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Cumulative Outstanding Reading

Read chapter 1 from Fujishige's book.
Read chapter 2 from Fujishige's book.
Read chapter 3 from Fujishige's book.
Read chapter 4 from Fujishige’s book.
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Announcements, Assignments, and Reminders

@ Next homework will be posted soon.

@ As always, if you have any questions about anything, please ask then

via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule

time to chat).

F3/70 (pg.3/265)
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Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, &
Basic Definitions,

@ L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples

@ L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

@ L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

@ L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

@ L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids

@ 18(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.

@ L9(4/23): Polyhedra, Matroid Polytopes,
Matroids — Polymatroids

@ L10(4/29): Matroids — Polymatroids,
Polymatroids, Polymatroids and Greedy,

@ L11(4/30): Polymatroids, Polymatroids
and Greedy

@ L12(5/2): Polymatroids and Greedy,
Extreme Points, Cardinality Constrained
Maximization

L13(5/7): Constrained Submodular
Maximization

L14(5/9): Submodular Max w. Other
Constraints, Cont. Extensions, Lovasz
Extension

@ L15(5/14): Cont. Extensions, Lovasz
Extension, Choquet Integration, Properties
L16(5/16):

L17(5/21):

L18(5/23):

L—(5/28): Memorial Day (holiday)
L19(5/30):

L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Continuous Extensions of Discrete Set Functions

o Any function f: 2" — R (equivalently f : {0,1}*— R) can be
extended to a continuous function in the sense f ¢ [0,1]V — R.

o This may be tight (i.e., f(14) = f(A) for all A). l.e., the extension f
coincides with f at the hypercube vertices.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer'11l). Example n =1,

Concave Extensions Discrete Function Convex Exten5|ons

f:{0,1}V =R

ﬂﬂ }ﬂMM

@ Since there are an exponential number of vertices {0, 1}", impor
questions regarding such extensions is:
@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
© When are they useful for something practical?
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Def: Convex Envelope of a function

@ Given any function h : R™ — R, define new function h:R" — R via:

h(z) = sup {g(z) : g is convex & g(y) < h(y),Yy € R"}  (15.6)
Yy € 0, = IR
o le, (1) h(x) is convex, (2) h(z) < h(x),Vz, and (3) if g(z) is any
convex function having the property that g(x) < h(z),Vz, then
g(z) < h(z).
o Alternatively,

h(z) = inf {t : (z,t) € convexhull(epigraph(h))} (15.7)

epi(lz)(l,)

F6/70 (pg.6/265)
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Convex Closure of Discrete Set Functions

e Given set function f: 2" — R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f:[0,1]V =R, as

f(z) = min Zpsf (15.1)

An
PEA™(2) Sy

where A" (z) =
{p c R2" . ESQVPS =1, ps>0VSCV, & ng/psls = x}
(0 u 5(“"'%) W
.e(cw) Er},jsj
Ve (x)

l’:‘() :[¢ + ﬁ, '.lév,b + ﬁv’ J"”)

7e) )t (P L
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Convex Closure of Discrete Set Functions

o Given set function f : 2"V — R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f:[0,1]V = R, as

f(z) = min Zpsf (15.1)
pEA™@) Sy
where A™(z) =
{P ERY Y gcyps=1,ps > O0VS CV, & Y gy psls = x}
@ Hence, A"(x) is the set of all probability distributions over the 2"

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to z, i.e., for any

pE A”(:L’), Es~p(1s) = zsgvpsls = .
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Convex Closure of Discrete Set Functions

o Given set function f : 2"V — R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f:[0,1]V = R, as

f(x) = perglnn S;Vpsf (15.1)
where A™(z) =
{P ERY Y gcyps=1,ps > O0VS CV, & Y gy psls = x}
@ Hence, A"(x) is the set of all probability distributions over the 2"

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to z, i.e., for any

p € A™(x), Es~p(ls) = Y gcy psls = .
@ Hence, f(x) = minpean(z) Esaplf(5)]
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Convex Closure of Discrete Set Functions

o Given set function f : 2"V — R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f:[0,1]V = R, as

flz) = perglnn b;/psf (15.1)
where A" (z) =
{p ERY : Y gcyps=1,ps>0VS CV, & Y 5oy psls = a:}
@ Hence, A"(x) is the set of all probability distributions over the 2"

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to z, i.e., for any

p € A"(x), Esp(1s) = ngvpsls =z

@ Hence, f(x) = minpecan(z) Es~plf(5)]

@ Note, this is not (necessarily) the Lovasz extension, rather this is a
convex extension.
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Convex Closure of Discrete Set Functions

e Given, f(z) = min,ean () Es~p[f(S)], there are several things we'd
like to show:
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Convex Closure of Discrete Set Functions

e Given, f(z) = min,ean () Es~p[f(S)], there are several things we'd
like to show:
@ That f is tight (i.e., VS C V, we have f(15) = f(S)).
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Convex Closure of Discrete Set Functions

e Given, f(z) = min,ean () Es~p[f(S)], there are several things we'd
like to show:
Q That [ is tight (i.e., VS C V, we have f(1s) = f(59)).
@ That f is convex (and consequently, that any arbitrary set function has
a tight convex extension).
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Convex Closure of Discrete Set Functions

e Given, f(z) = min,ean () Es~p[f(S)], there are several things we'd
like to show:
@ That f is tight (i.e., VS C V, we have f(15) = f(5)).
@ That f is convex (and consequently, that any arbitrary set function has
a tight convex extension).
© That the convex closure f is the convex envelope of the function defined
only on the hypercube vertices, and that takes value f(.5) at 1.
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Convex Closure of Discrete Set Functions

e Given, f(z) = min,ean () Es~p[f(S)], there are several things we'd
like to show:

@ That f is tight (i.e., VS C V, we have f(15) = f(5)).

@ That f is convex (and consequently, that any arbitrary set function has
a tight convex extension).

© That the convex closure f is the convex envelope of the function defined
only on the hypercube vertices, and that takes value f(5) at 1.

@ The definition of the Lovasz extension of a set function, and that f is
the Lovasz extension iff f is submodular.
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Tightness of Convex Closure

VA CV, we have f(14) = f(A).

Proof.

@ Define p® to be an achiving argmin in f(z) = minyean (z) Es~p[f(5)]-

pre acps £ (#61]
e (x)
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Tightness of Convex Closure

Lemma 15.3.1

VA CV, we have f(14) = f(A).

o Define p® to be an achiving argmin in f(z) = mingean (z) Es~p[f(5)]-
@ Take an arbitrary A, so that 14 = > oy péA 1g é@/
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Tightness of Convex Closure

VA CV, we have f(14) = f(A).

Proof.

o Define p® to be an achiving argmin in f(z) = mingean (z) Es~p[f(5)].

o Take an arbitrary A, so that 14 = ngvpéAls =14
@ Suppose 35" with S"\ A # 0 having pé‘,“ > 0. This would mean, for
any v € S’ \ A, that (ZspéAls) (v) > 0, a contradiction.

A < Ty =0

T
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Tightness of Convex Closure

Lemma 15.3.1
VA CV, we have f(14) = f(A).

Proof.
o Define p® to be an achiving argmin in f(z) = mingean (z) Es~p[f(5)].

@ Take an arbitrary A, so that 14 = ngvpéAls =1y4.
@ Suppose 35’ with S’ \ A # 0 having pé‘,“ > 0. This would mean, for
any v € 5"\ A4, that (Zspéf‘lg) (v) > 0, a contradiction.

@ Suppose 35 s.t. A\ S’ # () with péﬁ‘ > 0.

F9/70 (pg.19/265)
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Tightness of Convex Closure

VA CV, we have f(14) = f(A). _E_(,_(lg [£6)

Proof.

o Define p® to be an achiving argmin in f(z) = mingean (z) Es~p[f(5)].
@ Take an arbitrary A, so that 14 = ngvpéAls =14.
@ Suppose 35’ with S’ \ A # 0 having p;‘,“ > 0. This would mean, for

any v € 5"\ A4, that (Zspéf‘lg) (v) >0, a contradict;on.

: o= |.
@ Suppose 35" s.t. A\ S’ # O with péé > 0. >C C?Vp[ 5= I /,4.
@ Then, for any v € A\ S’, consider below leading tG a contradiction

pS/]_S/ —+ Z pSlS = ( Z ])S]_S) (/U) <1 (152)
W TR 7 R
s —— \A’( ’

can't sumto 1
l.e., v € A so it must get value 1, but since v ¢ S’, v is deficient.
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Convexity of the Convex Closure

Lemma 15.3.2
fz) = min,ean (z) Es~p[f(S)] is convex in [0, 1]v.

Proof.
e Let z,y € [0, 1}‘/ ()</\<1 andz—)\:c+(1— A)yn then
M(@)+(1-2) —/\Zpsf Zpsf (15.3)
e 27 —Z Apg + (1= A )f(S) (15.4)
O “
» :Zps_f (8)> min Es,[f(S)] (15.5)
P (’: z © peAN(2)
L Vo =)= FOw+ (-2 (15.6)
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c jons
[RRL RN

Convexity of the Convex Closure

Lemma 15.3.2

f(z) = min,ean (z) Es~p[f(S)] is convex in [0, 1]v.

o Let 7,y €[0,1]V,0<A<1,and z= Az + (1 — \)y, then
M(@) + 1 =NFy) =23 _psf(S)+ (1 =) psf(S) (153)
S S

= O+ (1= NP F(S) (15.4)
S|

=Y " pEf(S)> min Es,[f(S)] (15.5)
S PEA(z)
= f(z) = fOx + (1= Ny) (15.6)
o Note that p% = Ap% + (1 — A\)p% and is feasible in the min since
Y505 =1,p5 >0and Y gpsls =2
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Cont. Extensions
[RRRARI

Def: Convex Envelope of a function

e Given any function h : R® — R, define new function » : R" — R via:

h(z) = sup{g(z) : g is convex & ¢(y) < h(y),Vy € R"}  (15.6)
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Cont. Extensions
[RRARA |

Convex Closure is the Convex Envelope

Lemma 15.3.3

fz) = ming,ean (z) Es~p[f(S)] is the convex envelope.

Proof.

o Suppose 3 a convex f with (f(14) = f(A4) = f(14), VA C V and
3z €[0,1]V st. f(z) > f(z).

o Define p” to be an achiving argmin in f(z) = minyean (z) Es~p[f(5)].
Hence, we have = ) ¢ p&ls. Thus

fx) = pEfS) =) _rif(Ls) (15.7)
S S
< f@) = FQ_péls) (15.8)
S

but this contradicts the convexity of f.
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Lovész extension
[ARRRRRRARRARRNARRRARE]

Polymatroid with labeled edge lengths

o Recall
fe]A) = f(A+e)—f(A
@ Notice how
submodularity,
F(elB) < (el ) for
A C B, defines the shape
of the polytope.

) 92 \ f(e le,)

o In fact, we have ’;;”
strictness here g
F(elB) < (el ) for
A C B.
@ Also, consider how the |
greedy algorithm '
proceeds along the edges f(e1) e_l

of the polytope.
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Polymatroid with labeled edge lengths

o Recall
fle|A) = f(A+e)—f(A)
@ Notice how
submodularity,
F(elB) < f(e|A) for
A C B, defines the shape &
of the polytope.

@ In fact, we have
strictness here
F(elB) < fe|4) for
ACB.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

(‘sl°a)
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Lovész extension

Optimization over P

@ Consider the following optimization. Given w € RE,

maximize wlx (15.9a)
subject to  x € Py (15.9b)
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Lovész extension

Optimization over P

o Consider the following optimization. Given w € R

maximize wlz (15.9a)
subject to x € Py (15.9b)

@ Since Py is down closed, if de € E with w(e) < 0 then the solution
above is unboundedly large.
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Lovész extension

Optimization over P

o Consider the following optimization. Given w € R

maximize wlz (15.9a)
subject to x € Py (15.9b)

@ Since Py is down closed, if de € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € RE.
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Lovasz n
(REARRRARRRRRRRARRRARE!

