 8 bit configuration data, since we have benchmarks readily available with 8 bit
configuration data.  In addition, the benchmarks are designed for the Xilinx XC6216, whose address bus is 16 bits.
Therefore, between the address and data bus there are a total of 24 available bits to send the compressed codewords.

Variation in Codeword Parameter Sizes

There is a great amount of freedom in the choice of the codeword parameter sizes.  Within a codeword different
parameters are not required to be represented by an identical number of bits.  Depending on the number of bits
devoted to each parameter, the codeword size may change as well.  However, to simplify the hardware the codeword
sizes will be restricted to a few values, namely 12 bits, 16 bits, and 24 bits.  Independent of the compression
technique and codeword size, the codewords will be packed to use all available bits for every transaction.  By
limiting the codewords to a few key sizes, the hardware which must unpack the codewords will be simplified.

Run-Length Bus Formats

In Run-Length, the size of the base is fixed by the width of the items being sent (addresses are 16 bit, data is 8 bit).
However, the size of the length and offset can be varied within the limits of the codeword length.

Since the base must be 16 bits for address Run-Length codewords, address codewords must be 24 bits, thereby
completely filling one bus transaction.  This leaves 8 available bits for offset and length.  In our experiments, we try
several variations in an attempt to find the optimal combination.

Since the base must be 8 bits for data Run-Length codewords, there are several codeword size options.  In fact, the
data can take advantage of all three combinations, 12, 16, or 24 bits.  In our experiments, we try several variations of
assigning the remaining bits to the offset and length within each codeword size.

Lempel-Ziv Bus Formats

In Lempel-Ziv the lastSymbol size is fixed for the same reason the base size was fixed in Run-Length.  This
represents a piece of data, and therefore must be 8 bits.  The pointer must represent the size of the data buffer in the
decompression hardware.  In addition, the length should be at least as big as the buffer, so that it can utilize the
entire buffer.  Due to the variation we added, the length can actually be longer than the buffer.

However, the question still arises as to what size to make the buffer.  Since the lastSymbol is 8 bits, the Lempel-Ziv
codeword can take all three codeword sizes.  These codeword sizes, in addition to the pointer and length variations
(with the length greater than or equal to the pointer), will be explored in the experiment section.

Codeword Buffering or Dynamic Wait State Generation

Generally, internal accesses can occur at a much faster rate than external accesses.  This is due to the slow off-chip
I/O in which external accesses must traverse.  However, even with this faster rate it is likely that the decompression
hardware will not completely service a codeword before another codeword arrives.  This leaves two options: either
buffer the codewords, or provide an external wait state signal to notify external devices that the decompression
hardware is not ready to receive an additional codeword.
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If the choice is made to buffer the codewords, the question becomes how big to make the buffer.  Given a reasonable
size buffer it will always be possible to overflow the buffer with codewords that offer tremendous compression.
Therefore, there must exist a method to handle overflow.  Since the software performing the compression is aware
of the hardware’s configuration, it can insert the equivalent of “nop” writes until it knows that the hardware will be
able to handle an additional codeword.

If the choice is made to provide an external wait state signal, overflow is no longer a concern.  However, this will
provide further restrictions on what external hardware is needed to program the device.  There remains a need for a
small buffer, such that the decompression hardware will have a steady supply of codewords, and never stall.  This
will allow for faster configuration.

Distinguishing Address and Data Transactions

The compression algorithms contained in this paper require two different types of communications: Address and
Data.  Since the same bus signals are used in both address and data transactions, there must be some mechanism to
distinguish between these communications.  While it is possible to include a single signal which specifies the
transaction type, this will waste bandwidth.  Instead, we can use the following rule: if fewer data values have been
received (in encoded form) than address values, the next transaction is a data value.  Otherwise, the next transaction
is an address value.  Since the number of values encoded in each transaction is easy to determine (since the length is
explicitly encoded in the transaction), accumulators can record the number of each type of value received.  A simple
comparison between these accumulated values can thus determine the type of transaction received.

Hardware Support

Along with compression algorithms and communication protocols, the compression of configuration streams also
requires that their be fast, efficient, and small decompression hardware built into the FPGA architecture itself.  In
this section we discuss the hardware constructs necessary to support each of the compression methods discussed in
this paper.

Run-Length Hardware

The Run-Length hardware is shown in Figure 1.  It consists of a register to hold the current address to output; a
down counter to count the length; an adder, to add the offsets to the previous value; and a mux to choose between a
previous valued added to the offset and the new base value.

