
Submodular Functions, Optimization,
and Applications to Machine Learning

— Spring Quarter, Lecture 15 —
http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

May 16th, 2018

+f (A) + f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )

Clockwise from top left:v
Lásló Lovász

Jack Edmonds
Satoru Fujishige

George Nemhauser
Laurence Wolsey

András Frank
Lloyd Shapley
H. Narayanan
Robert Bixby

William Cunningham
William Tutte
Richard Rado

Alexander Schrijver
Garrett Birkho�
Hassler Whitney

Richard Dedekind

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F1/70 (pg.1/74)

Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
Read chapter 3 from Fujishige’s book.
Read chapter 4 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Next homework will be posted soon.
As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).
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Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations
L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,
L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids
L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids
L8(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.
L9(4/23): Polyhedra, Matroid Polytopes,
Matroids → Polymatroids
L10(4/29): Matroids → Polymatroids,
Polymatroids, Polymatroids and Greedy,

L11(4/30): Polymatroids, Polymatroids
and Greedy
L12(5/2): Polymatroids and Greedy,
Extreme Points, Cardinality Constrained
Maximization
L13(5/7): Constrained Submodular
Maximization
L14(5/9): Submodular Max w. Other
Constraints, Cont. Extensions, Lovasz
Extension
L15(5/14): Cont. Extensions, Lovasz
Extension, Choquet Integration, Properties
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Continuous Extensions of Discrete Set Functions
Any function f : 2V → R (equivalently f : {0, 1}V → R) can be
extended to a continuous function in the sense f̃ : [0, 1]V → R.
This may be tight (i.e., f̃(1A) = f(A) for all A). I.e., the extension f̃
coincides with f at the hypercube vertices.
In fact, any such discrete function defined on the vertices of the n-D
hypercube {0, 1}n has a variety of both convex and concave extensions
tight at the vertices (Crama & Hammer’11). Example n = 1,

x0 1 x0 1x0 1 x0 1x0 1x0 1

f̃ : [0, 1] → R
Convex Extensions

f̃ : [0, 1] → R
Concave Extensions

f : {0, 1}V → R
Discrete Function

Since there are an exponential number of vertices {0, 1}n, important
questions regarding such extensions is:

1 When are they computationally feasible to obtain or estimate?
2 When do they have nice mathematical properties?
3 When are they useful for something practical?
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Logistics Review

Def: Convex Envelope of a function

Given any function h : Rn → R, define new function ȟ : Rn → R via:

ȟ(x) = sup {g(x) : g is convex & g(y) ≤ h(y), ∀y ∈ Rn} (15.6)

I.e., (1) ȟ(x) is convex, (2) ȟ(x) ≤ h(x),∀x, and (3) if g(x) is any
convex function having the property that g(x) ≤ h(x),∀x, then
g(x) ≤ ȟ(x).
Alternatively,

ȟ(x) = inf {t : (x, t) ∈ convexhull(epigraph(h))} (15.7)

h(x)
epi(h)(x)

ȟ(x)
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Cont. Extensions Lovász extension Choquet Integration Lovász extn., defs/props Lovász extension examples

Convex Closure of Discrete Set Functions

Given set function f : 2V → R, an arbitrary (i.e., not necessarily
submodular nor supermodular) set function, define a function
f̌ : [0, 1]V → R, as

f̌(x) = min
p∈4n(x)

∑

S⊆V
pSf(S) (15.1)

where 4n(x) ={
p ∈ R2n :

∑
S⊆V pS = 1, pS ≥ 0∀S ⊆ V, & ∑

S⊆V pS1S = x
}

Hence, 4n(x) is the set of all probability distributions over the 2n

vertices of the hypercube, and where the expected value of the
characteristic vectors of those points is equal to x, i.e., for any
p ∈ 4n(x), ES∼p(1S) =

∑
S⊆V pS1S = x.

Hence, f̌(x) = minp∈4n(x)ES∼p[f(S)]

Note, this is not (necessarily) the Lovász extension, rather this is a
convex extension.
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Cont. Extensions Lovász extension Choquet Integration Lovász extn., defs/props Lovász extension examples

Convex Closure of Discrete Set Functions

Given, f̌(x) = minp∈4n(x)ES∼p[f(S)], there are several things we’d
like to show:

1 That f̌ is tight (i.e., ∀S ⊆ V , we have f̌(1S) = f(S)).
2 That f̌ is convex (and consequently, that any arbitrary set function has

a tight convex extension).
3 That the convex closure f̌ is the convex envelope of the function defined

only on the hypercube vertices, and that takes value f(S) at 1S .
4 The definition of the Lovász extension of a set function, and that f̌ is

the Lovász extension iff f is submodular.
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Tightness of Convex Closure
Lemma 15.3.1

∀A ⊆ V , we have f̌(1A) = f(A).