Optimization over P

o Consider the following optimization. Given w € R

maximize wlz (15.9a)
subject to x € Py (15.9b)

@ Since Py is down closed, if de € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € RE.
@ Due toany x € Py with « ¢ By is dominated by

x <y € By which can only increase wTz < wTy when w € }Rf.
A\ o

PYOre AU A
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Lovasz n
(RLARRRRRRRRRRRARRRARE

Optimization over P

o Consider the following optimization. Given w € R

maximize wlz (15.9a)
subject to x € Py (15.9b)

@ Since Py is down closed, if de € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € RE.

@ Due to Theorem 77, any x € Py with x ¢ By is dominated by
z <y € By which can only increase wTz < wTy when w € R¥.

@ Hence, the problem is equivalent to: given w € RY,

maximize wlx (15.10a)
subject to x € By (15.10b)
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Lovasz n
(RLARRRRRRRRRRRARRRARE

Optimization over P

o Consider the following optimization. Given w € R

maximize wlz (15.9a)
subject to x € Py (15.9b)

@ Since Py is down closed, if de € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € RE.

@ Due to Theorem 77, any x € Py with x ¢ By is dominated by
z <y € By which can only increase wTz < wTy when w € R¥.

@ Hence, the problem is equivalent to: given w € REZ,

maximize wlx (15.10a)
subject to x € By (15.10b)

@ Moreover, we can have w € RE if we insist on z € By.
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Lovész extension

A continuous extension of f

e Consider again optimization problem. Given w € R¥,

maximize wTle (15.11a)
subject to r € By (15.11b)
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Lovasz n
(RRLRRRRRRRRRRRARRRARE!

A continuous extension of f

o Consider again optimization problem. Given w € R¥,

maximize wlz (15.11a)
subject to x € By (15.11b)

@ We may consider this optimization problem a function f: RF — R of
w € R¥, defined as:

v

f(w) = max(wzx : x € By) (15.12)
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A continuous extension of f

o Consider again optimization problem. Given w € R¥,

maximize wlz (15.11a)
subject to x € By (15.11b)

o We may consider this optimization problem a function f : RF — R of
w € R, defined as:

f(w) = max(wz : = € By) (15.12)
o - 'FV("") D Crmvg N o e ow- [in Padttns WX
@ Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond'’s
greedy algorithm.
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L
(RNR (NRRRRRARRARNAN]

Edmond’s Theorem: The Greedy Algorithm

o Edmonds proved that the solution t0 f(w) = max(wz : € By) is
solved by the greedy algorithm iff f is submodular.

@ In particular, sort choose element order (e, ea,..., e, ) based on
decreasing w,so that w(e;) > w(ez) > -+ > w(en).

o Define the chain with ith element E; = {e1,€e2,...,€;}.

@ Define a vector z* € R where element ¢; has value ¢
z(e;) = f(ei|Bi—1) foralli e V. p tI }r/rv Ps

@ Then (w,z*) = max(wz : € By) "K”W{_,l'l?—e T gl

Theorem 15.4.1 (Edmonds)

If f:2F — R, is given, and B is a polytope in Rf of the form
B={zeR¥:2(A) < f(A),YAC E,z(E) = f(E)}, then the greedy
solution to the problem max(w'x : z € P) is Yw optimum Iff f is
monotone non-decreasing submodular (i.e., iff P is a polymatroid).
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A continuous extension of submodular f

@ That is, given a submodular function f, a w € R¥, choose element
order (e, ea,...,e,) based on decreasing w,so that
w(er) > wlez) > - > wlen).
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A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, choose element
order (e, eg,...,ey) based on decreasing w,so that
w(er) > wlez) > - > wlem).

o Define the chain with it element E; = {e1,e,...,¢;} , we have

f(w)
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Lovasz n
(REARL ERRRRRRRRARRRARE!

A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, choose element
order (e, eg,...,ey) based on decreasing w,so that
wler) > wlez) > -+ > wlem).

o Define the chain with it element E; = {e1,e,...,¢;} , we have

flw) = max(wz : 2 € By) (15.13)
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A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, choose element

order (e, eg,...,ey) based on decreasing w,so that
wler) > wlez) > -+ > wlem).
o Define the chain with it element E; = {e1,e,...,¢;} , we have
flw) = max(wz : 2 € By) (15.13)
m m
= Zw( i) f(ei|Eioq) Zw (e;)x(e;) (15.14)
i=1 i=1
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A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, choose element

order (e, eg,...,ey) based on decreasing w,so that
w(er) > wlez) > - > wlem).
o Define the chain with it element E; = {e1,e,...,¢;} , we have
flw) = max(wz : 2 € By) (15.13)
= wle) fleilBisn) =Y wles)z(e;) (15.14)
i=1 i=1
=) _w(e)(f(Ei) — f(Ei-1)) (15.15)
i=1
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Lovész extension
(RRRR [RERRRRANRRARN!

A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, choose element
order (e, eg,...,ey) based on decreasing w,so that
wler) > wlez) > -+ > wlem).

o Define the chain with it element E; = {e1,e,...,¢;} , we have

f(w) = max(wx : x € By) (15.13)
= wle) fleilBisn) =Y wles)z(e;) (15.14)
i=1 i=1
= Z w(e;)(f(E;) — f(Ei-1)) (15.15)
i=1
= wlen) f(En) + 3 (wler) —wlea)) () (15.16)
=1
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Lovész extension
(RRRR [RERRRRANRRARN!

A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, choose element

order (e, eg,...,ey) based on decreasing w,so that
w(er) > wlez) > - > wlem).
o Define the chain with it element E; = {e1,e,...,¢;} , we have
f(w) = max(wz : © € By) (15.13)
= wle) fleilBisn) =Y wles)z(e;) (15.14)
i=1 i=1
= w(e)(f(Ei) - f(Ei-1)) (15.15)
i=1
m— 1
= w( )+ w(ei+1))f(E) (15.16)
Z=1

e Wesaythat 0 £ EyC By C E; C --- C E,,, = E forms a chain based
on w.
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A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:

f(w) = max(wx : x € By) (15.17)
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A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:
f(w) = max(wz : x € By) (15.17)

@ Therefore, if f is a submodular function, we can write

fw)

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F19/70 (pg.45/265)



A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:
f(w) = max(wz : x € By) (15.17)

@ Therefore, if f is a submodular function, we can write

m—1

f(w) = w(en) f(Em) + Z —w(e;1))f(E;)  (15.18)
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A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference

f(w) = max(wz : x € By)

(15.17)
@ Therefore, if f is a submodular function, we can write
m— 1
f(w) =fw(em )+ w(eit1))f (E:) (15.18)
z:l

m

=> Nf(E;
=1

(15.19)
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A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:

f(w) = max(wz : x € By) (15.17)
@ Therefore, if f is a submodular function, we can write
m—1
F(w) = w(en) f(Em) + wlen)f(E)  (15.18)
z:l
— Z;Aif(Ei) Nozo wled) zw-:‘) (15.19)

wheré Ay, = w(ey,) and otherwise A; = w(e;) — w(ejt1), where the
elements are sorted descending according to w as before.
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A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:
f(w) = max(wz : x € By) (15.17)

@ Therefore, if f is a submodular function, we can write

m—1
fw) = w(em) f(Em) + w(ei+1))f(Ei) (15.18)
z:l
= i Nif(E;) (15.19)
=1

where A\, = w(e;,) and otherwise \; = w(e;) — w(e;+1), where the
elements are sorted descending according to w as before.

e Convex analysis = f(w) = max(wz : = € P) is always convex in w for
any set P C R” since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).
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An extension of f

@ Recall, for any such w € R¥, we have

1
: | 1
2
= (w1 — w2) + (w2 — ws) 0 [+
Wy, . 0 » 0
1 1
1 1
S (U‘n—l — wn) 4 (wm) (15.20)
N — ——
A1 1 Mon, 1
0 1

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F20/70 (pg.50/265)



An extension of f

@ Recall, for any such w € R¥, we have

1
w1 1 1
wo 0
| = (w1 — w2) + (w2 — ws3) +
W, M 0 A2 O
1 1
1 1
vt (Wpmy —wy) ||+ (wm) | (15.20)
——— ——
A1 1 Ao 1
0 1

@ If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last one, \,,, = wy,).
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Lovész extension
(REARRNL ERRRARRANRRARE!

An extension of f

weto) =3~y
@ Recall, for any such w € R¥, we have 0 M 3‘]7 s) %A' =T
n &
y . = No= |
wl 1 4 '(\_-,(
2
i S I TN O
wn . 0 » 0
1 1
1 1
et (wnfl — wn) s+ (wm) : (15.20)
—_——— ——
A1 1 A 1
0 1

o If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last-one; \,,, = wy,).
@ Often, we take w € RK or evenw € [0, 1]V, where' \,,, > 0.

F20/70 (pg.52/265)
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An extension of f

@ Define sets F; based on this decreasing order of w as follows, for
1=0,....n

Ei déf {(31,62,...,(31'} (1521)

Bilmes EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F21/70 (pg.53/265)



An extension of f

o Define sets F; based on this decreasing order of w as follows, for
1=0,...,n

El' d:ef {61,62,...,61'} (1521)
@ Note that

1
! £

0 1

0 0 1

1E0: ,1g, = 0f,..., ]-Eg_ , etc

0 0 0 P(n—10)x

0
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Lovasz n
(REARRRRL ERRRRRANRRARE!

An extension of f

o Define sets F; based on this decreasing order of w as follows, for
1=0,...,n

El' d:ef {61,62,...,61'} (1521)
@ Note that

1
1 £x

0 1

0 0 1

]-Eo = . 71E1 = 0 ) 71E[ = 0 y etc

0 0 0 S(n—~0)x

0

@ Hence, from the previous and current slide, we havefw = Z:’;l Nlg

7
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From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
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Lovasz
(RNR [ RRRRRRRARRAN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
o Take w =14 for some A C F, so w is vertex of the hypercube.
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Lovasz
(RNR [ RRRRRRRARRAN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
@ Take w =14 for some A C E, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that

w(er) > w(ez) > wles) > -+ > w(em).
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From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
@ Take w =14 for some A C E, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > wlez) > wles) > -+ > w(en).
@ This means

w = (w(ey),w(ez),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
|A| times m—|A| times

so that 14(i) = 1if i <|A|, and 14(i) = 0 otherwise.
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From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
@ Take w =14 for some A C E, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ex) > wleg) > -+ > wlen).
@ This means

w = (w(e1),w(e2),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
e —— N ———

|A| times m—|A| times
so that 14(i) = 1if i <|A|, and 14(i) = 0 otherwise.
e Forany f:2F 5 R, w = 1y, since Ey = {61./62,..../6‘14‘} = A:
flw) [
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From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
@ Take w =14 for some A C E, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > wlez) > wles) > -+ > w(en).
@ This means

w = (w(e1),w(e2),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
—_——— ——
|A| times m—|A| times
so that 14(i) = 1if i <|A|, and 14(i) = 0 otherwise.
o Forany f:2F 5 R, w= 1y, since Ejy = {el,eg,...,ew} = A:

m

flw) = Z Aif (E;)
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L
(REARRRARE RRARRANRRARE!

