
 1

Automatic Creation of Domain-Specific Reconfigurable CPLDs for SoC

Mark Holland, Scott Hauck
Department of Electrical Engineering

University of Washington, Seattle, WA 98195, USA
mholland@ee.washington.edu, hauck@ee.washington.edu

Abstract
Many System-on-a-Chip devices would benefit from the
inclusion of reprogrammable logic on the silicon die, as it
can add general computing ability, provide run-time
reconfigurability, or even be used for post-fabrication
modifications. Also, by catering the logic to the SoC
domain, additional area and delay gains can be achieved
over current, more general reconfigurable fabrics. This
paper presents tools that automate the creation of
domain-specific CPLDs for SoC, including an
Architecture Generator for finding appropriate
architectures and a Layout Generator for creating
efficient layouts. By tailoring CPLDs to the domains that
they are supporting, we provide results that beat
representative fixed architectures by 4.1x to 9.5x on
average in terms of area-delay product.

1. Introduction
As the semiconductor industry continues to follow
Moore’s Law, a switch in design paradigm is occurring.
The former “System-on-a-Board” style, which had several
discrete components individually fabricated and then
integrated together on a board, is becoming obsolete. As
gate count continues to increase (currently chips can hold
hundreds of millions of wirable gates), distinct VLSI
components can now be incorporated onto the same piece
of silicon and this “System-on-a-Chip” methodology is
becoming more prevalent.

Integrating several components in the same piece of
silicon has several advantages. The most obvious of these
is reduced area, as the move from a board to a single chip
is a clear win. The smaller area also leads to lower path
delays and less power dissipation, two factors that are
important in VLSI designs. Another advantage is that
inter-device communication can be richer, as pin
limitations are no longer a concern.

Of course, as more resources are put onto a single chip,
the actual design of that chip becomes more difficult. In
SoC designs, this is often alleviated by using hardware
description languages (HDLs) to describe the hardware.
Synthesis tools map the HDL designs to gates, and they

are ultimately laid out using a library of standard cells.

Standard cells, however, do not perform as well as
manually laid out designs. Because of this, a second SoC
design paradigm has emerged: intellectual property (IP)
reuse. The basic idea of IP reuse is that once a device is
carefully designed, tested, and verified, the next user who
wishes to use the device won’t have to repeat any of those
steps. IP Cores are becoming available in a wide variety
of flavors, including processors, DSPs, memories, and of
particular interest to us, reconfigurable logic cores.

Reconfigurable logic fills a useful niche between the
flexibility provided by a processor and the performance
provided by custom hardware. This usefulness extends to
the SoC realm, where reconfigurable logic can provide
cost-free upgradability, conformity to different but similar
protocols, coprocessing hardware, and uncommitted
testing resources. Additionally, the paradigm of IP reuse
makes it even easier to incorporate reconfigurable logic
into a SoC device as a pre-made IP core.

Traditional reconfigurable logic needs to provide a high
level of flexibility so that it will be useful in a wide range
of designs. This flexibility, however, comes at the cost of
increased area, delay, and power. As such, it would be
useful to tailor the reconfigurable logic to a user specified
domain in order to reduce the unneeded flexibility,
thereby reducing the area, delay, and power penalties that
it suffers. The dilemma then becomes creating these
domain-specific reconfigurable fabrics in a short enough
time that they can be useful to SoC designers.

The Totem project is our attempt to reduce the amount of
effort and time that goes into the process of designing
domain-specific reconfigurable logic. By automating the
generation process, we will be able to accept a domain
description and quickly return a reconfigurable
architecture that targets that domain.

This paper deals with the creation of domain-specific
CPLD architectures, a project termed Totem-CPLD.
CPLDs are relatively small reconfigurable architectures
that typically use PLAs or PALs as their functional units,
and which connect the units using either a single, central

 2

interconnect structure (Figure 1) or some sort of
hierarchical interconnect. In commercial architectures,
the functional units tend to be relatively coarse grained in
order to provide shallow mappings, leading to low and
predictable delays.

