
Submodular Functions, Optimization,

and Applications to Machine Learning

— Spring Quarter, Lecture 14 —
http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

May 14th, 2018

+f (A) + f (B) f (A [B)

= f (Ar) +f (C) + f (Br)

�
= f (A \ B)

f (A \ B)

= f (Ar) + 2f (C) + f (Br)

Clockwise from top left:v
Lásló Lovász

Jack Edmonds
Satoru Fujishige

George Nemhauser
Laurence Wolsey

András Frank
Lloyd Shapley
H. Narayanan
Robert Bixby

William Cunningham
William Tutte
Richard Rado

Alexander Schrijver
Garrett Birkhoff
Hassler Whitney

Richard Dedekind

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F1/63 (pg.1/239)

:

Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
Read chapter 3 from Fujishige’s book.
Read chapter 4 from Fujishige’s book.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F2/63 (pg.2/239)

Logistics Review

Announcements, Assignments, and Reminders

Next homework is posted on canvas. Due Thursday 5/10, 11:59pm.
As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F3/63 (pg.3/239)

Logistics Review

Class Road Map - EE563

L1(3/26): Motivation, Applications, &

Basic Definitions,

L2(3/28): Machine Learning Apps

(diversity, complexity, parameter, learning

target, surrogate).

L3(4/2): Info theory exs, more apps,

definitions, graph/combinatorial examples

L4(4/4): Graph and Combinatorial

Examples, Matrix Rank, Examples and

Properties, visualizations

L5(4/9): More Examples/Properties/

Other Submodular Defs., Independence,

L6(4/11): Matroids, Matroid Examples,

Matroid Rank, Partition/Laminar

Matroids

L7(4/16): Laminar Matroids, System of

Distinct Reps, Transversals, Transversal

Matroid, Matroid Representation, Dual

Matroids

L8(4/18): Dual Matroids, Other Matroid

Properties, Combinatorial Geometries,

Matroids and Greedy.

L9(4/23): Polyhedra, Matroid Polytopes,

Matroids ! Polymatroids

L10(4/29): Matroids ! Polymatroids,

Polymatroids, Polymatroids and Greedy,

L11(4/30): Polymatroids, Polymatroids

and Greedy

L12(5/2): Polymatroids and Greedy,

Extreme Points, Cardinality Constrained

Maximization

L13(5/7): Constrained Submodular

Maximization

L14(5/9): Submodular Max w. Other

Constraints, Cont. Extensions, Lovasz

Extension

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L–(5/28): Memorial Day (holiday)

L19(5/30):

L21(6/4): Final Presentations

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F4/63 (pg.4/239)

Logistics Review

Priority Queue

Use a priority queue Q as a data structure: operations include:
Insert an item (v,↵) into queue, with v 2 V and ↵ 2 R.

insert(Q, (v,↵)) (14.14)

Pop the item (v,↵) with maximum value ↵ off the queue.

(v,↵) pop(Q) (14.15)

Query the value of the max item in the queue

max(Q) 2 R (14.16)

On next slide, we call a popped item “fresh” if the value (v,↵) popped has
the correct value ↵ = f(v|Si). Use extra “bit” to store this info
If a popped item is fresh, it must be the maximum — this can happen if, at
given iteration, v was first popped and neither fresh nor maximum so placed
back in the queue, and it then percolates back to the top at which point it
is fresh — thereby avoid extra queue check.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F5/63 (pg.5/239)

Logistics Review

Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 1: Minoux’s Accelerated Greedy Algorithm
1 Set S0 ; ; i 0 ; Initialize priority queue Q ;
2 for v 2 E do

3 INSERT(Q, f(v))

4 repeat

5 (v,↵) pop(Q) ;
6 if ↵ not “fresh” then

7 recompute ↵ f(v|Si)

8 if (popped ↵ in line 5 was “fresh”) OR (↵ � max(Q)) then

9 Set Si+1 Si [{v} ;
10 i i+ 1 ;

11 else

12 insert(Q, (v,↵))

13 until i = |E|;

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F6/63 (pg.6/239)

Logistics Review

(Minimum) Submodular Set Cover

Given polymatroid f , goal is to find a covering set of minimum cost:

S⇤ 2 argmin
S✓V

|S| such that f(S) � ↵ (14.14)

where ↵ is a “cover” requirement.
Normally take ↵ = f(V) but defining f 0(A) = min {f(A),↵} we can
take any ↵. Hence, we have equivalent formulation:

S⇤ 2 argmin
S✓V

|S| such that f 0(S) � f 0(V) (14.15)

Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
Greedy Algorithm: Pick the first chain item Si chosen by
aforementioned greedy algorithm such that f(Si) � ↵ and output that
as solution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F7/63 (pg.7/239)

Logistics Review

(Minimum) Submodular Set Cover: Approximation Analysis

For integer valued f , this greedy algorithm an O(log(maxs2V f({s})))
approximation. Let S⇤ be optimal, and SG be greedy solution, then

|SG|  |S⇤|H(max
s2V

f({s})) = |S⇤|O(loge(max
s2V

f({s}))) (14.14)

where H is the harmonic function, i.e., H(d) =
Pd

i=1(1/i).
If f is not integral value, then bounds we get are of the form:

|SG|  |S⇤|
⇣
1 + loge

f(V)

f(V)� f(ST�1)

⌘
(14.15)

wehre ST is the final greedy solution that occurs at step T .
Set cover is hard to approximate with a factor better than (1� ✏) log↵,
where ↵ is the desired cover constraint.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F8/63 (pg.8/239)

Logistics Review

Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

j:f(j|;) 6=0

f(j|V \ {j})
f(j|;) (14.17)

Note: Matroid rank is either modular c = 0 or maximally curved c = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.
Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with c 2 [0, 1].
It will be remembered the notion of “partial dependence” within
polymatroid functions.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F9/63 (pg.9/239)

fig)=0 ⇒ fljla) = 0 FA
.

fljlcf) - fljuo) - fl OD =fCj)

ftp./vlj)=O

⇒ a =/

Logistics Review

Curvature and approximation

Curvature limitation can help the greedy algorithm in terms of
approximation bounds.
Conforti & Cornuéjols showed that greedy gives a 1/(1 + c)
approximation to max {f(S) : S 2 I} when f has total curvature c.
Hence, greedy subject to matroid constraint is a max(1/(1 + c), 1/2)
approximation algorithm, and if c < 1 then it is better than 1/2 (e.g.,
with c = 1/4 then we have a 0.8 algorithm).

For k-uniform matroid
(i.e., k-cardinality con-
straints), then approxima-
tion factor becomes
1
c (1� e�c)

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

curvature

a
p
p
ro

xi
m

a
tio

n
 b

o
u
n
d

1−1/e

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F10/63 (pg.10/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}

Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs.

Q: Is
I = {I : c(I)  b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.11/239)

w k

may FIA) st . GIA) - IA /
w

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs.

Q: Is
I = {I : c(I)  b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.12/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).

Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs.

Q: Is
I = {I : c(I)  b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.13/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs.

Q: Is
I = {I : c(I)  b} the independent sets of a matroid?
We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.14/239)

: st Esd
"

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs. Q: Is
I = {I : c(I)  b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.15/239)

670 dv) 20

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs. Q: Is
I = {I : c(I)  b} the independent sets of a matroid?
We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.

Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.16/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs. Q: Is
I = {I : c(I)  b} the independent sets of a matroid?
We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F11/63 (pg.17/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.

I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.18/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.19/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.

This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.20/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.21/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.22/239)

- p
- extendible system .

- ifec

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.

Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.23/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.24/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

Si+1 = Si [
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(Si [{v})
)

(14.1)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.3.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,

the above greedy algorithm returns sets Si such that for each i we have

f(Si) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F12/63 (pg.25/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?

Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.26/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).

Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.27/239)

v :eE# .

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.28/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,

2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.29/239)

outer

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.30/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

V F V F

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.31/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

V F V F

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.32/239)

GE

rd

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV), and MF = (E, IF).
Independence in each matroid corresponds to:

1 I 2 IV if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 IF if |I \ (v, F)|  1 for all v 2 V .

V F V F

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F13/63 (pg.33/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very different (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)
We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).
This is again a matroid intersection problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F14/63 (pg.34/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).
Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very different (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)

We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).
This is again a matroid intersection problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F14/63 (pg.35/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).
Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very different (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)
We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).

This is again a matroid intersection problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F14/63 (pg.36/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).
Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very different (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)
We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).
This is again a matroid intersection problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F14/63 (pg.37/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.38/239)

*¥⇒÷÷

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.

From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.39/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .

Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.40/239)

⇒F

**:#

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.

Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.41/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).

Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.42/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).

Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.43/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists if‌f there is an n-element intersection of
M1, M2, and M3.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.44/239)

II

M ,
= (V

,

{I¥tI3
)

Mr = { v
, If

is Ms = (V
,

Inta) a matruiil

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.
But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x 2 I1 \ I2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.45/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.
Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.

But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x 2 I1 \ I2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.46/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.
Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.
But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x 2 I1 \ I2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F15/63 (pg.47/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Generalized Bipartite

Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.
Consider bipartite graph G = (E,F, V) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.
E corresponds to, say, an English language sentence and F corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F16/63 (pg.48/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Generalized Bipartite

Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)
Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Consider bipartite graph G = (E,F, V) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.
E corresponds to, say, an English language sentence and F corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F16/63 (pg.49/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Generalized Bipartite

Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)
Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.
Consider bipartite graph G = (E,F, V) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F16/63 (pg.50/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Generalized Bipartite

Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)
Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.
Consider bipartite graph G = (E,F, V) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.
E corresponds to, say, an English language sentence and F corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F16/63 (pg.51/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F17/63 (pg.52/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

One possible alignment, a matching, with score as sum of edge weights.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F17/63 (pg.53/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to English words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
The two edge partitions can be used to set up two 1-partition matroids
on the edges.
For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F17/63 (pg.54/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to French words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
The two edge partitions can be used to set up two 1-partition matroids
on the edges.
For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F17/63 (pg.55/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F18/63 (pg.56/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F18/63 (pg.57/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F18/63 (pg.58/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F18/63 (pg.59/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F18/63 (pg.60/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}.

Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F19/63 (pg.61/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}.
Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F19/63 (pg.62/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, gi : 2E ! R+ that
measures how “desirable” or “valuable” a given subset A ✓ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 [E2 [· · · [En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =
nX

i=1

gi(Ei). (14.2)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F20/63 (pg.63/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E ! R+ that
measures how “desirable” or “valuable” a given subset A ✓ E of goods
are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 [E2 [· · · [En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =
nX

i=1

gi(Ei). (14.2)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F20/63 (pg.64/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E ! R+ that
measures how “desirable” or “valuable” a given subset A ✓ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [E2 [· · · [En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =
nX

i=1

gi(Ei). (14.2)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F20/63 (pg.65/239)

% .(A) the value that person n

'

 ha , for

goods AEE .

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E ! R+ that
measures how “desirable” or “valuable” a given subset A ✓ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 [E2 [· · · [En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =
nX

i=1

gi(Ei). (14.2)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F20/63 (pg.66/239)

submodula fair alloccph n

Ming :(Ei)
i. 1

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E ! R+ that
measures how “desirable” or “valuable” a given subset A ✓ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 [E2 [· · · [En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =
nX

i=1

gi(Ei). (14.2)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F20/63 (pg.67/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E] E] · · ·] E| {z }
n⇥

(14.3)

Let E(i) ⇢ E0 be the ith block of E0.
For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).
For e 2 E, define Ee = {(e0, i) 2 E0 : e0 = e}.
Hence, {Ee}e2E is a partition of E0, each block of the partition for one
of the original elements in E.
Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ Ee|  1

(14.4)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F21/63 (pg.68/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E] E] · · ·] E| {z }
n⇥

(14.3)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).
For e 2 E, define Ee = {(e0, i) 2 E0 : e0 = e}.
Hence, {Ee}e2E is a partition of E0, each block of the partition for one
of the original elements in E.
Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ Ee|  1

(14.4)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F21/63 (pg.69/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E] E] · · ·] E| {z }
n⇥

(14.3)

Let E(i) ⇢ E0 be the ith block of E0.
For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define Ee = {(e0, i) 2 E0 : e0 = e}.
Hence, {Ee}e2E is a partition of E0, each block of the partition for one
of the original elements in E.
Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ Ee|  1

(14.4)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F21/63 (pg.70/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E] E] · · ·] E| {z }
n⇥

(14.3)

Let E(i) ⇢ E0 be the ith block of E0.
For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).
For e 2 E, define Ee = {(e0, i) 2 E0 : e0 = e}.

Hence, {Ee}e2E is a partition of E0, each block of the partition for one
of the original elements in E.
Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ Ee|  1

(14.4)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F21/63 (pg.71/239)

IE "Y=m

leekn

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E] E] · · ·] E| {z }
n⇥

(14.3)

Let E(i) ⇢ E0 be the ith block of E0.
For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).
For e 2 E, define Ee = {(e0, i) 2 E0 : e0 = e}.
Hence, {Ee}e2E is a partition of E0, each block of the partition for one
of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ Ee|  1

(14.4)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F21/63 (pg.72/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E] E] · · ·] E| {z }
n⇥

(14.3)

Let E(i) ⇢ E0 be the ith block of E0.
For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).
For e 2 E, define Ee = {(e0, i) 2 E0 : e0 = e}.
Hence, {Ee}e2E is a partition of E0, each block of the partition for one
of the original elements in E.
Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ Ee|  1

(14.4)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F21/63 (pg.73/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Hence, S is independent in matroid M = (E0, I) if S uses each original
element no more than once.

Create submodular function f 0 : 2E
0 ! R+ with

f 0(S) =
Pn

i=1 gi(S \ E(i)).
Submodular welfare maximization becomes matroid constrained
submodular max max {f 0(S) : S 2 I}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F22/63 (pg.74/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Hence, S is independent in matroid M = (E0, I) if S uses each original
element no more than once.
Create submodular function f 0 : 2E

0 ! R+ with
f 0(S) =

Pn
i=1 gi(S \ E(i)).

Submodular welfare maximization becomes matroid constrained
submodular max max {f 0(S) : S 2 I}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F22/63 (pg.75/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Welfare: Submodular Max over matroid

partition

Hence, S is independent in matroid M = (E0, I) if S uses each original
element no more than once.
Create submodular function f 0 : 2E

0 ! R+ with
f 0(S) =

Pn
i=1 gi(S \ E(i)).

Submodular welfare maximization becomes matroid constrained
submodular max max {f 0(S) : S 2 I}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F22/63 (pg.76/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = "salmon roll".

Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
E] E] E] E] E] E.
Partition matroid partitions:
Ee1 [Ee2 [Ee3 [Ee4 [Ee5 [
Ee6 [Ee7 .
independent allocation
non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F23/63 (pg.77/239)

: x

: it

Ee e

x

× x

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E] E] E] E] E] E.
Partition matroid partitions:
Ee1 [Ee2 [Ee3 [Ee4 [Ee5 [
Ee6 [Ee7 .
independent allocation
non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F23/63 (pg.78/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
E] E] E] E] E] E.

Partition matroid partitions:
Ee1 [Ee2 [Ee3 [Ee4 [Ee5 [
Ee6 [Ee7 .
independent allocation
non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F23/63 (pg.79/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
E] E] E] E] E] E.
Partition matroid partitions:
Ee1 [Ee2 [Ee3 [Ee4 [Ee5 [
Ee6 [Ee7 .

independent allocation
non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F23/63 (pg.80/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
E] E] E] E] E] E.
Partition matroid partitions:
Ee1 [Ee2 [Ee3 [Ee4 [Ee5 [
Ee6 [Ee7 .
independent allocation

non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F23/63 (pg.81/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
E] E] E] E] E] E.
Partition matroid partitions:
Ee1 [Ee2 [Ee3 [Ee4 [Ee5 [
Ee6 [Ee7 .
independent allocation
non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F23/63 (pg.82/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.

Consider a non-negative integral modular function c : E ! Z+.
A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!
c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.83/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.
Consider a non-negative integral modular function c : E ! Z+.

A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!
c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.84/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.
Consider a non-negative integral modular function c : E ! Z+.
A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.

Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!
c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.85/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.
Consider a non-negative integral modular function c : E ! Z+.
A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!

c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.86/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.
Consider a non-negative integral modular function c : E ! Z+.
A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!
c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.87/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

Greedy can be seen as choosing the best gain: Starting with S0 = ;,
we repeat the following greedy step

Si+1 = Si [
(
argmax
v2V \Si

⇣
f(Si [{v})� f(Si)

⌘)
(14.5)

the gain is f({v}|Si) = f(Si + v)� f(Si), so greedy just chooses next
the currently unselected element with greatest gain.

Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S0,
we repeat the following cost-normalized greedy step

Si+1 = Si [
(
argmax
v2V \Si

f(Si [{v})� f(Si)

c(v)

)
(14.6)

which we repeat until c(Si+1) > b and then take Si as the solution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.88/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Monotone Submodular over Knapsack Constraint

Greedy can be seen as choosing the best gain: Starting with S0 = ;,
we repeat the following greedy step

Si+1 = Si [
(
argmax
v2V \Si

⇣
f(Si [{v})� f(Si)

⌘)
(14.5)

the gain is f({v}|Si) = f(Si + v)� f(Si), so greedy just chooses next
the currently unselected element with greatest gain.
Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S0,
we repeat the following cost-normalized greedy step

Si+1 = Si [
(
argmax
v2V \Si

f(Si [{v})� f(Si)

c(v)

)
(14.6)

which we repeat until c(Si+1) > b and then take Si as the solution.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F24/63 (pg.89/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A Knapsack Constraint

There are a number of ways of getting approximation bounds using this
strategy.
If we run the normalized greedy procedure starting with S0 = ;, and
compare the solution found with the max of the singletons
maxv2V f({v}), choosing the max, then we get a (1� e�1/2) ⇡ 0.39
approximation, in O(n2) time (Minoux trick also possible for further
speed)
Partial enumeration: On the other hand, we can get a (1� e�1) ⇡ 0.63
approximation in O(n5) time if we run the above procedure starting
from all sets of cardinality three (so restart for all S0 such that
|S0| = 3), and compare that with the best singleton and pairwise
solution.
Extending something similar to this to d simultaneous knapsack
constraints is possible as well.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F25/63 (pg.90/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Local Search Algorithms

From J. Vondrak
Local search involves switching up to t elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:
1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]
1/(k + 2 + 1

k + �t) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]
1/(k + �t) approximation for monotone submodular maximization
subject to k � 2 matroids [Lee, Sviridenko, Vondrak, 2010].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F26/63 (pg.91/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (13 �

✏
n) approximation for maximizing non-monotone

non-negative submodular functions, with most O(1✏n
3 log n) function

calls using approximate local maxima.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F27/63 (pg.92/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.
If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (13 �

✏
n) approximation for maximizing non-monotone

non-negative submodular functions, with most O(1✏n
3 log n) function

calls using approximate local maxima.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F27/63 (pg.93/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.
If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (13 �

✏
n) approximation for maximizing non-monotone

non-negative submodular functions, with most O(1✏n
3 log n) function

calls using approximate local maxima.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F27/63 (pg.94/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.
If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

We may get a (13 �
✏
n) approximation for maximizing non-monotone

non-negative submodular functions, with most O(1✏n
3 log n) function

calls using approximate local maxima.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F27/63 (pg.95/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.
If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (13 �

✏
n) approximation for maximizing non-monotone

non-negative submodular functions, with most O(1✏n
3 log n) function

calls using approximate local maxima.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F27/63 (pg.96/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.97/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.98/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.99/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

Idea of proof: Given v1, v2 2 S, suppose f(S � v1)  f(S) and
f(S � v2)  f(S). Submodularity requires
f(S � v1) + f(S � v2) � f(S) + f(S � v1 � v2) which would be
impossible unless f(S � v1 � v2)  f(S).

Similarly, given v1, v2 /2 S, and f(S + v1)  f(S) and f(S + v2)  f(S).
Submodularity requires f(S + v1) + f(S + v2) � f(S) + f(S + v1 + v2)
which requires f(S + v1 + v2)  f(S).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.100/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

Idea of proof: Given v1, v2 2 S, suppose f(S � v1)  f(S) and
f(S � v2)  f(S). Submodularity requires
f(S � v1) + f(S � v2) � f(S) + f(S � v1 � v2) which would be
impossible unless f(S � v1 � v2)  f(S).
Similarly, given v1, v2 /2 S, and f(S + v1)  f(S) and f(S + v2)  f(S).
Submodularity requires f(S + v1) + f(S + v2) � f(S) + f(S + v1 + v2)
which requires f(S + v1 + v2)  f(S).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.101/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.
This is the approach that yields the (13 �

✏
n) approximation algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.102/239)

¥*

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V] can be ruled out as a
possible improvement over S.
Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

This is the approach that yields the (13 �
✏
n) approximation algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.103/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f if
f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 14.3.2
Given a submodular function f , if S is a local maximum of f , and I ✓ S or

I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V] can be ruled out as a
possible improvement over S.
Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.
This is the approach that yields the (13 �

✏
n) approximation algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F28/63 (pg.104/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.

Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).
Algorithm 2: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do

4 a [f(vi|L)]+; b [�f(U |U \ {vi})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [{vi} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U U \ {v}

13 return L (which is the same as U at this point)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F29/63 (pg.105/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).
Algorithm 3: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do

4 a [f(vi|L)]+; b [�f(U |U \ {vi})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [{vi} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U U \ {v}

13 return L (which is the same as U at this point)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F29/63 (pg.106/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 4: Randomized Linear-time non-monotone submodular max
1 Set L ; ; U V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do

4 a [f(vi|L)]+; b [�f(U |U \ {vi})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [{vi} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U U \ {v}

13 return L (which is the same as U at this point)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F29/63 (pg.107/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).
Algorithm 5: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do

4 a [f(vi|L)]+; b [�f(U |U \ {vi})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [{vi} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U U \ {v}

13 return L (which is the same as U at this point)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F29/63 (pg.108/239)

flu) Ulvi)

=
t In .) vlvi)

i

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F30/63 (pg.109/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).
Running the algorithm 1⇥ (with an arbitrary variable order) results in a
1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F30/63 (pg.110/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).
Running the algorithm 1⇥ (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F30/63 (pg.111/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).
Running the algorithm 1⇥ (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F30/63 (pg.112/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).
Running the algorithm 1⇥ (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F30/63 (pg.113/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

More general still: multiple constraints different types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.
Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.
On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F31/63 (pg.114/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

More general still: multiple constraints different types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.
The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.
On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F31/63 (pg.115/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

More general still: multiple constraints different types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.
The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.
Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F31/63 (pg.116/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

More general still: multiple constraints different types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.
The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.
Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.
On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F31/63 (pg.117/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).
We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F32/63 (pg.118/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.
For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F32/63 (pg.119/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.
For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).
We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).

More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F32/63 (pg.120/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.
For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).
We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F32/63 (pg.121/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Submodular Max Summary - From J. Vondrak

Monotone Maximization
Constraint Approximation Hardness Technique
|S|  k 1� 1/e 1� 1/e greedy
matroid 1� 1/e 1� 1/e multilinear ext.

O(1) knapsacks 1� 1/e 1� 1/e multilinear ext.
k matroids k + ✏ k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Nonmonotone Maximization
Constraint Approximation Hardness Technique

Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k +O(1) k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F33/63 (pg.122/239)

opt

m
f (§) z 2. .

 maxfcs)
SEE -

d. OPT OPT

lz f (f) Z opt

d=Yk
Ya =h

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.

This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.123/239)

t.EE#*e

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.

In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.124/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] ! R
Convex Extensions

f̃ : [0, 1] ! R
Concave Extensions

f : {0, 1}V ! R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.125/239)

t.am#

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] ! R
Convex Extensions

f̃ : [0, 1] ! R
Concave Extensions

f : {0, 1}V ! R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.126/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] ! R
Convex Extensions

f̃ : [0, 1] ! R
Concave Extensions

f : {0, 1}V ! R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?

2 When do they have nice mathematical properties?
3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.127/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] ! R
Convex Extensions

f̃ : [0, 1] ! R
Concave Extensions

f : {0, 1}V ! R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?

3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.128/239)

#

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Continuous Extensions of Discrete Set Functions

Any function f : 2V ! R (equivalently f : {0, 1}V ! R) can be
extended to a continuous function in the sense f̃ : [0, 1]V ! R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] ! R
Convex Extensions

f̃ : [0, 1] ! R
Concave Extensions

f : {0, 1}V ! R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F34/63 (pg.129/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Def: Convex Envelope of a function

Given any function h : Rn ! R, define new function ȟ : Rn ! R via:

ȟ(x) = sup {g(x) : g is convex & g(y)  h(y), 8y 2 Rn} (14.7)

I.e., (1) ȟ(x) is convex, (2) ȟ(x)  h(x), 8x, and (3) if g(x) is any
convex function having the property that g(x)  h(x), 8x, then
g(x)  ȟ(x).
Alternatively,

ȟ(x) = inf {t : (x, t) 2 convexhull(epigraph(h))} (14.8)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F35/63 (pg.130/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Def: Convex Envelope of a function

Given any function h : Rn ! R, define new function ȟ : Rn ! R via:

ȟ(x) = sup {g(x) : g is convex & g(y)  h(y), 8y 2 Rn} (14.7)

I.e., (1) ȟ(x) is convex, (2) ȟ(x)  h(x), 8x, and (3) if g(x) is any
convex function having the property that g(x)  h(x), 8x, then
g(x)  ȟ(x).

Alternatively,

ȟ(x) = inf {t : (x, t) 2 convexhull(epigraph(h))} (14.8)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F35/63 (pg.131/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Def: Convex Envelope of a function

Given any function h : Rn ! R, define new function ȟ : Rn ! R via:

ȟ(x) = sup {g(x) : g is convex & g(y)  h(y), 8y 2 Rn} (14.7)

I.e., (1) ȟ(x) is convex, (2) ȟ(x)  h(x), 8x, and (3) if g(x) is any
convex function having the property that g(x)  h(x), 8x, then
g(x)  ȟ(x).
Alternatively,

ȟ(x) = inf {t : (x, t) 2 convexhull(epigraph(h))} (14.8)

h(x)
epi(h)(x)

ȟ(x)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F35/63 (pg.132/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given set function f : 2V ! R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f̌ : [0, 1]V ! R, as

f̌(x) = min
p24n(x)

X

S✓V

pSf(S) (14.9)

where 4n(x) =n
p 2 R2n :

P
S✓V pS = 1, pS � 08S ✓ V, &

P
S✓V pS1S = x

o

Hence, 4n(x) is the set of all probability distributions over the 2n

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to x, i.e., for any
p 2 4n(x), ES⇠p(1S) =

P
S✓V pS1S = x.

Hence, f̌(x) = minp24n(x)ES⇠p[f(S)]

Note, this is not (necessarily) the Lovász extension, rather this is a

convex extension.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F36/63 (pg.133/239)

O O

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given set function f : 2V ! R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f̌ : [0, 1]V ! R, as

f̌(x) = min
p24n(x)

X

S✓V

pSf(S) (14.9)

where 4n(x) =n
p 2 R2n :

P
S✓V pS = 1, pS � 08S ✓ V, &

P
S✓V pS1S = x

o

Hence, 4n(x) is the set of all probability distributions over the 2n

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to x, i.e., for any
p 2 4n(x), ES⇠p(1S) =

P
S✓V pS1S = x.

Hence, f̌(x) = minp24n(x)ES⇠p[f(S)]

Note, this is not (necessarily) the Lovász extension, rather this is a

convex extension.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F36/63 (pg.134/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given set function f : 2V ! R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f̌ : [0, 1]V ! R, as

f̌(x) = min
p24n(x)

X

S✓V

pSf(S) (14.9)

where 4n(x) =n
p 2 R2n :

P
S✓V pS = 1, pS � 08S ✓ V, &

P
S✓V pS1S = x

o

Hence, 4n(x) is the set of all probability distributions over the 2n

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to x, i.e., for any
p 2 4n(x), ES⇠p(1S) =

P
S✓V pS1S = x.

Hence, f̌(x) = minp24n(x)ES⇠p[f(S)]

Note, this is not (necessarily) the Lovász extension, rather this is a

convex extension.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F36/63 (pg.135/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given set function f : 2V ! R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f̌ : [0, 1]V ! R, as

f̌(x) = min
p24n(x)

X

S✓V

pSf(S) (14.9)

where 4n(x) =n
p 2 R2n :

P
S✓V pS = 1, pS � 08S ✓ V, &

P
S✓V pS1S = x

o

Hence, 4n(x) is the set of all probability distributions over the 2n

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to x, i.e., for any
p 2 4n(x), ES⇠p(1S) =

P
S✓V pS1S = x.

Hence, f̌(x) = minp24n(x)ES⇠p[f(S)]

Note, this is not (necessarily) the Lovász extension, rather this is a

convex extension.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F36/63 (pg.136/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given, f̌(x) = minp24n(x)ES⇠p[f(S)], there are several things we’d
like to show:

1 That f̌ is tight (i.e., 8S ✓ V , we have f̌(1S) = f(S)).
2 That f̌ is convex (and consequently, that any arbitrary set function has

a tight convex extension).
3 That the convex closure f̌ is the convex envelope of the function defined

only on the hypercube vertices, and that takes value f(S) at 1S .
4 The definition of the Lovász extension of a set function, and that f̌ is

the Lovász extension iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F37/63 (pg.137/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given, f̌(x) = minp24n(x)ES⇠p[f(S)], there are several things we’d
like to show:

1 That f̌ is tight (i.e., 8S ✓ V , we have f̌(1S) = f(S)).

2 That f̌ is convex (and consequently, that any arbitrary set function has
a tight convex extension).

3 That the convex closure f̌ is the convex envelope of the function defined
only on the hypercube vertices, and that takes value f(S) at 1S .

4 The definition of the Lovász extension of a set function, and that f̌ is
the Lovász extension iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F37/63 (pg.138/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given, f̌(x) = minp24n(x)ES⇠p[f(S)], there are several things we’d
like to show:

1 That f̌ is tight (i.e., 8S ✓ V , we have f̌(1S) = f(S)).
2 That f̌ is convex (and consequently, that any arbitrary set function has

a tight convex extension).

3 That the convex closure f̌ is the convex envelope of the function defined
only on the hypercube vertices, and that takes value f(S) at 1S .