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
@ Take w =14 for some A C E, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > wlez) > wles) > -+ > w(en).
@ This means
w = (w(e1),w(e2),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
—_——— ——
|A| times m—|A| times
so that 14(i) = 1if i <|A|, and 14(i) = 0 otherwise.
o Forany f:2F 5 R, w= 1y, since Ejy = {el,eg,...,ew} = A:

m—1

ZA F(E) = w(em) f(Em) + Z — w(ei) f(E;)
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Lovész extension
(REARRRARE RRARRANRRARE!

From f back to f, even when f is not submodular

From the continuous f, we can recover f(A) forany ACV.
Take w = 14 for some A C F, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that

w(er) > wlez) > wles) > -+ > w(en).

This means
w = (w(e1),w(e2),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
—_——— ——
|A| times m—|A| times
so that 14(i) = 1if i <|A|, and 14(i) = 0 otherwise.
Forany f:2F - R, w = 14, since Ejy = {61,62,.. e‘A|} = A:
m—1
ZA F(E:) = w(em)f(Em) + —w(ei1)f(Ei)
1:1
m—1
= 1a(m)f(Bm) + > (La(i) = 1a(i + 1)) f(Ey) (15.23)
i=1
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Lovész extension
(REARRRARE RRARRANRRARE!

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany ACV.
@ Take w =14 for some A C E, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > wlez) > wles) > -+ > w(en).
@ This means

w = (w(e1),w(e2),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
——— N——
|A| times m—|A| times
so that 14(i) = 1if i <|A|, and 14(i) = 0 otherwise.
@ Forany f:2F 5 R, w= 1y, since Ejy = {61,62,.. e‘A|} = A:
m—1
ZA F(E:) = w(em)f(Em) + —w(ei1)f(Ei)
1=1 z:l
m—1
= 1a(m)f(Bm) + > (La(i) — 1a(i + 1)) f(Ey) (15.23)

(\/‘:‘(j\ /\/Z:—]'"\
= (La(l4]) = 1a([Al + 1) f(Ela) = f(Ea)
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Lovész extension
(REARRRARE NRARRANRRARE!

From f back to f, even when f is not submodular

From the continuous f, we can recover f(A) forany ACV.
Takew = 14 for some A C F, so w is vertex of the hypercube.
Ordet“the ‘elements of £ in decreasing order of w so that

w(er) > w(ez) > wleg) > -+ > wlen).

This means
w = (w(e1),w(e2),...,wlen)) =(1,1,1,...,1,0,0,...,0) (15.22)
s %,—/ A,—/
w$5ambny ll”“*mm ocdtr k. |A| times m—|A| times
so that 14(¢) = 1 if ¢ <|A|, and 14(i) = 0 otherwise.
Forany f:2F = R, w = 14, since Ejy = {el,eg,...,ew} = A:
m m—1
fw) = Z Nif (Ei) = w(em) f(Em) + Z (w(e;) — w(eiv1) f(E:)
i=1 i=1

m—1
= 14(m)f(Em) + ) (La(i) = Lali + 1)) f(Ey) (15.23)

i=1

= (1a(lAD) = 1a(JA] + 1)) f(Eja) = f(Eja) = f(A)  (15.24)
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From f back to f

e We can view f : [0,1]” — R defined on the hypercube, with f defined
as f evaluated on the hypercube extreme points (vertices).
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From f back to f

o We can view f : [0,1]” — R defined on the hypercube, with f defined
as f evaluated on the hypercube extreme points (vertices).

o To summarize, with f(1,4) = "™ X\ f(E;), we have

1=1

f(1a) = f(A), (15.25)
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From f back to f

o We can view f : [0,1]” — R defined on the hypercube, with f defined
as f evaluated on the hypercube extreme points (vertices).

o To summarize, with f(14) = Yoty Xif(E;), we have

)

f(1a) = f(A), (15.25)

@ ...and when f is submodular, we also have have

v}

f(1a) =max {157z : 2 € By} (15.26)
=max{ls4'z:2(B) < f(B),VB C E} (15.27)
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From f back to f

o We can view f : [0,1]” — R defined on the hypercube, with f defined
as f evaluated on the hypercube extreme points (vertices).

o To summarize, with f(14) = Yoty Xif(E;), we have

f(1a) = f(A), (15.25)

@ ...and when f is submodular, we also have have

92

f(1a) =max {147z :z € By} (15.26)
=max {147z : 2(B) < f(B),VB C E} (15.27)

o Note when considering only f : [0,1]” — R, then any w € [0,1] is in
positive orthant, and we have

f(w) = max{wTz : z & Py} (15.28)
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An extension of an arbitrary f: 2V — R

@ Thus, for any f : QUE — R, even non-submodular f, we can define an
extension, having f(14) = f(A), VA, in this way where

f(w) ZA f(E (15.29)

with the E; = {ei,...,e;}'s defined based on sorted descending order
of was inw(ey) > w(ez) > -+ > w(ey), and where
forie{l,....m}, X\ = {w(ei) —w(ein) IfZ = (15.30)

w(em) ifi=m

so that w =)"", \ilp

.
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L
(REARRRARRNR ARRANRRARE!

An extension of an arbitrary f: 2V — R

@ Thus, for any f : 2? — R, even non-submodular f, we can define an
extension, having f(14) = f(A), VA, in this way where

flw) =Y Nif(E) (15.29)
=1

with the E; = {e1,...,e;}'s defined based on sorted descending order
of was inw(ey) > w(ez) > -+ > w(ey), and where
w(e;) —w(eir1) ifi<m (15.30)

w(em) ifi=m

forie{l,...,m}, )\i:{

so that w =", Nilg,.
e w=> " N\1g, is an interpolation of certain hypercube vertices.
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An extension of an arbitrary f: 2V — R

@ Thus, for any f : 2? — R, even non-submodular f, we can define an
extension, having f(14) = f(A), VA, in this way where

flw) =Y Nif(E) (15.29)
=1

with the E; = {e1,...,e;}'s defined based on sorted descending order
of was inw(ey) > w(ez) > -+ > w(ey), and where

) — w(e; ifi <
foric {1, .. m}, = qule) mwle) ifi<m g a0
w(em) ifi=m
so that w =", Nilg,.
e w=7Y " N\lg, is an interpolation of certain hypercube vertices.

o f(w)=>_", \if(E;) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
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An extension of an arbitrary f: 2V — R

® Thus, for any f : 2? — R, even non-submodular f, we can define'an
extension, having f(14) = f(A), VA, in this way where

flw) =Y Nif(E) (15.29)
=1

with the E; = {e1,...,e;}'s defined based on sorted descending order
of was inw(ey) > w(ez) > -+ > w(ey), and where

forie {1,...,m}, A= {“’(ei) —wlein) ifi<m o g g,
w(em) ifi=m
so that w =", Nilg,.
e w=7Y " M\lg, is an interpolation of certain hypercube vertices.
o f(w)= Yoty Xif(E;) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
@ This extension is called the Lovasz extension!
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Lovész extension
(REARRRARRRRI RRARRRARE!

Weighted gains vs. weighted functions

@ Again sorting F descending in w, the extension summarized:

Flw) =" w(ei) fei| Bi) (15.31)
i=1
= > wle) (B~ F(Fin)) (1532
m—1
= wlem) () + 3 (w(er) ~wlens (B (15.33)
i=1

= Z Aif (E;) (15.34)
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Lovész extension
(REARRRARRRRI RRARRRARE!

Weighted gains vs. weighted functions

@ Again sorting F descending in w, the extension summarized:

5 CUr(M'}I"7
flw) = wle) flei|Eion) X (15.31)
i=1 &l ) *
= Zw(ei)(f(Ei) — f(Ei-1)) (15.32)
i=1
m—1
= w(em)f(Em) + ) (w(ei) —wleit1)) f(Ei) (15.33)
i=1
= i Aif (E3) (15.34)
i=1

@ So f(w) seen either as sum of weighted gain evaluations (Eqn. (15.31)),
or as sum of weighted function evaluations (Eqn. (15.34)).
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Summary: comparison of the two extension forms

e So if f is submodular, then we can write f(w) = max(wz : = € By)

(which is clearly convex) in the form: Pom Bt
fw) = max(wz : & € By) = Y _ \if(Ey) (15.35)
i=1

where w = > \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(ey) > w(ez) > -+ > w(en,).
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(REARRRARRRARE NRRRRARE!

Summary: comparison of the two extension forms

e So if f is submodular, then we can write f(w) = max(wz : = € By)
(which is clearly convex) in the form:

v

f(w) = max(wz : x € By) = Z)\if(Ei) (15.35)
i=1

where w = > \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(ey) > w(ez) > -+ > w(en,).

@ On the other hand, for any f (even non-submodular), we can produce
an extension f having the form

0’. m
§2 (l’/hx f(w) _ Z)\Lf(El) (15.36)
i=1

where w = >""  \i1p, and E; = {e1,...,e;} defined based on sorted
descending order w(e;) > w(ez) > -+ > w(en,).

calid < L 2
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Lovész extension
(REARRRARRRRRE NRRRRARE!

Summary: comparison of the two extension forms

e So if f is submodular, then we can write f(w) = max(wz : = € By)
(which is clearly convex) in the form:

v

f(w) = max(wz : x € By) = Z)\if(Ei) (15.35)
i=1

where w = > \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(ey) > w(ez) > -+ > w(en,).

@ On the other hand, for any f (even non-submodular), we can produce
an extension f having the form

flw) =" Nif(E) (15.36)
=1

where w = >""  \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(e;) > w(ez) > -+ > w(en,).

e In both Eq. (15.35) and Eq. (15.36), we have f(14) = f(A), VA, but
Eq. (15.36), might not be convex.

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F26/70 (pg.78/265)



Lovész extension
(REARRRARRRRRE NRRRRARE!

Summary: comparison of the two extension forms

e So if f is submodular, then we can write f(w) = max(wz : = € By)
(which is clearly convex) in the form:

v

f(w) = max(wz : x € By) = Z)\if(Ei) (15.35)
i=1

where w = > \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(ey) > w(ez) > -+ > w(en,).

@ On the other hand, for any f (even non-submodular), we can produce
an extension f having the form

flw) =" Nif(E) (15.36)
=1

where w = >""  \i1g, and E; = {ey,...,e;} defined based on sorted
descending order w(e;) > w(ez) > -+ > w(en,).

o In both Eq. (15.35) and Eq. (15.36), we have f(14) = f(A), VA, but
Eq. (15.36), might not be convex.
@ Submodularity is sufficient for convexity, but is it necessary?
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The Lovasz extension of f:2F = R

5. 6

o Lovasz showed that if a function f(w) defined as in Eqn. (15.29))is

convex, then f must be submodular.
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Lovész extension

The Lovasz extension of f:2F = R

o Lovasz showed that if a function f(w) defined as in Eqn. (15.29) is
convex, then f must be submodular.

@ This continuous extension f of f, in any case (f being submodular or
not), is typically called the Lovasz extension of f (but also sometimes
called the Choquet integral, or the Lovasz-Edmonds extension).

F27/70 (pg.81/265)
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Lovasz Extension, Submodularity and Convexity

Theorem 15.4.2

A function f : 2F — R is submodular iff its Lovasz extension f of f is
convex.

Proof.

o We've already seen that if f is submodular, its extension can be written
via Eqn.(15.29) due to the greedy algorithm, and therefore is also
equivalent to f(w) = max {wz : x € Py}, and thus is convex.
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Lovasz Extension, Submodularity and Convexity

Theorem 15.4.2

A function f : 2F — R is submodular iff its Lovasz extension f of f is
convex.

Proof.

o We've already seen that if f is submodular, its extension can be written
via Eqn.(15.29) due to the greedy algorithm, and therefore is also
equivalent to f(w) = max {wz : x € Py}, and thus is convex.

o Conversely, suppose the Lovasz extension f(w) = > Nif(E;) of some
function f: 2¥ — R is a convex function.
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Lovasz Extension, Submodularity and Convexity

Theorem 15.4.2

A function f : 2F — R is submodular iff its Lovasz extension f of f is
convex.

