
Submodular Functions, Optimization,

and Applications to Machine Learning

— Spring Quarter, Lecture 1 —
http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

Mar 26th, 2018

+f (A) + f (B) f (A [B)

= f (Ar) +f (C) + f (Br)

�
= f (A \ B)

f (A \ B)

= f (Ar) + 2f (C) + f (Br)

Clockwise from top left:v
Lásló Lovász

Jack Edmonds
Satoru Fujishige

George Nemhauser
Laurence Wolsey

András Frank
Lloyd Shapley
H. Narayanan
Robert Bixby

William Cunningham
William Tutte
Richard Rado

Alexander Schrijver
Garrett Birkhoff
Hassler Whitney

Richard Dedekind

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F1/91 (pg.1/254)

Logistics

Announcements

Welcome to: Submodular Functions, Optimization, and Applications to
Machine Learning, EE563.
Class: An introduction to submodular functions including methods for
their optimization, and how they have been (and can be) applied in
many application domains.
Weekly Virtual Office Hours: Mondays, 10:00-11:00am, via zoom (link
posted on canvas).
EEB 042, class web page is at our web page
(http://www.ee.washington.edu/people/faculty/bilmes/
classes/ee563_spring_2018/).
Use our discussion board
(https://canvas.uw.edu/courses/1039754/discussion_topics)
for all questions, comments, so that all will benefit from them being
answered.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F2/91 (pg.2/254)

p

Logistics

Rough Class Outline

Introduction to submodular functions: definitions, real-world and
contrived examples, properties, operations that preserve submodularity,
inequalities, variants and special submodular functions, and
computational properties. Gain intution, when is submodularity and
supermodularity useful?

Submodularity is an ideal model for cooperation, complexity,
and attractiveness as well as for diversity, coverage, & information

Applications in data science , computer vision , tractable
substructures in constraint satisfaction/SAT and graphical models ,

game theory , social networks , economics , information theory ,
structured convex norms , natural language processing ,
genomics/proteomics , sensor networks , probabilistic inference , and

other areas of machine learning .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F3/91 (pg.3/254)

Logistics

Rough Class Outline (cont. II)

theory of matroids and lattices.
Polyhedral properties of submodular functions, polymatroids generalize
matroids.
The Lovász extension of submodular functions, the Choquet integral,
and convex and concave extensions.
Submodular maximization algorithms under constraints, submodular
cover problems, greedy algorithms, approximation guarantees.
Submodular minimization algorithms, a history of submodular
minimization, including both numerical and combinatorial algorithms,
computational properties, and descriptions of both known results and
currently open problems in this area.
Submodular flow problems, the principle partition of a submodular
function and its variants.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F4/91 (pg.4/254)

Logistics

Rough Class Outline (cont. III)

Constrained optimization problems with submodular functions, including
maximization and minimization problems with various constraints. An
overview of recent problems addressed in the community.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F5/91 (pg.5/254)

Logistics

Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and Certain
Polyhedra” from 1970.
Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978
Lovász’s paper, “Submodular functions and convexity”, from 1983.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F6/91 (pg.6/254)

Logistics

Useful Books

Fujishige, “Submodular Functions and Optimization”, 2005
Narayanan, “Submodular Functions and Electrical Networks”, 1997
Welsh, “Matroid Theory”, 1975.
Oxley, “Matroid Theory”, 1992 (and 2011).
Lawler, “Combinatorial Optimization: Networks and Matroids”, 1976.
Schrijver, “Combinatorial Optimization”, 2003
Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.
Additional readings that will be announced here.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F7/91 (pg.7/254)

Logistics

Recent online material (some with an ML slant)

Previous video version of this class http:
//j.ee.washington.edu/~bilmes/classes/ee596a_fall_2014/.
Stefanie Jegelka & Andreas Krause’s 2013 ICML tutorial
http://techtalks.tv/talks/
submodularity-in-machine-learning-new-directions-part-i/
58125/
NIPS, 2013 tutorial on submodularity http://melodi.ee.washington.
edu/~bilmes/pgs/b2hd-bilmes2013-nips-tutorial.html and
http://youtu.be/c4rBof38nKQ
Andreas Krause’s web page http://submodularity.org.
Francis Bach’s updated 2013 text. http://hal.archives-ouvertes.fr/
docs/00/87/06/09/PDF/submodular_fot_revised_hal.pdf
Tom McCormick’s overview paper on submodular minimization http:
//people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
Georgia Tech’s 2012 workshop on submodularity:
http://www.arc.gatech.edu/events/arc-submodularity-workshop
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F8/91 (pg.8/254)

Logistics

Facts about the class

Prerequisites: ideally knowledge in probability, statistics, convex
optimization, and combinatorial optimization these will be reviewed as
necessary. The course is open to students in all UW departments. Any
questions, please contact me.
Text: We will be drawing from the book by Satoru Fujishige entitled
"Submodular Functions and Optimization" 2nd Edition, 2005, but we
will also be reading handouts and research papers that will be posted
here on this web page, especially for some of the application areas.
Grades and Assignments: Grades will be based on a combination of a
final project (45%), homeworks (55%). There will be between 3-6
homeworks during the quarter.
Final project: The final project will consist of a 4-page paper
(conference style) and a final project presentation. The project must
involve using/dealing mathematically with submodularity in some way
or another, and might involve a contest!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F9/91 (pg.9/254)

Logistics

Facts about the class

Homework must be submitted electronically using our assignment
dropbox
(https://canvas.uw.edu/courses/1216339/assignments). PDF
submissions only please. Photos of neatly hand written solutions,
combined into one PDF, are fine
Lecture slides - are being updated and improved this quarter. They will
likely appear on the web page the night before, and the final version
will appear just before class.
Slides from previous version of this class are at
http://www.ee.washington.edu/people/faculty/bilmes/
classes/ee596b_spring_2016/.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F10/91 (pg.10/254)

Logistics

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F11/91 (pg.11/254)

Logistics

Class Road Map - EE595 Spring 2016

L1(3/28): Motivation, Applications, &

Basic Definitions

L2(3/30): Machine Learning Apps

(diversity, complexity, parameter, learning

target, surrogate).

L3(4/4): Info theory exs, more apps,

definitions, graph/combinatorial examples,

matrix rank example, visualization

L4(4/6): Graph and Combinatorial

Examples, matrix rank, Venn diagrams,

examples of proofs of submodularity, some

useful properties

L5(4/11): Examples & Properties, Other

Defs., Independence

L6(4/13): Independence, Matroids,

Matroid Examples, matroid rank is

submodular

L7(4/18): Matroid Rank, More on

Partition Matroid, System of Distinct

Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and

representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,

Combinatorial Geometries, Matroid and

Greedy

L10(4/27): Matroid and Greedy,

Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to

Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids

and Greedy

L13(5/9): Polymatroids and Greedy;

Possible Polytopes; Extreme Points;

Polymatroids, Greedy, and Cardinality

Constrained Maximization

L14(5/11): Cardinality Constrained

Maximization; Curvature; Submodular

Max w. Other Constraints

L15(5/16): Submodular Max w. Other

Constraints, Most Violated , Matroids

cont., Closure/Sat,

L16(5/18): Closure/Sat, Fund.

Circuit/Dep,

L17(5/23): Min-Norm Point and SFM,

Min-Norm Point Algorithm,

L18(5/25): Proof that min-norm gives

optimal, Lovász extension.

L19(6/1):

L20(6/6): Final Presentations

maximization.

Finals Week: June 6th-10th, 2016.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F12/91 (pg.12/254)

Logistics

Class Road Map - EE563

L1(3/26): Motivation, Applications, &

Basic Definitions, Apps (diversity,

complexity, parameter, learning target,

surrogate).

