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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 1 out, due Monday, 4/9/2018 11:59pm electronically via our
assignment dropbox
(https://canvas.uw.edu/courses/1216339/assignments).
If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Logistics Review

Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations
L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,
Matroids
L6(4/11):
L7(4/16):
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Summary submodular properties

c(A), number of connected components induced by A ⊆ E(G) is
supermodular.

f(X) = mᵀ1X + 1
21ᵀ

XM1X submodular iff off-diagonal elements of M
non-positive.
Weighted set cover f(A) = w(

⋃
a∈A Ua), other cover functions, cut

functions.
Matrix rank r(A), the dimensionality of the vector space spanned by
the set of vectors {xa}a∈A.
Adding modular functions to submodular functions preserves
submodularity.
Conic mixtures: if αi ≥ 0 and fi : 2V → R is submodular, then so is∑

i αifi.
Restrictions: f ′(A) = f(A ∩ S)

max: f(A) = maxj∈A cj and facility location.
Log determinant f(A) = log det(ΣA)
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Examples and Properties Other Submodular Defs. Independence Matroids

Concave over non-negative modular

Let m ∈ RE+ be a non-negative modular function, and φ a concave function
over R. Define f : 2E → R as

f(A) = φ(m(A)) (5.1)

then f is submodular.

Proof.
Given A ⊆ B ⊆ E \ v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ c = m(v). For g concave, we have φ(a+ c)− φ(a) ≥ φ(b+ c)− φ(b),
and thus

φ(m(A) +m(v))− φ(m(A)) ≥ φ(m(B) +m(v))− φ(m(B)) (5.2)

A form of converse is true as well.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F6/66 (pg.14/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Concave over non-negative modular

Let m ∈ RE+ be a non-negative modular function, and φ a concave function
over R. Define f : 2E → R as

f(A) = φ(m(A)) (5.1)

then f is submodular.

Proof.
Given A ⊆ B ⊆ E \ v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ c = m(v). For g concave, we have φ(a+ c)− φ(a) ≥ φ(b+ c)− φ(b),
and thus

φ(m(A) +m(v))− φ(m(A)) ≥ φ(m(B) +m(v))− φ(m(B)) (5.2)

A form of converse is true as well.
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F6/66 (pg.15/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Concave composed with non-negative modular

Theorem 5.3.1
Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V → R+, then f : 2V → R defined as
f(A) = φ(m(A)) is submodular

2 φ : R+ → R is concave.

If φ is non-decreasing concave w. φ(0) = 0, then f is polymatroidal.

Sums of concave over modular functions are submodular

f(A) =

K∑
i=1

φi(mi(A)) (5.3)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, Iyer, & Bilmes 2014).
However, Vondrak showed that a graphic matroid rank function over
K4 (we’ll define this after we define matroids) are not members.
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Examples and Properties Other Submodular Defs. Independence Matroids

Monotonicity

Definition 5.3.2

A function f : 2V → R is monotone nondecreasing (resp. monotone
increasing) if for all A ⊂ B, we have f(A) ≤ f(B) (resp. f(A) < f(B)).

Definition 5.3.3

A function f : 2V → R is monotone nonincreasing (resp. monotone
decreasing) if for all A ⊂ B, we have f(A) ≥ f(B) (resp. f(A) > f(B)).
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Examples and Properties Other Submodular Defs. Independence Matroids

Composition of non-decreasing submodular and
non-decreasing concave

Theorem 5.3.4

Given two functions, one defined on sets

f : 2V → R (5.4)

and another continuous valued one:

φ : R→ R (5.5)

the composition formed as h = φ ◦ f : 2V → R (defined as
h(S) = φ(f(S))) is nondecreasing submodular, if φ is non-decreasing
concave and f is nondecreasing submodular.
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Examples and Properties Other Submodular Defs. Independence Matroids

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let
(f − g)(·) be either monotone non-decreasing or monotone non-increasing
Then h : 2V → R defined by

h(A) = min(f(A), g(A)) (5.6)

is submodular.