4 The definition of the Lovász extension of a set function, and that f̌ is
the Lovász extension iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F37/63 (pg.139/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given, f̌(x) = minp24n(x)ES⇠p[f(S)], there are several things we’d
like to show:

1 That f̌ is tight (i.e., 8S ✓ V , we have f̌(1S) = f(S)).
2 That f̌ is convex (and consequently, that any arbitrary set function has

a tight convex extension).
3 That the convex closure f̌ is the convex envelope of the function defined

only on the hypercube vertices, and that takes value f(S) at 1S .

4 The definition of the Lovász extension of a set function, and that f̌ is
the Lovász extension iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F37/63 (pg.140/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure of Discrete Set Functions

Given, f̌(x) = minp24n(x)ES⇠p[f(S)], there are several things we’d
like to show:

1 That f̌ is tight (i.e., 8S ✓ V , we have f̌(1S) = f(S)).
2 That f̌ is convex (and consequently, that any arbitrary set function has

a tight convex extension).
3 That the convex closure f̌ is the convex envelope of the function defined

only on the hypercube vertices, and that takes value f(S) at 1S .
4 The definition of the Lovász extension of a set function, and that f̌ is

the Lovász extension iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F37/63 (pg.141/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Tightness of Convex Closure

Lemma 14.4.1

8A ✓ V , we have f̌(1A) = f(A).

Proof.

Define px to be an achiving argmin in f̌(x) = minp24n(x)ES⇠p[f(S)].

Take an arbitrary A, so that 1A =
P

S✓V p1A
S 1S = 1A.

Suppose 9S0 with S0 \A 6= 0 having p1A
S0 > 0. This would mean, for

any v 2 S0 \A, that
⇣P

S p1A
S 1S

⌘
(v) > 0, a contradiction.

Suppose 9S0 s.t. A \ S0 6= ; with p1A
S0 > 0.

Then, for any v 2 A \ S0, consider below leading to a contradiction

pS01S0| {z }
>0

+
X

S✓A
S 6=S0

pS1S

| {z }
can’t sum to 1

)
⇣X

S✓A
S 6=S0

ps1S
⌘
(v) < 1 (14.10)

I.e., v 2 A so it must get value 1, but since v /2 S0, v is deficient.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F38/63 (pg.142/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Tightness of Convex Closure

Lemma 14.4.1

8A ✓ V , we have f̌(1A) = f(A).

Proof.

Define px to be an achiving argmin in f̌(x) = minp24n(x)ES⇠p[f(S)].

Take an arbitrary A, so that 1A =
P

S✓V p1A
S 1S = 1A.

Suppose 9S0 with S0 \A 6= 0 having p1A
S0 > 0. This would mean, for

any v 2 S0 \A, that
⇣P

S p1A
S 1S

⌘
(v) > 0, a contradiction.

Suppose 9S0 s.t. A \ S0 6= ; with p1A
S0 > 0.

Then, for any v 2 A \ S0, consider below leading to a contradiction

pS01S0| {z }
>0

+
X

S✓A
S 6=S0

pS1S

| {z }
can’t sum to 1

)
⇣X

S✓A
S 6=S0

ps1S
⌘
(v) < 1 (14.10)

I.e., v 2 A so it must get value 1, but since v /2 S0, v is deficient.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F38/63 (pg.143/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Tightness of Convex Closure

Lemma 14.4.1

8A ✓ V , we have f̌(1A) = f(A).

Proof.

Define px to be an achiving argmin in f̌(x) = minp24n(x)ES⇠p[f(S)].

Take an arbitrary A, so that 1A =
P

S✓V p1A
S 1S = 1A.

Suppose 9S0 with S0 \A 6= 0 having p1A
S0 > 0. This would mean, for

any v 2 S0 \A, that
⇣P

S p1A
S 1S

⌘
(v) > 0, a contradiction.

Suppose 9S0 s.t. A \ S0 6= ; with p1A
S0 > 0.

Then, for any v 2 A \ S0, consider below leading to a contradiction

pS01S0| {z }
>0

+
X

S✓A
S 6=S0

pS1S

| {z }
can’t sum to 1

)
⇣X

S✓A
S 6=S0

ps1S
⌘
(v) < 1 (14.10)

I.e., v 2 A so it must get value 1, but since v /2 S0, v is deficient.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F38/63 (pg.144/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Tightness of Convex Closure

Lemma 14.4.1

8A ✓ V , we have f̌(1A) = f(A).

Proof.

Define px to be an achiving argmin in f̌(x) = minp24n(x)ES⇠p[f(S)].

Take an arbitrary A, so that 1A =
P

S✓V p1A
S 1S = 1A.

Suppose 9S0 with S0 \A 6= 0 having p1A
S0 > 0. This would mean, for

any v 2 S0 \A, that
⇣P

S p1A
S 1S

⌘
(v) > 0, a contradiction.

Suppose 9S0 s.t. A \ S0 6= ; with p1A
S0 > 0.

Then, for any v 2 A \ S0, consider below leading to a contradiction

pS01S0| {z }
>0

+
X

S✓A
S 6=S0

pS1S

| {z }
can’t sum to 1

)
⇣X

S✓A
S 6=S0

ps1S
⌘
(v) < 1 (14.10)

I.e., v 2 A so it must get value 1, but since v /2 S0, v is deficient.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F38/63 (pg.145/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Tightness of Convex Closure

Lemma 14.4.1

8A ✓ V , we have f̌(1A) = f(A).

Proof.

Define px to be an achiving argmin in f̌(x) = minp24n(x)ES⇠p[f(S)].

Take an arbitrary A, so that 1A =
P

S✓V p1A
S 1S = 1A.

Suppose 9S0 with S0 \A 6= 0 having p1A
S0 > 0. This would mean, for

any v 2 S0 \A, that
⇣P

S p1A
S 1S

⌘
(v) > 0, a contradiction.

Suppose 9S0 s.t. A \ S0 6= ; with p1A
S0 > 0.

Then, for any v 2 A \ S0, consider below leading to a contradiction

pS01S0| {z }
>0

+
X

S✓A
S 6=S0

pS1S

| {z }
can’t sum to 1

)
⇣X

S✓A
S 6=S0

ps1S
⌘
(v) < 1 (14.10)

I.e., v 2 A so it must get value 1, but since v /2 S0, v is deficient.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F38/63 (pg.146/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convexity of the Convex Closure

Lemma 14.4.2

f̌(x) = minp24n(x)ES⇠p[f(S)] is convex in [0, 1]V .

Proof.
Let x, y 2 [0, 1]V , 0  �  1, and z = �x+ (1� �)y, then
�f̌(x) + (1� �)f̌(y) = �

X

S

pxSf(S) + (1� �)
X

S

pySf(S) (14.11)

=
X

S

(�pxS + (1� �)pyS)f(S) (14.12)

=
X

S

pz
0

S f(S) � min
p24n(z)

ES⇠p[f(S)] (14.13)

= f̌(z) = f̌(�x+ (1� �)y) (14.14)

Note that pz0S = �pxS + (1� �)pyS and is feasible in the min sinceP
S pz

0
S = 1, pz0S � 0 and

P
S pz

0
S 1S = z.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F39/63 (pg.147/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convexity of the Convex Closure

Lemma 14.4.2

f̌(x) = minp24n(x)ES⇠p[f(S)] is convex in [0, 1]V .

Proof.
Let x, y 2 [0, 1]V , 0  �  1, and z = �x+ (1� �)y, then
�f̌(x) + (1� �)f̌(y) = �

X

S

pxSf(S) + (1� �)
X

S

pySf(S) (14.11)

=
X

S

(�pxS + (1� �)pyS)f(S) (14.12)

=
X

S

pz
0

S f(S) � min
p24n(z)

ES⇠p[f(S)] (14.13)

= f̌(z) = f̌(�x+ (1� �)y) (14.14)

Note that pz0S = �pxS + (1� �)pyS and is feasible in the min sinceP
S pz

0
S = 1, pz0S � 0 and

P
S pz

0
S 1S = z.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F39/63 (pg.148/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Def: Convex Envelope of a function

Given any function h : Rn ! R, define new function ȟ : Rn ! R via:

ȟ(x) = sup {g(x) : g is convex & g(y)  h(y), 8y 2 Rn} (14.7)

I.e., (1) ȟ(x) is convex, (2) ȟ(x)  h(x), 8x, and (3) if g(x) is any
convex function having the property that g(x)  h(x), 8x, then
g(x)  ȟ(x).
Alternatively,

ȟ(x) = inf {t : (x, t) 2 convexhull(epigraph(h))} (14.8)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F40/63 (pg.149/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Convex Closure is the Convex Envelope

Lemma 14.4.3

f̌(x) = minp24n(x)ES⇠p[f(S)] is the convex envelope.

Proof.

Suppose 9 a convex f̄ with f̄(1A) = f(A) = f̌(1A), 8A ✓ V and
9x 2 [0, 1]V s.t. f̄(x) > f̌(x).
Define px to be an achiving argmin in f̌(x) = minp24n(x)ES⇠p[f(S)].
Hence, we have x =

P
S pxS1S . Thus

f̌(x) =
X

S

pxSf(S) =
X

S

pxS f̄(1S) (14.15)

< f̄(x) = f̄(
X

S

pxS1S) (14.16)

but this contradicts the convexity of f̄ .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F41/63 (pg.150/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Polymatroid with labeled edge lengths

Recall
f(e|A) = f(A+e)�f(A)

Notice how
submodularity,
f(e|B)  f(e|A) for
A ✓ B, defines the shape
of the polytope.
In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⇢ B.
Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1

e2

f(e1)

f(e1 |e2)

f(e
2)

f(e
2|e

1)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F42/63 (pg.151/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Polymatroid with labeled edge lengths

Recall
f(e|A) = f(A+e)�f(A)

Notice how
submodularity,
f(e|B)  f(e|A) for
A ✓ B, defines the shape
of the polytope.
In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⇢ B.
Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1
e2

e 3

f(e1
|e2

)

f(e1
|e3

)

f(e1
)

f(e
2 |e

1)

f(e
2)

f(e
3)

f(e
3 |e

2)

f(e
2 |e

3)

f(e
3 |e

1)

f(e
3 |{e

1 ,e
2 })

f(e
3 |{e

1 ,e
2 })

f(e
2 |{e

1 ,e
3 })

f(e
2 |{e

1 ,e
3 })

f(e1
|{e2

,e3
})

f(e1
|{e2

,e3
})

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F43/63 (pg.152/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Optimization over Pf

Consider the following optimization. Given w 2 RE ,

maximize w|x (14.17a)
subject to x 2 Pf (14.17b)

Since Pf is down closed, if 9e 2 E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w 2 RE
+.