L2(3/28):

L3(4/2):

L4(4/4):

L5(4/9):

L6(4/11):

L7(4/16):

L8(4/18):

L9(4/23):

L10(4/25):

L11(4/30):

L12(5/2):

L13(5/7):

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L–(5/28): Memorial Day (holiday)

L19(5/30):

L21(6/4): Final Presentations

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F13/91 (pg.13/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The Ideal Machine Learning Methods

Simple to define

Mathematically rich

Naturally suited to many
real-world applications

Efficient & scalable to large
problem instances

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F14/91 (pg.14/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Convex Analysis in Machine Learning

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F15/91 (pg.15/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Successful Convexity in Machine Learning

Linear and logistic regresion, surrogate loss functions.
Convex sparse regularizers (such as the `p family and nuclear norms).
PSD matrices (i.e., positive semidefinite cone) and Gaussian densities.
Optimizing non-linear and even non-convex classification/regression
methods such as support-vector (SVMs) and kernel machines via
convex optimization.
Maximum entropy estimation
The expectation-maximization (EM) algorithm.
Ideas/techniques/insight for non-convex methods, convex minimization
useful even for non-convex problems, such as Deep Neural Networks
(DNNs). Convex analysis for non-convex problems.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F16/91 (pg.16/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

A Convexity Limitation: Discrete Problems

Many Machine Learning problems are inherently discrete:
Active learning/label selection.
MAP & diverse k-best discrete
probabilistic inference
Data Science: data partitioning,
clustering, summarization; the
science of data management.
Sparse modeling, compressed
sensing, low-rank approximation.
Probabilistic models: structure
learning in graphical models and
neural networks. Non-graphical
global potentials.
Variable and feature selection;
dictionary selection.

Natural language processing (NLP):
words, phrases, sentences,
paragraphs, n-grams, syntax trees,
graphs, semantic structures.
Social choice and voting theory,
social networks, viral marketing,
(Multi-label) image segmentation in
computer vision.
Proteomics: selecting peptides,
proteins, drug trial participants
Genomics: cell-type or assay
selection, genomic summarization
Social networks, influence, viral
marketing, information cascades,
diffusion networks

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F17/91 (pg.17/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Classic Discrete Optimization Problems

Operations Research/Industrial Engineering: facility and factory location, packing and

covering.

Sensor placement where to optimally place sensors?

Information: Information theory, sets of random variables.

Geometry: Polytopes and polyhedra

Mathematics: e.g., monge matrices, efficient dynamic programming, Birkhoff lattice

theory

Combinatorial Problems: e.g., sets, graphs, graph cuts, max k coverage, packings,

coverings, partitions, paths, flows, matchings, colorings,

Algorithms: Algorithms, and time/space complexity

Economics: markets, economies of scale, mathematics of supply & demand

General Integer Programming (e.g., Integer Linear Programming (ILP),
Integer Quadratic Programming (IQP), etc). General case can ignore useful
and natural structures common to many problems.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F18/91 (pg.18/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property of
various functions and domains occurring in such models; quite often the
only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be developed.

4 There are theoretically and practically (reasonably) efficient methods to
find the minimum of a convex function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F19/91 (pg.19/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property of
various functions and domains occurring in such models; quite often the
only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be developed.

4 There are theoretically and practically (reasonably) efficient methods to
find the minimum of a convex function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F19/91 (pg.20/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property of
various functions and domains occurring in such models; quite often the
only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be developed.

4 There are theoretically and practically (reasonably) efficient methods to
find the minimum of a convex function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F19/91 (pg.21/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property of
various functions and domains occurring in such models; quite often the
only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be developed.

4 There are theoretically and practically (reasonably) efficient methods to
find the minimum of a convex function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F19/91 (pg.22/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Attractions of Submodular Functions

In this course, we wish to demonstrate that submodular and
supermodular functions also possess attractions of these four sorts as
well.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F20/91 (pg.23/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and Decomposition

Let B be the set of cliques of a graph G. A graphical model prescribes
how to write functions f : {0, 1}n ! R. Let x 2 {0, 1}n

f(x) =
X

B2B
fB(xB) (1.1)

Example: Undirected Graphs

X2

X1

X3

X4
X6

X5

f(x1:6) = f(x1, x2, x3) + f(x2, x3, x4)

+ f(x3, x5) + f(x5, x6) + f(x4, x6)

f(x1:6) = f(x1, x2) + f(x2, x3) + f(x3, x1)

+ f(x2, x3) + f(x3, x4) + f(x4, x2)

+ f(x3, x5) + f(x5, x6) + f(x4, x6)

Example: Factor/Hyper Graphs
x1

x2

x3

x4

f1

f2

f3

f4

f(x1:4) = f1(x1, x2, x3) + f2(x2, x3)

= f3(x1, x3, x4) + f4(x3)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F21/91 (pg.24/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?

Let C, T , and L be binary variables indicating the presence or absence
of items, and we wish to compute value(C, T, L).
Example: Value of Coffee (C), Tea (T), and Lemon (L).

value(C, T, L) = value(C, T) + value(T, L) (1.2)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F22/91 (pg.25/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?
Let C, T , and L be binary variables indicating the presence or absence
of items, and we wish to compute value(C, T, L).

Example: Value of Coffee (C), Tea (T), and Lemon (L).

value(C, T, L) = value(C, T) + value(T, L) (1.2)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F22/91 (pg.26/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?
Let C, T , and L be binary variables indicating the presence or absence
of items, and we wish to compute value(C, T, L).
Example: Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T) + value(T, L) (1.2)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F22/91 (pg.27/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Decomposition Limitation: Manner of Interaction

Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T) + value(T, L) (1.3)

Coffee and Tea are “substitutive”

value(C, T)  value(C) + value(T) (1.4)

Tea and Lemon are “complementary”

value(T, L) � value(T) + value(L) (1.5)

These are distinct non-graphically expressed manners of interaction!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F23/91 (pg.28/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Decomposition Limitation: Manner of Interaction

Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T) + value(T, L) (1.3)

Coffee and Tea are “substitutive”

value(C, T)  value(C) + value(T) (1.4)

Tea and Lemon are “complementary”

value(T, L) � value(T) + value(L) (1.5)

These are distinct non-graphically expressed manners of interaction!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F23/91 (pg.29/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Decomposition Limitation: Manner of Interaction

Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T) + value(T, L) (1.3)

Coffee and Tea are “substitutive”

value(C, T)  value(C) + value(T) (1.4)

Tea and Lemon are “complementary”

value(T, L) � value(T) + value(L) (1.5)

These are distinct non-graphically expressed manners of interaction!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F23/91 (pg.30/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Decomposition Limitation: Manner of Interaction

Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T) + value(T, L) (1.3)

Coffee and Tea are “substitutive”

value(C, T)  value(C) + value(T) (1.4)

Tea and Lemon are “complementary”

value(T, L) � value(T) + value(L) (1.5)

These are distinct non-graphically expressed manners of interaction!
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F23/91 (pg.31/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Options for Cost Models via Graphical Decomposition

Three items. Hamburger (H), Fries (F), Soda (S)

Some graphical model options for costs(H,F, S):

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F24/91 (pg.32/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Options for Cost Models via Graphical Decomposition

Three items. Hamburger (H), Fries (F), Soda (S)

Some graphical model options for costs(H,F, S):

costs(H,F, S) = csthfc(H,F, S)

costs(H,F, S) = csthf(H,F) + cstfc(F, S)

costs(H,F, S) = csth(H) + cstf(F) + cstc(S)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F24/91 (pg.33/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

Health costs

In both cases, graphical-only decompositions fail!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F25/91 (pg.34/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

() ()� ()()ccs ccs ccs ccs

Health costs

In both cases, graphical-only decompositions fail!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F25/91 (pg.35/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

() ()� ()()ccs ccs ccs ccs

Health costs

() () ()()hcs hcs hcs hcs

In both cases, graphical-only decompositions fail!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F25/91 (pg.36/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

() ()� ()()ccs ccs ccs ccs

Health costs

() () ()()hcs hcs hcs hcs

In both cases, graphical-only decompositions fail!
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F25/91 (pg.37/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sets and set functions f : 2V ! R

We are given a finite “ground” set V of objects, 2V , {A : A ✓ V }

V =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

Also given a set function f : 2V ! R that valuates subsets A ✓ V .
Ex: f(V) = 6

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F26/91 (pg.38/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sets and set functions f : 2V ! R

Subset A ✓ V of objects:

A =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

Also given a set function f : 2V ! R that valuates subsets A ✓ V .
Ex: f(A) = 1

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F26/91 (pg.39/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sets and set functions f : 2V ! R

Subset B ✓ V of objects:

B =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

Also given a set function f : 2V ! R that valuates subsets A ✓ V .
Ex: f(B) = 6

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F26/91 (pg.40/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Set functions are pseudo-Boolean functions

Any set A ✓ V can be represented as a binary vector
x 2 {0, 1}V (a “bit vector” representation of a set).