Figure 1. A CPLD with central interconnect

CPLDs have traditionally been used for implementing
control logic, state machines, and other seemingly random
logic, but they are not limited to these applications: the
generality of a CPLD allows it to implement almost any
logic of small enough size. This is the same generality,
however, which causes performance penalties in terms of
area, delay, and power.

Totem-CPLD will tailor CPLDs to a specific domain,
thereby removing some of these performance penalties.
Specifically, by altering the sizes of the functional units
(PLAs) in terms of inputs, product terms, and outputs,
CPLD architectures can be created that perform better
than “typical” CPLD architectures for a specified domain.

2. Background
Many papers have been published with respect to CPLD
architectures, but very few of them have aimed at creating
reconfigurable architectures for SoC. The most
applicable of these was “Product-Term Based
Synthesizable Embedded Programmable Logic Cores” by
A. Yan and S. Wilton [1]. In this paper they explore the
development of “soft” or synthesizable programmable
logic cores based on PLAs, which they call product term
arrays. In their process they acquire the high-level
requirements of a design (# of inputs, # of outputs, gate
count) and then create a hardware description language
(HDL) representation of a programmable core that will
satisfy the requirements. This HDL description is then
given to the SoC designer so that they can use the same
synthesis tools in creating the programmable core that
they use to create other parts of their chip. A similar
LUT-based design was also proposed [2].

Their soft programmable core has the advantages of easy
integration into the ASIC flow, and it will allow users to
closely integrate this programmable logic with other parts
of the chip. The core will likely be made out of standard
cells, however, whose inefficiency will cause significant
penalties in area, power, and delay. As such, using these
soft cores only makes sense if the amount of
programmable logic required is relatively small.

In another related work, a highly regular “River” PLA
(RPLA) structure is proposed which provides ease of
design and layout of PLAs for possible use in SoC [3].
Their proposal is to stack multiple PLAs in a uni-
directional structure using river routing to connect them
together, resulting in a structure that benefits from both
high circuit regularity and predictable area and delay
formulation. Also touched upon is a reconfigurable
version of RPLA, called Glacier PLA (GPLA), which
would retain the benefits of RPLA in addition to being
programmable.

GPLAs are similar to our work in that they are hard
programmable cores that can be integrated into SoC. The
interconnect between their PLA units, however, is fairly
sparse, and it is confined by their need for directionality.
An architecture with more robust routing would
undoubtedly be able to support a wider range of designs,
and therefore a wider range of domains.

As a precursor to Totem-CPLD, we performed some work
in which we explored the feasibility of making domain-
specific reconfigurable PLAs and PALs [4]. In this work
we wrote an architecture generation tool that mapped
domains of circuits to either a PLA or a PAL in such a
way that it could remove some of the unneeded
programmable connections in the arrays. By doing this
intelligently, we were able to remove 60%-70% of the
programmable connections in the arrays, which provided
delay gains of 15% to 30%. Depopulating the arrays in a
PLA is very restrictive to future mappings, however, so
we chose not to use PLA depopulation in Totem-CPLD.

In order to create CPLD architectures, we need to have
the appropriate tech-mapping tool. We will be using a
tool called PLAmap, which is currently the best
technology-mapping algorithm for CPLDs [5]. PLAmap
is a performance driven mapping algorithm whose goal is
to minimize the delay/depth of the mapped circuit. The
algorithm works on a directed acyclic graph (DAG) in
three stages: the first stage labels all the nodes according
to their logic depth, the second stage maps these nodes
into PLAs, and the third stage attempts further packing of
the PLAs in order to reduce the PLA count. Area/Delay
tradeoffs are also available, but we will be running
PLAmap in purely delay-driven mode. PLAmap is run by
providing it with a PLA size (inputs, product terms,
outputs) and a circuit (in .blif format) to be mapped, after
which PLAmap returns the number of PLAs required for

 3

the mapping, the depth of the mapping, and saturation
statistics for the PLAs.