The mux chooses the output of the base register when the down-counter equals zero.  When a new code word
arrives, the base value is written into the address register at the same time that the length is written into the down-
counter.  The down-counter then counts down until zero, while the address register captures its previous value plus
the offset.  This continues until the down-counter reaches zero.

Address
Register

Down
Counter

Output
Address

Length

Adder
Offset

Base

Figure 1:  Run-Length hardware support.

Lempel-Ziv Hardware

The Lempel-Ziv hardware is shown in Figure 2.  It consists of a set of registers that buffers the current window, one
big mux whose select line is the pointer, and a down counter to count the length.  If the down-counter is zero, the
source of D0 is the LastSymbol.  Otherwise, the source of the down-counter is the output of the mux which selects
among the registers in the buffer.  The number of registers is up to the designer, and is shown as n in this diagram.
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When a codeword is processed the length is initially written into the down-counter.  As the down-counter counts
down, the data registers shift the data to the right, bringing in new data from the register selected by the pointer.
When the down-counter reaches zero, the lastSymbol is written into D0.

D0 D1 D2 Dn-1 Dn

Pointer
Last

Symbol

Down
Counter

Length
Output
Data

Figure 2:  Lempel - Ziv hardware support.

Codeword Unpacking

The hardware that must unpack the codewords will largely depend on the codeword sizes chosen.  The address
codeword will always be 24 bits.  However, if the data codeword is chosen to be 12 bits, the hardware will appear as
in Figure 3.

Data
Codeword
Register

Address
Codeword
Register

A[15:4]

A[3:0], D[7:0]

Figure 4:  Unpacking hardware support.

Control Hardware will control the multiplexers, the write enables of the data codeword register, and the write
enables of the upper and lower half of the address codeword register.  Control hardware will monitor the lengths in
the address and data decompression hardware, and will expect the next codeword to be provided for the
decompression hardware with the shortest length.

Experiments

The algorithms described above were implemented in C++, and were run on a set of benchmarks collected from
current XC6200 users.  These benchmarks include files whose layouts and routing were optimized carefully at a
low-level by Gordon Brebner and Virtual Computer Corp., as well as files whose routing was determined by the
Xilinx XACT6000 software’s routing tool.
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The benchmarks were compressed using the three compression strategies, Basic Run-Length, Lempel-Ziv, and Reordering Run-
Length.  Within each type of strategy the address codeword parameter sizes, and the data codeword and codeword parameter
sizes were varied to find the best parameter settings.

Parameter Setting Experiments

For each of the compression algorithms presented in this paper the overall set of address/data pairs are ordered
(numerically by address for Lempel-Ziv and basic Runlength, by data value & some address information in
Reordered Runlength), and then the address and data codewords are generated independently.  These compression
methods allow for the codeword and parameter sizing variations to be studied in isolation between the address and
data values.  Therefore, each compression technique will be isolated below to determine the optimal parameter and
codeword sizing.

In the results tables that follow the two leftmost columns list the benchmark name and initial length, indicating the
number of words needed to achieve that configuration with no compression.  Along the top of the table are the
parameter settings tested in a given run.

For Runlength the parameters include: "Length Bits", the number of bits used to represent the number of values
represented in a single codeword; "Offset Bits", which is the number of bits used to represent the value change
between successive items; "Codeword Length", which is the total number of bits required for the entire codeword
(including 8 or 16 bits for the base data or address respectively).

For Lempel-Ziv compression the parameters include: "Pointer Bits", the number of bits used to index into the
Lempel Ziv history buffer; "Length Bits", the number of bits used to hold the number of values copied from the
buffer; "Codeword Length", the total number of bits required for the entire codeword (including 8 bits for the "next
character" data value).  Note that for Lempel - Ziv the "Pointer Bits" also dictates the length of the history buffer (N
pointer bits requires 2N registers in the history buffer).  Thus, using a large number of pointer bits will significantly
increase the hardware costs of this technique.

In the column beneath each parameter setting is the number of bus cycles required to transfer the benchmark's
information within that compression algorithm and settings.  For example, if a given parameter setting is using 16
bit codewords (2/3 of a bus transaction), and 9 codewords are needed to transfer a benchmark, then 6 bus
transactions are reported.  All totals are rounded up to the nearest whole transaction amount.  The best value for a
given benchmark amongst all parameter settings is highlighted in gray, as is the best overall parameter settings.