Proof.

o We've already seen that if f is submodular, its extension can be written
via Eqn.(15.29) due to the greedy algorithm, and therefore is also
equivalent to f(w) = max {wz : x € Py}, and thus is convex.

o Conversely, suppose the Lovasz extension f(w) = > i Aif(E;) of some
function f : 2F — R is a convex function.

@ We note that, based on the extension definition, in particular the
definition of the {\;},, we have that f(aw) = af(w) for any o € Ry.
l.e., [ is a positively homogeneous convex function.
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Lovész extension
(REARRRARRRRRRENN ARRRN

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

o Earlier, we saw that f(14) = f(A) forall AC E. =7 7567.

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F29/70 (pg.85/265)




Lovész extension
(REARRRARRRRRRENN ARRRN

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

o Earlier, we saw that f(14) = f(A) forall AC E.
@ Now, given A, B C E, we will show that

v 9

f(la+1p) = f(Laus + 1anp) (15.37)
= f(AUuB)+ f(AN B). (15.38)

> Frvesms
UA_4/(>> (v) = ’
v e s
D b/f»t.

/>
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Lovész extension
(REARRRARRRRRRENN ARRRN

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

o Earlier, we saw that f(1,4) = f(A) forall AC E.
@ Now, given A, B C E, we will show that

9% 9

f(la+1p) = f(1au + 1anB) (15.37)
= f(AUB)+ f(AN B). (15.38)
@ Let C'= AN B, order E based on decreasing w =14 + 15 so that
w = (w(e1),w(ez),...,wem)) (15.39)
=(2,2,...,2,1,1,...,1,0,0,...,0) (15.40)
1eC 1I€EAAB  i€E\(AUB)
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Lovész extension
(REARRRARRRRRRENN ARRRN

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.
o Earlier, we saw that f(1,4) = f(A) forall AC E.
@ Now, given A, B C E, we will show that

F(la+15) = f(Laus + 14nB) (15.37)
= f(AUB)+ f(AN B). (15.38)
@ Let C' = AN B, order E based on decreasing w =14 + 1 so that
w = (w(er),w(ez),...,w(en)) (15.39)
=(2,2,...,2,1,1,...,1,0,0,...CoP (15.40)
S——— —— Y———
icC i€AAB  icE\(AUB)

o Then, considering f(w) = > i Aif(Es), we have Ao = 1, Naup| = 1,
and \; =0 fori ¢ {|C|,|AU B|}. )M_ . als Ao
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Lovész extension
(REARRRARRRRRRENE ARRRN!

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

o Earlier, we saw that f(1,4) = f(A) forall AC E.
@ Now, given A, B C E, we will show that

f(Aa+1p) = f(1aus + 14nB) (15.37)
= f(AUB)+ f(AN B). (15.38)
@ Let C' = AN B, order E based on decreasing w =14 + 1 so that
w = (w(er),w(ez),...,w(en)) (15.39)
=(2,2,...,2,1,1,...,1,0,0,...,0) (15.40)
S——— —— Y———
ieC i€AAB  icE\(AUB)

o Then, considering f(w) = > Nif(E:), we have N\gj =1, A\jaup = 1,
and \; =0 for i ¢ {|C] |AU B|}.

@ But then Ejo) = AN B and E|4up = AU B. Therefore,
f(w) = f(la+18) = f(ANB) + f(AUB).
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

e Also, since f is convex (by assumption) and positively homogeneous,
we have for any A, B C E,

0.5[f(ANB) + f(AU B)]

(15.44)
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Lovész extension
(REARRRARRRRRRNANE FRRN!

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

e Also, since f is convex (by assumption) and positively homogeneous,
we have for any A, B C E,

0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.41)

(15.44)
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Lovész extension
(REARRRARRRRRRNANE FRRN!

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

e Also, since f is convex (by assumption) and positively homogeneous,
we have for any A, B C E,

92

0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.41)
= f(0.514 +0.515) (15.42)
(15.44)
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Lovész extension
(REARRRARRRRRRNANE FRRN!

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

e Also, since f is convex (by assumption) and positively homogeneous,
we have for any A, B C E,

92

0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 1)) (15.41)
— £(0.514 +0.51p) (15.42)

< 0.5f(14) 4+ 0.5f(1p) (15.43)

(15.44)
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Lovész extension
(REARRRARRRRRRNANE FRRN!

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

e Also, since f is convex (by assumption) and positively homogeneous,
we have for any A, B C E,

92

0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.41)
— £(0.514 +0.51p) (15.42)
<0.5f(14) +0.5f(1p) (15.43)
=0.5(f(A) + f(B)) (15.44)
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Lovész extension
(REARRRARRRRRRNANE FRRN!

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.4.2 cont.

e Also, since f is convex (by assumption) and positively homogeneous,
we have for any A, B C E, ,\ﬂ
o 07 /\u\

05[f(ANB)+ f(AUB)] = 0.5[f(14 + 15)] p/& k%L°'1(15.41
— f(0.514 + 0.515) (
<0.5f(14) +0.5f(1p) (15.43
=0.5(f(4) + f(B)) (

@ Thus, we have shown that for any A, B C E,

fLAUB)+ f(ANB

so f must be submodular. <
e 0.5 '('r x} {_(D.q.x,fo.q ) & Y ,,q.vr)* .
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Lovasz
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Lovasz ext. vs. the concave closure of submodular function

@ The above theorem showed that the Lovasz extension is convex iff f is
submodular.
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Lovész extension

Lovasz ext. vs. the concave closure of submodular function

@ The above theorem showed that the Lovasz extension is convex iff f is
submodular.

@ Our next theorem shows that the Lovasz extension coincides precisely
with the convex closure iff f is submodular.
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Lovész extension

Lovasz ext. vs. the concave closure of submodular function

@ The above theorem showed that the Lovasz extension is convex iff f is
submodular.

@ Our next theorem shows that the Lovasz extension coincides precisely
with the convex closure iff f is submodular.

@ l.e., not only is the Lovasz extension convex for f submodular, it is the
convex closure when f is convex.
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Lovész extension

Lovasz ext. vs. the concave closure of submodular function

@ The above theorem showed that the Lovasz extension is convex iff f is
submodular.

@ Our next theorem shows that the Lovasz extension coincides precisely
with the convex closure iff f is submodular.

@ l.e., not only is the Lovasz extension convex for f submodular, it is the
convex closure when f is convex.

@ Hence, convex closure is easy to evaluate when f is submodular and is
this particular form iff f is submodular.
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Lovész extension
(REARRRARRRRRRRANER] AN

Lovasz ext. vs. the concave closure of submodular function
Theorem 15.4.3
Let f(w) = max(wz : z € By) ‘

and f(m) = minyean(y) Espf(S
coincide iff f is submodular.

@ Assume f is submodular.

be the Lovasz extension
be the convex closure. Then f and f
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Lovasz n
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Lovasz ext. vs. the concave closure of submodular function

Theorem 15.4.3

Let f(w) = max(wz : z € By) =" Mif(E;) be the Lovasz extension

and f(z) = m1np€An y Es~plf(S)] be the convex closure. Then fand f
coincide iff f is submodu/ar.

Proof

@ Assume f is submodular.

@ Given z, let p® be an achieving argmin in f(z) that also maximizes

ZSP§|S|2-
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Lovasz ext. vs. the concave closure of submodular function

Theorem 15.4.3

Let f(w) = max(wz : z € By) =" Mif(E;) be the Lovasz extension

and f(x) = min pern(z) Bs~p[f(S)] be the convex closure. Then fand f
coincide iff f is submodu/ar

Proof.

@ Assume f is submodular.

o Given z, let p® be an achieving argmin in f(z) that also maximizes
> s PSISI.
@ Suppose A, B C V that are crossing (i.e., AZ B, BZ A) and

positive and w.l.o.g., p% > pj > 0. s
i
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Lovasz ext. vs. the concave closure of submodular function

Theorem 15.4.3

Let f(w) = max(wz : z € By) =" Mif(E;) be the Lovasz extension
and f(z) = min, e an(g) Es~p[f(S)] be the convex closure. Then fand f
coincide iff f is submodular.
Proof.

@ Assume f is submodular.

o Given z, let p® be an achieving argmin in f(z) that also maximizes
> s PSISI.

@ Suppose 3A, B C V that are crossing (i.e., AZ B, BZ A) and
positive and w.l.o.g., p% > p% > 0.

@ Then we may update p* as follows:
Pa < P — P Pp < Pp — P (15.46)
Pau ¢ PauB +PB PAnB < PanB + DB (15.47)
and by submodularity, this does not increase ¢ p& f(S).
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Lovasz ext. vs. the concave closure of submodular function

@ This does increase Y- ¢ p%|S|? however since

|AUBI* +|ANB|* = (|A] + |B\ A)* + (IB] — | B\ A))* (15.48)
= A" + |BI* +2[B\ A|(|4] - [B| + B\ 4])

=5 (15.49)
> |A]? + |BJ? (15.50)
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Lovasz ext. vs. the concave closure of submodular function

o This does increase Y ¢ p%|S|? however since

|JAUBP® +|AN B|* = (|A| + |B\ A))* + (|B| - |B\ A])> (15.48)
= |A* +|B|* + 2B\ A|(|A| - |B] + B\ 4])
e \f\/—qj_/l;g)
= z°
B A +|B? zo (15.50)
@ Contradiction! Hence, there can be no crossing sets A, B and we must
have, for any A, B with p% > 0 and p%; > 0 either A C B or B C A.
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Lovasz ext. vs. the concave closure of submodular function

o This does increase Y ¢ p%|S|? however since

|JAUBP® +]AN B? = (|A| +|B\ A])> + (|B| - |B\ A])* (15.48)
= |A* +|B|* +2|B\ A|(|A| - |B] + B\ 4])

(15.49)

> |A]? +|BJ? (15.50)

o Contradiction! Hence, there can be no crossing sets A, B and we must
have, for any A, B with p% > 0 and p%; > 0 either A C B or B C A.

@ Hence, the sets {A C V : p% > 0} form a chain and can be as large
only as size n = |V|.
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Lovasz ext. vs. the concave closure of submodular function

o This does increase Y~ ¢ p%|S|? however since

|JAUBP? +]ANB? = (|A| +|B\ A])> + (|B| = |B\ A])* (15.48)
= |A* +|BI* +2|B\ A|(|A| - |B] + B\ 4])

(15.49)

> |A]® + |B? (15.50)

o Contradiction! Hence, there can be no crossing sets A, B and we must
have, for any A, B with p% > 0 and p%; > 0 either A C B or B C A.

@ Hence, the sets {A C V : p% > 0} form a chain and can be as large
only as size n = |V|.

@ This is the same chain that defines the Lovész extension f(z), namely
) =FEyC FEy CEyC... where E; = {e1,ea,...,e;} and ¢; is ordeéd
so that z(e1) > z(e2) > -+ > z(ey).
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Lovész extension

Lovasz ext. vs. the concave closure of submodular function

@ Next, assume f is not submodular. We must show that the Lovasz
extension f(x) and the concave closure f(z) need not coincide.

—
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Lovasz ext. vs. the concave closure of submodular function

@ Next, assume f is not submodular. We must show that the Lovasz
extension f(z) and the concave closure f(z) need not coincide.

@ Since f is not submodular, 35 and i,j ¢ S such that
fS)+f(S+i+7)>f(S+1i)+ f(S+7), a strict violation of
submodularity.
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Lovasz ext. vs. the concave closure of submodular function

@ Next, assume f is not submodular. We must show that the Lovasz
extension f(z) and the concave closure f(z) need not coincide.