The characteristic vector 1A 2 {0, 1}V of a set A is defined one where
element v 2 V has value:

1A(v) =

(
1 if v 2 A

0 else
(1.7)

Useful to be able to quickly map between X = X(1X) and
x(X)

�
= 1X .

f : {0, 1}V ! {0, 1} are known as Boolean function.
f : {0, 1}V ! R is a pseudo-Boolean function (submodular functions
are a special case).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F27/91 (pg.41/254)

XCN) E E 913 VEV

Background Definitions Simple Examples ML Apps Diversity Complexity

Set functions are pseudo-Boolean functions

Any set A ✓ V can be represented as a binary vector
x 2 {0, 1}V (a “bit vector” representation of a set).
The characteristic vector 1A 2 {0, 1}V of a set A is defined one where
element v 2 V has value:

1A(v) =

(
1 if v 2 A

0 else
(1.7)

Useful to be able to quickly map between X = X(1X) and
x(X)

�
= 1X .

f : {0, 1}V ! {0, 1} are known as Boolean function.
f : {0, 1}V ! R is a pseudo-Boolean function (submodular functions
are a special case).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F27/91 (pg.42/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Set functions are pseudo-Boolean functions

Any set A ✓ V can be represented as a binary vector
x 2 {0, 1}V (a “bit vector” representation of a set).
The characteristic vector 1A 2 {0, 1}V of a set A is defined one where
element v 2 V has value:

1A(v) =

(
1 if v 2 A

0 else
(1.7)

Useful to be able to quickly map between X = X(1X) and
x(X)

�
= 1X .

f : {0, 1}V ! {0, 1} are known as Boolean function.
f : {0, 1}V ! R is a pseudo-Boolean function (submodular functions
are a special case).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F27/91 (pg.43/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Set functions are pseudo-Boolean functions

Any set A ✓ V can be represented as a binary vector
x 2 {0, 1}V (a “bit vector” representation of a set).
The characteristic vector 1A 2 {0, 1}V of a set A is defined one where
element v 2 V has value:

1A(v) =

(
1 if v 2 A

0 else
(1.7)

Useful to be able to quickly map between X = X(1X) and
x(X)

�
= 1X .

f : {0, 1}V ! {0, 1} are known as Boolean function.

f : {0, 1}V ! R is a pseudo-Boolean function (submodular functions
are a special case).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F27/91 (pg.44/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Set functions are pseudo-Boolean functions

Any set A ✓ V can be represented as a binary vector
x 2 {0, 1}V (a “bit vector” representation of a set).
The characteristic vector 1A 2 {0, 1}V of a set A is defined one where
element v 2 V has value:

1A(v) =

(
1 if v 2 A

0 else
(1.7)

Useful to be able to quickly map between X = X(1X) and
x(X)

�
= 1X .

f : {0, 1}V ! {0, 1} are known as Boolean function.
f : {0, 1}V ! R is a pseudo-Boolean function (submodular functions
are a special case).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F27/91 (pg.45/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Two Equivalent Submodular Definitions

Definition 1.3.1 (submodular concave)

A function f : 2V ! R is submodular if for any A,B ✓ V , we have that:

f(A) + f(B) � f(A [B) + f(A \B) (1.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 1.3.2 (diminishing returns)

A function f : 2V ! R is submodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [{v})� f(A) � f(B [{v})� f(B) (1.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F28/91 (pg.46/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).
Thus, f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F29/91 (pg.47/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).
Thus, f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F29/91 (pg.48/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F29/91 (pg.49/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).
Thus, f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F29/91 (pg.50/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Two Equivalent Supermodular Definitions

Definition 1.3.3 (supermodular)

A function f : 2V ! R is supermodular if for any A,B ✓ V , we have that:

f(A) + f(B)  f(A [B) + f(A \B) (1.10)

Definition 1.3.4 (supermodular (improving returns))

A function f : 2V ! R is supermodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [{v})� f(A)  f(B [{v})� f(B) (1.11)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff �f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

P
a2A f(a) (often c = 0).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F30/91 (pg.51/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Example Supermodular: Number of Balls with Two Lines

Given ball pyramid, bottom row V is size n = |V |. For subset S ✓ V of
bottom-row balls, draw 45� and 135� diagonal lines from each s 2 S. Let
f(S) be number of non-bottom-row balls with two lines) f(S) is
supermodular.

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

A = {2, 5, 9} A [{4} = {2, 4, 5, 9}

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

B = {2, 5, 8, 9} B [{4} = {2, 4, 5, 8, 9}

f(A) = 3 f(A [{4}) = 6

f(B) = 6 f(B [{4}) = 10

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F31/91 (pg.52/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Scientific Anecdote: Emergent Properties

New York Times column (D. Brooks), March 28th, 2011 on “Tools for
Thinking” was about responses to Steven Pinker’s (Harvard) asking a
number of scientists “What scientific concept would improve everybody’s
cognitive toolkit?”
See http://edge.org/responses/
what-scientific-concept-would-improve-everybodys-cognitive-toolkit
A common theme was “emergent properties” or “emergent systems”

Emergent systems are ones in which many different elements inter-
act. The pattern of interaction then produces a new element that is
greater than the sum of the parts, which then exercises a top-down
influence on the constituent elements.

Emergent properties are well modeled by supermodular functions!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F32/91 (pg.53/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular
function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F33/91 (pg.54/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular
function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F33/91 (pg.55/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular
function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.

Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F33/91 (pg.56/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular
function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.

Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F33/91 (pg.57/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular
function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).

Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F33/91 (pg.58/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular
function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F33/91 (pg.59/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The Ideal Machine Learning Methods

Simple to define

Mathematically rich

Naturally suited to many
real-world applications

Efficient & scalable to large
problem instances

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F34/91 (pg.60/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Discrete Optimization

Unconstrained minimization and maximization:

min
X✓V

f(X) (1.13) max
X✓V

f(X) (1.14)

Knowing nothing about f , need
2n queries for any quality as-
surance on candidate solution.
Otherwise, solution can be un-
boundedly poor!!

Alternatively, we may partition V into (necessarily disjoint) blocks
{V1, V2, . . .} that collectively are good in some way.
When f is submodular, however, Eq. (1.13) is polytime, and Eq. (1.14)
is constant-factor approximable. Partitionings are also approximable!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F35/91 (pg.61/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Discrete Optimization

Unconstrained minimization and maximization:

min
X✓V

f(X) (1.13) max
X✓V

f(X) (1.14)

Knowing nothing about f , need
2n queries for any quality as-
surance on candidate solution.
Otherwise, solution can be un-
boundedly poor!!

;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Alternatively, we may partition V into (necessarily disjoint) blocks
{V1, V2, . . .} that collectively are good in some way.
When f is submodular, however, Eq. (1.13) is polytime, and Eq. (1.14)
is constant-factor approximable. Partitionings are also approximable!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F35/91 (pg.62/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Discrete Optimization

Unconstrained minimization and maximization:

min
X✓V

f(X) (1.13) max
X✓V

f(X) (1.14)

Knowing nothing about f , need
2n queries for any quality as-
surance on candidate solution.
Otherwise, solution can be un-
boundedly poor!!

;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Alternatively, we may partition V into (necessarily disjoint) blocks
{V1, V2, . . .} that collectively are good in some way.

When f is submodular, however, Eq. (1.13) is polytime, and Eq. (1.14)
is constant-factor approximable. Partitionings are also approximable!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F35/91 (pg.63/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Discrete Optimization

Unconstrained minimization and maximization:

min
X✓V

f(X) (1.13) max
X✓V

f(X) (1.14)

Knowing nothing about f , need
2n queries for any quality as-
surance on candidate solution.
Otherwise, solution can be un-
boundedly poor!!

;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Alternatively, we may partition V into (necessarily disjoint) blocks
{V1, V2, . . .} that collectively are good in some way.
When f is submodular, however, Eq. (1.13) is polytime, and Eq. (1.14)
is constant-factor approximable. Partitionings are also approximable!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F35/91 (pg.64/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained case: interested only in a subset of subsets S ✓ 2V .