Due to Theorem ??, any x 2 Pf with x /2 Bf is dominated by
x  y 2 Bf which can only increase w|x  w|y when w 2 RE

+.
Hence, the problem is equivalent to: given w 2 RE

+,

maximize w|x (14.18a)
subject to x 2 Bf (14.18b)

Moreover, we can have w 2 RE if we insist on x 2 Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F44/63 (pg.153/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Optimization over Pf

Consider the following optimization. Given w 2 RE ,

maximize w|x (14.17a)
subject to x 2 Pf (14.17b)

Since Pf is down closed, if 9e 2 E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w 2 RE
+.

Due to Theorem ??, any x 2 Pf with x /2 Bf is dominated by
x  y 2 Bf which can only increase w|x  w|y when w 2 RE

+.
Hence, the problem is equivalent to: given w 2 RE

+,

maximize w|x (14.18a)
subject to x 2 Bf (14.18b)

Moreover, we can have w 2 RE if we insist on x 2 Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F44/63 (pg.154/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Optimization over Pf

Consider the following optimization. Given w 2 RE ,

maximize w|x (14.17a)
subject to x 2 Pf (14.17b)

Since Pf is down closed, if 9e 2 E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w 2 RE

+.

Due to Theorem ??, any x 2 Pf with x /2 Bf is dominated by
x  y 2 Bf which can only increase w|x  w|y when w 2 RE

+.
Hence, the problem is equivalent to: given w 2 RE

+,

maximize w|x (14.18a)
subject to x 2 Bf (14.18b)

Moreover, we can have w 2 RE if we insist on x 2 Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F44/63 (pg.155/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Optimization over Pf

Consider the following optimization. Given w 2 RE ,

maximize w|x (14.17a)
subject to x 2 Pf (14.17b)

Since Pf is down closed, if 9e 2 E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w 2 RE

+.
Due to Theorem ??, any x 2 Pf with x /2 Bf is dominated by
x  y 2 Bf which can only increase w|x  w|y when w 2 RE

+.

Hence, the problem is equivalent to: given w 2 RE
+,

maximize w|x (14.18a)
subject to x 2 Bf (14.18b)

Moreover, we can have w 2 RE if we insist on x 2 Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F44/63 (pg.156/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Optimization over Pf

Consider the following optimization. Given w 2 RE ,

maximize w|x (14.17a)
subject to x 2 Pf (14.17b)

Since Pf is down closed, if 9e 2 E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w 2 RE

+.
Due to Theorem ??, any x 2 Pf with x /2 Bf is dominated by
x  y 2 Bf which can only increase w|x  w|y when w 2 RE

+.
Hence, the problem is equivalent to: given w 2 RE

+,

maximize w|x (14.18a)
subject to x 2 Bf (14.18b)

Moreover, we can have w 2 RE if we insist on x 2 Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F44/63 (pg.157/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Optimization over Pf

Consider the following optimization. Given w 2 RE ,

maximize w|x (14.17a)
subject to x 2 Pf (14.17b)

Since Pf is down closed, if 9e 2 E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w 2 RE

+.
Due to Theorem ??, any x 2 Pf with x /2 Bf is dominated by
x  y 2 Bf which can only increase w|x  w|y when w 2 RE

+.
Hence, the problem is equivalent to: given w 2 RE

+,

maximize w|x (14.18a)
subject to x 2 Bf (14.18b)

Moreover, we can have w 2 RE if we insist on x 2 Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F44/63 (pg.158/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of f

Consider again optimization problem. Given w 2 RE ,

maximize w|x (14.19a)
subject to x 2 Bf (14.19b)

We may consider this optimization problem a function f̆ : RE ! R of
w 2 RE , defined as:

f̆(w) = max(wx : x 2 Bf) (14.20)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F45/63 (pg.159/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of f

Consider again optimization problem. Given w 2 RE ,

maximize w|x (14.19a)
subject to x 2 Bf (14.19b)

We may consider this optimization problem a function f̆ : RE ! R of
w 2 RE , defined as:

f̆(w) = max(wx : x 2 Bf) (14.20)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F45/63 (pg.160/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of f

Consider again optimization problem. Given w 2 RE ,

maximize w|x (14.19a)
subject to x 2 Bf (14.19b)

We may consider this optimization problem a function f̆ : RE ! R of
w 2 RE , defined as:

f̆(w) = max(wx : x 2 Bf) (14.20)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F45/63 (pg.161/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Edmond’s Theorem: The Greedy Algorithm

Edmonds proved that the solution to f̆(w) = max(wx : x 2 Bf) is
solved by the greedy algorithm iff f is submodular.
In particular, sort choose element order (e1, e2, . . . , em) based on
decreasing w,so that w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei}.
Define a vector x⇤ 2 RV where element ei has value
x(ei) = f(ei|Ei�1) for all i 2 V .
Then hw, x⇤i = max(wx : x 2 Bf)

Theorem 14.5.1 (Edmonds)

If f : 2E ! R+ is given, and B is a polytope in RE
+ of the form

B =
�
x 2 RE

+ : x(A)  f(A), 8A ✓ E, x(E) = f(E)

, then the greedy

solution to the problem max(w|x : x 2 P) is 8w optimum if ‌f f is

monotone non-decreasing submodular (i.e., if‌f P is a polymatroid).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F46/63 (pg.162/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).

Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w)

= max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.163/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w)

= max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.164/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w) = max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.165/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w) = max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.166/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w) = max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.167/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w) = max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.168/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

That is, given a submodular function f , a w 2 RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) � w(e2) � · · · � w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w) = max(wx : x 2 Bf) (14.21)

=
mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)x(ei) (14.22)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.23)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.24)

We say that ; , E0 ⇢ E1 ⇢ E2 ⇢ · · · ⇢ Em = E forms a chain based
on w.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F47/63 (pg.169/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf) (14.25)

Therefore, if f is a submodular function, we can write

f̆(w)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.26)

=
mX

i=1

�if(Ei) (14.27)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.

Convex analysis) f̆(w) = max(wx : x 2 P) is always convex in w for
any set P ✓ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F48/63 (pg.170/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf) (14.25)

Therefore, if f is a submodular function, we can write

f̆(w)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.26)

=
mX

i=1

�if(Ei) (14.27)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.
Convex analysis) f̆(w) = max(wx : x 2 P) is always convex in w for
any set P ✓ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F48/63 (pg.171/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf) (14.25)

Therefore, if f is a submodular function, we can write

f̆(w) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.26)

=
mX

i=1

�if(Ei) (14.27)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.
Convex analysis) f̆(w) = max(wx : x 2 P) is always convex in w for
any set P ✓ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F48/63 (pg.172/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf) (14.25)

Therefore, if f is a submodular function, we can write

f̆(w) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.26)

=
mX

i=1

�if(Ei) (14.27)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.
Convex analysis) f̆(w) = max(wx : x 2 P) is always convex in w for
any set P ✓ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F48/63 (pg.173/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf) (14.25)

Therefore, if f is a submodular function, we can write

f̆(w) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.26)

=
mX

i=1

�if(Ei) (14.27)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.

Convex analysis) f̆(w) = max(wx : x 2 P) is always convex in w for
any set P ✓ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F48/63 (pg.174/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x 2 Bf) (14.25)

Therefore, if f is a submodular function, we can write

f̆(w) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.26)

=
mX

i=1

�if(Ei) (14.27)

where �m = w(em) and otherwise �i = w(ei)� w(ei+1), where the
elements are sorted descending according to w as before.
Convex analysis) f̆(w) = max(wx : x 2 P) is always convex in w for
any set P ✓ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F48/63 (pg.175/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of f

Recall, for any such w 2 RE , we have

0

BBB@

w1

w2
...
wn

1

CCCA
=
�
w1 � w2

�
| {z }

�1

0

BBB@

1
0
...
0

1

CCCA
+
�
w2 � w3

�
| {z }

�2

0

BBBBB@

1
1
0
...
0

1

CCCCCA
+

· · ·+
�
wn�1 � wn

�
| {z }

�m�1

0

BBBBB@

1
1
...
1
0

1

CCCCCA
+
�
wm

�
| {z }
�m

0

BBBBB@

1
1
...
1
1

1

CCCCCA
(14.28)

If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last one, �m = wm).
Often, we take w 2 RV

+ or even w 2 [0, 1]V , where �m � 0.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F49/63 (pg.176/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of f

Recall, for any such w 2 RE , we have

0

BBB@

w1

w2
...
wn

1

CCCA
=
�
w1 � w2

�
| {z }

�1

0

BBB@

1
0
...
0

1

CCCA
+
�
w2 � w3

�
| {z }

�2

0

BBBBB@

1
1
0
...
0

1

CCCCCA
+

· · ·+
�
wn�1 � wn

�
| {z }

�m�1

0

BBBBB@

1
1
...
1
0

1

CCCCCA
+
�
wm

�
| {z }
�m

0

BBBBB@

1
1
...
1
1

1

CCCCCA
(14.28)

If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last one, �m = wm).

Often, we take w 2 RV
+ or even w 2 [0, 1]V , where �m � 0.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F49/63 (pg.177/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of f

Recall, for any such w 2 RE , we have

0

BBB@

w1

w2
...
wn

1

CCCA
=
�
w1 � w2

�
| {z }

�1

0

BBB@

1
0
...
0

1

CCCA
+
�
w2 � w3

�
| {z }

�2

0

BBBBB@

1
1
0
...
0

1

CCCCCA
+

· · ·+
�
wn�1 � wn

�
| {z }

�m�1

0

BBBBB@

1
1
...
1
0

1

CCCCCA
+
�
wm

�
| {z }
�m

0

BBBBB@

1
1
...
1
1

1

CCCCCA
(14.28)

If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last one, �m = wm).
Often, we take w 2 RV

+ or even w 2 [0, 1]V , where �m � 0.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F49/63 (pg.178/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of f

Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (14.29)

Note that

1E0 =

0

BBB@

0
0
...
0

1

CCCA
,1E1 =

0

BBBBB@

1
0
0
...
0

1

CCCCCA
, . . . ,1E` =

0

BBBBBBBBBBBBBB@

1
9
>>=

>>;
`⇥1

...
1
0

9
>>>>=

>>>>;

(n� `)⇥0
...
0

1

CCCCCCCCCCCCCCA

, etc.