Proof.
If h(A) agrees with f on both X and Y (or g on both X and Y ), and since

h(X) + h(Y ) = f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (5.7)
or

h(X) + h(Y ) = g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ), (5.8)
the result (Equation 5.6 being submodular) follows since
f(X) + f(Y )

g(X) + g(Y )
≥ min(f(X ∪ Y ), g(X ∪ Y )) + min(f(X ∩ Y ), g(X ∩ Y ))

(5.9)
. . .
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Examples and Properties Other Submodular Defs. Independence Matroids

Monotone difference of two functions

...cont.
Otherwise, w.l.o.g., h(X) = f(X) and h(Y ) = g(Y ), giving

h(X) + h(Y ) = f(X) + g(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) + g(Y )− f(Y )
(5.10)

Assume the case where f − g is monotone non-decreasing Hence,
f(X ∪ Y ) + g(Y )− f(Y ) ≥ g(X ∪ Y ) giving

h(X) + h(Y ) ≥ g(X ∪ Y ) + f(X ∩ Y ) ≥ h(X ∪ Y ) + h(X ∩ Y ) (5.11)

What is an easy way to prove the case where f − g is monotone
non-increasing?
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Examples and Properties Other Submodular Defs. Independence Matroids

Saturation via the min(·) function

Let f : 2V → R be a monotone increasing or decreasing submodular
function and let α be a constant. Then the function h : 2V → R defined by

h(A) = min(α, f(A)) (5.12)

is submodular.

Proof.
For constant k, we have that (f − k) is non-decreasing (or non-increasing)
so this follows from the previous result.

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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Examples and Properties Other Submodular Defs. Independence Matroids

More on Min - the saturate trick

In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function hα : 2V → R as

hα(A) =
1

2

(
min(α, f(A)) + min(α, g(A))

)
(5.13)

then hα is submodular, and hα(A) ≥ α if and only if both f(A) ≥ α
and g(A) ≥ α, for constant α ∈ R.
This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something about it).
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Examples and Properties Other Submodular Defs. Independence Matroids

Arbitrary functions: difference between submodular funcs.

Theorem 5.3.5
Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., ∀h ∈ 2V → R,
∃f, g s.t. ∀A, h(A) = f(A)− g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

α
∆
= min

X,Y :X 6⊆Y,Y 6⊆X

(
h(X) + h(Y )− h(X ∪ Y )− h(X ∩ Y )

)
(5.14)

If α ≥ 0 then h is submodular, so by assumption α < 0.

Now let f be an
arbitrary strict submodular function and define

β
∆
= min

X,Y :X 6⊆Y,Y 6⊆X

(
f(X) + f(Y )− f(X ∪ Y )− f(X ∩ Y )

)
. (5.15)

Strict means that β > 0. . . .
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Arbitrary functions as difference between submodular funcs.

...cont.

Define h′ : 2V → R as

h′(A) = h(A) +
|α|
β
f(A) (5.16)

Then h′ is submodular (why?), and h = h′(A)− |α|β f(A), a difference
between two submodular functions as desired.
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Gain

We often wish to express the gain of an item j ∈ V in context A,
namely f(A ∪ {j})− f(A).

This is called the gain and is used so often, there are equally as many
ways to notate this. I.e., you might see:

f(A ∪ {j})− f(A)
∆
= ρj(A) (5.17)
∆
= ρA(j) (5.18)
∆
= ∇jf(A) (5.19)
∆
= f({j}|A) (5.20)
∆
= f(j|A) (5.21)

We’ll use f(j|A).
Submodularity’s diminishing returns definition can be stated as saying
that f(j|A) is a monotone non-increasing function of A, since
f(j|A) ≥ f(j|B) whenever A ⊆ B (conditioning reduces valuation).
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Examples and Properties Other Submodular Defs. Independence Matroids

Gain Notation

It will also be useful to extend this to sets.
Let A,B be any two sets. Then

f(A|B) , f(A ∪B)− f(B) (5.22)

So when j is any singleton

f(j|B) = f({j}|B) = f({j} ∪B)− f(B) (5.23)

Inspired from information theory notation and the notation used for
conditional entropy H(XA|XB) = H(XA, XB)−H(XB).
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Examples and Properties Other Submodular Defs. Independence Matroids

Totally normalized functions

Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function ḡ and a modular function mg.