Proof.

Define px to be an achiving argmin in f̌(x) = minp∈4n(x)ES∼p[f(S)].

Take an arbitrary A, so that 1A =
∑

S⊆V p
1A
S 1S = 1A.

Suppose ∃S′ with S′ \A 6= 0 having p1A
S′ > 0. This would mean, for

any v ∈ S′ \A, that
(∑

S p
1A
S 1S

)
(v) > 0, a contradiction.

Suppose ∃S′ s.t. A \ S′ 6= ∅ with p1A
S′ > 0.

Then, for any v ∈ A \ S′, consider below leading to a contradiction

pS′1S′︸ ︷︷ ︸
>0

+
∑

S⊆A
S 6=S′

pS1S

︸ ︷︷ ︸
can’t sum to 1

⇒
(∑

S⊆A
S 6=S′

ps1S

)
(v) < 1 (15.2)

I.e., v ∈ A so it must get value 1, but since v /∈ S′, v is deficient.
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Convexity of the Convex Closure

Lemma 15.3.2

f̌(x) = minp∈4n(x)ES∼p[f(S)] is convex in [0, 1]V .

Proof.

Let x, y ∈ [0, 1]V , 0 ≤ λ ≤ 1, and z = λx+ (1− λ)y, then

λf̌(x) + (1− λ)f̌(y) = λ
∑

S

pxSf(S) + (1− λ)
∑

S

pySf(S) (15.3)

=
∑

S

(λpxS + (1− λ)pyS)f(S) (15.4)

=
∑

S

pz
′
S f(S) ≥ min

p∈4n(z)
ES∼p[f(S)] (15.5)

= f̌(z) = f̌(λx+ (1− λ)y) (15.6)

Note that pz
′
S = λpxS + (1− λ)pyS and is feasible in the min since∑

S p
z′
S = 1, pz

′
S ≥ 0 and

∑
S p

z′
S 1S = z.
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Def: Convex Envelope of a function

Given any function h : Rn → R, define new function ȟ : Rn → R via:

ȟ(x) = sup {g(x) : g is convex & g(y) ≤ h(y), ∀y ∈ Rn} (15.6)

I.e., (1) ȟ(x) is convex, (2) ȟ(x) ≤ h(x),∀x, and (3) if g(x) is any
convex function having the property that g(x) ≤ h(x),∀x, then
g(x) ≤ ȟ(x).
Alternatively,

ȟ(x) = inf {t : (x, t) ∈ convexhull(epigraph(h))} (15.7)

h(x)
epi(h)(x)

ȟ(x)
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Convex Closure is the Convex Envelope

Lemma 15.3.3

f̌(x) = minp∈4n(x)ES∼p[f(S)] is the convex envelope.

Proof.

Suppose ∃ a convex f̄ with f̄(1A) = f(A) = f̌(1A),∀A ⊆ V and
∃x ∈ [0, 1]V s.t. f̄(x) > f̌(x).
Define px to be an achiving argmin in f̌(x) = minp∈4n(x)ES∼p[f(S)].
Hence, we have x =

∑
S p

x
S1S . Thus

f̌(x) =
∑

S

pxSf(S) =
∑

S

pxS f̄(1S) (15.7)

< f̄(x) = f̄(
∑

S

pxS1S) (15.8)

but this contradicts the convexity of f̄ .
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Polymatroid with labeled edge lengths
Recall
f(e|A) = f(A+e)−f(A)

Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the shape
of the polytope.
In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.
Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)
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Polymatroid with labeled edge lengths
Recall
f(e|A) = f(A+e)−f(A)

Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the shape
of the polytope.
In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.
Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1
e2

e 3

f(e1
|e2

)

f(e1
|e3

)

f(e1
)

f(e
2 |e

1 )

f(e
2 )

f(e
3 )

f(e
3 |e

2 )

f(e
2 |e

3 )

f(e
3 |e

1 )

f(e
3 |{e

1 ,e
2 })

f(e
3 |{e

1 ,e
2 })

f(e
2 |{e

1 ,e
3 })

f(e
2 |{e

1 ,e
3 })

f(e1
|{e2

,e3
})

f(e1
|{e2

,e3
})
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.9a)
subject to x ∈ Pf (15.9b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE+.
Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy when w ∈ RE+.
Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (15.10a)
subject to x ∈ Bf (15.10b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 15 - May 16th, 2018 F15/70 (pg.15/74)

Cont. Extensions Lovász extension Choquet Integration Lovász extn., defs/props Lovász extension examples