@ Since f is not submodular, 35 and i,j ¢ S such that
S+ f(S+i+y3)> f(S+1i)+ f(S+j), a strict violation of
submodularity.

o Consider x = 1g + %1{%,'}.
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Lovasz ext. vs. the concave closure of submodular function

@ Next, assume f is not submodular. We must show that the Lovasz
extension f(z) and the concave closure f(z) need not coincide.

@ Since f is not submodular, 35 and i,j ¢ S such that
S+ f(S+i+y3)> f(S+1i)+ f(S+j), a strict violation of
submodularity.

o Consider z = 15 + %1{1,]-}.
@ Then f(x) = %f(S) + %f(S + i+ 4) and p® is feasible for f with
pg=1/2and p%,, ;,=1/2.
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Lovasz ext. vs. the concave closure of submodular function

@ Next, assume f is not submodular. We must show that the Lovasz
extension f(z) and the concave closure f(z) need not coincide.

@ Since f is not submodular, 35 and i,j ¢ S such that
S+ f(S+i+y3)> f(S+1i)+ f(S+j), a strict violation of
submodularity.

o Consider z = 15 + %1{1,]-}.

o Then f(z) = 1£(S) + 1f(S+i+ ) and p® is feasible for f with
P& =1/2 and p’§+i+j =1/2.

@ An alternate feasible distribution for = in the convex closure is
Py = PGy, =1/2.
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Lovasz ext. vs. the concave closure of submodular function

@ Next, assume f is not submodular. We must show that the Lovasz
extension f(z) and the concave closure f(z) need not coincide.

@ Since f is not submodular, 35 and i,j ¢ S such that
S+ f(S+i+y3)> f(S+1i)+ f(S+j), a strict violation of
submodularity.

o Consider z = 15 + %1{1,]-}.
o Then f(z) = 1£(S) + 1f(S+i+ ) and p® is feasible for f with
P& =1/2 and p’§+i+j =1/2.
@ An alternate feasible distribution for z in the convex closure is
Pe = ﬁ§+j =1/2.
o This gives
[F(S+1) + f(S+)] < fl2) (15.51)

f(z) <
meaning f(z) # f(z).
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Choquet Integration

Integration and Aggregation

e Integration is just summation (e.g., the [ symbol has as its origins a
sum).
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Choquet
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Integration and Aggregation

o Integration is just summation (e.g., the [ symbol has as its origins a
sum).

@ Lebesgue integration allows integration w.r.t. an underlying measure p
of sets. E.g., given measurable function f, we can define

/ fdu = sup Ix(s) (15.52)
Jx
where Ix(s) = > i, cip(X N X;), and where we take the sup over all

measurable functions s such that 0 < s < f and s(z) = Y"1 | ¢;Ix,(x)
and where Ix,(x) is indicator of membership of set X;, with ¢; > 0.
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Choquet Integration

Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
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Choquet Integrati
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted

average, and can be seen as an aggregation function.
e le., given a weight vector w € [0,1]¥ for some finite ground set F,
then for any € R¥ we have the weighted average of z as:

WAVG(x) = Z z(e)w(e) (15.53)

eck

F36/70 (pg.117/265)
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

e le., given a weight vector w € [0,1]¥ for some finite ground set F,
then for any 2 € R” we have the weighted average of z as:

WAVG(z) = > " a(e)w(e) (15.53)

eckE
@ Consider 1, for e € E, we have
WAVG(1,.) = w(e) (15.54)

F36/70 (pg.118/265)
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
e le., given a weight vector w € [0,1]¥ for some finite ground set F,
then for any 2 € R” we have the weighted average of z as:
WAVG(z) = > " a(e)w(e) (15.53)
ecE
@ Consider 1, for e € E, we have
WAVG(1,) = w(e) (15.54)
so seen as a function on the hypercube vertices, the entire WAVG

function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1.:e € E}.
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
e le., given a weight vector w € [0,1]¥ for some finite ground set F,
then for any 2 € R” we have the weighted average of z as:
WAVG(z) = > " a(e)w(e) (15.53)
ecE
@ Consider 1, for e € E, we have

WAVG(1.) = w(e) (15.54)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1.: e € E}. Moreover, we are
interpolating as in

WAVG(z) = Z z(e)w(e) = Z x(e)WAVG(1,) (15.55)

eck ecE
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Integration, Aggregation, and Weighted Averages

WAVG(z) = Z z(e)w(e) (15.56)
eck

@ Clearly, WAVG function is linear in weights w, in the argument x, and is
homogeneous. That is, for all w, w1, ws, z,z1, 22 € RF and a € R,

WAVG, 4, () = WAVG,, () + WAVG,, (2), (15.57)
WAVG,, (21 + x2) = WAVG,, (1) + WAVG,, (22), (15.58)

and,
WAVG(az) = aWAVG(z). (15.59)
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Choquet Integration
(RLT] 1

Integration, Aggregation, and Weighted Averages

WAVG(z) = Z z(e)w(e) (15.56)
eck

o Clearly, WAVG function is linear in weights w, in the argument z, and is
homogeneous. That is, for all w, w1, ws, z,z1, 22 € RF and o € R,

WAVG,, 4, () = WAVG,,, () + WAVG,, (), (15.57)
WAVG,, (21 + x2) = WAVG,,(x1) + WAVG,,(x2), (15.58)

and,
WAVG(az) = aWAVG(z). (15.59)

@ We will see: The Lovasz extension is still be linear in “weights” (i.e.,
the submodular function f), but will not be linear in  and will only be
positively homogeneous (for a > 0).
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Choquet Integrati
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. l.e.,
for each 14 : A C E we might have (for all A C E):

AG(14) =wy (15.60)
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. l.e.,
for each 14 : A C E we might have (for all A C E):

AG(14) =wy (15.60)

@ What then might AG(z) be for some 2 € R¥? Our weighted average
functions might look something more like the r.h.s. in:

AG(z) = Y 2(A)wa = Y 2(A)AG(14) (15.61)

ACE ACE
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. l.e.,
for each 14 : A C E we might have (for all A C E):

AG(14) =wy (15.60)

o What then might AG(z) be for some z € R¥? Our weighted average
functions might look something more like the r.h.s. in:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (15.61)
ACE ACE

o Note, we can define w(e) = w'(e) and w(A) = 0,VA : |A| > 1 and get
back previous (normal) weighted average, in that

WAVG,, () = AGy () (15.62)
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Choquet Integration
(RNN} 1

Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. l.e.,
for each 14 : A C E we might have (for all A C E):

AG(14) =wy (15.60)

o What then might AG(z) be for some z € R¥? Our weighted average
functions might look something more like the r.h.s. in:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (15.61)

ACE ACE

@ Note, we can define w(e) = w'(e) and w(A) = 0,VA: |A| > 1 and get
back previous (normal) weighted average, in that

WAVG,, (z) = AGy () (15.62)

@ Set function f:2¥ — R is a game if f is normalized f(()) = 0.
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Choquet Integrati
1 |

Integration, Aggregation, and Weighted Averages

@ Set function f: 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.
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Choquet
(NN} 1

Integration, Aggregation, and Weighted Averages

@ Set function f: 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

@ A Boolean function f is any function f:{0,1}"" — {0,1} and is a
pseudo-Boolean function if f: {0,1}" — R.

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F39/70 (pg.128/265)



Integration, Aggregation, and Weighted Averages

@ Set function f: 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

e A Boolean function f is any function f : {0,1}"* — {0,1} and is a
pseudo-Boolean function if f: {0,1}"" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2F =R, form f,: {0,1}™ — R as fi(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

e A Boolean function f is any function f : {0,1}"* — {0,1} and is a
pseudo-Boolean function if f: {0,1}"" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2F =R, form f,: {0,1}™ — R as fy(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.

@ Also, if we have an expression for fj, we can construct a set function f
as f(A) = fp(14). We can also often relax f; to any = € [0, 1]™.
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

e A Boolean function f is any function f : {0,1}"* — {0,1} and is a
pseudo-Boolean function if f: {0,1}"" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2F =R, form f,: {0,1}™ — R as fy(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.

@ Also, if we have an expression for f;, we can construct a set function f
as f(A) = fp(14). We can also often relax f; to any = € [0, 1]™.

@ We saw this for Lovasz extension.
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Choquet Integration
1 |

Integration, Aggregation, and Weighted Averages

@ Set function f: 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

e A Boolean function f is any function f : {0,1}"* — {0,1} and is a
pseudo-Boolean function if f: {0,1}"" — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e., given
f:2F =R, form f,: {0,1}™ — R as fy(z) = f(A,) where the A,z
bijectionis A={e€ F:x. =1} and z = 14.

@ Also, if we have an expression for f;, we can construct a set function f
as f(A) = fp(14). We can also often relax f; to any = € [0, 1]™.

@ We saw this for Lovasz extension.

@ It turns out that a concept essentially identical to the Lovasz extension

was derived much earlier, in 1954, and using this derivation (via
integration) leads to deeper intuition.
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Choquet integral

Definition 15.5.1

Let f be any capacity on E and w € R¥. The Choquet integral (1954) of w
w.r.t. f is defined by

Cr(w) = (we, — we,,,) f(E;) (15.63)
=1

where in the sum, we have sorted and renamed the elements of E so that
We, > Wey >+ + > We,, > We,, ., =0, and where E; = {e1,e2,...,¢€}.

@ We immediately see that an equivalent formula is as follows:

Crlw) = w(e)(f(E) - f(Ei-1)) (15.64)

i=1

where Ej =)
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Choquet integral

Definition 15.5.1

Let f be any capacity on E and w € R¥. The Choquet integral (1954) of w
w.r.t. f is defined by

m

Cr(w) = (we, — we,,,) f(E;) (15.63)

=1

where in the sum, we have sorted and renamed the elements of E so that
We, > Wey >+ + > We,, > We,, ., =0, and where E; = {e1,e2,...,¢€}.

@ BTW: this again essentially Abel's partial summation formula: Given
two arbitrary sequences {a,} and {b,} with A, =>"}'_, aj, we have

> apbp =Y Ag(br — bry1) + Anbni1 — Ap1by  (15.65)

k=m k=m
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Choquet Integration

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
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Choquet Integration

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:w. > w,,}.
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Choquet Integration

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:w. > w,,}.

e For any we, > a > we,,, we also have
E; ={ei,ea,...,e;} ={e € E:w. > a}.
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The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:w. > w,,}.

e For any we, > a > we,,, we also have
E; ={ei,ea,...,e;} ={e € E:w. > a}.

o Consider segmenting the real-axis at boundary points w,,, right most is
We, -

W(em) wlem 1) wles) wles) wies) wles)wler)
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The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.

o First note, assuming FE is ordered according to descending w, so that
w(er) > w(ez) > -+ > w(em—1) > w(en), then
E;={ei,ea,...,e;} ={e € E:w. > w,,}.

e For any we, > a > we,,, we also have
E; ={ei,ea,...,e;} ={e € E:w. > a}.

o Consider segmenting the real-axis at boundary points w,,, right most is
We, -

W(em) wlem 1) wles) wles) wies) wles)wler)

@ A function can be defined on a segment of R, namely w,, > o > we,, .
This function F; : [we,, ,,we;) — R is defined as

Fi(a) = f({e€ E:we. > a}) = f(E)) (15.66)
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@ We can generalize this to multiple segments of R (for now, take w € R¥).
The piecewise-constant function is defined as:

f(E) if 0 <a<w,
Fla)=q f{le€ E:we>a}) ifwe,, <a<we,i€{l,...,m—1}
0 (= f(0)) if w <«
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Choquet Integration

The “integral” in the Choquet integral

@ We can generalize this to multiple segments of R (for now, take w € R¥).
The piecewise-constant function is defined as:

f(E) if0<a<wn,
Fla)=q f{le€ E:we>a}) ifwe,, <a<we,i€{l,...,m—1}
0 (= f(0)) if w <«

o Visualizing a piecewise constant function, where the constant values are
given by f evaluated on F; for each ¢

F(a)
) f(E) f({e1,ez,e3,e4,95}) M}
f(E\e,.}) f(fe,e,})
f(E\le, e, ) *°° filey e e5e,)) %y
1 1 1 1 1 1 A Oé:)
0 w(em) w(em—1) w(es)  w(es) w(es) w(e2) w(er)

Note, what is depicted may be a game but not a capacity. Why?
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The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that
f(0) = 0. Recall wy,41 def .