Given arbitrary normalized submodular g : 2V → R, construct a
function ḡ : 2V → R as follows:

ḡ(A) = g(A)−
∑
a∈A

g(a|V \ {a}) = g(A)−mg(A) (5.24)

where mg(A) ,
∑

a∈A g(a|V \ {a}) is a modular function.
ḡ is normalized since ḡ(∅) = 0.
ḡ is monotone non-decreasing since for v /∈ A ⊆ V :

ḡ(v|A) = g(v|A)− g(v|V \ {v}) ≥ 0 (5.25)

ḡ is called the totally normalized version of g.
Then g(A) = ḡ(A) +mg(A).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F18/66 (pg.41/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Totally normalized functions

Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function ḡ and a modular function mg.
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ḡ(A) = g(A)−
∑
a∈A

g(a|V \ {a}) = g(A)−mg(A) (5.24)

where mg(A) ,
∑

a∈A g(a|V \ {a}) is a modular function.
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ḡ is normalized since ḡ(∅) = 0.
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Given arbitrary normalized submodular g : 2V → R, construct a
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Arbitrary function as difference between two polymatroids

Any normalized function h (i.e., h(∅) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

Given submodular f and g, let f̄ and ḡ be them totally normalized.
Given arbitrary h = f − g where f and g are normalized submodular,

h = f − g = f̄ +mf − (ḡ +mg) (5.26)
= f̄ − ḡ + (mf −mg) (5.27)
= f̄ − ḡ +mf−h (5.28)
= f̄ +m+

f−g − (ḡ + (−mf−g)
+) (5.29)

where m+ is the positive part of modular function m. That is,
m+(A) =

∑
a∈Am(a)1(m(a) > 0).

Both f̄ +m+
f−g and ḡ + (−mf−g)

+ are polymatroid functions!
Thus, any function can be expressed as a difference between two, not only
submodular (DS), but polymatroid functions.
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Given arbitrary h = f − g where f and g are normalized submodular,

h = f − g = f̄ +mf − (ḡ +mg) (5.26)
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f−g and ḡ + (−mf−g)

+ are polymatroid functions!

Thus, any function can be expressed as a difference between two, not only
submodular (DS), but polymatroid functions.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F19/66 (pg.50/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Arbitrary function as difference between two polymatroids

Any normalized function h (i.e., h(∅) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.
Given submodular f and g, let f̄ and ḡ be them totally normalized.
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Two Equivalent Submodular Definitions

Definition 5.4.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (5.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 5.4.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (5.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.
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Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 5.4.1 (group diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
C ⊆ V \B, we have that:

f(A ∪ C)− f(A) ≥ f(B ∪ C)− f(B) (5.30)

This means that the incremental “value” or “gain” of set C decreases as the
context in which C is considered grows from A to B (diminishing returns)
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Examples and Properties Other Submodular Defs. Independence Matroids

Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing
Returns (Definition 5.4.2), and Group Diminishing Returns
(Definition 5.4.1) are identical.

We will show that:
Submodular Concave ⇒ Diminishing Returns
Diminishing Returns ⇒ Group Diminishing Returns
Group Diminishing Returns ⇒ Submodular Concave
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Submodular Concave ⇒ Diminishing Returns

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )⇒ f(v|A) ≥ f(v|B), A ⊆ B ⊆ V \ v.
Assume Submodular concave, so ∀S, T we have
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Given A,B and v ∈ V such that: A ⊆ B ⊆ V \ {v}, we have from
submodular concave that:

f(A+ v) + f(B) ≥ f(B + v) + f(A) (5.31)

Rearranging, we have

f(A+ v)− f(A) ≥ f(B + v)− f(B) (5.32)
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Diminishing Returns ⇒ Group Diminishing Returns

f(v|S) ≥ f(v|T ), S ⊆ T ⊆ V \ v ⇒ f(C|A) ≥ f(C|B), A ⊆ B ⊆ V \ C.

Let C = {c1, c2, . . . , ck}. Then diminishing returns implies

f(A ∪ C)− f(A) (5.33)

= f(A ∪ C)−
k−1∑
i=1

(
f(A ∪ {c1, . . . , ci})− f(A ∪ {c1, . . . , ci})

)
− f(A) (5.34)

=
k∑

i=1

(
f(A ∪ {c1 . . . ci})− f(A ∪ {c1 . . . ci−1})

)
=

k∑
i=1

f(ci|A ∪ {c1 . . . ci−1}) (5.35)

≥
k∑

i=1

f(ci|B ∪ {c1 . . . ci−1}) =
k∑

i=1

(
f(B ∪ {c1 . . . ci})− f(B ∪ {c1 . . . ci−1})

)
(5.36)

= f(B ∪ C)−
k−1∑
i=1

(
f(B ∪ {c1, . . . , ci})− f(B ∪ {c1, . . . , ci})

)
− f(B) (5.37)

= f(B ∪ C)− f(B) (5.38)
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Examples and Properties Other Submodular Defs. Independence Matroids

Group Diminishing Returns ⇒ Submodular Concave
f(U |S) ≥ f(U |T ), S ⊆ T ⊆ V \U ⇒ f(A)+f(B) ≥ f(A∪B)+f(A∩B).