A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (15.11a)
subject to x ∈ Bf (15.11b)

We may consider this optimization problem a function f̆ : RE → R of
w ∈ RE , defined as:

f̆(w) = max(wx : x ∈ Bf ) (15.12)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.
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Edmond’s Theorem: The Greedy Algorithm

Edmonds proved that the solution to f̆(w) = max(wx : x ∈ Bf ) is
solved by the greedy algorithm iff f is submodular.
In particular, sort choose element order (e1, e2, . . . , em) based on
decreasing w,so that w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei}.
Define a vector x∗ ∈ RV where element ei has value
x(ei) = f(ei|Ei−1) for all i ∈ V .
Then 〈w, x∗〉 = max(wx : x ∈ Bf )

Theorem 15.4.1 (Edmonds)

If f : 2E → R+ is given, and B is a polytope in RE+ of the form
B =

{
x ∈ RE+ : x(A) ≤ f(A), ∀A ⊆ E, x(E) = f(E)

}
, then the greedy

solution to the problem max(wᵀx : x ∈ P ) is ∀w optimum if‌f f is
monotone non-decreasing submodular (i.e., if‌f P is a polymatroid).
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A continuous extension of submodular f

That is, given a submodular function f , a w ∈ RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w) = max(wx : x ∈ Bf ) (15.13)

=
m∑

i=1

w(ei)f(ei|Ei−1) =
m∑

i=1

w(ei)x(ei) (15.14)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.15)

= w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.16)

We say that ∅ , E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain based
on w.
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A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x ∈ Bf ) (15.17)

Therefore, if f is a submodular function, we can write

f̆(w) = w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.18)

=
m∑

i=1

λif(Ei) (15.19)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted descending according to w as before.
Convex analysis ⇒ f̆(w) = max(wx : x ∈ P ) is always convex in w for
any set P ⊆ RE , since a maximum of a set of linear functions (true
even when f is not submodular or P is not itself a convex set).
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An extension of f

Recall, for any such w ∈ RE , we have




w1

w2

...
wn


 =

(
w1 − w2

)
︸ ︷︷ ︸

λ1




1
0
...
0


+

(
w2 − w3

)
︸ ︷︷ ︸

λ2




1
1
0
...
0




+

· · ·+
(
wn−1 − wn

)
︸ ︷︷ ︸

λm−1




1
1
...
1
0




+
(
wm
)

︸ ︷︷ ︸
λm




1
1
...
1
1




(15.20)

If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last one, λm = wm).
Often, we take w ∈ RV+ or even w ∈ [0, 1]V , where λm ≥ 0.
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An extension of f

Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (15.21)

Note that

1E0 =




0
0
...
0


 ,1E1 =




1
0
0
...
0



, . . . ,1E`

=




1



`×1

...
1
0




(n− `)×0
...
0




, etc.

Hence, from the previous and current slide, we have w =
∑m

i=1 λi1Ei
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From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.22)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w) =
m∑

i=1

λif(Ei) = w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.23)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.24)
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From f̆ back to f

We can view f̆ : [0, 1]E → R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).
To summarize, with f̆(1A) =

∑m
i=1 λif(Ei), we have

f̆(1A) = f(A), (15.25)

. . . and when f is submodular, we also have have

f̆(1A) = max {1Aᵀx : x ∈ Bf} (15.26)
= max {1Aᵀx : x(B) ≤ f(B),∀B ⊆ E} (15.27)

Note when considering only f̆ : [0, 1]E → R, then any w ∈ [0, 1]E is in
positive orthant, and we have

f̆(w) = max {wᵀx : x ∈ Pf} (15.28)
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An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), ∀A, in this way where

f̆(w) =

m∑

i=1

λif(Ei) (15.29)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(15.30)

so that w =
∑m

i=1 λi1Ei .
w =

∑m
i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
This extension is called the Lovász extension!
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Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̆(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (15.31)

=

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.32)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.33)

=
m∑

i=1

λif(Ei) (15.34)

So f̆(w) seen either as sum of weighted gain evaluations (Eqn. (15.31)),
or as sum of weighted function evaluations (Eqn. (15.34)).
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Summary: comparison of the two extension forms
So if f is submodular, then we can write f̆(w) = max(wx : x ∈ Bf )
(which is clearly convex) in the form:

f̆(w) = max(wx : x ∈ Bf ) =
m∑

i=1

λif(Ei) (15.35)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
m∑

i=1

λif(Ei) (15.36)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
In both Eq. (15.35) and Eq. (15.36), we have f̆(1A) = f(A), ∀A, but
Eq. (15.36), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?
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The Lovász extension of f : 2E → R

Lovász showed that if a function f̆(w) defined as in Eqn. (15.29) is
convex, then f must be submodular.
This continuous extension f̆ of f , in any case (f being submodular or
not), is typically called the Lovász extension of f (but also sometimes
called the Choquet integral, or the Lovász-Edmonds extension).
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Lovász Extension, Submodularity and Convexity

Theorem 15.4.2

A function f : 2E → R is submodular if‌f its Lovász extension f̆ of f is
convex.