3. Approach – Tool Flow
The tool flow for Totem-CPLD is shown in Figure 2.

Figure 2. Totem-CPLD Tool Flow

To begin the process, the customer will provide us with a
domain specification that contains the circuits that need to
be supported. These circuits will be fed into an
Architecture Generator, which will find a CPLD
architecture that provides good results for the selected
domain, outputting the architecture description and the
area-delay product of the implementation. The
architecture description is then sent to a Layout Generator
which creates a full VLSI layout of the specified CPLD
architecture.

3.1 Architecture Generator
The Architecture Generator is responsible for reading in
multiple circuits and finding a CPLD architecture that
supports the circuits efficiently. Search algorithms are
used to make calls to PLAmap, after which the results are
analyzed according to area and delay models that we have
developed. The algorithms then make a decision to either
make further calls to PLAmap, or to exit and use the best
CPLD architecture that has been found. This is shown
graphically in Figure 3. PLAmap assumes full
connectivity between the PLAs, and the Architecture
Generator accommodates this by connecting all the PLAs
through a full crossbar. Future work will consider other
interconnect styles.

The Architecture Generator is responsible for finding a
PLA size that leads to an efficient CPLD architecture for
the given domain. PLAs are specified by their number of
inputs (IN), product terms (PT), and outputs (OUT), so
the search space for the Architecture Generator is three-
dimensional. Searching the entire 3-D space is not viable,
as calls to PLAmap can take on the order of hours for
larger circuits, and our ultimate goal is to find a suitable

CPLD architecture in a matter of hours or days. Also, for
each PLA architecture that we test a domain on, PLAmap
must be called once for each circuit in the domain.
Clearly, minimizing the number of PLAmap calls is
important to our runtime. Otherwise effective algorithms
such as simulated annealing and particle swarm are far
too costly for our scenario, and smart algorithms will be
required if we wish to acquire good result in a 3-D search
space using relatively few data points.

Figure 3. Architecture Generator

In order to gain some intuition about the search space, we
ran five random LGSynth93 circuits through PLAmap
and acquired a coarse representation of the 3-D space for
each circuit. The first thing that we noticed by looking at
these results was that the three PLA variables are related,
as can be expected. More specifically, the best results are
obtained when the number of product terms was roughly
between 1x and 3x the number of inputs. Similarly, good
results were obtained when the number of outputs was
between .25x and .6x the number of inputs. To
generalize, a ratio of 1 to 2 to .5 for the IN, PT, and OUT
variables respectively was found to consistently provide
good results. Within the scope of these ratios, CPLDs
with 10-20-5 PLAs were shown to provide generally good
results.

Another observation we made was that the best results
tended to be grouped around PLAs with a specific input
count, as long as the product term and output counts were
reasonable. Similarly, good results seemed to be grouped
around favorable input/output combinations, such that the
number of product terms played a slightly lesser role in
affecting the final results. This led us to the concept of
breaking the 3-D space into three 1-D spaces, which can
be searched sequentially and in much less time. More
specifically, our algorithms will start by searching for a
good input size (while keeping a 1x-2x-.5x IN-PT-OUT
relationship), will next search for a good output size, and
will finish by searching for a good product term size.

Lastly, we observed that the 3-D search space generally
tends to be well behaved. Results tend to get better as
you approach the optimal point, and to get worse as you
go away from the optimal point. But far from being

Circuits

Architecture Generator

Architecture Description

Layout Generator

Layout
Area, Delay

Search Algorithm

CPLD Specs

PLAmap

Architecture,
Area, Delay

Architecture,
Stats

(when done)

 4

perfectly behaved, there are many small perturbations in
the smoothness that lead to local optima. These local
optima appear both near and far away from the global
optima, so measures will need to be taken to avoid being
caught in such local optima.