Assume group diminishing returns. Assume A 6= B otherwise trivial. Define
A′ = A ∩B, C = A \B, and B′ = B. Then since A′ ⊆ B′,

f(A′ + C)− f(A′) ≥ f(B′ + C)− f(B′) (5.39)

giving

f(A′ + C) + f(B′) ≥ f(B′ + C) + f(A′) (5.40)

or

f(A ∩B +A \B) + f(B) ≥ f(B +A \B) + f(A ∩B) (5.41)

which is the same as the submodular concave condition

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (5.42)
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Submodular Definition: Four Points

Definition 5.4.2 (“singleton”, or “four points”)

A function f : 2V → R is submodular if‌f for any A ⊂ V , and any
a, b ∈ V \A, we have that:

f(A ∪ {a}) + f(A ∪ {b}) ≥ f(A ∪ {a, b}) + f(A) (5.43)

This follows immediately from diminishing returns. To achieve diminishing
returns, assume A ⊂ B with B \A = {b1, b2, . . . , bk}. Then

f(A+ a)− f(A) ≥ f(A+ b1 + a)− f(A+ b1) (5.44)
≥ f(A+ b1 + b2 + a)− f(A+ b1 + b2) (5.45)
≥ . . . (5.46)
≥ f(A+ b1 + · · ·+ bk + a)− f(A+ b1 + · · ·+ bk)

(5.47)

= f(B + a)− f(B) (5.48)
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Submodular on Hypercube Vertices

Test submodularity via values on verticies of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities?
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Submodular Concave ≡ Diminishing Returns, in one slide.
Theorem 5.4.3

Given function f : 2V → R, then
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A,B ⊆ V (SC)

if and only if
f(v|X) ≥ f(v|Y ) for all X ⊆ Y ⊆ V and v /∈ Y (DR)

Proof.
(SC)⇒(DR): Set A← X ∪ {v}, B ← Y . Then A ∪B = Y ∪ {v} and
A ∩B = X and f(A)− f(A ∩B) ≥ f(A ∪B)− f(B) implies (DR).

(DR)⇒(SC): Order A \B = {v1, v2, . . . , vr} arbitrarily. For i ∈ 1 : r,
f(vi|(A ∩B) ∪ {v1, v2, . . . , vi−1}) ≥ f(vi|B ∪ {v1, v2, . . . , vi−1}).

Applying telescoping summation to both sides, we get:
r∑
i=1

f(vi|(A ∩B) ∪ {v1, v2, . . . , vi−1}) ≥
r∑
i=1

f(vi|B ∪ {v1, v2, . . . , vi−1})

⇒ f(A)− f(A ∩B) ≥ f(A ∪B)− f(B)
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V (5.54)

f(j|S) ≥ f(j|T ), ∀S ⊆ T ⊆ V, with j ∈ V \ T (5.55)
f(C|S) ≥ f(C|T ),∀S ⊆ T ⊆ V, with C ⊆ V \ T (5.56)
f(j|S) ≥ f(j|S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (5.57)

f(A ∪B|A ∩B) ≤ f(A|A ∩B) + f(B|A ∩B), ∀A,B ⊆ V (5.58)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S)−
∑
j∈S\T

f(j|S ∪ T − {j}), ∀S, T ⊆ V

(5.59)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S), ∀S ⊆ T ⊆ V (5.60)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}) +
∑
j∈T\S

f(j|S ∩ T ) ∀S, T ⊆ V

(5.61)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}), ∀T ⊆ S ⊆ V (5.62)
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Equivalent Definitions of Submodularity

We’ve already seen that Eq. 5.54 ≡ Eq. 5.55 ≡ Eq. 5.56 ≡ Eq. 5.57 ≡
Eq. 5.58.