Proof.
We’ve already seen that if f is submodular, its extension can be written
via Eqn.(15.29) due to the greedy algorithm, and therefore is also
equivalent to f̆(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
∑

i λif(Ei) of some
function f : 2E → R is a convex function.
We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̆(αw) = αf̆(w) for any α ∈ R+.
I.e., f is a positively homogeneous convex function.

. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.4.2 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ⊆ E.
Now, given A,B ⊆ E, we will show that

f̆(1A + 1B) = f̆(1A∪B + 1A∩B) (15.37)
= f(A ∪B) + f(A ∩B). (15.38)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that
w = (w(e1), w(e2), . . . , w(em)) (15.39)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A4B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (15.40)

Then, considering f̆(w) =
∑

i λif(Ei), we have λ|C| = 1, λ|A∪B| = 1,
and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,
f̆(w) = f̆(1A + 1B) = f(A ∩B) + f(A ∪B).

. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.4.2 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̆(1A + 1B)] (15.41)

= f̆(0.51A + 0.51B) (15.42)

≤ 0.5f̆(1A) + 0.5f̆(1B) (15.43)
= 0.5(f(A) + f(B)) (15.44)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.45)

so f must be submodular.
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Lovász ext. vs. the concave closure of submodular function

The above theorem showed that the Lovász extension is convex iff f is
submodular.
Our next theorem shows that the Lovász extension coincides precisely
with the convex closure iff f is submodular.
I.e., not only is the Lovász extension convex for f submodular, it is the
convex closure when f is convex.
Hence, convex closure is easy to evaluate when f is submodular and is
this particular form iff f is submodular.
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Lovász ext. vs. the concave closure of submodular function
Theorem 15.4.3

Let f̆(w) = max(wx : x ∈ Bf ) =
∑m

i=1 λif(Ei) be the Lovász extension
and f̌(x) = minp∈4n(x)ES∼p[f(S)] be the convex closure. Then f̆ and f̌
coincide iff f is submodular.

Proof.
Assume f is submodular.
Given x, let px be an achieving argmin in f̌(x) that also maximizes∑

S p
x
S |S|2.

Suppose ∃A,B ⊆ V that are crossing (i.e., A 6⊆ B, B 6⊆ A) and
positive and w.l.o.g., pxA ≥ pxB > 0.
Then we may update px as follows:

p̄xA ← pxA − pxB p̄xB ← pxB − pxB (15.46)
p̄xA∪B ← pxA∪B + pxB p̄xA∩B ← pxA∩B + pxB (15.47)

and by submodularity, this does not increase
∑

S p
x
Sf(S).

. . .
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Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

This does increase
∑

S p
x
S |S|2 however since

|A ∪B|2 + |A ∩B|2 = (|A|+ |B \A|)2 + (|B| − |B \A|)2 (15.48)

= |A|2 + |B|2 + 2|B \A|(|A| − |B|+ |B \A|)
(15.49)

≥ |A|2 + |B|2 (15.50)

Contradiction! Hence, there can be no crossing sets A,B and we must
have, for any A,B with pxA > 0 and pxB > 0 either A ⊂ B or B ⊂ A.
Hence, the sets {A ⊆ V : pxA > 0} form a chain and can be as large
only as size n = |V |.
This is the same chain that defines the Lovász extension f̆(x), namely
∅ = E0 ⊆ E1 ⊆ E2 ⊂ . . . where Ei = {e1, e2, . . . , ei} and ei is orderd
so that x(e1) ≥ x(e2) ≥ · · · ≥ x(en).
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Lovász ext. vs. the concave closure of submodular function
. . . proof cont.

Next, assume f is not submodular. We must show that the Lovász
extension f̆(x) and the concave closure f̌(x) need not coincide.
Since f is not submodular, ∃S and i, j /∈ S such that
f(S) + f(S + i+ j) > f(S + i) + f(S + j), a strict violation of
submodularity.
Consider x = 1S + 1

21{i,j}.