Length Bits 7 6 5 4 3 2 1
Offset Bits 1 2 3 4 5 6 7

Codeword Length 24 24 24 24 24 24 24

CalFile Length
counter 198 71 56 56 57 63 67 84
parity 208 7 7 7 13 26 46 72
adder4 213 67 52 53 55 61 64 86
zero32 238 22 22 22 28 41 61 88
adder32 384 12 12 12 24 48 84 132
smear 695 198 143 135 150 169 205 270

adder4rm 907 440 342 331 328 342 339 390
gray 1200 480 392 371 355 370 424 502
top 1366 761 634 597 565 564 575 625

demo 2233 349 332 337 371 448 601 818
ccitt 2684 290 274 295 344 461 666 956

t 5819 1022 967 972 1065 1249 1608 2165
correlator 11001 3986 2734 2513 2548 2769 3371 4234

Sum 27146 7705 5967 5701 5903 6611 8111 10422

Table 1.  Effects of parameter selection on the address transactions in Basic Runlength  and Lemple-Ziv
compression.
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In these tables we have attempted to test most reasonable combinations of parameter settings.  For the addresses, we
always require a codeword of 24 bits (since the address is 16 bits, leaving no space for other compression
information in 16 bit codewords), and thus the Length and Offset bits will share 8 bits.  For data we can use 12, 16,
or 24 bit codewords, and since the data item is only 8 bits, there are 4, 8, or 16 bits respectively available for other
compression information.

In Table 1 we give the results of runlength compression on addresses when the files are reordered (within the
reordering restrictions) to have the addresses numerically increasing.  This is the address compression method used
for both basic Runlength and Lempel - Ziv compression (remember that Lempel - Ziv only works on data values,
since it requires exact duplication of values, which will not normally happen in the address streams).  This
reordering for runlength compression should give the highest address compression possible, though the compression
of the data items may suffer.  As can be seen, giving 5 bits to length and 3 bits to offset gives the best overall results,
although (6,2) and (4,4) also perform well.

Length Bits 8 7 6 5 4 3 2 1 3 2 1
Offset Bits 8 1 2 3 4 5 6 7 1 2 3

Codeword Length 24 16 16 16 16 16 16 16 12 12 12

CalFile Length
counter 198 50 43 42 42 42 46 52 60 37 42 50
parity 208 19 15 14 14 18 26 36 52 21 28 40
adder4 213 50 39 38 38 39 43 48 62 34 39 51
zero32 238 29 23 22 22 26 34 45 62 27 36 48
adder32 384 136 172 161 162 154 130 136 128 135 132 141
smear 695 272 234 226 224 221 224 228 239 183 190 205

adder4rm 907 379 344 339 332 327 320 315 316 264 273 292
gray 1200 578 512 498 489 478 461 454 452 388 391 405
top 1366 714 648 638 632 609 593 556 536 489 490 504

demo 2233 345 278 272 276 302 341 443 591 277 353 473
ccitt 2684 330 268 263 282 314 362 492 684 297 398 550

t 5819 994 792 745 764 808 935 1180 1553 769 938 1231
correlator 11001 5889 5506 5399 5188 5019 4743 4693 4556 4162 4150 4098

Sum 27146 9785 8874 8657 8465 8357 8258 8678 9291 7083 7460 8088

Table 2.  Effects of parameter selection on the data transactions in Basic Runlength compression.

Table 2 reports the data compression results for Basic Runlength.  Similar to address compression, it can be seen
that the best results occur when more bits are given to the length (dictating the maximum number of data items that
can be combined together) than offset.  Also, although giving the most number of bits to both Length and Offset will
compress the most values together into a single codeword, this requires more bits per codeword, and can in fact hurt
overall compression.  In fact, using only 12 bits per codeword by assigning 3 bits to length and 1 to offset gives the
best results overall.

Table 3 contains the results of Lempel - Ziv compression on the data values.  Recall that because of the extensions
we made to the algorithm, it is beneficial if the length of the duplication (length bits) is at least as long as the buffer
length (pointer bits).  Also, large sizes of pointer bits increases the history buffer size, radically increasing hardware
complexity.  As can be seen, having pointer bits and length bits both equal to 8 gives the best results, although
pointer bits and length bits of 4 each is close in quality.  However, the 256 registers necessary for the 8-bit pointers
imposes a fairly high hardware penalty, both in buffer size as well as support hardware.  For this reason, we believe
the (4,4) case is a more realistic balance between hardware complexity and compression performance.