We next show that Eq. 5.57 ⇒ Eq. 5.59 ⇒ Eq. 5.60 ⇒ Eq. 5.57.
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Approach

To show these next results, we essentially first use:

f(S ∪ T ) = f(S) + f(T |S) ≤ f(S) + upper-bound (5.63)

and

f(T ) + lower-bound ≤ f(T ) + f(S|T ) = f(S ∪ T ) (5.64)

leading to

f(T ) + lower-bound ≤ f(S) + upper-bound (5.65)

or

f(T ) ≤ f(S) + upper-bound− lower-bound (5.66)
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Eq. 5.57 ⇒ Eq. 5.59

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
First, we upper bound the gain of T in the context of S:

f(S ∪ T )− f(S) =

r∑
t=1

(
f(S ∪ {j1, . . . , jt})− f(S ∪ {j1, . . . , jt−1})

)
(5.67)

=

r∑
t=1

f(jt|S ∪ {j1, . . . , jt−1}) ≤
r∑
t=1

f(jt|S) (5.68)

=
∑
j∈T\S

f(j|S) (5.69)

or

f(T |S) ≤
∑
j∈T\S

f(j|S) (5.70)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F33/66 (pg.79/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Eq. 5.57 ⇒ Eq. 5.59

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
Next, lower bound S in the context of T :

f(S ∪ T )− f(T ) =

q∑
t=1

[f(T ∪ {k1, . . . , kt})− f(T ∪ {k1, . . . , kt−1})]

(5.71)

=

q∑
t=1

f(kt|T ∪ {k1, . . . , kt} \ {kt}) ≥
q∑
t=1

f(kt|T ∪ S \ {kt})

(5.72)

=
∑
j∈S\T

f(j|S ∪ T \ {j}) (5.73)
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Eq. 5.57 ⇒ Eq. 5.59

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
So we have the upper bound

f(T |S) = f(S ∪ T )− f(S) ≤
∑
j∈T\S

f(j|S) (5.74)

and the lower bound

f(S|T ) = f(S ∪ T )− f(T ) ≥
∑
j∈S\T

f(j|S ∪ T \ {j}) (5.75)

This gives upper and lower bounds of the form

f(T ) + lower bound ≤ f(S ∪ T ) ≤ f(S) + upper bound, (5.76)

and combining directly the left and right hand side gives the desired
inequality.
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Eq. 5.59 ⇒ Eq. 5.60

This follows immediately since if S ⊆ T , then S \ T = ∅, and the last term
of Eq. 5.59 vanishes.
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V (5.54)
f(j|S) ≥ f(j|T ), ∀S ⊆ T ⊆ V, with j ∈ V \ T (5.55)
f(C|S) ≥ f(C|T ),∀S ⊆ T ⊆ V, with C ⊆ V \ T (5.56)
f(j|S) ≥ f(j|S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (5.57)

f(A ∪B|A ∩B) ≤ f(A|A ∩B) + f(B|A ∩B), ∀A,B ⊆ V (5.58)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S)−
∑
j∈S\T

f(j|S ∪ T − {j}), ∀S, T ⊆ V

(5.59)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S), ∀S ⊆ T ⊆ V (5.60)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}) +
∑
j∈T\S

f(j|S ∩ T ) ∀S, T ⊆ V

(5.61)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}), ∀T ⊆ S ⊆ V (5.62)
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Eq. 5.60 ⇒ Eq. 5.57

Here, we set T = S ∪ {j, k}, j /∈ S ∪ {k} into Eq. 5.60 to obtain

f(S ∪ {j, k}) ≤ f(S) + f(j|S) + f(k|S) (5.77)
= f(S) + f(S + {j})− f(S) + f(S + {k})− f(S) (5.78)
= f(S + {j}) + f(S + {k})− f(S) (5.79)
= f(j|S) + f(S + {k}) (5.80)

giving

f(j|S ∪ {k}) = f(S ∪ {j, k})− f(S ∪ {k}) (5.81)
≤ f(j|S) (5.82)
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Submodular Concave
Why do we call the f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) definition of
submodularity, submodular concave?

A continuous twice differentiable function f : Rn → R is concave if‌f
∇2f � 0 (the Hessian matrix is nonpositive definite).
Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V → R as follows:

(∇Bf)(A) , f(A ∪B)− f(A \B) = f
(
B|(A \B)

)
(5.83)

read as: the derivative of f at A in the direction B.
Hence, if A ∩B = ∅, then (∇Bf)(A) = f(B|A).
Consider a form of second derivative or 2nd difference:

(∇C∇Bf)(A) = ∇C [

(∇Bf)(A)︷ ︸︸ ︷
f(A ∪B)− f(A \B) ] (5.84)