Then f̆(x) = 1
2f(S) + 1

2f(S + i+ j) and px is feasible for f̌ with
pxS = 1/2 and pxS+i+j = 1/2.
An alternate feasible distribution for x in the convex closure is
p̄xS+i = p̄xS+j = 1/2.
This gives

f̌(x) ≤ 1

2
[f(S + i) + f(S + j)] < f̆(x) (15.51)

meaning f̌(x) 6= f̆(x).
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Integration and Aggregation

Integration is just summation (e.g., the
∫

symbol has as its origins a
sum).
Lebesgue integration allows integration w.r.t. an underlying measure µ
of sets. E.g., given measurable function f , we can define

∫

X
fdu = sup IX(s) (15.52)

where IX(s) =
∑n

i=1 ciµ(X ∩Xi), and where we take the sup over all
measurable functions s such that 0 ≤ s ≤ f and s(x) =

∑n
i=1 ciIXi(x)

and where IXi(x) is indicator of membership of set Xi, with ci > 0.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have the weighted average of x as:

WAVG(x) =
∑

e∈E
x(e)w(e) (15.53)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (15.54)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}. Moreover, we are
interpolating as in

WAVG(x) =
∑

e∈E
x(e)w(e) =

∑

e∈E
x(e)WAVG(1e) (15.55)
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Integration, Aggregation, and Weighted Averages

WAVG(x) =
∑

e∈E
x(e)w(e) (15.56)

Clearly, WAVG function is linear in weights w, in the argument x, and is
homogeneous. That is, for all w,w1, w2, x, x1, x2 ∈ RE and α ∈ R,

WAVGw1+w2(x) = WAVGw1(x) + WAVGw2(x), (15.57)
WAVGw(x1 + x2) = WAVGw(x1) + WAVGw(x2), (15.58)

and,

WAVG(αx) = αWAVG(x). (15.59)

We will see: The Lovász extension is still be linear in “weights” (i.e.,
the submodular function f), but will not be linear in x and will only be
positively homogeneous (for α ≥ 0).
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Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. I.e.,
for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (15.60)

What then might AG(x) be for some x ∈ RE? Our weighted average
functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E
x(A)wA =

∑

A⊆E
x(A)AG(1A) (15.61)

Note, we can define w(e) = w′(e) and w(A) = 0,∀A : |A| > 1 and get
back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (15.62)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.
A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e., given
f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where the A, x
bijection is A = {e ∈ E : xe = 1} and x = 1A.
Also, if we have an expression for fb we can construct a set function f
as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.
We saw this for Lovász extension.
It turns out that a concept essentially identical to the Lovász extension
was derived much earlier, in 1954, and using this derivation (via
integration) leads to deeper intuition.
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Choquet integral

Definition 15.5.1

Let f be any capacity on E and w ∈ RE+. The Choquet integral (1954) of w
w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (15.63)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 , 0, and where Ei = {e1, e2, . . . , ei}.

We immediately see that an equivalent formula is as follows:

Cf (w) =

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.64)

where E0
def
= ∅.
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Choquet integral

Definition 15.5.1

Let f be any capacity on E and w ∈ RE+. The Choquet integral (1954) of w
w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (15.63)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 , 0, and where Ei = {e1, e2, . . . , ei}.

BTW: this again essentially Abel’s partial summation formula: Given
two arbitrary sequences {an} and {bn} with An =

∑n
k=1 ak, we have

n∑

k=m

akbk =

n∑

k=m

Ak(bk − bk+1) +Anbn+1 −Am−1bm (15.65)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.
First note, assuming E is ordered according to descending w, so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right most is
we1 .

... w(e1)w(e2)w(e3)w(e4)w(e5)w(em) w(em−1)

A function can be defined on a segment of R, namely wei > α ≥ wei+1 .
This function Fi : [wei+1 , wei)→ R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (15.66)
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The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take w ∈ RE+).
The piecewise-constant function is defined as:

F (α) =





f(E) if 0 ≤ α < wm

f({e ∈ E : we > α}) if wei+1 ≤ α < wei , i ∈ {1, . . . ,m− 1}
0 (= f(∅)) if w1 < α

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i

...
...