Table 4 presents the address compression results when the address/data pairs are reordered to maximize data
compression.  Although some efforts are taken within this algorithm to also improve address compression, it cannot
achieve nearly the same quality of address compression as our previous algorithm.  For example, the best results for
this algorithm (where length bits and offset bits are both 4) gives an overall size of 7,463 bus transactions, where the
previous approaches result in only 5,701 bus transactions for the addresses.  However, as we will see, this
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degradation in address compression is more than balanced by the improvement in data compression.  One other
important consideration is the variability of the optimum amongst parameter settings.  For example, in only one case
does the (4,4) setting give the best results for any specific benchmark, but for the overall suite it yields the best
results.

Pointer Bits 8 7 6 4 3 2 2 1
Length Bits 8 9 10 4 5 6 2 3

Codeword Length 24 24 24 16 16 16 12 12

CalFile Length
counter 198 51 54 55 42 40 42 40 35
parity 208 19 19 19 18 14 14 25 19
adder4 213 48 50 50 36 38 38 36 33
zero32 238 25 25 25 22 18 19 30 25
adder32 384 23 23 24 29 17 16 52 34
smear 695 168 176 185 136 153 166 142 152

adder4rm 907 269 284 297 233 244 268 219 222
gray 1200 362 402 440 353 380 415 325 342
top 1366 438 471 502 408 469 530 408 435

demo 2233 166 188 243 224 210 231 296 242
ccitt 2684 153 219 234 222 200 212 326 256

t 5819 353 492 731 602 598 602 762 718
correlator 11001 1804 1945 2069 1761 2347 4380 3406 3895

Sum 27146 3879 4348 4874 4086 4728 6933 6067 6408

Table 3.  Effects of parameter selection on the data transactions in Lempel - Ziv compression.

Length Bits 7 6 5 4 3 2 1
Offset Bits 1 2 3 4 5 6 7

Codeword Length 24 24 24 24 24 24 24

CalFile Length
counter 198 72 57 57 58 64 71 88
parity 208 8 8 8 14 27 46 72
adder4 213 71 56 57 59 65 67 87
zero32 238 22 22 22 28 41 61 88
adder32 384 26 26 26 29 55 87 135
smear 695 354 261 214 210 222 243 283

adder4rm 907 567 436 422 419 422 417 456
gray 1200 767 648 631 592 588 587 616
top 1366 1034 895 845 810 787 772 789

demo 2233 522 494 498 527 588 694 902
ccitt 2684 457 430 441 484 597 751 1044

t 5819 1799 1541 1534 1568 1654 1840 2298
correlator 11001 9620 7775 3849 2665 2621 3368 4480

Sum 27146 15319 12649 8604 7463 7731 9004 11338

Table 4.  Effects of parameter selection on the address transactions in Reordering Runlength compression.

Table 5 shows the compression results for the data values within reordering runlength compression.  As expected,
the data values compress much better in this algorithm than the other approaches, since the data items have been
perfectly aligned for runlength encoding (barring those alignments not allowed by the reordering restrictions).  Note
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that since identical data values are aligned together, all of the runlength transactions should represent multiple
instances of a single data value.  Thus, there is no need for an offset within these runlengths, and thus 0 bits are used
for offset.  In this approach using 8 bits for the length provides the best overall results.  However, note again that the
optimum for any given run is just as likely to use 4 bits of length as 8, though the overall optimum is 8 bits.

Length Bits 16 8 4
Offset Bits 0 0 0

Codeword Length 24 16 12

CalFile Length
counter 198 46 31 25
parity 208 20 14 14
adder4 213 46 31 25
zero32 238 32 22 20
adder32 384 14 10 13
smear 695 102 68 61

adder4rm 907 105 70 67
gray 1200 119 80 79
top 1366 188 126 118

demo 2233 46 34 83
ccitt 2684 45 35 95

t 5819 65 55 193
correlator 11001 198 144 389

Sum 27146 1026 720 1182

Table 5.  Effects of parameter selection on the data transactions in Reordering Runlength compression.

Overall Algorithm Comparisons

From the data given in the previous section, we can now construct the best parameter settings for Basic Runlength,
Lempel - Ziv, and Reordering Runlength algorithms.  These results are given in the left portion of Table 6, which
lists the number of bus transactions required for address and data compression.  Also listed is the overall
compression ratio, which is the ratio of original file size to compressed file size.  Given these results it is clear that
Reordering Runlength is the preferred approach, since it achieves better compression results than the other
approaches while requiring much simpler hardware decompressors than Lempel - Ziv.  Note also that the hardware
that supports Reordering Runlength is identical to Basic Runlength, it is just the compression algorithm that differs.
This is useful, since the Basic Runlength compression algorithm is extremely simple, and could even be executed
on-line to support dynamic circuit creation and other advanced techniques, while Reordering Runlength would be
available for higher quality when the compression can be performed off-line.