= (∇Bf)(A ∪ C)− (∇Bf)(A \ C) (5.85)
= f(A ∪B ∪ C)− f((A ∪ C) \B)

− f((A \ C) ∪B) + f((A \ C) \B) (5.86)
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Submodular Concave

If the second difference operator everywhere nonpositive:

f(A ∪B ∪ C)− f((A ∪ C) \B)

− f((A \ C) ∪B) + f(A \ C \B) ≤ 0 (5.87)

then we have the equation:

f((A ∪ C) \B) + f((A \ C) ∪B) ≥ f(A ∪B ∪ C) + f(A \ C \B)
(5.88)

Define A′ = (A ∪ C) \B and B′ = (A \ C) ∪B. Then the above
implies:

f(A′) + f(B′) ≥ f(A′ ∪B′) + f(A′ ∩B′) (5.89)

and note that A′ and B′ so defined can be arbitrary.
One sense in which submodular functions are like concave functions.
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Submodular Concave

A

C

B
(a) A′ = (A ∪ C) \B

A

C

B
(b) B′ = (A \ C) ∪B

Figure: A figure showing A′ ∪B′ = A ∪B ∪ C and A′ ∩B′ = A \ C \B.
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.

Recall four points definition: A function is submodular if for all X ⊆ V
and j, k ∈ V \X

f(X + j) + f(X + k) ≥ f(X + j + k) + f(X) (5.90)

This gives us a simpler notion corresponding to concavity.
Define gain as ∇j(X) = f(X + j)− f(X), a form of discrete gradient.
Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X ⊆ V and j, k ∈ V , we have:

∇j∇kf(X) ≤ 0 (5.91)
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.
r(A ∪ C) = 3, r(B ∪ C) = 3.
r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.
r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) = r(A ∪B) + r(C) > r(A ∪B) + r(A ∩B) = 5
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On Rank

Let rank : 2V → Z+ be the rank function.

In general, rank(A) ≤ |A|, and vectors in A are linearly independent if
and only if rank(A) = |A|.
If A,B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by vectors
in A.
To stress this point, note that the above condition is |A| < |B|, not
A ⊆ B which is sufficient (to be able to find an independent vector)
but not required.
In other words, given A,B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| ⇔ ∃ an b ∈ B such that rank(A ∪ {b}) = |A|+ 1.
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Spanning trees/forests

We are given a graph G = (V,E), and consider the edges E = E(G)
as an index set.
Consider the |V | × |E| incidence matrix of undirected graph G, which
is the matrix XG = (xv,e)v∈V (G),e∈E(G) where

xv,e =

{
1 if v ∈ e
0 if v /∈ e

(5.92)
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

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 0 0 0 0 0 0
3 0 1 0 1 0 1 0 0 0 0 0 0
4 0 0 1 1 0 0 1 1 0 0 0 0
5 0 0 0 0 0 1 1 0 0 1 0 0
6 0 0 0 0 0 0 0 1 1 0 1 0
7 0 0 0 0 1 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 1 1 1


(5.93)
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees/forests & incidence matrices

We are given a graph G = (V,E), we can arbitrarily orient the graph
(make it directed) consider again the edges E = E(G) as an index set.
Consider instead the |V | × |E| incidence matrix of undirected graph G,
which is the matrix XG = (xv,e)v∈V (G),e∈E(G) where

xv,e =


1 if v ∈ e+

−1 if v ∈ e−
0 if v /∈ e

(5.94)

and where e+ is the tail and e− is the head of (now) directed edge e.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees/forests & incidence matrices

A directed version of the graph
(right) and its adjacency matrix
(below).
Orientation can be arbitrary.
Note, rank of this matrix is 7.
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

1 2 3 4 5 6 7 8 9 10 11 12

1 −1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 −1 0 1 0 0 0 0 0 0 0
3 0 −1 0 1 0 −1 0 0 0 0 0 0
4 0 0 1 −1 0 0 1 −1 0 0 0 0
5 0 0 0 0 0 1 −1 0 0 1 0 0
6 0 0 0 0 0 0 0 1 −1 0 −1 0
7 0 0 0 0 −1 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 −1 1 −1


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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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

1

1 −1
2 1
3 0
4 0
5 0
6 0
7 0
8 0


(5.95)

Here, rank({x1}) = 1.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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

1 2

1 −1 1
2 1 0
3 0 −1
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0


(5.95)

Here, rank({x1, x2}) = 2.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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