0

f({e1})
f({e1,e2})

f({e1,e2,e3})

f({e1,e2,e3,e4})

f({e1,e2,e3,e4,e5})f(E)
f(E\{em})

w(e1)w(e2)w(e3)w(e4)w(e5)w(em)w(em−1)

f(E\{em,em-1})

F (α)

α

Note, what is depicted may be a game but not a capacity. Why?
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The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE+, and normalized f so that

f(∅) = 0. Recall wm+1
def
= 0.

f̃(w)
def
=

∫ ∞

0
F (α)dα (15.67)

=

∫ ∞

0
f({e ∈ E : we > α})dα (15.68)

=

∫ ∞

wm+1

f({e ∈ E : we > α})dα (15.69)

=
m∑

i=1

∫ wi

wi+1

f({e ∈ E : we > α})dα (15.70)

=
m∑

i=1

∫ wi

wi+1

f(Ei)dα =
m∑

i=1

f(Ei)(wi − wi+1) (15.71)
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The “integral” in the Choquet integral

But we saw before that
∑m

i=1 f(Ei)(wi − wi+1) is just the Lovász
extension of a function f .
Thus, we have the following definition:

Definition 15.5.2

Given w ∈ RE+, the Lovász extension (equivalently Choquet integral) may be
defined as follows:

f̃(w)
def
=

∫ ∞

0
F (α)dα (15.72)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE+ (i.e., we can
take w ∈ RE) nor that f be non-negative, but it is a bit more involved.
Above is the simple case.
The above integral will be further generalized a bit later.
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Choquet integral and aggregation

Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(x) =
∑

A⊆E
x(A)wA =

∑

A⊆E
x(A)AG(1A) (15.73)

how does this correspond to Lovász extension?
Let us partition the hypercube [0, 1]m into q polytopes, each defined by
a set of vertices V1,V2, . . . ,Vq.
E.g., for each i, Vi = {1A1 ,1A2 , . . . ,1Ak

} (k vertices) and the convex
hull of Vi defines the ith polytope.
This forms a “triangulation” of the hypercube.
For any x ∈ [0, 1]m there is a (not necessarily unique) V(x) = Vj for
some j such that x ∈ conv(V(x)).
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Choquet integral and aggregation

Most generally, for x ∈ [0, 1]m, let us define the (unique) coefficients
αx0(A) and αxi (A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex
1A ∈ conv(V(x)). The affine transformation is as follows:

αx0(A) +
m∑

j=1

αxj (A)xj ∈ R (15.74)

Note that many of these coefficient are often zero.
From this, we can define an aggregation function of the form

AG(x)
def
=

∑

A:1A∈V(x)

(
αx0(A) +

m∑

j=1

αxj (A)xj

)
AG(1A) (15.75)
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Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation σ, define

conv(Vσ) =
{
x ∈ [0, 1]n|xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(m)

}
(15.76)

Then these m! blocks of the partition are called the canonical partitions
of the hypercube.
With this, we can define {Vi}i as the vertices of conv(Vσ) for each
permutation σ. In this case, we have:

Proposition 15.5.3

The above linear interpolation in Eqn. (15.75) using the canonical partition
yields the Lovász extension with αx0(A) +

∑m
j=1 α

x
j (A)xj = xσi − xσi−1 for

A = Ei = {eσ1 , . . . , eσi} for appropriate order σ.

Hence, Lovász extension is a generalized aggregation function.
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Lovász extension as max over orders

We can also write the Lovász extension as follows:

f̃(w) = max
σ∈Π[m]

wᵀcσ (15.77)

where Π[m] is the set of m! permutations of [m] = E, σ ∈ Π[m] is a
particular permutation, and cσ is a vector associated with permutation
σ defined as:

cσi = f(Eσi)− f(Eσi−1) (15.78)

where Eσi = {eσ1 , eσ2 , . . . , eσi}.
Note this immediately follows from the definition of the Lovász
extension in the form:

f̃(w) = max
x∈Pf

wᵀx = max
x∈Bf

wᵀx (15.79)

since we know that the maximum is achieved by an extreme point of
the base Bf and all extreme points are obtained by a
permutation-of-E-parameterized greedy instance.
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Lovász extension, defined in multiple ways
As shorthand notation, lets use {w ≥ α} ≡ {e ∈ E : w(e) ≥ α}, called
the weak α-sup-level set of w. A similar definition holds for {w > α}
(called the strong α-sup-level set of w).
Given any w ∈ RE , sort E as w(e1) ≥ w(e2) ≥ · · · ≥ w(em). Also,
w.l.o.g., number elements of w so that w1 ≥ w2 ≥ · · · ≥ wm.
We have already seen how we can define the Lovász extension for any
(not necessarily submodular) function f in the following equivalent
ways:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (15.80)

=
m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em)a (15.81)

=
m−1∑

i=1

λif(Ei) (15.82)
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Lovász extension, as integral

Additional ways we can define the Lovász extension for any (not
necessarily submodular) but normalized function f include:

f̃(w) =
m∑

i=1

w(ei)f(ei|Ei−1) =
m∑

i=1

λif(Ei) (15.83)

=
m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em) (15.84)

=

∫ +∞

min {w1,...,wm}
f({w ≥ α})dα+ f(E) min {w1, . . . , wm}

(15.85)