Architectures are evaluated using the metric of area-delay
product. When reported for a domain, the area-delay
product consists of the worst-case area implementation in
the domain (since the reconfigurable CPLD must be large
enough to hold each of the circuits), multiplied by the
average case delay of the domain. The area model for this
calculation is derived from the actual sizings of the VLSI
layout components that we created, and the delay model
was acquired by performing an hspice static timing
analysis of the components.

3.1.1 Search Algorithms
We developed four different Architecture Generation
algorithms in order to find good CPLD architectures: Hill
Descent, Successive Refinement, Choose N Regions, and
Run M Points. All algorithms break up the 3-D search
space into 1-D steps by searching for good input, output,
and product term sizes, in that order. Additionally, the
input step always uses PLAs with a 1x-2x-.5x IN-PT-
OUT ratio, while the output and product term steps
always alter ONLY the output and product term values
from data point to data point. Each variable is explored
only in a range that provided reasonable results in
preliminary testing. Therefore the input variable is
typically explored for values between 4 and 28, the
product term variable between 10 and 90, and the output
value between 1 and 25.

3.1.1.1 Hill Descent
The Hill Descent algorithm is the first algorithm that we
developed, and the most basic. The algorithm starts by
running PLAmap on architectures with 10-20-5 and 12-
24-6 PLAs. Whichever result is better, we continue to
take results in that direction (i.e. smaller or larger PLAs),
keeping the 1x-2x-.5x ratio intact and performing steps of
IN = +/-2 (like descending a hill). We continue until a
local optima is reached, as determined by the first result
that does not improve upon the last result. At this point
we explore the PLAs with IN = +/-1 of the current local
optima. The best result is noted, and the input value is
permanently locked at this value, thus ending the input
step. This is shown graphically in Figure 4.

The output optimization step occurs next. The first data
point in this step is the local optima from the input step,
and the second data point is acquired by running PLAmap
on a PLA with one more output than the current optima
(IN and PT do not change). Again, we descend the hill by
altering OUT by +/-1 until the first result that does not
improve upon the previous result. At this point we lock

the output value and proceed to the product term
optimization step. The product term optimization step
repeats the process from the previous two steps, varying
the PT value by +/-2 until the descent stops. At this point,
the PT values +/-1 of the optima are taken, and the best
overall result seen is the output of the algorithm.

Figure 4. Hill Descent Algorithm

The Hill Descent algorithm is decidedly greedy, as it
always moves in the direction of initial improvement. It
also has no method for avoiding local minima, as any
minima will stop the current step. Therefore it is
somewhat difficult for this algorithm to find architectures
that vary much in size from the 10-20-5 PLA starting
point, but decent results are still obtained due to the fact
that the 10-20-5 starting point is a relatively good point in
the 3-D search space.

3.1.1.2 Successive Refinement
The successive refinement algorithm is intended to slowly
disregard the most unsuitable PLA architectures, thereby
ultimately deciding upon a good architecture by process
of elimination. In the input optimization step (Figure 5),
data points are initially taken for PLAs with input counts
ranging from 4 (lower bound) to 28 (upper bound) with a
step size of 8. So initially, 4-8-2, 12-24-6, 20-40-10, and
28-56-14 PLAs are run (part a in Figure 5). The left and
right edges are then examined, regions that do not contain
local/global minima are trimmed from consideration
(shaded region of part a), and the bounds are adjusted
accordingly. The step size is then halved, and the above
process is repeated (part b). This occurs until we have
performed an exploration with a step size of 1 (part d).

For the output optimization step, the IN and PT values are
locked at the best result we found in the input step. The
output values are now varied according to the above
refinement algorithm, using an initial lower bound of 1,
upper bound of 25, and step size of 8. The recursion
again continues until the results for a step size of 1 have
been taken, at which point we lock the IN and OUT
values. The product term optimization step next repeats
this process for PT values between 2 and 90, after which
the best result is returned as the best architecture found.