Hence, from the previous and current slide, we have w =
Pm

i=1 �i1Ei

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F50/63 (pg.179/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of f

Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (14.29)

Note that

1E0 =

0

BBB@

0
0
...
0

1

CCCA
,1E1 =

0

BBBBB@

1
0
0
...
0

1

CCCCCA
, . . . ,1E` =

0

BBBBBBBBBBBBBB@

1
9
>>=

>>;
`⇥1

...
1
0

9
>>>>=

>>>>;

(n� `)⇥0
...
0

1

CCCCCCCCCCCCCCA

, etc.

Hence, from the previous and current slide, we have w =
Pm

i=1 �i1Ei

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F50/63 (pg.180/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of f

Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (14.29)

Note that

1E0 =

0

BBB@

0
0
...
0

1

CCCA
,1E1 =

0

BBBBB@

1
0
0
...
0

1

CCCCCA
, . . . ,1E` =

0

BBBBBBBBBBBBBB@

1
9
>>=

>>;
`⇥1

...
1
0

9
>>>>=

>>>>;

(n� `)⇥0
...
0

1

CCCCCCCCCCCCCCA

, etc.

Hence, from the previous and current slide, we have w =
Pm

i=1 �i1Ei

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F50/63 (pg.181/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .

Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w)

=
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.182/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.

Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w)

=
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.183/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).

This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w)

=
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.184/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.

For any f : 2E ! R, w = 1A, since E|A| =
�
e1, e2, . . . , e|A|

= A:

f̆(w)

=
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.185/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w)

=
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.186/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w) =
mX

i=1

�if(Ei)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.187/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w) =
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.188/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w) =
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.189/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w) =
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|)

= f(A) (14.32)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.190/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f , even when f is not submodular

From the continuous f̆ , we can recover f(A) for any A ✓ V .
Take w = 1A for some A ✓ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) � w(e2) � w(e3) � · · · � w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1| {z }
|A| times

, 0, 0, . . . , 0| {z }
m�|A| times

) (14.30)

so that 1A(i) = 1 if i  |A|, and 1A(i) = 0 otherwise.
For any f : 2E ! R, w = 1A, since E|A| =

�
e1, e2, . . . , e|A|

= A:

f̆(w) =
mX

i=1

�if(Ei) = w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1)f(Ei)

= 1A(m)f(Em) +
m�1X

i=1

(1A(i)� 1A(i+ 1))f(Ei) (14.31)

= (1A(|A|)� 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (14.32)
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F51/63 (pg.191/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f

We can view f̆ : [0, 1]E ! R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).

To summarize, with f̆(1A) =
Pm

i=1 �if(Ei), we have

f̆(1A) = f(A), (14.33)

. . . and when f is submodular, we also have have

f̆(1A) = max {1A|x : x 2 Bf} (14.34)
= max {1A|x : x(B)  f(B), 8B ✓ E} (14.35)

Note when considering only f̆ : [0, 1]E ! R, then any w 2 [0, 1]E is in
positive orthant, and we have

f̆(w) = max {w|x : x 2 Pf} (14.36)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F52/63 (pg.192/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f

We can view f̆ : [0, 1]E ! R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).
To summarize, with f̆(1A) =

Pm
i=1 �if(Ei), we have

f̆(1A) = f(A), (14.33)

. . . and when f is submodular, we also have have

f̆(1A) = max {1A|x : x 2 Bf} (14.34)
= max {1A|x : x(B)  f(B), 8B ✓ E} (14.35)

Note when considering only f̆ : [0, 1]E ! R, then any w 2 [0, 1]E is in
positive orthant, and we have

f̆(w) = max {w|x : x 2 Pf} (14.36)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F52/63 (pg.193/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f

We can view f̆ : [0, 1]E ! R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).
To summarize, with f̆(1A) =

Pm
i=1 �if(Ei), we have

f̆(1A) = f(A), (14.33)

. . . and when f is submodular, we also have have

f̆(1A) = max {1A|x : x 2 Bf} (14.34)
= max {1A|x : x(B)  f(B), 8B ✓ E} (14.35)

Note when considering only f̆ : [0, 1]E ! R, then any w 2 [0, 1]E is in
positive orthant, and we have

f̆(w) = max {w|x : x 2 Pf} (14.36)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F52/63 (pg.194/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

From f̆ back to f

We can view f̆ : [0, 1]E ! R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).
To summarize, with f̆(1A) =

Pm
i=1 �if(Ei), we have

f̆(1A) = f(A), (14.33)

. . . and when f is submodular, we also have have

f̆(1A) = max {1A|x : x 2 Bf} (14.34)
= max {1A|x : x(B)  f(B), 8B ✓ E} (14.35)

Note when considering only f̆ : [0, 1]E ! R, then any w 2 [0, 1]E is in
positive orthant, and we have

f̆(w) = max {w|x : x 2 Pf} (14.36)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F52/63 (pg.195/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of an arbitrary f : 2V ! R

Thus, for any f : 2E ! R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), 8A, in this way where

f̆(w) =
mX

i=1

�if(Ei) (14.37)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) � w(e2) � · · · � w(em), and where

for i 2 {1, . . . ,m}, �i =

(
w(ei)� w(ei+1) if i < m

w(em) if i = m
(14.38)

so that w =
Pm

i=1 �i1Ei .

w =
Pm

i=1 �i1Ei is an interpolation of certain hypercube vertices.
f̆(w) =

Pm
i=1 �if(Ei) is the associated interpolation of the values of f

at sets corresponding to each hypercube vertex.
This extension is called the Lovász extension!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F53/63 (pg.196/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of an arbitrary f : 2V ! R

Thus, for any f : 2E ! R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), 8A, in this way where

f̆(w) =
mX

i=1

�if(Ei) (14.37)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) � w(e2) � · · · � w(em), and where

for i 2 {1, . . . ,m}, �i =

(
w(ei)� w(ei+1) if i < m

w(em) if i = m
(14.38)

so that w =
Pm

i=1 �i1Ei .
w =

Pm
i=1 �i1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
Pm

i=1 �if(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
This extension is called the Lovász extension!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F53/63 (pg.197/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of an arbitrary f : 2V ! R

Thus, for any f : 2E ! R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), 8A, in this way where

f̆(w) =
mX

i=1

�if(Ei) (14.37)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) � w(e2) � · · · � w(em), and where

for i 2 {1, . . . ,m}, �i =

(
w(ei)� w(ei+1) if i < m

w(em) if i = m
(14.38)

so that w =
Pm

i=1 �i1Ei .
w =

Pm
i=1 �i1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
Pm

i=1 �if(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.

This extension is called the Lovász extension!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F53/63 (pg.198/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

An extension of an arbitrary f : 2V ! R

Thus, for any f : 2E ! R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), 8A, in this way where

f̆(w) =
mX

i=1

�if(Ei) (14.37)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) � w(e2) � · · · � w(em), and where

for i 2 {1, . . . ,m}, �i =

(
w(ei)� w(ei+1) if i < m

w(em) if i = m
(14.38)

so that w =
Pm

i=1 �i1Ei .
w =

Pm
i=1 �i1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
Pm

i=1 �if(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
This extension is called the Lovász extension!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F53/63 (pg.199/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̆(w) =
mX

i=1

w(ei)f(ei|Ei�1) (14.39)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.40)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.41)

=
mX

i=1

�if(Ei) (14.42)

So f̆(w) seen either as sum of weighted gain evaluations (Eqn. (14.39)),
or as sum of weighted function evaluations (Eqn. (14.42)).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F54/63 (pg.200/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̆(w) =
mX

i=1

w(ei)f(ei|Ei�1) (14.39)

=
mX

i=1

w(ei)(f(Ei)� f(Ei�1)) (14.40)

= w(em)f(Em) +
m�1X

i=1

(w(ei)� w(ei+1))f(Ei) (14.41)

=
mX

i=1

�if(Ei) (14.42)

So f̆(w) seen either as sum of weighted gain evaluations (Eqn. (14.39)),
or as sum of weighted function evaluations (Eqn. (14.42)).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F54/63 (pg.201/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Summary: comparison of the two extension forms

So if f is submodular, then we can write f̆(w) = max(wx : x 2 Bf)
(which is clearly convex) in the form:

f̆(w) = max(wx : x 2 Bf) =
mX

i=1

�if(Ei) (14.43)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).

On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
mX

i=1

�if(Ei) (14.44)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
In both Eq. (14.43) and Eq. (14.44), we have f̆(1A) = f(A), 8A, but
Eq. (14.44), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F55/63 (pg.202/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Summary: comparison of the two extension forms

So if f is submodular, then we can write f̆(w) = max(wx : x 2 Bf)
(which is clearly convex) in the form:

f̆(w) = max(wx : x 2 Bf) =
mX

i=1

�if(Ei) (14.43)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
mX

i=1

�if(Ei) (14.44)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).

In both Eq. (14.43) and Eq. (14.44), we have f̆(1A) = f(A), 8A, but
Eq. (14.44), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F55/63 (pg.203/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Summary: comparison of the two extension forms

So if f is submodular, then we can write f̆(w) = max(wx : x 2 Bf)
(which is clearly convex) in the form:

f̆(w) = max(wx : x 2 Bf) =
mX

i=1

�if(Ei) (14.43)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
mX

i=1

�if(Ei) (14.44)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
In both Eq. (14.43) and Eq. (14.44), we have f̆(1A) = f(A), 8A, but
Eq. (14.44), might not be convex.

Submodularity is sufficient for convexity, but is it necessary?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F55/63 (pg.204/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Summary: comparison of the two extension forms

So if f is submodular, then we can write f̆(w) = max(wx : x 2 Bf)
(which is clearly convex) in the form:

f̆(w) = max(wx : x 2 Bf) =
mX

i=1

�if(Ei) (14.43)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
mX

i=1

�if(Ei) (14.44)

where w =
Pm

i=1 �i1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) � w(e2) � · · · � w(em).
In both Eq. (14.43) and Eq. (14.44), we have f̆(1A) = f(A), 8A, but
Eq. (14.44), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F55/63 (pg.205/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

The Lovász extension of f : 2E ! R

Lovász showed that if a function f̆(w) defined as in Eqn. (14.37) is
convex, then f must be submodular.