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

−∞
[f({w ≥ α})− f(E)]dα

(15.86)
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general Lovász extension, as simple integral

In fact, we have that, given function f , and any w ∈ RE :

f̃(w) =

∫ +∞

−∞
f̂(α)dα (15.87)

where

f̂(α) =

{
f({w ≥ α}) if α >= 0

f({w ≥ α})− f(E) if α < 0
(15.88)

So we can write it as a simple integral over the right function.
These make it easier to see certain properties of the Lovász extension.
But first, we show the above.
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Lovász extension, as integral

To show Eqn. (15.85), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.
Then, consider that, as a function of α, we have

f({w ≥ α}) =





0 if α > w(e1)

f(Ek) if α ∈ (w(ek+1), w(ek)), k ∈ {1, . . . ,m− 1}
f(E) if α < w(em)

(15.89)

we may use open intervals since sets of zero measure don’t change
integration.
Inside the integral, then, this recovers Eqn. (15.84).
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Lovász extension, as integral
To show Eqn. (15.86), start with Eqn. (15.85), note
wm = min {w1, . . . , wm}, take any β ≤ min {0, w1, . . . , wm}, and form:

f̃(w) =

∫ +∞

wm

f({w ≥ α})dα+ f(E) min {w1, . . . , wm}

=

∫ +∞

β
f({w ≥ α})dα−

∫ wm

β
f({w ≥ α})dα+ f(E)

∫ wm

0
dα

=

∫ +∞

β
f({w ≥ α})dα−

∫ wm

β
f(E)dα+

∫ wm

0
f(E)dα

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

β
f({w ≥ α})dα−

∫ 0

β
f(E)dα

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

β
[f({w ≥ α})− f(E)]dα

and then let β →∞ and we get Eqn. (15.86), i.e.:

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

−∞
[f({w ≥ α})− f(E)]dα
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Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 15.6.1

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and g̃
then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász extension of
λf for λ ∈ R.

2 If w ∈ RE+ then f̃(w) =
∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A),∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k
i=1 γi1Ek

with
γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(Ei|E1:i−1) =

∑k−1
i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
f̃(w + α1E) = f̃(w) + αf(E).
This means that, say when m = 2, that as we move along the line
w1 = w2, the Lovász extension scales linearly.
And if f(E) = 0, then the Lovász extension is constant along the
direction 1E .
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Lovász extension properties

Given Eqns. (15.83) through (15.86), most of the above properties are
relatively easy to derive.
For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (15.90)

(a)
=

∫ ∞

−∞
f({w ≤ α})dα (b)

=

∫ ∞

−∞
f({w > α})dα (15.91)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w) (15.92)

Equality (a) follows since
∫∞
−∞ f(α)dα =

∫∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and equality (b) follows since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension, expected value of random variable
Recall, for w ∈ RE+, we have f̃(w) =

∫∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1 ≥ w`, we have for w ∈ RE+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]E , then f̃(w) =

∫ w1

0 f({w ≥ α})dα =
∫ 1

0 f({w ≥ α})dα
since f({w ≥ α}) = 0 for 1 ≥ α > w1.
Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[h(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = Ep(α)[f({w ≥ α})︸ ︷︷ ︸
h(α)

] = Ep(α)[f(e ∈ E : w(ei) ≥ α)︸ ︷︷ ︸
h(α)

] (15.93)

where α is uniform random variable in [0, 1].
Useful for showing results for randomized rounding schemes in
solving submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (15.94)
= (w1 − w2)f({1}) + w2f({1, 2}) (15.95)

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (15.96)
= (w2 − w1)f({2}) + w1f({1, 2}) (15.97)
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (15.98)
= (w1 − w2)f({1}) + w2f({1, 2}) (15.99)

=
1

2
f(1)(w1 − w2) +

1

2
f(1)(w1 − w2) (15.100)

+
1

2
f({1, 2})(w1 + w2)− 1

2
f({1, 2})(w1 − w2) (15.101)

+
1

2
f(2)(w1 − w2) +

1

2
f(2)(w2 − w1) (15.102)

A similar (symmetric) expression holds when w1 ≤ w2.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})− f({1, 2})) |w1 − w2| (15.103)

+
1

2
(f({1})− f({2}) + f({1, 2}))w1 (15.104)

+
1

2
(−f({1}) + f({2}) + f({1, 2}))w2 (15.105)

= − (f({1}) + f({2})− f({1, 2})) min {w1, w2} (15.106)
+ f({1})w1 + f({2})w2 (15.107)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 − I(e1; e2) min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.
This “simple” but general form of the Lovász extension with m = 2 can be
useful.
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Example: m = 2, E = {1, 2}, contours

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (15.108)

If w = (1, 0)/f({1}) =
(

1/f({1}), 0
)
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (15.109)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
{
w ∈ R2 : f̃(w) = 1

}
, particular marked

points of form w = 1A × 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}

Contour plot of m = 2 Lovász extension (from Bach-2011).