Ex: Bounded size S =
{S ✓ V : |S|  k}, or given cost
vector w and budget, bounded cost�
S ✓ V :

P
s2S w(s)  b

.

Ex: feasible sets S as combina-
torial objects

Ex: feasible sets S as matroids.
Ex: feasible sets S

as sub-level sets of g,
S = {S ✓ V : g(S)  ↵},
sup-level sets S =
{S ✓ V : g(S) � ↵}

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F36/91 (pg.65/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained case: interested only in a subset of subsets S ✓ 2V .
Ex: Bounded size S =
{S ✓ V : |S|  k}, or given cost
vector w and budget, bounded cost�
S ✓ V :

P
s2S w(s)  b

. ;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Ex: feasible sets S as combina-
torial objects

Ex: feasible sets S as matroids.
Ex: feasible sets S

as sub-level sets of g,
S = {S ✓ V : g(S)  ↵},
sup-level sets S =
{S ✓ V : g(S) � ↵}

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F36/91 (pg.66/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained case: interested only in a subset of subsets S ✓ 2V .
Ex: Bounded size S =
{S ✓ V : |S|  k}, or given cost
vector w and budget, bounded cost�
S ✓ V :

P
s2S w(s)  b

. ;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Ex: feasible sets S as combina-
torial objects

Trees

Matchings

Paths

Verte
x Covers

Ed
ge

 C
ov

er
s

Cuts

Ex: feasible sets S as matroids.
Ex: feasible sets S

as sub-level sets of g,
S = {S ✓ V : g(S)  ↵},
sup-level sets S =
{S ✓ V : g(S) � ↵}

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F36/91 (pg.67/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained case: interested only in a subset of subsets S ✓ 2V .
Ex: Bounded size S =
{S ✓ V : |S|  k}, or given cost
vector w and budget, bounded cost�
S ✓ V :

P
s2S w(s)  b

. ;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Ex: feasible sets S as combina-
torial objects

Trees

Matchings

Paths

Verte
x Covers

Ed
ge

 C
ov

er
s

Cuts

Ex: feasible sets S as matroids.

Ex: feasible sets S

as sub-level sets of g,
S = {S ✓ V : g(S)  ↵},
sup-level sets S =
{S ✓ V : g(S) � ↵}

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F36/91 (pg.68/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained case: interested only in a subset of subsets S ✓ 2V .
Ex: Bounded size S =
{S ✓ V : |S|  k}, or given cost
vector w and budget, bounded cost�
S ✓ V :

P
s2S w(s)  b

. ;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Ex: feasible sets S as combina-
torial objects

Trees

Matchings

Paths

Verte
x Covers

Ed
ge

 C
ov

er
s

Cuts

Ex: feasible sets S as matroids.
Ex: feasible sets S

as sub-level sets of g,
S = {S ✓ V : g(S)  ↵},
sup-level sets S =
{S ✓ V : g(S) � ↵}

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F36/91 (pg.69/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained discrete optimization problems:

maximize f(S)

subject to S 2 S (1.15)
minimize f(S)

subject to S 2 S (1.16)
where S ✓ 2V is the feasible set of sets.

Fortunately, when f (and g) are submodular, these problems can often
be solved with guarantees, often very efficiently!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F37/91 (pg.70/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Constrained Discrete Optimization

Constrained discrete optimization problems:

maximize f(S)

subject to S 2 S (1.15)
minimize f(S)

subject to S 2 S (1.16)
where S ✓ 2V is the feasible set of sets.
Fortunately, when f (and g) are submodular, these problems can often
be solved with guarantees, often very efficiently!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F37/91 (pg.71/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular and Supermodular Applications

Algorithms: Algorithms can be developed that often are tractable (and
as we will see many in this class).
Applications: There are many seemingly different applications that are
strongly related to submodularity.
Submodularity and supermodularity is as common and natural for
discrete problems in machine learning as is convexity/concavity for
continuous problems.
First, lets look at a few more very simple examples of submodular
functions.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F38/91 (pg.72/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A

Let V be a set of indices, and each v 2 V indexes a given fixed
sub-area of some region in R2.
Let area(v) be the area corresponding to item v.
Let f(S) =

S
s2S area(s) be the union of the areas indexed by elements

in S.
Then f(S) is submodular, and corresponds to a continuous set cover
function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F39/91 (pg.73/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Union of areas of elements of A is given by:

f(A) = f({a1, a2, a3, a4})

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.74/254)

a ,
a

>

ay
an

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Area of A along with with v:

f(A [{v}) = f({a1, a2, a3, a4} [{v})

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.75/254)

v

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Gain (value) of v in context of A:

f(A [{v})� f(A) = f({v})

We get full value f({v}) in this case since the area of v has no overlap with
that of A.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.76/254)

:
 in

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Area of A once again.

f(A) = f({a1, a2, a3, a4})

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.77/254)

a
,

aq

as
97

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Union of areas of elements of B � A, where v is not included:

f(B) where v /2 B and where A ✓ B

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.78/254)

a
,

a
,

a
, ay

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Area of B now also including v:

f(B [{v})

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.79/254)

0

Background Definitions Simple Examples ML Apps Diversity Complexity

Continuous Set Cover
The area of the union of areas indexed by A — Example

Incremental value of v in the context of B � A.

f(B [{v})� f(B) < f({v}) = f(A [{v})� f(A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B ◆ A.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F40/91 (pg.80/254)

ae
a ,

a
, ay

Background Definitions Simple Examples ML Apps Diversity Complexity

Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.

Each item v 2 V has a price m(v).
Basket of groceries A ✓ V costs:

m(A) =
X

a2A
m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).
This is known as a modular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F41/91 (pg.81/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v 2 V has a price m(v).

Basket of groceries A ✓ V costs:

m(A) =
X

a2A
m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).
This is known as a modular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F41/91 (pg.82/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v 2 V has a price m(v).
Basket of groceries A ✓ V costs:

m(A) =
X

a2A
m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).

This is known as a modular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F41/91 (pg.83/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v 2 V has a price m(v).
Basket of groceries A ✓ V costs:

m(A) =
X

a2A
m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).
This is known as a modular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F41/91 (pg.84/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Discounted Consumer Costs (as we saw earlier)

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {"coke", "fries", "hamburger"} and f(A) measures the
cost of any subset A ✓ V .We get diminishing returns:

f () f () � f () f ()

Simply rearranging terms, we get the other definition of submodularity:

f () � f () + f ()f ()+

Typical: additional cost of a coke is free only if you add it to a fries and
hamburger order.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F42/91 (pg.85/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.86/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.87/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.

f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.88/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.

f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.89/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.

But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.90/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.

Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.91/254)

flvntflm)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F43/91 (pg.92/254)

Cdtcm Catch Cdtcmtch TO

Background Definitions Simple Examples ML Apps Diversity Complexity

Markets: Supply Side Economies of scale

Economies of Scale : Many goods and services can be produced at a
much lower per-unit cost only if they are produced in very large
quantities.
The profit margin for producing a unit of goods is improved as more
of those goods are created.
If you already make a good, making a similar good is easier than if you
start from scratch (e.g., Apple making both iPod and iPhone).
An argument in favor of free trade is that it opens up larger markets for
firms (especially in otherwise small markets), thereby enabling better
economies of scale, and hence greater efficiency (lower costs and
resources per unit of good produced).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F44/91 (pg.93/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.
Ex: V might be paint colors to produce: green, red, blue, yellow, white,
etc.
Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F45/91 (pg.94/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?
Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.

Ex: V might be paint colors to produce: green, red, blue, yellow, white,
etc.
Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F45/91 (pg.95/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?
Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.
Ex: V might be paint colors to produce: green, red, blue, yellow, white,
etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F45/91 (pg.96/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?
Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.
Ex: V might be paint colors to produce: green, red, blue, yellow, white,
etc.
Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F45/91 (pg.97/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?
Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.
Ex: V might be paint colors to produce: green, red, blue, yellow, white,
etc.
Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F45/91 (pg.98/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network effects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
Let V be a set of goods, A a subset and v /2 A. Incremental gain of
good f(A+ v)� f(A) gets larger as size of market A grows. This is
known as a supermodular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F46/91 (pg.99/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.
Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network effects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
Let V be a set of goods, A a subset and v /2 A. Incremental gain of
good f(A+ v)� f(A) gets larger as size of market A grows. This is
known as a supermodular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F46/91 (pg.100/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.
Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network effects
and is a form of demand-side economies of scale

Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
Let V be a set of goods, A a subset and v /2 A. Incremental gain of
good f(A+ v)� f(A) gets larger as size of market A grows. This is
known as a supermodular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F46/91 (pg.101/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.
Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network effects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.