This continuous extension f̆ of f , in any case (f being submodular or
not), is typically called the Lovász extension of f (but also sometimes
called the Choquet integral, or the Lovász-Edmonds extension).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F56/63 (pg.206/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

The Lovász extension of f : 2E ! R

Lovász showed that if a function f̆(w) defined as in Eqn. (14.37) is
convex, then f must be submodular.
This continuous extension f̆ of f , in any case (f being submodular or
not), is typically called the Lovász extension of f (but also sometimes
called the Choquet integral, or the Lovász-Edmonds extension).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F56/63 (pg.207/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function f : 2E ! R is submodular if‌f its Lovász extension f̆ of f is

convex.

Proof.
We’ve already seen that if f is submodular, its extension can be written
via Eqn.(14.37) due to the greedy algorithm, and therefore is also
equivalent to f̆(w) = max {wx : x 2 Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
P

i �if(Ei) of some
function f : 2E ! R is a convex function.
We note that, based on the extension definition, in particular the
definition of the {�i}i, we have that f̆(↵w) = ↵f̆(w) for any ↵ 2 R+.
I.e., f is a positively homogeneous convex function.

. . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F57/63 (pg.208/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function f : 2E ! R is submodular if‌f its Lovász extension f̆ of f is

convex.

Proof.
We’ve already seen that if f is submodular, its extension can be written
via Eqn.(14.37) due to the greedy algorithm, and therefore is also
equivalent to f̆(w) = max {wx : x 2 Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
P

i �if(Ei) of some
function f : 2E ! R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {�i}i, we have that f̆(↵w) = ↵f̆(w) for any ↵ 2 R+.
I.e., f is a positively homogeneous convex function.

. . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F57/63 (pg.209/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function f : 2E ! R is submodular if‌f its Lovász extension f̆ of f is

convex.

Proof.
We’ve already seen that if f is submodular, its extension can be written
via Eqn.(14.37) due to the greedy algorithm, and therefore is also
equivalent to f̆(w) = max {wx : x 2 Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
P

i �if(Ei) of some
function f : 2E ! R is a convex function.
We note that, based on the extension definition, in particular the
definition of the {�i}i, we have that f̆(↵w) = ↵f̆(w) for any ↵ 2 R+.
I.e., f is a positively homogeneous convex function.

. . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F57/63 (pg.210/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ✓ E.

Now, given A,B ✓ E, we will show that
f̆(1A + 1B) = f̆(1A[B + 1A\B) (14.45)

= f(A [B) + f(A \B). (14.46)

Let C = A \B, order E based on decreasing w = 1A + 1B so that
w = (w(e1), w(e2), . . . , w(em)) (14.47)

= (2, 2, . . . , 2| {z }
i2C

, 1, 1, . . . , 1| {z }
i2A4B

, 0, 0, . . . , 0| {z }
i2E\(A[B)

) (14.48)

Then, considering f̆(w) =
P

i �if(Ei), we have �|C| = 1, �|A[B| = 1,
and �i = 0 for i /2 {|C|, |A [B|}.
But then E|C| = A \B and E|A[B| = A [B. Therefore,
f̆(w) = f̆(1A + 1B) = f(A \B) + f(A [B).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F58/63 (pg.211/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ✓ E.
Now, given A,B ✓ E, we will show that

f̆(1A + 1B) = f̆(1A[B + 1A\B) (14.45)
= f(A [B) + f(A \B). (14.46)

Let C = A \B, order E based on decreasing w = 1A + 1B so that
w = (w(e1), w(e2), . . . , w(em)) (14.47)

= (2, 2, . . . , 2| {z }
i2C

, 1, 1, . . . , 1| {z }
i2A4B

, 0, 0, . . . , 0| {z }
i2E\(A[B)

) (14.48)

Then, considering f̆(w) =
P

i �if(Ei), we have �|C| = 1, �|A[B| = 1,
and �i = 0 for i /2 {|C|, |A [B|}.
But then E|C| = A \B and E|A[B| = A [B. Therefore,
f̆(w) = f̆(1A + 1B) = f(A \B) + f(A [B).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F58/63 (pg.212/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ✓ E.
Now, given A,B ✓ E, we will show that

f̆(1A + 1B) = f̆(1A[B + 1A\B) (14.45)
= f(A [B) + f(A \B). (14.46)

Let C = A \B, order E based on decreasing w = 1A + 1B so that
w = (w(e1), w(e2), . . . , w(em)) (14.47)

= (2, 2, . . . , 2| {z }
i2C

, 1, 1, . . . , 1| {z }
i2A4B

, 0, 0, . . . , 0| {z }
i2E\(A[B)

) (14.48)

Then, considering f̆(w) =
P

i �if(Ei), we have �|C| = 1, �|A[B| = 1,
and �i = 0 for i /2 {|C|, |A [B|}.
But then E|C| = A \B and E|A[B| = A [B. Therefore,
f̆(w) = f̆(1A + 1B) = f(A \B) + f(A [B).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F58/63 (pg.213/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ✓ E.
Now, given A,B ✓ E, we will show that

f̆(1A + 1B) = f̆(1A[B + 1A\B) (14.45)
= f(A [B) + f(A \B). (14.46)

Let C = A \B, order E based on decreasing w = 1A + 1B so that
w = (w(e1), w(e2), . . . , w(em)) (14.47)

= (2, 2, . . . , 2| {z }
i2C

, 1, 1, . . . , 1| {z }
i2A4B

, 0, 0, . . . , 0| {z }
i2E\(A[B)

) (14.48)

Then, considering f̆(w) =
P

i �if(Ei), we have �|C| = 1, �|A[B| = 1,
and �i = 0 for i /2 {|C|, |A [B|}.

But then E|C| = A \B and E|A[B| = A [B. Therefore,
f̆(w) = f̆(1A + 1B) = f(A \B) + f(A [B).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F58/63 (pg.214/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ✓ E.
Now, given A,B ✓ E, we will show that

f̆(1A + 1B) = f̆(1A[B + 1A\B) (14.45)
= f(A [B) + f(A \B). (14.46)

Let C = A \B, order E based on decreasing w = 1A + 1B so that
w = (w(e1), w(e2), . . . , w(em)) (14.47)

= (2, 2, . . . , 2| {z }
i2C

, 1, 1, . . . , 1| {z }
i2A4B

, 0, 0, . . . , 0| {z }
i2E\(A[B)

) (14.48)

Then, considering f̆(w) =
P

i �if(Ei), we have �|C| = 1, �|A[B| = 1,
and �i = 0 for i /2 {|C|, |A [B|}.
But then E|C| = A \B and E|A[B| = A [B. Therefore,
f̆(w) = f̆(1A + 1B) = f(A \B) + f(A [B).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F58/63 (pg.215/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ✓ E,

0.5[f(A \B) + f(A [B)]

= 0.5[f̆(1A + 1B)] (14.49)

= f̆(0.51A + 0.51B) (14.50)

 0.5f̆(1A) + 0.5f̆(1B) (14.51)
= 0.5(f(A) + f(B))

(14.52)

Thus, we have shown that for any A,B ✓ E,

f(A [B) + f(A \B)  f(A) + f(B) (14.53)

so f must be submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F59/63 (pg.216/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ✓ E,

0.5[f(A \B) + f(A [B)] = 0.5[f̆(1A + 1B)] (14.49)

= f̆(0.51A + 0.51B) (14.50)

 0.5f̆(1A) + 0.5f̆(1B) (14.51)
= 0.5(f(A) + f(B))

(14.52)

Thus, we have shown that for any A,B ✓ E,

f(A [B) + f(A \B)  f(A) + f(B) (14.53)

so f must be submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F59/63 (pg.217/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ✓ E,

0.5[f(A \B) + f(A [B)] = 0.5[f̆(1A + 1B)] (14.49)

= f̆(0.51A + 0.51B) (14.50)

 0.5f̆(1A) + 0.5f̆(1B) (14.51)
= 0.5(f(A) + f(B))

(14.52)

Thus, we have shown that for any A,B ✓ E,

f(A [B) + f(A \B)  f(A) + f(B) (14.53)

so f must be submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F59/63 (pg.218/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ✓ E,

0.5[f(A \B) + f(A [B)] = 0.5[f̆(1A + 1B)] (14.49)

= f̆(0.51A + 0.51B) (14.50)

 0.5f̆(1A) + 0.5f̆(1B) (14.51)

= 0.5(f(A) + f(B))

(14.52)

Thus, we have shown that for any A,B ✓ E,

f(A [B) + f(A \B)  f(A) + f(B) (14.53)

so f must be submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F59/63 (pg.219/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ✓ E,

0.5[f(A \B) + f(A [B)] = 0.5[f̆(1A + 1B)] (14.49)

= f̆(0.51A + 0.51B) (14.50)

 0.5f̆(1A) + 0.5f̆(1B) (14.51)
= 0.5(f(A) + f(B)) (14.52)

Thus, we have shown that for any A,B ✓ E,

f(A [B) + f(A \B)  f(A) + f(B) (14.53)

so f must be submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F59/63 (pg.220/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ✓ E,

0.5[f(A \B) + f(A [B)] = 0.5[f̆(1A + 1B)] (14.49)

= f̆(0.51A + 0.51B) (14.50)

 0.5f̆(1A) + 0.5f̆(1B) (14.51)
= 0.5(f(A) + f(B)) (14.52)

Thus, we have shown that for any A,B ✓ E,

f(A [B) + f(A \B)  f(A) + f(B) (14.53)

so f must be submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F59/63 (pg.221/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

The above theorem showed that the Lovász extension is convex iff f is
submodular.

Our next theorem shows that the Lovász extension coincides precisely
with the convex closure iff f is submodular.
I.e., not only is the Lovász extension convex for f submodular, it is the
convex closure when f is convex.
Hence, convex closure is easy to evaluate when f is submodular and is
this particular form iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F60/63 (pg.222/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

The above theorem showed that the Lovász extension is convex iff f is
submodular.
Our next theorem shows that the Lovász extension coincides precisely
with the convex closure iff f is submodular.

I.e., not only is the Lovász extension convex for f submodular, it is the
convex closure when f is convex.
Hence, convex closure is easy to evaluate when f is submodular and is
this particular form iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F60/63 (pg.223/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

The above theorem showed that the Lovász extension is convex iff f is
submodular.
Our next theorem shows that the Lovász extension coincides precisely
with the convex closure iff f is submodular.
I.e., not only is the Lovász extension convex for f submodular, it is the
convex closure when f is convex.