0

w2 > w1

w1 > w2

(1, 1)/f({1, 2})

(1, 0)/f({1})

(0, 1)/f({2})

˜
{
w : f(w) = 1

}

w2

w1
45°
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.
Consider any submodular f ′ and x ∈ Bf ′ . Then f(A) = f ′(A)− x(A)
is submodular, and moreover f(E) = f ′(E)− x(E) = 0.
Hence, from f̃(w + α1E) = f̃(w) + αf(E), we have that
f̃(w + α1E) = f̃(w).
Thus, we can look “down” on the contour plot of the Lovász extension,{
w : f̃(w) = 1

}
, from a vantage point right on the line

{x : x = α1E , α > 0} since moving in direction 1E changes nothing.
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Example: m = 3, E = {1, 2, 3}
Example 1 (from Bach-2011): f(A) = 1|A|∈{1,2}
= min {|A|, 1}+ min {|E \A|, 1} − 1 is submodular, and
f̃(w) = maxk∈{1,2,3}wk −mink∈{1,2,3}wk.

w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/F({2,3})

(0,0,1)/F({3})

(1,0,1)/F({1,3})

(1,0,0)/F({1})

(1,1,0)/F({1,2})

(0,1,0)/F({2})

3
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Example: m = 3, E = {1, 2, 3}

Example 2 (from
Bach-2011): f(A) =
|11∈A−12∈A|+|12∈A−13∈A|
This gives a “total variation”
function for the Lovász
extension, with
f̃(w) = |w1−w2|+|w2−w3|,
a prior to prefer
piecewise-constant signals.

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)

(1,1,0)
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Total Variation Example

From “Nonlinear total
variation based noise
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top left
original, bottom right
total variation.
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Example: Lovász extension of concave over modular

Let m : E → R+ be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.
Let Mj =

∑j
i=1m(ei)

f̃(w) is given as

f̃(w) =

m∑

i=1

w(ei)
(
g(Mi)− g(Mi−1)

)
(15.110)

And if m(A) = |A|, we get

f̃(w) =
m∑

i=1

w(ei)
(
g(i)− g(i− 1)

)
(15.111)
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E → R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V → R+ with f(X) = m(Γ(X)) where
Γ(X) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ V \X} is non-monotone
submodular.
Simple way to write it, with mij = m((i, j)):

f(X) =
∑

i∈X,j∈V \X
mij (15.112)

Exercise: show that Lovász extension of graph cut may be written as:

f̃(w) =
∑

i,j∈V
mij max {(wi − wj), 0} (15.113)

where elements are ordered as usual, w1 ≥ w2 ≥ · · · ≥ wn.
This is also a form of “total variation”
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A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions, where
w(e1) ≥ w(e2) ≥ · · · ≥ w(em) ≥ 0. Let Wk ,

∑k
i=1w(ei).

f(A) f̃(w)

|A| ‖w‖1
min(|A|, 1) ‖w‖∞

min(|A|, 1)−max(|A| −m+ 1, 0) ‖w‖∞ −miniwi
min(|A|, k) Wk

min(|A|, k)−max(|A| − (n− k) + 1, 1) 2Wk −Wm

min(|A|, |E \A|) 2Wbm/2c −Wm

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

Given training data D = {(xi, yi)}mi=1 with (xi, yi) ∈ Rn × R, perform
the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

`(yi, w
ᵀxi) + λΩ(w), (15.114)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a norm.
When data has multiple responses (xi, yi) ∈ Rn×Rk, learning becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yki , (w
k)

ᵀ
xi) + λΩ(wk), (15.115)

When data has multiple responses only that are observed, (yi) ∈ Rk
we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(yki , (w
k)

ᵀ
xi) + λΩ(wk), (15.116)
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =
N∑

i=2

|wi − wi−1| (15.117)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = 1ᵀ supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖1 which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the function symmetric about all orthants (i.e.,
‖w‖f̃ = ‖b� w‖f̃ where b ∈ {−1, 1}m and � is element-wise
multiplication).
Simple example. The Lovász extension of the modular function
f(A) = |A| is the `1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted `1 norm.
With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the `2 norm).
Hence, not all norms come from the Lovász extension of some
submodular function.
Similarly, not all convex functions are the Lovász extension of some
submodular function.
Bach-2011 has a complete discussion of this.
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