Flw) /0 ~ Fla)da (15.67)
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The “integral” in the Choque

o Now consider the integral, with w € RZ, and normalized f so that
f(0) = 0. Recall wy,41 def .

Flw) /0 ~ Fla)da (15.67)

= /oo f{e € E:we > a})da (15.68)
0
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Choquet Integration
(RRN 1

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that

f(0) = 0. Recall wy,41 def .

f(w) def /OOO F(a)da (15.67)
= /oo f{e € E:we > a})da (15.68)

0
= /Oo f{ee€ E:w. > a})do (15.69)
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Choquet Integration
(RRN 1

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that

f(0) = 0. Recall wy,41 def .

Flw) % /OOO F(a)da (15.67)
= /Ooo f{e € E:we > a})da (15.68)
_ /w: f({e € E:we > a))da (15.69)
_ i " f{e € B we > a))da (15.70)
p
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Choquet Integration
[RERRRRRNN

The “integral” in the Choquet integral

o Now consider the integral, with w € RZ, and normalized f so that

f(0) = 0. Recall wy,41 &ty

Flw) % /OOO F(a)da (15.67)
= /Ooo f{e € E:we > a})da (15.68)
_ /w: f({e € E:we > a))da (15.69)
_ f;/:ﬂ f({e € B:w, > a})da (15.70)

I
ANgERD
&h
M
=
(S
e
g

+

(15.71)

j=1 Y Wi+l i=1
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The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.
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The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.

@ Thus, we have the following definition:

Definition 15.5.2
Given w € RY, the Lovasz extension (equivalently Choquet integral) may be

defined as follows:

Flw) & /0 ~ F(a)do (15.72)

where the function F' is defined as before. )

F41/70 (pg.148/265)
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Choquet

The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.

@ Thus, we have the following definition:

Definition 15.5.2
Given w € RY, the Lovasz extension (equivalently Choquet integral) may be

defined as follows:

Flw) & /0 ~ F(a)do (15.72)

where the function F' is defined as before. )

@ Note that it is not necessary in general to require w € Rf (i.e., we can
take w € R¥) nor that f be non-negative, but it is a bit more involved.

Above is the simple case.

F41/70 (pg.149/265)
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Choquet

The “integral” in the Choquet integral

o But we saw before that > 7" f(E;)(w; — wjt1) is just the Lovasz
extension of a function f.
@ Thus, we have the following definition:

Definition 15.5.2
Given w € RY, the Lovasz extension (equivalently Choquet integral) may be

defined as follows:

Flw) & /0 ~ F(a)do (15.72)

where the function F' is defined as before.

@ Note that it is not necessary in general to require w € Rf (i.e., we can
take w € R¥) nor that f be non-negative, but it is a bit more involved.
Above is the simple case.

@ The above integral will be further generalized a bit later.
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Choquet Integration

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = Y a(A)wa = Y 2(A)AG(14) (15.73)

ACE ACE

how does this correspond to Lovasz extension?
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Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (15.73)
ACE ACE
how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into ¢ polytopes, each defined by
a set of vertices V1,Vs,...,V,.
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Choquet
(RRRN

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (15.73)
ACE ACE
how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into ¢ polytopes, each defined by
a set of vertices Vi, Vo, ..., V,.

e Eg, foreachi, Vi ={14,,14,,...,14,} (K vertices) and the convex
hull of V; defines the ith polytope.
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Choquet
(RRRN

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (15.73)
ACE ACE
how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into ¢ polytopes, each defined by
a set of vertices Vi, Vo, ..., V,.

e Eg, foreach i, Vi ={14,,14,,...,14,} (K vertices) and the convex
hull of V; defines the ith polytope.

@ This forms a “triangulation” of the hypercube.
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Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = Y 2(A)wa = Y _ 2(A)AG(14) (15.73)

ACE ACE

how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into ¢ polytopes, each defined by
a set of vertices Vi, Vo, ..., V,.
e Eg, foreach i, Vi ={14,,14,,...,14,} (K vertices) and the convex

hull of V; defines the ith polytope.
This forms a “triangulation” of the hypercube.

For any z € [0,1]™ there is a (not necessarily unique) V(z) = V; for
some j such that x € conv(V(z)).
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Choquet integral and aggregation

@ Most generally, for x € [0,1]™, let us define the (unique) coefficients
aj(A) and aF (A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex

14 € conv(V(x)). The affine transformation is as follows:

af(A) + iaf(A)TJ €eR (15.74)
i=1

Note that many of these coefficient are often zero.
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Choquet integral and aggregation

@ Most generally, for x € [0,1]™, let us define the (unique) coefficients
af(A) and af (A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex
14 € conv(V(x)). The affine transformation is as follows:

m
af(A)+ > al(A)z; €R (15.74)
j=1
Note that many of these coefficient are often zero.

@ From this, we can define an aggregation function of the form

m

AG) E 3T (af(A)+ Y af(A)a;)AG(LY)  (15.75)
A:l4€V(z) j=1
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {2 € [0, 1]"|z5(1) > Tp2) > -+ = To(m) } (15.76)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {z € [0, 1]"[z,01) > Tp2) > -+ > To(m) } (15.76)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o.
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {z € [0, 1]"[z,01) > Tp2) > -+ > To(m) } (15.76)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o. In this case, we have:
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Choquet integral and aggregatlon

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(V,) = {z € [0,1]" |To(1) = To2) = = xa(m)} (15.76)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o. In this case, we have:

Proposition 15.5.3

The above linear interpolation in Eqn. (15.75) using the canonical partition
yields the Lovasz extension with af(A) + >, af (A)rj = x4, — x4, , for
A=E;={es,,...,eq,} for appropriate order o.
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Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o, define

conv(Vy) = {z € [0, 1]"[z,01) > Tp2) > -+ > To(m) } (15.76)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o. In this case, we have:

Proposition 15.5.3

The above linear interpolation in Eqn. (15.75) using the canonical partition
yields the Lovasz extension with af(A) + >, af (A)rj = x4, — x4, , for
A=E;={es,,...,eq,} for appropriate order o.

@ Hence, Lovasz extension is a generalized aggregation function.
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Lovasz extension as max over orders

@ We can also write the Lovasz extension as follows:

flw) = Urenna[x] wle? (15.77)

where Tlj,,,) is the set of m! permutations of [m] = E, o € IIj,,,) is a
particular permutation, and ¢? is a vector associated with permutation
o defined as:

i = f(Eo;) = [(Eo_,) (15.78)

where E,. = {es,, €0y, .-, €0, }
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Lovész extn., defs/props
[ARRRRRNAN]

Lovasz extension as max over orders

@ We can also write the Lovasz extension as follows:

f(w) = max wTe® (15.77)
O'EH[m]
where IIj,,,; is the set of m! permutations of [m] = E, o € I}, is a
particular permutation, and ¢” is a vector associated with permutation
o defined as:

C;'T = f(EUi) - f(EO'ifl) (15'78)
where E,, = {es,, €0y, -, €0, }
@ Note this immediately follows from the definition of the Lovasz
extension in the form:

f(w) = maxwTz = max wTx (15.79)
JIEPJ' .’L‘EB‘/'

since we know that the maximum is achieved by an extreme point of
the base B; and all extreme points are obtained by a
permutation-of- E-parameterized greedy instance.
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Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € F : w(e) > a}, called
the weak a-sup-level set of w.
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Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € F: w(e) > a}, called
the weak a-sup-level set of w. A similar definition holds for {w > a}
(called the strong a-sup-level set of w).
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Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € F: w(e) > a}, called
the weak a-sup-level set of w. A similar definition holds for {w > a}
(called the strong a-sup-level set of w).

e Given any w € RE sort E as w(ey) > w(eg) > -+ > w(en).
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Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € F: w(e) > a}, called
the weak a-sup-level set of w. A similar definition holds for {w > a}
(called the strong a-sup-level set of w).

o Given any w € R”, sort E as w(ey) > w(eg) > -+ > w( m). Also,
w.l.o.g., number elements of w so that wy > wo > - -+ > wy,.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F46/70 (pg.168/265)



Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € F: w(e) > a}, called
the weak a-sup-level set of w. A similar definition holds for {w > a}
(called the strong a-sup-level set of w).

o Given any w € R” sort E as w(ey) > w(eg) > -+ > w(ey). Also,
w.l.o.g., number elements of w so that wy > wo > -+ > w,,.

@ We have already seen how we can define the Lovasz extension for any

(not necessarily submodular) function f in the following equivalent
ways:

Z fleilEi-1) (15.80)
Z - w(61+1)) + f(E>w(€m)a (1581)
Z
=1

(15.82)
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Lovasz extension, as integral

e Additional ways we can define the Lovasz extension for any (not
necessarily submodular) but normalized function f include:

Fw) =S wlen fledBi) = S Aif (B (15.83)
=1 =1
m—1
= 3 (B wles) — wlers)) + F(E)wlen) (15.84)
=1
00
= / o }f({w > a})da+ f(E)min{wi, ..., wn,}
(15.85)
“+o00 0
- /0 flwz adat [ [f({w= ) - f(B)da
(15.86)
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general Lovasz extension, as simple integral

@ In fact, we have that, given function f, and any w € RE:

~ +m ~
flw) = / fla)da (15.87)
where

(15.88)

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F48/70 (pg.171/265)



general Lovasz extension, as simple integral

@ In fact, we have that, given function f, and any w € RE:

Flw) = /_ ™ Ha)do (15.87)
where
;v Jf{w>a}) if « >=0
Jler= {f({w > a)) - f(B) fa<o (15:59)

@ So we can write it as a simple integral over the right function.
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general Lovasz extension, as simple integral

@ In fact, we have that, given function f, and any w € RE:

i oo
Flw) = / f(a)da (15.87)

where

Fa) = {f({w > a}) if @ >=0 (15.88)

fw>a}) = f(E) ifa<0

@ So we can write it as a simple integral over the right function.

@ These make it easier to see certain properties of the Lovasz extension.
But first, we show the above.
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Lovasz extension, as integral

@ To show Eqn. (15.85), first note that the r.h.s. terms are the same
since w(ey,) = min {wi, ..., wpy}.
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Lovasz extension, as integral

e To show Eqn. (15.85), first note that the r.h.s. terms are the same
since w(ey,) = min{wy, ..., Wny}.

@ Then, consider that, as a function of o, we have

0 if @ > w(ep)

fHw >a}) =1 f(Er) ifa€ (wlegrr),w(er)),ke{l,...,m—1}
fE) ifa<w(en)

(15.89)

we may use open intervals since sets of zero measure don’t change
integration.
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Lovasz extension, as integral

e To show Eqn. (15.85), first note that the r.h.s. terms are the same
since w(ey,) = min{wy, ..., Wny}.

@ Then, consider that, as a function of o, we have

0 if @ > w(ep)

fw>a}) =4 f(Ey) ifae (wlegs1),w(er)),ke{l,...,m—1}
fE)  ifa<w(eny)

(15.89)

we may use open intervals since sets of zero measure don’t change
integration.