Let V be a set of goods, A a subset and v /2 A. Incremental gain of
good f(A+ v)� f(A) gets larger as size of market A grows. This is
known as a supermodular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F46/91 (pg.102/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.
Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network effects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
Let V be a set of goods, A a subset and v /2 A. Incremental gain of
good f(A+ v)� f(A) gets larger as size of market A grows. This is
known as a supermodular function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F46/91 (pg.103/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Positive Network Effects

railroad - standard rail format and shared access
The telephone, who wants to talk by phone only to oneself?
the internet, more valuable per person the more people use it.
ebooks (the more people comment, the better it gets)
social network sites: facebook more valuable with everyone online
online education, Massive Open Online Courses (MOOCs) such as
Coursera, edX, etc. – with many people simultaneously taking a class,
all gain due to richer peer discussions due to greater pool of well
matched study groups, more simultaneous similar questions/problems
that are asked) more efficient learning & training data for ML
algorithms to learn how people learn.
Software (e.g., Microsoft office, smartphone apps, etc.): more people
means more bug reporting) better & faster software evolution.
gmail and web-based email (collaborative spam filtering).
wikipedia, collaborative documents
any widely used standard (job training now is useful in the future)
the “tipping point”, and “winner take all” (one platform prevails)
markets.Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F47/91 (pg.104/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.

Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects

clothing
(Halloween) costumes
perfume?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F48/91 (pg.105/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.
Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects

clothing
(Halloween) costumes
perfume?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F48/91 (pg.106/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.
Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects

clothing
(Halloween) costumes
perfume?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F48/91 (pg.107/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.
Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects
clothing

(Halloween) costumes
perfume?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F48/91 (pg.108/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.
Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects
clothing
(Halloween) costumes

perfume?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F48/91 (pg.109/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.
Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects
clothing
(Halloween) costumes
perfume?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F48/91 (pg.110/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Review So far

Machine learning paradigms should be: easy to define ,
mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,
submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.
Set cover, supply and demand side economies of scale,

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F49/91 (pg.111/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Review So far

Machine learning paradigms should be: easy to define ,
mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,
submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.
Set cover, supply and demand side economies of scale,

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F49/91 (pg.112/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Review So far

Machine learning paradigms should be: easy to define ,
mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,

submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.
Set cover, supply and demand side economies of scale,

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F49/91 (pg.113/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Review So far

Machine learning paradigms should be: easy to define ,
mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,
submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.

Set cover, supply and demand side economies of scale,

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F49/91 (pg.114/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Review So far

Machine learning paradigms should be: easy to define ,
mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,
submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.
Set cover, supply and demand side economies of scale,

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F49/91 (pg.115/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :

When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.116/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.

When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.117/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.

vice-versa for supermodularity.
A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.118/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.119/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).

Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.120/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.

A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.121/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.122/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.

Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.123/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.

Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.124/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F50/91 (pg.125/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Many different functions are submodular!

We will see many applications of submodularity in machine learning.
On next set of slides, we will state (without proof, for now) that many
of the functions are submodular (or supermodular).
In subsequent lectures, we will start showing how to prove
submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F51/91 (pg.126/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.

Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).
Random sample has probability of poorly representing normally
underrepresented groups.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F52/91 (pg.127/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.
Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?

Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).
Random sample has probability of poorly representing normally
underrepresented groups.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F52/91 (pg.128/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.
Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).
Random sample has probability of poorly representing normally
underrepresented groups.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F52/91 (pg.129/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.
Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.

How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).
Random sample has probability of poorly representing normally
underrepresented groups.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F52/91 (pg.130/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.
Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).

Random sample has probability of poorly representing normally
underrepresented groups.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F52/91 (pg.131/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.
Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).
Random sample has probability of poorly representing normally
underrepresented groups.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F52/91 (pg.132/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

The figure below represents the sentences of a document

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.133/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.134/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.135/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.136/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.

The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.137/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.

diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.138/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F53/91 (pg.139/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Large image collections need to be summarized

Many images, also that have a higher level gestalt than just a few, want a
summary (subset of images) to represent the diversity in the large image set.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F54/91 (pg.140/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Image Summarization

10⇥10 image collection: 3 good summaries (diverse):

3 ok summaries:

3 poor summaries (redundant):

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F55/91 (pg.141/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

More Generally: Information and Summarization

Let V be a set of information containing elements (V might say be any
of words, sentences, documents, web pages, or blogs, sensor readings,
etc.).
Each v 2 V is one (or a set of) element(s). The total amount of
information in V is measure by a function f(V), and any given subset
S ✓ V measures the amount of information in S, given by f(S).
How informative is any given item v in different sized contexts? Any
such real-world information function would exhibit diminishing returns,
i.e., the value of v decreases when it is considered in a larger context.
A submodular function is likely a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F56/91 (pg.142/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV in
a probability model Pr(Y,X1, X2, . . . , Xn).

Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y).
The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
X

y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y)�H(Y |XA) (1.18)

= H(XA)�H(XA|Y) = H(XA) +H(Y)�H(XA, Y) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F57/91 (pg.143/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV in
a probability model Pr(Y,X1, X2, . . . , Xn).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.

The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y).
The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
X

y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y)�H(Y |XA) (1.18)

= H(XA)�H(XA|Y) = H(XA) +H(Y)�H(XA, Y) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F57/91 (pg.144/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV in
a probability model Pr(Y,X1, X2, . . . , Xn).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y).

The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
X

y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y)�H(Y |XA) (1.18)

= H(XA)�H(XA|Y) = H(XA) +H(Y)�H(XA, Y) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F57/91 (pg.145/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV in
a probability model Pr(Y,X1, X2, . . . , Xn).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y).
The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
X

y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y)�H(Y |XA) (1.18)

= H(XA)�H(XA|Y) = H(XA) +H(Y)�H(XA, Y) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F57/91 (pg.146/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV in
a probability model Pr(Y,X1, X2, . . . , Xn).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y).
The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
X

y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y)�H(Y |XA) (1.18)

= H(XA)�H(XA|Y) = H(XA) +H(Y)�H(XA, Y) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F57/91 (pg.147/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain and Feature Selection
in Pattern Classification: Naïve Bayes

Naïve Bayes property: XA??XB|Y for all A,B.
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When XA??XB|Y for all A,B (the Naïve Bayes assumption holds),
then

f(A) = I(Y ;XA) = H(XA)�H(XA|Y) = H(XA)�
X

a2A
H(Xa|Y)

(1.20)

is submodular (submodular minus modular).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F58/91 (pg.148/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain and Feature Selection
in Pattern Classification: Naïve Bayes

Naïve Bayes property: XA??XB|Y for all A,B.
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When XA??XB|Y for all A,B (the Naïve Bayes assumption holds),
then

f(A) = I(Y ;XA) = H(XA)�H(XA|Y) = H(XA)�
X

a2A
H(Xa|Y)

(1.20)

is submodular (submodular minus modular).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F58/91 (pg.149/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Pattern Classification

Naïve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a difference of two submodular functions

f(A) = I(Y ;XA) = H(XA)�H(XA|Y), (1.21)

which is a DS (difference of submodular) function.
Alternatively, when Naïve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =
X

a2A
I(Xa;Y)� �

X

a,a02A
I(Xa;Xa0 |Y) (1.22)

where � � 0 is a tradeoff constant.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F59/91 (pg.150/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Pattern Classification

Naïve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a difference of two submodular functions

f(A) = I(Y ;XA) = H(XA)�H(XA|Y), (1.21)

which is a DS (difference of submodular) function.