Hence, convex closure is easy to evaluate when f is submodular and is
this particular form iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F60/63 (pg.224/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

The above theorem showed that the Lovász extension is convex iff f is
submodular.
Our next theorem shows that the Lovász extension coincides precisely
with the convex closure iff f is submodular.
I.e., not only is the Lovász extension convex for f submodular, it is the
convex closure when f is convex.
Hence, convex closure is easy to evaluate when f is submodular and is
this particular form iff f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F60/63 (pg.225/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let f̆(w) = max(wx : x 2 Bf) =
Pm

i=1 �if(Ei) be the Lovász extension

and f̌(x) = minp24n(x)ES⇠p[f(S)] be the convex closure. Then f̆ and f̌
coincide iff f is submodular.

Proof.
Assume f is submodular.

Given x, let px be an achieving argmin in f̌(x) that also maximizesP
S pxS |S|2.

Suppose 9A,B ✓ V that are crossing (i.e., A 6✓ B, B 6✓ A) and
positive and w.l.o.g., pxA � pxB > 0.
Then we may update px as follows:

p̄xA pxA � pxB p̄xB pxB � pxB (14.54)
p̄xA[B pxA[B + pxB p̄xA\B pxA\B + pxB (14.55)

and by submodularity, this does not increase
P

S pxSf(S).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F61/63 (pg.226/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let f̆(w) = max(wx : x 2 Bf) =
Pm

i=1 �if(Ei) be the Lovász extension

and f̌(x) = minp24n(x)ES⇠p[f(S)] be the convex closure. Then f̆ and f̌
coincide iff f is submodular.

Proof.
Assume f is submodular.
Given x, let px be an achieving argmin in f̌(x) that also maximizesP

S pxS |S|2.

Suppose 9A,B ✓ V that are crossing (i.e., A 6✓ B, B 6✓ A) and
positive and w.l.o.g., pxA � pxB > 0.
Then we may update px as follows:

p̄xA pxA � pxB p̄xB pxB � pxB (14.54)
p̄xA[B pxA[B + pxB p̄xA\B pxA\B + pxB (14.55)

and by submodularity, this does not increase
P

S pxSf(S).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F61/63 (pg.227/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let f̆(w) = max(wx : x 2 Bf) =
Pm

i=1 �if(Ei) be the Lovász extension

and f̌(x) = minp24n(x)ES⇠p[f(S)] be the convex closure. Then f̆ and f̌
coincide iff f is submodular.

Proof.
Assume f is submodular.
Given x, let px be an achieving argmin in f̌(x) that also maximizesP

S pxS |S|2.
Suppose 9A,B ✓ V that are crossing (i.e., A 6✓ B, B 6✓ A) and
positive and w.l.o.g., pxA � pxB > 0.

Then we may update px as follows:
p̄xA pxA � pxB p̄xB pxB � pxB (14.54)

p̄xA[B pxA[B + pxB p̄xA\B pxA\B + pxB (14.55)
and by submodularity, this does not increase

P
S pxSf(S).

. . .
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F61/63 (pg.228/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let f̆(w) = max(wx : x 2 Bf) =
Pm

i=1 �if(Ei) be the Lovász extension

and f̌(x) = minp24n(x)ES⇠p[f(S)] be the convex closure. Then f̆ and f̌
coincide iff f is submodular.

Proof.
Assume f is submodular.
Given x, let px be an achieving argmin in f̌(x) that also maximizesP

S pxS |S|2.
Suppose 9A,B ✓ V that are crossing (i.e., A 6✓ B, B 6✓ A) and
positive and w.l.o.g., pxA � pxB > 0.
Then we may update px as follows:

p̄xA pxA � pxB p̄xB pxB � pxB (14.54)
p̄xA[B pxA[B + pxB p̄xA\B pxA\B + pxB (14.55)

and by submodularity, this does not increase
P

S pxSf(S).
. . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F61/63 (pg.229/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

This does increase
P

S pxS |S|2 however since

|A [B|2 + |A \B|2 = (|A|+ |B \A|)2 + (|B|� |B \A|)2 (14.56)

= |A|2 + |B|2 + 2|B \A|(|A|� |B|+ |B \A|)
(14.57)

� |A|2 + |B|2 (14.58)

Contradiction! Hence, there can be no crossing sets A,B and we must
have, for any A,B with pxA > 0 and pxB > 0 either A ⇢ B or B ⇢ A.
Hence, the sets {A ✓ V : pxA > 0} form a chain and can be as large
only as size n = |V |.
This is the same chain that defines the Lovász extension f̆(x), namely
; = E0 ✓ E1 ✓ E2 ⇢ . . . where Ei = {e1, e2, . . . , ei} and ei is orderd
so that x(e1) � x(e2) � · · · � x(en).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F62/63 (pg.230/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

This does increase
P

S pxS |S|2 however since

|A [B|2 + |A \B|2 = (|A|+ |B \A|)2 + (|B|� |B \A|)2 (14.56)

= |A|2 + |B|2 + 2|B \A|(|A|� |B|+ |B \A|)
(14.57)

� |A|2 + |B|2 (14.58)

Contradiction! Hence, there can be no crossing sets A,B and we must
have, for any A,B with pxA > 0 and pxB > 0 either A ⇢ B or B ⇢ A.

Hence, the sets {A ✓ V : pxA > 0} form a chain and can be as large
only as size n = |V |.
This is the same chain that defines the Lovász extension f̆(x), namely
; = E0 ✓ E1 ✓ E2 ⇢ . . . where Ei = {e1, e2, . . . , ei} and ei is orderd
so that x(e1) � x(e2) � · · · � x(en).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F62/63 (pg.231/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

This does increase
P

S pxS |S|2 however since

|A [B|2 + |A \B|2 = (|A|+ |B \A|)2 + (|B|� |B \A|)2 (14.56)

= |A|2 + |B|2 + 2|B \A|(|A|� |B|+ |B \A|)
(14.57)

� |A|2 + |B|2 (14.58)

Contradiction! Hence, there can be no crossing sets A,B and we must
have, for any A,B with pxA > 0 and pxB > 0 either A ⇢ B or B ⇢ A.
Hence, the sets {A ✓ V : pxA > 0} form a chain and can be as large
only as size n = |V |.

This is the same chain that defines the Lovász extension f̆(x), namely
; = E0 ✓ E1 ✓ E2 ⇢ . . . where Ei = {e1, e2, . . . , ei} and ei is orderd
so that x(e1) � x(e2) � · · · � x(en).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F62/63 (pg.232/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

This does increase
P

S pxS |S|2 however since

|A [B|2 + |A \B|2 = (|A|+ |B \A|)2 + (|B|� |B \A|)2 (14.56)

= |A|2 + |B|2 + 2|B \A|(|A|� |B|+ |B \A|)
(14.57)

� |A|2 + |B|2 (14.58)

Contradiction! Hence, there can be no crossing sets A,B and we must
have, for any A,B with pxA > 0 and pxB > 0 either A ⇢ B or B ⇢ A.
Hence, the sets {A ✓ V : pxA > 0} form a chain and can be as large
only as size n = |V |.
This is the same chain that defines the Lovász extension f̆(x), namely
; = E0 ✓ E1 ✓ E2 ⇢ . . . where Ei = {e1, e2, . . . , ei} and ei is orderd
so that x(e1) � x(e2) � · · · � x(en).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F62/63 (pg.233/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.
Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.

Since f is not submodular, 9S and i, j /2 S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.
Consider x = 1S + 1

21{i,j}.

Then f̆(x) = 1
2f(S) +

1
2f(S + i+ j) and px is feasible for f̌ with

pxS = 1/2 and pxS+i+j = 1/2.
An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.
This gives

f̌(x)  1

2
[f(S + i) + f(S + j)] < f̆(x) (14.59)

meaning f̌(x) 6= f̆(x).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F63/63 (pg.234/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.
Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.
Since f is not submodular, 9S and i, j /2 S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.

Consider x = 1S + 1
21{i,j}.

Then f̆(x) = 1
2f(S) +

1
2f(S + i+ j) and px is feasible for f̌ with

pxS = 1/2 and pxS+i+j = 1/2.
An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.
This gives

f̌(x)  1

2
[f(S + i) + f(S + j)] < f̆(x) (14.59)

meaning f̌(x) 6= f̆(x).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F63/63 (pg.235/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.
Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.
Since f is not submodular, 9S and i, j /2 S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.
Consider x = 1S + 1

21{i,j}.

Then f̆(x) = 1
2f(S) +

1
2f(S + i+ j) and px is feasible for f̌ with

pxS = 1/2 and pxS+i+j = 1/2.
An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.
This gives

f̌(x)  1

2
[f(S + i) + f(S + j)] < f̆(x) (14.59)

meaning f̌(x) 6= f̆(x).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F63/63 (pg.236/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.
Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.
Since f is not submodular, 9S and i, j /2 S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.
Consider x = 1S + 1

21{i,j}.

Then f̆(x) = 1
2f(S) +

1
2f(S + i+ j) and px is feasible for f̌ with

pxS = 1/2 and pxS+i+j = 1/2.

An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.
This gives

f̌(x)  1

2
[f(S + i) + f(S + j)] < f̆(x) (14.59)

meaning f̌(x) 6= f̆(x).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F63/63 (pg.237/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.
Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.
Since f is not submodular, 9S and i, j /2 S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.
Consider x = 1S + 1

21{i,j}.

Then f̆(x) = 1
2f(S) +

1
2f(S + i+ j) and px is feasible for f̌ with

pxS = 1/2 and pxS+i+j = 1/2.
An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.

This gives

f̌(x)  1

2
[f(S + i) + f(S + j)] < f̆(x) (14.59)

meaning f̌(x) 6= f̆(x).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F63/63 (pg.238/239)

Submodular Max w. Other Constraints Cont. Extensions Lovász extension

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.
Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.
Since f is not submodular, 9S and i, j /2 S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.
Consider x = 1S + 1

21{i,j}.

Then f̆(x) = 1
2f(S) +

1
2f(S + i+ j) and px is feasible for f̌ with

pxS = 1/2 and pxS+i+j = 1/2.
An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.
This gives

f̌(x)  1

2
[f(S + i) + f(S + j)] < f̆(x) (14.59)

meaning f̌(x) 6= f̆(x).
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 14 - May 14th, 2018 F63/63 (pg.239/239)