@ Inside the integral, then, this recovers Eqn. (15.84).
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Lovasz extension, as integral

e To show Eqn. (15.86), start with Eqn. (15.85), note
Wy, = min{wy, ..., wy,}, take any 8 < min {0, w1, ..., w,}, and form:

fw)
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Lovasz extension, as integral

@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
“+oo

f(w) :/ f({w > a})da+ f(E)min {wy, ..., wnm}

Wm
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Lovasz extension, as integral
@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
flw) = / f{w > a})da+ f(E)min{w, ..., wm,}
wj:oo Wm, Wm
= / f{w > a})da — / f{w > a})da+ f(E) / da
JB JB JO
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Lovasz extension, as integral
@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
flw) = / f{w > a})da+ f(E)min{w, ..., wm,}
j:oo Wi Wyn
[ ftwzapda- [ iwz apdat1(8) [ da
B B 0

-/ itz apda= [T sdas [T (B

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F50/70 (pg.180/265)



extn., defs/props
(NERRL AR

Lovasz extension, as integral
@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
flw) = / f{w > a})da+ f(E)min{w, ..., wm,}
[ qw s apda— [ F({w = ahda + £(B) /wm da
B B 0
+o00 Wm, Wm,
— [ itwzapda~ [ sEydas [ fE)da
B B 0

[ stwz ahdat [ stz apaa - /  J(B)do
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Lovasz extension, as integral
@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
flw) = / f{w > a})da+ f(E)min{w, ..., wm,}
[ qw s apda— [ F({w = ahda + £(B) /wm da
B B 0
+o00 Wm, Wm,
— [ itwzapda~ [ sEydas [ fE)da
B B 0

= [ it = apyaa+ / " F(fw > a})da - / ' f(B)do

oo 0
- / f({w > a})da + / [f({w = a}) = f(B))da
Jo 7B
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Lovasz extension, as integral
@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
flw) = / f{w > a})da+ f(E)min{w, ..., wm,}
[ qw s apda— [ F({w = ahda + £(B) /wm da
B B 0
+o00 Wm, Wm,
— [ itwzapda~ [ sEydas [ fE)da
B B 0

= [ it = apyaa+ / " F(fw > a})da - / ' f(B)do

“+00

— [ f{w>a})da+ /ﬁ F({w > a}) — F(E)da

0
and then let § — oo and we get Eqn. (15.86), i.e.:
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Lovasz extension, as integral
@ To show Eqn. (15.86), start with Eqn. (15.85), note

Wy, = min{wi, ..., Wy}, take any § < min {0, wy,...,wy}, and form:
flw) = / f{w > a})da+ f(E)min{w, ..., wm,}
[ qw s apda— [ F({w = ahda + £(B) /wm da
B B 0
+o00 Wm, Wm,
— [ itwzapda~ [ sEydas [ fE)da
B B 0

= [ it = apyaa+ / " F(fw > a})da - / ' f(B)do

“+00

— [ f{w>a})da+ /ﬁ F({w > a}) — F(E)da

0
and then let § — oo and we get Eqn. (15.86), i.e.:

+00 0
— / fw > a})da + / [f{w > a}) — f(E)]lda
Jo

J —o0
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Lovasz extension properties

@ Using the above, have the following (some of which we've seen):
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Lovész extn., defs/props

Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then
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Lovész extn., defs/props

Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + § is the Lovész extension of f + g and \f is the Lovész extension of
Af for A € R.
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Lovész extn., defs/props

Lovasz extension properties
@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g

then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Q@ Ifw e RY then f(w) = [ f({w > a})da.
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Lovész extn., defs/props

Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Q /fw € RE then f(w) = O+OO fH{w > a})da
© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).
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Lovész extn., defs/props

Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g

then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Q /fw € RE then f(w) = O+OO fH{w > a})da
© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).
Q Positive homogeneity: l.e., f(aw) = af(w) for o > 0.
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Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Q /fw € RE then f(w) = O+OO fH{w > a})da

© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).
Q@ Positive homogeneity: l.e., f(aw) = af(w) for a > 0.

@ Forall ACE, f(14) = f(A).
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Lovasz extension properties
@ Using the above, have the following (some of which we've seen):
Theorem 15.6.1
Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g

then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Q /fw € RE then f(w) = O+OO fH{w > a})da

© Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).

Q@ Positive homogeneity: l.e., f(aw) = af(w) for a > 0.

Q Forall ACE, f(14) = f(A).

Q@ [ symmetric as in f(A) = f(E\ A),VA, then f(w) = f(—w) (f is even).
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Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 15.6.1

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Ifw € RE then f(w) = O+OO f{w > a})da

Forw € RE, and o € R, we have f(w + alg) = f(w) + af (E).

Positive homogeneity: l.e., f(aw) = af(w) for a > 0.

Forall AC E, f(14) = f(A).

f symmetric as in f(A) = f(E\ A),VA, then f(w) = f(—w) (f is even).

Given partition E* UE2U---UE* of E and w = Y% v;15, with
N> > > vk, and with B = EY UE2U .- U EY, then

7 k i| frlii— k-1 4

flw) =iy wf (BB = 320 fFER) (i = vier) + F(E) k-

© ©00 00 O
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Lovasz extension properties: ex. property 3

o Consider property property 3, for example, which says that
flw+alg) = f(w) +af(E).
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Lovasz extension properties: ex. property 3

o Consider property property 3, for example, which says that

f(w +alg) = f(w) + af(E).
@ This means that, say when m = 2, that as we move along the line
w1 = ws, the Lovasz extension scales linearly.

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F52/70 (pg.195/265)



Lovész extn., defs/props
(NERRRRL AN

Lovasz extension properties: ex. property 3

o Consider property property 3, for example, which says that

f(w+alg) = f(w) + af (E).

@ This means that, say when m = 2, that as we move along the line
w1 = ws, the Lovasz extension scales linearly.

e And if f(E) =0, then the Lovasz extension is constant along the
direction 1g.
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Lovasz extension properties

@ Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

@ For example, if f is symmetric, and since f(F) = f()) = 0, we have

f(=w)

(15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

@ For example, if f is symmetric, and since f(FE) = f() = 0, we have

f(—w) = /OC f{—~w > a})da

—0o0

(15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

@ For example, if f is symmetric, and since f(FE) = f() = 0, we have

Fl—w) = /_OO F({—w > a})da / F{w< —a))da  (15.90)

—00

(15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

@ For example, if f is symmetric, and since f(FE) = f() = 0, we have

o0

few) = [ s-wzapda= [~ f(w<-ahda (150

—0o0

@ [ fw<apia

(15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

@ For example, if f is symmetric, and since f(FE) = f() = 0, we have
—w) = /OO F({—w > a})da = /Oo F({w < —a})da  (15.90)
/ F({w < ad)d / f({w>a})da  (15.91)

(15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(0) = 0, we have
few)= [ sz ada= [~ fw < —apia (1590)
Q[ wsanda® [ pwsapda (s
-/ Z f({w > a})do (15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(f)) = 0, we have
)= [ ez anda= [~ fw < -ahia (1590)
Q[ wsanda® [ pwsapda (s
- [ ({w = ap)da = f(w (15.92)
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Lovasz extension properties

e Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(f)) = 0, we have
—m=/mwa2awm:/wﬂms—mmx(w%)
Q[ wsanda® [ pwsapda (s
zﬁwﬂWZanmsz> (15.92)

Equality (a) follows since [*°_ f(a)da = [ f(ac + b)da for any b
and a € £1, and equality (b) follows since f(A) = f(E\ A), so

F{w < a}) = f({w > a}).
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Lovasz extension, expected value of random variable
{u} > a})da

@ Recall, for w € RE, we have f(w = [O
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Lovasz extension, expected value of random variable

o Recall, for w € R¥, we have f(w) = [;° f({w > a})da
@ Since f({w > a}) =0 for a > wy 2 wy, we have for w € RZ, we have

fw) = [ f{w = a})da
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Lovasz extension, expected value of random variable
o Recall, for w € R¥, we have f(w) = [;° f({w > a})da
e Since f({w > a}) =0 for a > wy 2 wy, we have for w € Rf, we have
flw) = 5" f{w > a})da
e For w e [0,1]7, then f(w) = {w > al)da = fo {w > a})da
since f{w > a}) =0 for 1> a > w1
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extn., defs/props
(NRNRNARNI ]

Lovasz extension, expected value of random variable

o Recall, for w € R¥, we have f(w) = [;° f({w > a})da

e Since f({w > a}) =0 for a > wy 2 wy, we have for w € Rf, we have
fw) = [ f{w = a})da

e For w e [0,1]7, then f(w) = ["* f{w > a})da = fo {w > a})da
since f{w > a})=0for 1> a > wy.

e Consider «v as a uniform random variable on [0, 1] and let h(«) be a
funciton of . Then the expected value E[h(a)] = fo h(a)dor.
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extn., defs/props
(NRNRNARNI ]

Lovasz extension, expected value of random variable

o Recall, for w € R¥, we have f(w) = [;° f({w > a})da

e Since f({w > a}) =0 for a > wy 2 wy, we have for w € Rf, we have
fw) = [ f{w = a})da

e For w e [0,1]7, then f(w) = ["* f{w > a})da = fo {w > a})da
since f{w > a})=0for 1> a > wy.

e Consider «v as a uniform random variable on [0 1] and Iet h( ) be a
funciton of a. Then the expected value E[h(a)] = [ h(

@ Hence, for w € [0, 1]™, we can also define the Lovasz extension as

fw) = Epo[f({w = a})] = Epoy[f(e € E: w(e;) > a)]  (15.93)
h(a) h(a)

where « is uniform random variable in [0, 1].
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Lovasz extension, expected value of random variable

o Recall, for w € R¥, we have f(w) = [;° f({w > a})da

e Since f({w > a}) =0 for a > wy 2 wy, we have for w € Rf, we have
fw) = [ f{w = a})da

e For w e [0,1]7, then f(w) = ["* f{w > a})da = fo {w > a})da
since f{w > a})=0for 1> a > wy.

e Consider «v as a uniform random variable on [0 1] and Iet h( ) be a
funciton of a. Then the expected value E[h(a)] = [ h(

@ Hence, for w € [0, 1]™, we can also define the Lovasz extension as

fw) = Epoy[f({w > o})] = Byl f(e € E:w(e;) > )] (15.93)
T h(a)

where « is uniform random variable in [0, 1].

@ Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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Lovés
[ERENN]

Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o If wy > ws, then

flw) =wi f({1}) + wa f({2}{1}) (15.94)
= (w1 —wo) f({1}) + waf({1,2}) (15.95)
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Lovész extensi

Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o If wy > wsq, then

f(w) = wif({1}) + w2 f({2}{1})
= (w1 —w2) f({1}) + w2 f({1,2})

o If wy < wsy, then

f(w) = wa f({2}) + w1 f({1}{2})

= (w2 —w1)f({2}) + wif({1,2})

(15.94)
(15.95)

(15.96)
(15.97)



Simple expressions for Lovasz E. with m = 2, F = {1,

o If wy > ws, then

Flw) = f (1) + wa f(2H{1) (15.98)
= (w1 —wa) f({1}) + wa f({1,2}) (15.99)
= S wr — ws) + 5 f()(w — w2) (15.100)

4o FUL2)) w4+ wn) = S (L2 w1 —w2) (15,101

+ I — w) + 3/ ) — wn) (15.102)




Simple expressions for Lovasz E. with m =2, F = {1

o If wy > wsq, then

f(w) =wi f({1}) + w2 f({2}{1}) (15.98)
= (w1 —w2) f({1}) +w2f({1,2}) (15.99)

= %f(l)(wl —w2) + %f(l)(wl — wz) (15.100)

+ %f({l, 2))(ws + wn) — %f({l, M)(wi —wy)  (15.101)

+ %f(2)(w1 — wa) + %f(2)(w2 —wy) (15.102)

@ A similar (symmetric) expression holds when w; < ws.




o This gives, for general wq, wo, that

1

5 (FULH + f({2)) = F({1,2})) [w1 — w2

%( FELY) = F{20) + F({1,2}) wy

% (=F({13) + F({2}) + F({1,2})) wy

= —(f{1}) + f({2}) — F({1,2})) min {wy, wo}
+ f{1Hwr + f({2})w2

(15.103)
(15.104)

(15.105)

(15.106)
(15.107)



Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o This gives, for general wq, wo, that

= 1

flw) =5 (F{ID + 120 = F({1,21) w1 — w| (15.103)
+ % (FHL) = f{2D) + fL2D) wn (15.104)

+ % (=f{1H) + F{2h) + F({1,2})) wa (15.105)
=—(f({1}) + f({2}) — f({1,2})) min {w1, w2}  (15.106)

+ f{1)wr + fF({2D)w2 (15.107)

@ Thus, if f(A) = H(X4) is the entropy function, we have
f(w) = H(e1)wy + H(e2)wa — I(e;ez) min {wy, wa} which must be
convex in w, where I(eg;ez) is the mutual information.