Alternatively, when Naïve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =
X

a2A
I(Xa;Y)� �

X

a,a02A
I(Xa;Xa0 |Y) (1.22)

where � � 0 is a tradeoff constant.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F59/91 (pg.151/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection in Pattern Classification

Naïve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a difference of two submodular functions

f(A) = I(Y ;XA) = H(XA)�H(XA|Y), (1.21)

which is a DS (difference of submodular) function.
Alternatively, when Naïve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =
X

a2A
I(Xa;Y)� �

X

a,a02A
I(Xa;Xa0 |Y) (1.22)

where � � 0 is a tradeoff constant.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F59/91 (pg.152/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection: Linear Regression Case

Next, let Z be continuous. Predictor is linear Z̃A =
P

i2A ↵iXi.

Error measure is the residual variance

R2
Z,A =

Var(Z)� E[(Z � Z̃A)2]

Var(Z)
(1.23)

R2
Z,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A = bA

|(C�1
A)

|
bA when VarZ = 1, where bi = Cov(Z,Xi) and

C = E[(X � E[X])|(X � E[X])] is the covariance matrix).
When there are no “suppressor” variables (essentially, no
v-structures that converge on Xj with parents Xi and Z),
then

f(A) = R2
Z,A = bA

|(C�1
A)

|
bA (1.24)

is a submodular function (so the greedy algorithm gives
the 1� 1/e guarantee). (Das&Kempe).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F60/91 (pg.153/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection: Linear Regression Case

Next, let Z be continuous. Predictor is linear Z̃A =
P

i2A ↵iXi.
Error measure is the residual variance

R2
Z,A =

Var(Z)� E[(Z � Z̃A)2]

Var(Z)
(1.23)

R2
Z,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A = bA

|(C�1
A)

|
bA when VarZ = 1, where bi = Cov(Z,Xi) and

C = E[(X � E[X])|(X � E[X])] is the covariance matrix).
When there are no “suppressor” variables (essentially, no
v-structures that converge on Xj with parents Xi and Z),
then

f(A) = R2
Z,A = bA

|(C�1
A)

|
bA (1.24)

is a submodular function (so the greedy algorithm gives
the 1� 1/e guarantee). (Das&Kempe).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F60/91 (pg.154/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection: Linear Regression Case

Next, let Z be continuous. Predictor is linear Z̃A =
P

i2A ↵iXi.
Error measure is the residual variance

R2
Z,A =

Var(Z)� E[(Z � Z̃A)2]

Var(Z)
(1.23)

R2
Z,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A = bA

|(C�1
A)

|
bA when VarZ = 1, where bi = Cov(Z,Xi) and

C = E[(X � E[X])|(X � E[X])] is the covariance matrix).

When there are no “suppressor” variables (essentially, no
v-structures that converge on Xj with parents Xi and Z),
then

f(A) = R2
Z,A = bA

|(C�1
A)

|
bA (1.24)

is a submodular function (so the greedy algorithm gives
the 1� 1/e guarantee). (Das&Kempe).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F60/91 (pg.155/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Variable Selection: Linear Regression Case

Next, let Z be continuous. Predictor is linear Z̃A =
P

i2A ↵iXi.
Error measure is the residual variance

R2
Z,A =

Var(Z)� E[(Z � Z̃A)2]

Var(Z)
(1.23)

R2
Z,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A = bA

|(C�1
A)

|
bA when VarZ = 1, where bi = Cov(Z,Xi) and

C = E[(X � E[X])|(X � E[X])] is the covariance matrix).
When there are no “suppressor” variables (essentially, no
v-structures that converge on Xj with parents Xi and Z),
then

f(A) = R2
Z,A = bA

|(C�1
A)

|
bA (1.24)

is a submodular function (so the greedy algorithm gives
the 1� 1/e guarantee). (Das&Kempe).

ZXi

Xj

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F60/91 (pg.156/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

Suppose we are given a large data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way (e.g., a summary).

Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.
That is, for u 2 U and v 2 V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu 2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , mu(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F61/91 (pg.157/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

Suppose we are given a large data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way (e.g., a summary).
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.

That is, for u 2 U and v 2 V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu 2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , mu(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F61/91 (pg.158/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

Suppose we are given a large data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way (e.g., a summary).
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.
That is, for u 2 U and v 2 V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu 2 RV

+ for all u 2 U .

Example: U could be a set of colors, and for an image v 2 V , mu(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F61/91 (pg.159/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

Suppose we are given a large data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way (e.g., a summary).
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.
That is, for u 2 U and v 2 V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu 2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , mu(v)
could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F61/91 (pg.160/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

Suppose we are given a large data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way (e.g., a summary).
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.
That is, for u 2 U and v 2 V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu 2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , mu(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F61/91 (pg.161/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.

Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (1.25)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U
↵ugu(mu(X)) (1.26)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F62/91 (pg.162/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.
Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.

With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (1.25)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U
↵ugu(mu(X)) (1.26)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F62/91 (pg.163/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.
Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (1.25)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U
↵ugu(mu(X)) (1.26)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F62/91 (pg.164/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.
Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (1.25)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U
↵ugu(mu(X)) (1.26)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.

f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F62/91 (pg.165/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.
Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (1.25)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U
↵ugu(mu(X)) (1.26)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F62/91 (pg.166/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

Let p = {pu}u2U be a desired probability distribution over features (i.e.,P
u pu = 1 and pu � 0 for all u 2 U).

Next, normalize the modular weights for each feature:

0  m̄u(X) , mu(X)P
u02U mu0(X)

=
mu(X)

m(X)
 1 (1.27)

where m(X) , P
u02U mu0(X).

Then m̄u(X) can also be seen as a distribution over features U since
m̄u(X) � 0 and

P
u2U m̄u(X) = 1 for any X ✓ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u2U) =
X

u2U
pu log pu �

X

u2U
pu log(m̄u(X)) (1.28)

=
X

u2U
pu log pu �

X

u2U
pu log(mu(X)) + log(m(X))

= �H(p) + logm(X)�
X

u2U
pu log(mu(X)) (1.29)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F63/91 (pg.167/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

Let p = {pu}u2U be a desired probability distribution over features (i.e.,P
u pu = 1 and pu � 0 for all u 2 U).

Next, normalize the modular weights for each feature:

0  m̄u(X) , mu(X)P
u02U mu0(X)

=
mu(X)

m(X)
 1 (1.27)

where m(X) , P
u02U mu0(X).

Then m̄u(X) can also be seen as a distribution over features U since
m̄u(X) � 0 and

P
u2U m̄u(X) = 1 for any X ✓ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u2U) =
X

u2U
pu log pu �

X

u2U
pu log(m̄u(X)) (1.28)

=
X

u2U
pu log pu �

X

u2U
pu log(mu(X)) + log(m(X))

= �H(p) + logm(X)�
X

u2U
pu log(mu(X)) (1.29)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F63/91 (pg.168/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

Let p = {pu}u2U be a desired probability distribution over features (i.e.,P
u pu = 1 and pu � 0 for all u 2 U).

Next, normalize the modular weights for each feature:

0  m̄u(X) , mu(X)P
u02U mu0(X)

=
mu(X)

m(X)
 1 (1.27)

where m(X) , P
u02U mu0(X).

Then m̄u(X) can also be seen as a distribution over features U since
m̄u(X) � 0 and

P
u2U m̄u(X) = 1 for any X ✓ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u2U) =
X

u2U
pu log pu �

X

u2U
pu log(m̄u(X)) (1.28)

=
X

u2U
pu log pu �

X

u2U
pu log(mu(X)) + log(m(X))

= �H(p) + logm(X)�
X

u2U
pu log(mu(X)) (1.29)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F63/91 (pg.169/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

Let p = {pu}u2U be a desired probability distribution over features (i.e.,P
u pu = 1 and pu � 0 for all u 2 U).

Next, normalize the modular weights for each feature:

0  m̄u(X) , mu(X)P
u02U mu0(X)

=
mu(X)

m(X)
 1 (1.27)

where m(X) , P
u02U mu0(X).