1 2 3

1 −1 1 0
2 1 0 −1
3 0 −1 0
4 0 0 1
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0


(5.95)

Here, rank({x1, x2, x3}) = 3.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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

1 2 3 5

1 −1 1 0 0
2 1 0 −1 1
3 0 −1 0 0
4 0 0 1 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 −1
8 0 0 0 0


(5.95)

Here, rank({x1, x2, x3, x5}) = 4.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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

1 2 3 4 5

1 −1 1 0 0 0
2 1 0 −1 0 1
3 0 −1 0 1 0
4 0 0 1 −1 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 −1
8 0 0 0 0 0


(5.95)

Here, rank({x1, x2, x3, x4, x5}) = 4.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees

We can consider edge-induced subgraphs and the corresponding matrix
columns.
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

1 2 3 4

1 −1 1 0 0
2 1 0 −1 0
3 0 −1 0 1
4 0 0 1 −1
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0


(5.95)

Here, rank({x1, x2, x3, x4}) = 3 since x4 = −x1 − x2 − x3.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.
For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
We have rank(A) = |V (G)| − kG(A).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F49/66 (pg.116/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.
For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
We have rank(A) = |V (G)| − kG(A).
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.
For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
We have rank(A) = |V (G)| − kG(A).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F49/66 (pg.118/187)



Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).

The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.
For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
We have rank(A) = |V (G)| − kG(A).
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.

For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
We have rank(A) = |V (G)| − kG(A).
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.
For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.

We have rank(A) = |V (G)| − kG(A).
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning trees, rank, and connected components

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
The rank of the entire graph then is then a spanning forest of the graph
(spanning tree if the graph is connected).
The rank of the graph is rank(E(G)) = |V | − k where k is the number
of connected components of G.
For A ⊆ E(G), define kG(A) as the number of connected components
of the edge-induced spanning subgraph (V (G), A). Recall, kG(A) is
supermodular, so |V (G)| − kG(A) is submodular.
We have rank(A) = |V (G)| − kG(A).
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:

Algorithm 2: Kruskal’s Algorithm
1 Sort the edges so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em) ;
2 T ← (V (G), ∅) = (V, ∅) ;
3 for i = 1 to m do
4 if E(T ) ∪ {ei} does not create a cycle in T then
5 E(T )← E(T ) ∪ {ei} ;
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:

Algorithm 3: Jarník/Prim/Dijkstra Algorithm

1 T ← ∅ ;
2 while T is not a spanning tree do
3 T ← T ∪ {e} for e = the minimum weight edge extending

the tree T to a not-yet connected vertex ;
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:

Algorithm 4: Borůvka’s Algorithm
1 F ← ∅ /* We build up the edges of a forest in F */
2 while G(V, F ) is disconnected do
3 forall components Ci of F do
4 F ← F ∪ {ei} for ei = the min-weight edge out of Ci;
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.

These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Examples and Properties Other Submodular Defs. Independence Matroids

Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the sum

of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e., “add
next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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Examples and Properties Other Submodular Defs. Independence Matroids

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.

Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I ∈ I,
the vectors indexed by I are linearly independent.
Given a set B ∈ I of linearly independent vectors, then any subset A ⊆ B
is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (5.96)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
B ⊆ V .

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (5.97)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| = rank(B) (5.98)
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Examples and Properties Other Submodular Defs. Independence Matroids

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.
Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I ∈ I,
the vectors indexed by I are linearly independent.

Given a set B ∈ I of linearly independent vectors, then any subset A ⊆ B
is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (5.96)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
B ⊆ V .

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (5.97)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| = rank(B) (5.98)
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Examples and Properties Other Submodular Defs. Independence Matroids

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.
Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I ∈ I,
the vectors indexed by I are linearly independent.
Given a set B ∈ I of linearly independent vectors, then any subset A ⊆ B
is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (5.96)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
B ⊆ V .

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (5.97)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| = rank(B) (5.98)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 5 - April 9th, 2018 F51/66 (pg.132/187)



Examples and Properties Other Submodular Defs. Independence Matroids

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.
Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I ∈ I,
the vectors indexed by I are linearly independent.
Given a set B ∈ I of linearly independent vectors, then any subset A ⊆ B
is also linearly independent. Hence, I is down-closed or “subclusive”,
under subsets.

In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (5.96)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
B ⊆ V .