Cost

10 12 14 16 18
Input Size

local optima

+/- 1 of optima

 5

The Successive Refinement algorithm is greedy in the
way it trims sub-optimal PLAs from the edges of its
consideration. It does not trim sub-optimal regions from
the middle, however, and can therefore require more
PLAmap runs than is absolutely necessary. Typically,
several local optima get explored at maximum
granularity, providing a good survey of the areas around
the minima at a small cost to runtime.

Figure 5. Input Optimization Step of the
Successive Refinement algorithm. At each
iteration, shaded regions are trimmed and the
step size halved.

3.1.1.3 Choose N Regions
The Choose N Regions algorithm basically makes a wide
sweep of each 1-D space, and then uses the results to
choose N regions to explore at a finer granularity. A
region consists of the space between two data points.

Like the Successive Refinement algorithm, the input
optimization step of the Choose N Regions algorithm is
initiated by taking data points for PLAs with inputs
ranging from 4 to 28, but now with a step size of 4. N
regions are then chosen for further exploration (N=2 was
experimentally found to be a good value). A region
consists of a data point on the left side, a data point on the
right side, and the unexplored space between them. The
N best regions are the regions with the best primary
result, where the primary result is: min(left result, right
result). For ties, the region with the best secondary result
max(left, right) is taken (see Figure 6). These N regions
are retained, the step size is halved, and we iterate on the

new regions. This continues until N regions have been
explored with a step size of 1.

For the output optimization step, we lock the input and
product term values from the best result found in the
inputs step. The output value ranges from 1 to 25, with a
step size of 4, and the process is repeated. For the product
term optimization step, the input and output values from
the best result are locked, and the PT values are ranged
from 2 to 90 with a step size of 8. After the product term
step has completed its step size of 1, the best overall result
is returned.

Figure 6. Choose N Regions algorithm. Region B
is the best, because it has the best primary point
(along with A) and the best secondary point.
Region A is 2nd best, region C is 3rd best.

The Choose N Regions algorithm has the advantage of
retaining, at all steps, N regions of consideration. This
allows the algorithm to hone into multiple local minima,
as well as throw out old minima that get replaced by new,
better results.

3.1.1.4 Run M Points
The Run M Points algorithm initiates each step by making
a wide sweep of the 1-D space, and then iteratively
explores points near the best current point. For each 1-D
space, the algorithm collects data for M points before
progressing to the next step. Experimentally, a value of
M=15 was found to provide good results.

Again, the input optimization step starts by taking data
points for PLAs with inputs ranging from 4 to 28, with a
step size of 4. Next, the best data point is found, and
results are taken on either side of it with the largest step
size that results in unexplored data points (options are 4,
2, and 1). This is shown in Figure 7. The process is
repeated on the best current data point, which is
constantly updated, until M runs have been performed for
the input step. Once the direct neighbors of a point have
been computed, it is eliminated from further explorations;
this allows other promising candidates to be explored as
well.

Cost

4 8 12 16 20
Input Size

24 28

B A C

Cost

4 12 20
Input Size

28

Cost

12 16 20
Input Size

2824

Cost

16 18 20
Input Size

2422

Cost

16 18 20 2217 19 21
Input Size

Progress

(a)

(b)

(c)

(d)

23 24

 6

For the output step, we lock the input and product term
values of the best result found in the input step. We then
range the output values from 1 to 25, with a step size of 4,
and repeat the Run M Points algorithm mentioned above.
The product term step repeats this process, with product
term values ranging from 10 to 90 and a step size of 8 (so
possible step sizes are 8, 4, 2, and 1 now).

Figure 7. Run M Points algorithm. The best point
is always chosen, and the regions to it’s left and
right are explored.

Because we are exploring to either side of the best result,
the range of 10 to 90 is not strictly enforced for the
product term step, as exploration around 10 or 90 would
take data points on both sides of the given point. This
concept is true for all steps in the Run M Points
algorithm. Also note that the input and output steps have
the same interval size and step size, while the product
term step has a larger interval and larger step size. To
account for this, the product term step is allowed to run
slightly more than M runs so that it can closely explore as
many regions as the input and output steps.