Then m̄u(X) can also be seen as a distribution over features U since
m̄u(X) � 0 and

P
u2U m̄u(X) = 1 for any X ✓ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u2U) =
X

u2U
pu log pu �

X

u2U
pu log(m̄u(X)) (1.28)

=
X

u2U
pu log pu �

X

u2U
pu log(mu(X)) + log(m(X))

= �H(p) + logm(X)�
X

u2U
pu log(mu(X)) (1.29)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F63/91 (pg.170/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + logm(X)�
X

u2U
pu log(mu(X)) (1.30)

But seen as a function of X, both logm(X) and
P

u2U pu logmu(X)
are submodular functions.
Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.
Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)�D(p||{m̄u(X)}) =
X

u2U
pu log(mu(X)) (1.31)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F64/91 (pg.171/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + logm(X)�
X

u2U
pu log(mu(X)) (1.30)

But seen as a function of X, both logm(X) and
P

u2U pu logmu(X)
are submodular functions.

Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.
Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)�D(p||{m̄u(X)}) =
X

u2U
pu log(mu(X)) (1.31)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F64/91 (pg.172/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + logm(X)�
X

u2U
pu log(mu(X)) (1.30)

But seen as a function of X, both logm(X) and
P

u2U pu logmu(X)
are submodular functions.
Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)�D(p||{m̄u(X)}) =
X

u2U
pu log(mu(X)) (1.31)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F64/91 (pg.173/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + logm(X)�
X

u2U
pu log(mu(X)) (1.30)

But seen as a function of X, both logm(X) and
P

u2U pu logmu(X)
are submodular functions.
Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.
Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)�D(p||{m̄u(X)}) =
X

u2U
pu log(mu(X)) (1.31)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F64/91 (pg.174/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).

We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).
f(V) is maximum coverage.
One possible goal: choose smallest set A such that f(A) � ↵f(V)
with 0 < ↵  1 (recall the submodular set cover problem)
Another possible goal: choose size at most k set A such that f(A) is
maximized.
Environment could be a floor of a building, water network, monitored
ecological preservation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F65/91 (pg.175/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).
We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).

f(V) is maximum coverage.
One possible goal: choose smallest set A such that f(A) � ↵f(V)
with 0 < ↵  1 (recall the submodular set cover problem)
Another possible goal: choose size at most k set A such that f(A) is
maximized.
Environment could be a floor of a building, water network, monitored
ecological preservation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F65/91 (pg.176/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).
We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).
f(V) is maximum coverage.

One possible goal: choose smallest set A such that f(A) � ↵f(V)
with 0 < ↵  1 (recall the submodular set cover problem)
Another possible goal: choose size at most k set A such that f(A) is
maximized.
Environment could be a floor of a building, water network, monitored
ecological preservation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F65/91 (pg.177/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).
We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).
f(V) is maximum coverage.
One possible goal: choose smallest set A such that f(A) � ↵f(V)
with 0 < ↵  1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f(A) is
maximized.
Environment could be a floor of a building, water network, monitored
ecological preservation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F65/91 (pg.178/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).
We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).
f(V) is maximum coverage.
One possible goal: choose smallest set A such that f(A) � ↵f(V)
with 0 < ↵  1 (recall the submodular set cover problem)
Another possible goal: choose size at most k set A such that f(A) is
maximized.

Environment could be a floor of a building, water network, monitored
ecological preservation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F65/91 (pg.179/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).
We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).
f(V) is maximum coverage.
One possible goal: choose smallest set A such that f(A) � ↵f(V)
with 0 < ↵  1 (recall the submodular set cover problem)
Another possible goal: choose size at most k set A such that f(A) is
maximized.
Environment could be a floor of a building, water network, monitored
ecological preservation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F65/91 (pg.180/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sensor Placement within Buildings

An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F66/91 (pg.181/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sensor Placement within Buildings

Example sensor placement using small range cheap sensors (located at
red dots).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F66/91 (pg.182/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sensor Placement within Buildings

Example sensor placement using longer range expensive sensors
(located at red dots).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F66/91 (pg.183/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Sensor Placement within Buildings

Example sensor placement using mixed range sensors (located at red
dots).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F66/91 (pg.184/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) scientific
collaborations, 3) sexual contact, 4) school
friendships.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F67/91 (pg.185/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ?

It depends on how many friends you have.
Valuate a group of friends S ✓ V via set function f(S).
A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
Supermodular model: a friend becomes more valuable the more friends
you have.
Which is a better model?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F68/91 (pg.186/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ? It depends on how many friends you have.

Valuate a group of friends S ✓ V via set function f(S).
A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
Supermodular model: a friend becomes more valuable the more friends
you have.
Which is a better model?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F68/91 (pg.187/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ? It depends on how many friends you have.
Valuate a group of friends S ✓ V via set function f(S).

A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
Supermodular model: a friend becomes more valuable the more friends
you have.
Which is a better model?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F68/91 (pg.188/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ? It depends on how many friends you have.
Valuate a group of friends S ✓ V via set function f(S).
A submodular model: a friend becomes less marginally valuable as your
set of friends grows.

Supermodular model: a friend becomes more valuable the more friends
you have.
Which is a better model?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F68/91 (pg.189/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ? It depends on how many friends you have.
Valuate a group of friends S ✓ V via set function f(S).
A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
Supermodular model: a friend becomes more valuable the more friends
you have.

Which is a better model?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F68/91 (pg.190/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ? It depends on how many friends you have.
Valuate a group of friends S ✓ V via set function f(S).
A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
Supermodular model: a friend becomes more valuable the more friends
you have.
Which is a better model?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F68/91 (pg.191/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often set
off cascades, which are like large “waves” of information flow?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F69/91 (pg.192/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often set
off cascades, which are like large “waves” of information flow?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F69/91 (pg.193/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Diffusion Networks
Where are they useful?

Information propagation: when blogs or news stories break, and
creates an information cascade over multiple other
blogs/newspapers/magazines.

Viral marketing: What is the pattern of trendsetters that cause an
individual to purchase a product?
Epidemiology: who gets sick from whom? What is the infection
network of such links? Given finite supply of vaccine, who to inoculate
to protect overall population (cut the network)?

Infer the connectivity of a network (memes, purchase decisions, viruses,
etc.) based only on diffusion traces (the time that each node is
“infected”)?
How to find the most likely tree or graph?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F70/91 (pg.194/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

A model of influence in social networks

Given a graph G = (V,E), each v 2 V corresponds to a person, to each
v we have an activation function fv : 2V ! [0, 1] dependent only on its
neighbors. I.e., fv(A) = fv(A \ �(v)).
Goal - Viral Marketing: find a small subset S ✓ V of individuals to
directly influence, and thus indirectly influence the greatest number of
possible other individuals (via the social network G).
Define function f : 2V ! Z+ to model the ultimate influence of an
initial infected nodes S. Use following iterative process; at each step:

Given previous set of infected nodes S that have not yet had their chance
to infect their neighbors,
activate new nodes v 2 V \ S if fv(S \ �v) � U [0, 1], where U [0, 1] is a
uniform random number between 0 and 1, and �v are the neighbors of v.

For many fv (including simple linear functions, and where fv is
submodular itself), we can show f is submodular (Kempe, Kleinberg,
Tardos 1993).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F71/91 (pg.195/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.

Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.196/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.

Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.197/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.

We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.198/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.

Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.199/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.

S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.200/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.

This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.201/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},

and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.202/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.203/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.
Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [S1 : vi(A [S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F72/91 (pg.204/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.
I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
Ec(xc) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.
This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F73/91 (pg.205/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.
A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
Ec(xc) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.
This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F73/91 (pg.206/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.
A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.
I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
Ec(xc) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.
This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F73/91 (pg.207/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.
A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.
I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
Ec(xc) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F73/91 (pg.208/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.
A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.
I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
Ec(xc) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.
This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F73/91 (pg.209/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F), i.e., pt 2 F(T,M).

This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||pt)

subject to pt 2 F(T,M).
T = (V, F) is a tree

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F74/91 (pg.210/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F), i.e., pt 2 F(T,M).
This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||pt)

subject to pt 2 F(T,M).
T = (V, F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F74/91 (pg.211/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F), i.e., pt 2 F(T,M).
This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||pt)

subject to pt 2 F(T,M).
T = (V, F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).

Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F74/91 (pg.212/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F), i.e., pt 2 F(T,M).
This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||pt)

subject to pt 2 F(T,M).
T = (V, F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.

Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F74/91 (pg.213/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F), i.e., pt 2 F(T,M).
This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||pt)

subject to pt 2 F(T,M).
T = (V, F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F74/91 (pg.214/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ✓ V but to induce
probability distributions over all subsets.