The data for Reordering Runlength also suggests a modification to the basic algorithm.  Recall that for both address
and data compression in Reordering Runlength, the best compression results for a given benchmark often used
different parameter settings than the best overall compression approach for the entire suite.  It is actually quite easy
to take advantage of this feature.  It would be simple to provide runlength hardware which allows the user to
determine on a file by file basis what the best allocation of bus signals to length and offset values.  When a
configuration was being sent to the chip, it would first set the bus format when it is turning on the compression
features of the chip.  This is similar to the setting of bus width and other masking data which must be done for the
Xilinx XC6200 series currently.  Then, each file can be decompressed with the optimal parameter settings, resulting
in potentially higher compression results.  This algorithm is shown in the "Adaptive Reorder" section of Table 6.

For comparison with the algorithms proposed here, we present the results of our previous Wildcard-based
compression algorithm [Hauck98b].  This algorithm makes use of the decompression hardware already built into the
XC6200 series architecture, and can achieve good compression results.  These numbers are given in the rightmost
column of Table 6.  As can be seen, the Reordering Runlength approach beats the Wildcard algorithm by about 2%,
while the Adaptive Runlength achieves about 9% better results.  Just as important, the Runlength hardware also
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supports an extremely fast, on-line compression algorithm (Basic Runlength), which still achieves good compression
results.  This on-line option may be very useful for techniques in partial run-time reconfiguration and dynamic
circuit creation, where the time to create the circuit may be a critical concern.  In the Wildcard approach the
complexity of efficiently using the Wildcard hardware makes it unlikely that an efficient on-line compression
algorithm could be produced.  By having a single hardware structure which can provide better compression results
than the existing algorithm, as well as an option for on-line compression, a more flexible compression approach can
be achieved.

Basic Runlength Lempel - Ziv Reorder Runlength Adaptive Reorder Wild
CalFile Length Addr Data Comp Addr Data Comp Addr Data Comp Addr Data Comp Comp

counter 198 56 37 2.13 56 42 2.02 58 31 2.22 57 25 2.41 1.88
parity 208 7 21 7.43 7 18 8.32 14 14 7.43 8 14 9.45 7.43
adder4 213 53 34 2.45 53 36 2.39 59 31 2.37 56 25 2.63 2.21
zero32 238 22 27 4.86 22 22 5.41 28 22 4.76 22 20 5.67 4.18
adder32 384 12 135 2.61 12 29 9.37 29 10 9.85 26 10 10.67 5.26
smear 695 135 183 2.19 135 136 2.56 210 68 2.50 210 61 2.56 2.28

adder4rm 907 331 264 1.52 331 233 1.61 419 70 1.85 417 67 1.87 1.61
gray 1200 371 388 1.58 371 353 1.66 592 80 1.79 587 79 1.80 1.85
top 1366 597 489 1.26 597 408 1.36 810 126 1.46 772 118 1.53 1.41

demo 2233 337 277 3.64 337 224 3.98 527 34 3.98 494 34 4.23 4.1
ccitt 2684 295 297 4.53 295 222 5.19 484 35 5.17 430 35 5.77 5.82

t 5819 972 769 3.34 972 602 3.70 1568 55 3.59 1534 55 3.66 5.51
correlator 11001 2513 4162 1.65 2513 1761 2.57 2665 144 3.92 2621 144 3.98 5.86

Sum 27146 5701 7083 5701 4086 7463 720 7234 687
Geometric Mean 2.64 3.20 3.34 3.60 3.28

Table 6.  Overall comparison of complete compression algorithms.

Conclusions

In this paper we have presented algorithms, communication methodologies, and hardware support for accelerating
reconfiguration via compressing datastreams.  The algorithms include techniques for harnessing runlength encoding
and Lempel - Ziv approaches to the unique features of FPGA configurations.  The bus formats and parameter
settings provide efficient communications of these items, allowing for relatively simple hardware, embedded in the
FPGA architecture, to perform the decompression.  This results in a compression algorithm superior to the
previously existing Wildcard approach.  Our Adaptive Runlength algorithm provides significant compression
results, reducing configuration size (and thus bandwidth requirements) by a factor of 3.60.  Faster on-line algorithms
can also use this hardware to achieve a compression ratio of 2.64.  Such an on-line algorithm can be used for
dynamic circuit creation and other situations where configuration compile time is a significant concern, including
many applications of reconfigurable computing.  Combined, this provides a complete and efficient compression
suite for FPGA configuration management.
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