While the Choose N Regions algorithm explores N
possible optima in parallel, the Run M Points algorithm
can be seen as exploring the optima one at a time. It will
explore the best optima until it runs out of granularity,
then will turn to the second best optima, and so on. In
this way it also considers multiple possible optima, as
determined by the value chosen for M.

3.1.2 Algorithm Add-Ons
The four algorithms mentioned above comprise the bulk
of the Architecture Generator, but some additional
routines have been deemed necessary in order to obtain
either better or more robust results.

3.1.2.1 Radial Search
As mentioned before, the 3-D search space for this
problem is relatively well shaped, but not perfectly so.
There are many local optima that might prevent the above
algorithms from finding the global optima. One way to
look outside of these local optima is to search the 3-D
space within some radius of the current optima. So for a

radius R search around an X-Y-Z architecture, we would
vary IN from X-R to X+R, PT from Y-R to Y+R, and
OUT from Z-R to Z+R, testing all architectures in this 3-
D subspace.

We have a strict time constraint on the runtime of the
Architecture Generator, so performing the (2R+1)^3 extra
PLAmap runs necessary for a radius = R search is not
feasible as part of our finalized tool flow. Given looser
time constraints and moderately sized circuits, however,
small radial searches are not out of the question. Another
reason to run radial searches is that it can search a small
(but good) part of the 3-D search space exhaustively, and
give an idea of how well the basic algorithms are
performing. For this reason, we have performed radial
searches of up to R = 3 at the conclusions of the basic
algorithms listed above.

3.1.2.2 Algorithm Iteration
The Architecture Generator algorithms all assume that the
PLAs should be in a 1x-2x-.5x relationship in terms of
inputs, product terms, and outputs. This is just a rough
guideline, however, and is very rarely the optimal ratio
for a given domain. Thus, an interesting idea is to run the
basic algorithms (with or without a radial search) and then
look at the resulting PLA to obtain a new IN-PT-OUT
relationship. A second iteration of the algorithm can be
run with this new IN-PT-OUT relationship, exploring the
3-D search space using a relationship that the domain has
already been shown to prefer. For example, if the first
iteration chose a 10-30-8 architecture, then the IN-PT-
OUT relationship for the next iteration would be 1x-3x-
.8x. A second iteration has been carried out for all of the
algorithms on each domain.

3.1.2.3 Small PLA Inflexibility
The initial step of each algorithm locks the input value at
a value that it deems to be appropriate by testing a wide
range of PLA sizes. During the course of algorithms
development, we found that domains that migrate to small
input values during the input step (i.e. a 4-8-2 PLA) are
left with very little flexibility for the corresponding output
and product term steps. The PLAs become strictly input
limited, and very few ranges of outputs or product terms
will result in reasonable results. When this occurs, the
final result of the algorithm tends to be very poor.

To alleviate this, we have added a modification to all of
the algorithms. Now, if the input step chooses a PLA
with 4 or fewer inputs, the output step will be run both
with the PLA found in the input step (4-8-2 or smaller)
and with a 10-20-5 PLA. Both of these branches are
propagated to the product term step, and the best overall
result of the two branches is taken. We found that this
process alleviated the problem of being trapped in small
PLA sizes, and provided better results in all but one of the

Cost

4 8 12 16 20
Input Size

24 28

Best Point

New Exploration

 7

applicable cases.

3.2 Layout Generator
The Layout Generator is responsible for taking the CPLD
architectures description from the Architecture Generator
and turning it into a full VLSI layout. It does this by
intelligently tiling pre-made, highly optimized layout cells
into a full CPLD layout. The Layout Generator runs in
Cadence’s layoutPlus environment, and uses a SKILL
routine that was written by Shawn Phillips [6]. The
layouts are designed in the TSMC .18-micron process.