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (5.97)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| = rank(B) (5.98)
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Examples and Properties Other Submodular Defs. Independence Matroids

From Matrix Rank → Matroid

Let I = {I1, I2, . . .} be the set of sets as described above.

Thus, for all I ∈ I, the matrix rank function has the property

r(I) = |I| (5.99)

and for any B /∈ I,

r(B) = max {|A| : A ⊆ B and A ∈ I} < |B| (5.100)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Examples and Properties Other Submodular Defs. Independence Matroids

Matroid

Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V ), and a
collection of subsets I = {I1, I2, . . .} of E that correspond to
independent elements.
There are many definitions of matroids that are mathematically
equivalent, we’ll see some of them here.
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Examples and Properties Other Submodular Defs. Independence Matroids

Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, ∅ 6= I ⊆ 2E is called a set
system, notated (E, I).

Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S ⊆ E has S ∈ I.

One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A ⊂ B ∈ I, we have that A ∈ I.
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Examples and Properties Other Submodular Defs. Independence Matroids

Independence System

Definition 5.6.2 (independence (or hereditary) system)

A set system (V, I) is an independence system if

∅ ∈ I (emptyset containing) (I1)

and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Property (I2) called “down monotone,” “down closed,” or “subclusive”

Example: E = {1, 2, 3, 4}. With I = {∅, {1}, {1, 2}, {1, 2, 4}}.
Then (E, I) is a set system, but not an independence system since it is
not down closed (i.e., we have {1, 2} ∈ I but not {2} ∈ I).
With I = {∅, {1}, {2}, {1, 2}}, then (E, I) is now an independence
(hereditary) system.
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Examples and Properties Other Submodular Defs. Independence Matroids

Independence System


1 2 3 4 5 6 7 8

1 0 0 1 1 2 1 3 1

2 0 1 1 0 2 0 2 4

3 1 1 1 0 0 3 1 5

 =


1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |


(5.101)

Given any set of linearly independent vectors A, any subset B ⊂ A will
also be linearly independent.

Given any forest Gf that is an edge-induced sub-graph of a graph G,
any sub-graph of Gf is also a forest.
So these both constitute independence systems.
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Examples and Properties Other Submodular Defs. Independence Matroids

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J ∈ I, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (E, I) is a Matroid if
(I1) ∅ ∈ I
(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)
(I3) ∀I, J ∈ I, with |I| = |J |+ 1, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I.

Why is (I1) is not redundant given (I2)?

Because without (I1) could have a
non-matroid where I = {}.
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Examples and Properties Other Submodular Defs. Independence Matroids

On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.
Forgotten for 20 years until mid 1950s.
Matroids are powerful and flexible combinatorial objects.
The rank function of a matroid is already a very powerful submodular
function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term ’matroid’, which we
prefer to avoid in favor of the term ’pregeometry’.”
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Examples and Properties Other Submodular Defs. Independence Matroids

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.6.4 (Matroid-II)

A set system (E, I) is a Matroid if
(I1’) ∅ ∈ I
(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)
(I3’) ∀I, J ∈ I, with |I| > |J |, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)≡(I3’) using induction.
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Examples and Properties Other Submodular Defs. Independence Matroids

Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.

A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B ∈ I
and there is no Z ∈ I with B ⊂ Z ⊆ U .
A base of a matroid: If U = E, then a “base of E” is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 5.6.5

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have the
same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank
Thus, in any matroid M = (E, I), ∀U ⊆ E(M), any two bases of U
have the same size.

The common size of all the bases of U is called the rank of U , denoted
rM (U) or just r(U) when the matroid in equation is unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of all
the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function r : 2E → Z+ defined by

r(A) = max {|X| : X ⊆ A,X ∈ I} = max
X∈I
|A ∩X| (5.102)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 5.6.8 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid M
if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)− 1.

Definition 5.6.9 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 5.6.10 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A, r(A \ {a}) = |A| − 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B′ ∈ B, and x ∈ B′ \B, then B′−x+ y ∈ B for some y ∈ B \B′.
3 If B,B′ ∈ B, and x ∈ B′ \B, then B− y+ x ∈ B for some y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 5.6.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ∅ /∈ C
2 (C2): if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.
3 (C3): if C1, C2 ∈ C with C1 6= C2, and e ∈ C1 ∩C2, then there exists a
C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;
2 if C,C ′ ∈ C, and x ∈ C ∩ C ′, then (C ∪ C ′) \ {x} contains a set in C;
3 if C,C ′ ∈ C, and x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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