Lovész extension examples
[NE RN

Simple expressions for Lovasz E. with m = 2, £ = {1,2}

o This gives, for general wq, wo, that

5 1

flw) =5 (F{ID + 120 = F({1,21) w1 — w| (15.103)
+ % (FHL) = f{2D) + fL2D) wn (15.104)

+ % (=f{1H) + F{2h) + F({1,2})) wa (15.105)
=—(f({1}) + f({2}) — f({1,2})) min {w1, w2}  (15.106)

+ f{1)wr + fF({2D)w2 (15.107)

@ Thus, if f(A) = H(X) is the entropy function, we have
f(w) = H(ey)wy + H(ex)ws — I(er; e2) min {wy, ws} which must be
convex in w, where I(e1;ez) is the mutual information.

@ This “simple” but general form of the Lovasz extension with m = 2 can be
useful.
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Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

f(w) = wif({1}) + w2 f({2}{1}) (15.108)
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Loy ples
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Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi f({1}) + w2 f({2}{1}) (15.108)

o If w=(1,0)/f({1}) = (1/f({1}).,o) then f(w) = 1.
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Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi f({1}) + w2 f({2}{1}) (15.108)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi f({1}) + w2 f({2}{1}) (15.108)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.

o If wy < wy, then

f(w) = waf({2}) +wi f({1}[{2}) (15.109)




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi f({1}) + w2 f({2}{1}) (15.108)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.

o If wy < wsy, then

f(w) = w2 f({2}) + wi fF({1}{2}) (15.109)

o If w=(0,1)/£({2}) = (0,1/£({2})) then f(w) = 1.




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi f({1}) + w2 f({2}{1}) (15.108)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.

o If wy < wsy, then

f(w) = w2 f({2}) + wi fF({1}{2}) (15.109)

o If w=(0,1)/£({2}) = (0,1/£({2})) then f(w) = 1.
— (1L1)/£({1,2}) then f(w) = 1.




Example: m = 2, E = {1,2}, contours

o If wy > wsq, then

flw) = wi f({1}) + w2 f({2}{1}) (15.108)

o 1w = (1,0)/£({1}) = (1//({1}).0) then f(w) = 1.
o Ifw=(1,1)/f({1,2}) then f(w) = 1.

o If wy < wsy, then

f(w) = w2 f({2}) + wi fF({1}{2}) (15.109)

o If w=(0,1)/F({2}) = (0,1/£({2})) then f(w) = 1.
= (1L1)/f({1,2}) then f(w) = 1.

@ Can plot contours of the form {w eR?: f(w) = 1}, particular marked

points of form w = 14 X ﬁ for certain A, where f(w) = 1.




Example: m =2, £ = {1,2}

e Contour plot of m = 2 Lovasz extension (from Bach-2011).

UJQA

(0,1)/f({2})

W27 A1)/ £({1,2))
w1 > W9

45° wl

w: flw) =1

{

>

(1,0)/f({1})




Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F60/70 (pg.227/265)



nsion examples

Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(F) = f/(E) — z(FE) = 0.

@ Hence, from f(ul—i— alp) = f(w) + of (E), we have that

flw+alg) = f(w).
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f" and z € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(F) = f/(E) — z(FE) = 0.

@ Hence, from f(ui—i— alg) = f(w) + af (E), we have that

flw+alg)= f(w).
@ Thus, we can look “down” on the contour plot of the Lovasz extension,
{u' : f(w) = 1}, from a vantage point right on the line

{z :x = alg,a > 0} since moving in direction 15 changes nothing.
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Example: m =3, £ ={1,2,3}

@ Example 1 (from Bach-2011): f(A) = 1j4/cf1,2}
= min {|A[,1} + min {|E \ A|,1} — 1 is submodular, and
fw) = MaXpe (1,23} Wk — Milge (1 2 3} Wk
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Example: m =3, £ ={1,2,3}

o Example 1 (from Bach-2011): f(A) = 1 4/¢f1,2)
= min {|A[, 1} + min {| £\ A[, 1} — 1 is submodular, and
f(w) = maxgey 23y W — Mingeqy 2,33 W
W1=Wi
0.0, 1)/F({3})
W3> W2>W1

W3> Wl >W2

(1.0,/F( 13N Y o.10E(23)

Wi> Wi>W) PN Wo> W3>W

(l,0,0)/F({ L ~ . (0.1.0)/F({2))

Wo> wy>wy MWW

o
Wo=ws  W> WoS W3




Lovész extension examples
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Example: m =3, £ ={1,2,3}

A (0,0,1)

o Example 2 (from
Bach-2011): f(A) =
[Liea—Toeal+[12ea—13e4]

_Fo.L
(1,0,1)/2 fo=

TN (0,1,0)/2

(1,0,0) . N
P

(1,1,0)
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Example: m =3, £ ={1,2,3}

A (0,0,1)

o Example 2 (from
Bach-2011): f(A) =
[Liea—12ea|+[l2ea—13ea|

o This gives a “total variation”
function for the Lovasz
extension, with
Flw) = s —wal+ oz —wsl, (1,0.0) &
a prior to prefer y
piecewise-constant signals.

o (O’ ] s 1 )
1,002 f

TN 0,1,0)/2

(1,1,0)
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Total Variation Example

0 l 0 |
=z =N
- = = : :
=1l-- "= e
v= o= E =
From “Nonlinear total =1 -0 5 E
variation based noise s =1 ”I — g
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top left i = @
original, bottom right T~ — ;
total variation. =1 - = ||| :0a ME
=1l =1l e
=1l — =1l —
G Em W=
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@ Let m: E — Ry be a modular function and define f(A) = g(m(A))
where ¢ is concave. Then f is submodular.
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o Let m: E — R, be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

o Let M, = Zgzl m(e;)
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Example: Lovasz extension of concave over modular

o Let m: E — R, be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

o Let M; = 57_ mi(e;)
o f(w) is given as

m

flw) = Zw(ei)(g(Mz) —g(M;-1)) (15.110)

=1
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Example: Lovasz extension of concave over modular

o Let m: E — Ry be a modular function and define f(A)
where g is concave. Then f is submodular.

o Let M; = 57_ mi(e;)

o f(w) is given as

e And if m(A) = |A|, we get

zw —g(i—1))

=1

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018
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(15.111)
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Example: Lovasz extension and cut functions

e Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R, is a modular function over the edges, we know
from Lecture 2 that f: 2" — R, with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((¢, 7)):

FX) =Y my (15.112)

i€X,jeEV\X
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((¢, 7)):

FX)= > my (15.112)
1€X,jeV\X

@ Exercise: show that Lovasz extension of graph cut may be written as:

f(w) Z mi; max {(w; —wj),0} (15.113)

i,jeV

where elements are ordered as usual, w; > wy > -+ > w,.
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((¢, 7)):

FX)= > my (15.112)
1€X,jeV\X
@ Exercise: show that Lovasz extension of graph cut may be written as:
f(w) = Z mi; max {(w; — wj),0} (15.113)
1,jEV
where elements are ordered as usual, wy > we > -+ > w,,.
@ This is also a form of “total variation”
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A few more Lovasz extension examples

Some additional submodular functions and their Lovasz extensions, where
w(er) > w(ez) > -+ > wlem) > 0. Let Wi, 2 38 wiey).

| f(A) | f(w) |
4] [l
min([A], 1 0]
min(|A],1) — max(|A| —m +1,0) |w]|oo — min; w;
min(|A[, k) Wi
min(|A|, k) — max(|A| — (n — k) + 1,1) 2Wi — Wi,
min([AL, |5\ A] IV ol W

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

o Given training data D = {(x;, ;) },~, with (z;,y;) € R" x R, perform
the following risk minimization problem:

min —Zé yi, wx;) + AQ(w), (15.114)

weR™ M

where £(-) is a loss function (e.g., squared error) and Q(w) is a norm.
@ When data has muItipIe responses (z;, ;) € R™ x R*, learning becomes:

min Z ZE yE (W) ) + ANUw), (15.115)

wl, ,wkER"

o When data has multiple responses only that are observed, (y;) € R*
we get dictionary Iearning (Krause & Guestrin, Das & Kempe):

min min Z ZE v (W) as) + AQwF),  (15.116)

L1y yTm w1 wkER"
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Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lw|, = (3°F, w?)l/p
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Lovész extension examples

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lwl|, = (3%, wf)l/p

@ 1-norm promotes sparsity (prefer solutions with zero entries).
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Lovész extension examples

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lwl|, = (3%, wf)l/p

@ 1-norm promotes sparsity (prefer solutions with zero entries).
@ Image denoising, total variation is useful, norm takes form:

N
Qw) =) |w; — w1 (15.117)
=2
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Lovész extension examples

Norms, Sparse norms, and computer vision

: _ (NP PP
Common norms include p-norm Q(w) = ||wll, = (> 1 w;)
1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

N
Qw) =D w; — w1 (15.117)
=2

@ Points of difference should be “sparse” (frequently zero).

(Rodriguez,
2009)
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Lovész extension examples

Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0

@ Desirable sparse norm: count the non-zeros, ||w||p = 17 supp(w).
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F69/70 (pg.254/265)



Lovész extension examples
(NERRRRRNNNANEE ]

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||wl|o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F69/70 (pg.255/265)




Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f:2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w]|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!

Ex: total variation is Lovasz-ext. of graph cut, but 3 many more!
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
|wll = f(lw|), renders the function symmetric about all orthants (i.e.,
Hwa = [Ib©® w7 where b € {1, 1}"™ and © is element-wise
multiplication).
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Lovész extension examples

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Jwll 7 = f(lw|), renders the function symmetric about all orthants (i.e.,
w7 = [[b® w| 7 where b € {1, 1} and @ is element-wise
multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A]| is the £; norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Jwll 7 = f(lw|), renders the function symmetric about all orthants (i.e.,
w7 = [[b® w| 7 where b € {1, 1} and @ is element-wise
multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).
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Lovész extension examples

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Jwll 7 = f(lw|), renders the function symmetric about all orthants (i.e.,
w7 = [[b® w| 7 where b € {1, 1} and @ is element-wise
multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.
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Lovész extension examples
(NNRRRRRNNNRNNN] |

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Jwll 7 = f(lw|), renders the function symmetric about all orthants (i.e.,
w7 = [[b® w| 7 where b € {1, 1} and @ is element-wise
multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.
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Lovész extension examples

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Jwll 7 = f(lw|), renders the function symmetric about all orthants (i.e.,
w7 = [[b® w| 7 where b € {1, 1} and @ is element-wise
multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.

@ Bach-2011 has a complete discussion of this.
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