We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b 2 A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F75/91 (pg.215/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ✓ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b 2 A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F75/91 (pg.216/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ✓ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b 2 A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.

More “diverse” or “complex” samples are given higher probability.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F75/91 (pg.217/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ✓ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b 2 A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F75/91 (pg.218/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .

Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

✓
log

⇣ |MX(x)|
|M + I|

⌘◆
/ det(MX(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(1.35)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F76/91 (pg.219/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .
Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

✓
log

⇣ |MX(x)|
|M + I|

⌘◆
/ det(MX(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(1.35)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F76/91 (pg.220/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .
Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

✓
log

⇣ |MX(x)|
|M + I|

⌘◆
/ det(MX(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)�1, we have:
X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(1.35)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F76/91 (pg.221/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .
Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

✓
log

⇣ |MX(x)|
|M + I|

⌘◆
/ det(MX(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(1.35)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F76/91 (pg.222/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .
Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

✓
log

⇣ |MX(x)|
|M + I|

⌘◆
/ det(MX(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(1.35)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F76/91 (pg.223/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .
Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

✓
log

⇣ |MX(x)|
|M + I|

⌘◆
/ det(MX(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(1.35)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F76/91 (pg.224/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).

MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.225/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.226/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.

Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.227/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.

Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.228/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.229/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).

Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.230/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F77/91 (pg.231/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Order-two (edge) graphical models

Given G let p 2 F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (1.38)

ev(xv) and eij(xi, xj) are like local energy potentials.
Since log p(x) = �E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.
Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).
Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x2{0,1}V

E(x) (1.39)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F78/91 (pg.232/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Order-two (edge) graphical models

Given G let p 2 F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (1.38)

ev(xv) and eij(xi, xj) are like local energy potentials.

Since log p(x) = �E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.
Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).
Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x2{0,1}V

E(x) (1.39)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F78/91 (pg.233/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Order-two (edge) graphical models

Given G let p 2 F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (1.38)

ev(xv) and eij(xi, xj) are like local energy potentials.
Since log p(x) = �E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).
Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x2{0,1}V

E(x) (1.39)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F78/91 (pg.234/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Order-two (edge) graphical models

Given G let p 2 F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (1.38)

ev(xv) and eij(xi, xj) are like local energy potentials.
Since log p(x) = �E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.
Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x2{0,1}V

E(x) (1.39)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F78/91 (pg.235/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Order-two (edge) graphical models

Given G let p 2 F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (1.38)

ev(xv) and eij(xi, xj) are like local energy potentials.
Since log p(x) = �E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.
Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).
Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x2{0,1}V

E(x) (1.39)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F78/91 (pg.236/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

MRF example

Markov random field

log p(x) /
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (1.40)

When G is a 2D grid graph, we have

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F79/91 (pg.237/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Create an auxiliary graph

We can create auxiliary graph Ga that involves two new “terminal”
nodes s and t and all of the original “non-terminal” nodes v 2 V (G).
The non-terminal nodes represent the original random variables
xv, v 2 V .
Starting with the original grid-graph amongst the vertices v 2 V , we
connect each of s and t to all of the original nodes.
I.e., we form Ga = (V [{s, t}, E + [v2V ((s, v) [(v, t))).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F80/91 (pg.238/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function
E(x) =

P
v2V (G) ev(xv) +

P
(i,j)2E(G) eij(xi, xj) needing to be minimized

over x 2 {0, 1}V . Recall, tree-width is O(
p
|V |).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F81/91 (pg.239/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph with cut edges
removed corresponds to particular binary
vector x̄ 2 {0, 1}n. Each vector x̄ has a
score corresponding to log p(x̄).
When can graph cut scores
correspond precisely to log p(x̄)
in a way that min-cut
algorithms can find
minimum of
energy E(x)?

t

s

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F81/91 (pg.240/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.
If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).
If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..
Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!
In general, finding MPE is an NP-hard optimization problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F82/91 (pg.241/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular potentials
submodularity is what allows graph cut to find exact solution

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”): for all
(i, j) 2 E(G), must have:

eij(0, 1) + eij(1, 0) � eij(1, 1) + eij(0, 0) (1.48)

This means: on average, preservation is preferred over change.
As a set function, this is the same as:

f(X) =
X

{i,j}2E(G)

fi,j(X \ {i, j}) (1.49)

which is submodular if each of the fi,j ’s are submodular!
A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F85/91 (pg.242/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular potentials
submodularity is what allows graph cut to find exact solution

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”): for all
(i, j) 2 E(G), must have:

eij(0, 1) + eij(1, 0) � eij(1, 1) + eij(0, 0) (1.48)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f(X) =
X

{i,j}2E(G)

fi,j(X \ {i, j}) (1.49)

which is submodular if each of the fi,j ’s are submodular!
A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F85/91 (pg.243/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular potentials
submodularity is what allows graph cut to find exact solution

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”): for all
(i, j) 2 E(G), must have:

eij(0, 1) + eij(1, 0) � eij(1, 1) + eij(0, 0) (1.48)

This means: on average, preservation is preferred over change.
As a set function, this is the same as:

f(X) =
X

{i,j}2E(G)

fi,j(X \ {i, j}) (1.49)

which is submodular if each of the fi,j ’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F85/91 (pg.244/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Submodular potentials
submodularity is what allows graph cut to find exact solution

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”): for all
(i, j) 2 E(G), must have:

eij(0, 1) + eij(1, 0) � eij(1, 1) + eij(0, 0) (1.48)

This means: on average, preservation is preferred over change.
As a set function, this is the same as:

f(X) =
X

{i,j}2E(G)

fi,j(X \ {i, j}) (1.49)

which is submodular if each of the fi,j ’s are submodular!
A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F85/91 (pg.245/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = g(x) + const. = �E(x) + const. (1.50)

where g is supermodular (E(x) = �g(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f(x) + const. (1.51)

where f is submodular. MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F86/91 (pg.246/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = g(x) + const. = �E(x) + const. (1.50)

where g is supermodular (E(x) = �g(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.
Log-submodular distributions:

log Pr(x) = f(x) + const. (1.51)

where f is submodular. MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F86/91 (pg.247/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shrinking bias in graph cut image segmentation

What does graph-cut based im-
age segmentation do with elon-
gated structures (top) or con-
trast gradients (bottom)?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F88/91 (pg.248/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Shrinking bias in graph cut image segmentation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F88/91 (pg.249/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E ! R+ defined on
the edges to measure cut costs. Graph cut node function is submodular.

fw(X) = w
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.52)

Instead, we can use a submodular function g : 2E ! R+ defined on the
edges to express cooperative costs.

fg(X) = g
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.53)

Seen as a node function, fg : 2V ! R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.
) cooperative-cut (Jegelka & B., 2011).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F90/91 (pg.250/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E ! R+ defined on
the edges to measure cut costs. Graph cut node function is submodular.

fw(X) = w
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.52)

Instead, we can use a submodular function g : 2E ! R+ defined on the
edges to express cooperative costs.

fg(X) = g
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.53)

Seen as a node function, fg : 2V ! R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.
) cooperative-cut (Jegelka & B., 2011).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F90/91 (pg.251/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E ! R+ defined on
the edges to measure cut costs. Graph cut node function is submodular.

fw(X) = w
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.52)

Instead, we can use a submodular function g : 2E ! R+ defined on the
edges to express cooperative costs.

fg(X) = g
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.53)

Seen as a node function, fg : 2V ! R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.

) cooperative-cut (Jegelka & B., 2011).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F90/91 (pg.252/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E ! R+ defined on
the edges to measure cut costs. Graph cut node function is submodular.

fw(X) = w
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.52)

Instead, we can use a submodular function g : 2E ! R+ defined on the
edges to express cooperative costs.

fg(X) = g
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.53)

Seen as a node function, fg : 2V ! R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.
) cooperative-cut (Jegelka & B., 2011).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F90/91 (pg.253/254)

Background Definitions Simple Examples ML Apps Diversity Complexity

Graph-cut vs. cooperative-cut comparisons

Graph Cut Cooperative Cut

(Jegelka&Bilmes,’11). There are fast algorithms for solving as well.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F91/91 (pg.254/254)