Figure 8 displays a small CPLD that was created using the
Layout Generator. For clarity’s sake, the encoding logic
required for programming the RAM bits is not shown, but
would appear along the left and bottom of the laid out
CPLD. Pre-made cells exist for every part of the PLA
and crossbar units, including the RAM encoding logic.
The Layout Generator simply puts together the pre-made
layout pieces as specified by the architecture description
that the Architecture Generator provides. The PLAs are
implemented in pseudo-nmos in order to provide a
compact layout at the cost of power dissipation (power
dissipation is considered in the future work section).

4. Methodology
The use of PLAmap restricts us to the use of blif format
circuits. The LGSynth93 suite has a large number of blif
circuits, but their functions are unknown, so they are
difficult to group into domains. For preliminary testing
purposes, we did choose to create three domains out of
the LGSynth93 suite: a small domain (43-106 gates), a
medium domain (246-457 gates), and a large domain
(2246-3606 gates). Each of these domains has six
circuits.

In order to create more realistic domains, we had to find
other means of obtaining circuits, as well as determine a
method of getting non-blif circuits into the blif format.
Circuits are most easily obtained in HDL (Verilog and
VHDL) formats, so the problem became transforming
HDLs into blif. A second constraint composed by
PLAmap is that the blif circuits must be 2-bounded: i.e.
they must be composed of gates with no more than two
inputs.

After much effort, we developed a method for translating
files from HDL format into blif. The process is shown in
Figure 9. The HDL files are initially loaded into Altera’s
Quartus 2 program, which is able to dump the designs

Figure 8. A small CPLD with eight 7-8-4 PLAs (top and bottom) and a crossbar.

 8

into a blif file (developers at Altera were very helpful in
providing this hidden functionality to us). SIS is then
used to transform the blif file into a 2-bounded network,
which PLAmap will be able to accept.

Figure 9. File transformation process.

We created five domains of circuits. Two of them, the
combinational and sequential domains, consist of files
gathered from the LGSynth93 Benchmark Suite. The
actual functions of these files are unknown, but they are
grouped for their combinational or sequential
characteristics. These circuits were acquired in blif
format, and simply needed to be 2-bounded by way of
SIS.

The remaining three domains consist of floating point,
arithmetic, and encryption files respectively. These files
were accumulated from a variety of sources, including
OpenCores.org, from Altera software developers, as
Quartus 2 megafunctions, and from open source floating
point libraries. All of these files were provided in HDL
format, and went through the entire flow shown in figure
9 in order to be used in our work.

The floating point domain consists of several different
units, including floating point multipliers, adders, and
dividers. Also included is an LNS divider, an LNS
multiplier, LNS and floating point square root calculators,
and a floating point to fixed-point format converter.

The arithmetic domain consists of several different
implementations of multipliers and dividers, as well as a
square root calculator and an adder/subtractor. The
encryption domain consists of the Cast, Crypton05,
Magenta, Mars, Rijndael, and Twofish encryption
algorithms (all sans memories), all of which were recent
competitors to become the advanced encryption standard
[7]. The domains are all summarized in Table 1.

The domain-specific CPLD architectures that we create
are going to be compared to results obtained by
implementing all of the domains in fixed CPLD
architectures. All results are in terms of area-delay
product, and are calculated using the delay and area
models that we developed for the actual architectures that

Table 1. The domains used in our work.

HDL Circuits

Quartus 2

BLIF Circuit

SIS

2-bounded BLIF

 9

we create and lay out in the TSMC .18-micron process.

We have chosen three different fixed architectures to
compare our results to, all of which will use a full
crossbar to connect the PLA units in order to conform to
our area and delay models. A 1991 analysis of PLA
sizings in reprogrammable architectures by Kouloheris
and El Gamal [8] showed that PLAs with 8-10 inputs, 12-
13 product terms, and 3-4 outputs provide the best area
performance for CPLDs. To model this, the first
architecture we will compare to uses 10-12-4 PLAs.

Secondly, our own initial analysis of running several
LGSynth93 circuits through PLAmap showed that 10-20-
5 PLAs tended to show good performance. We will use
this as our second fixed architecture.

Third, we will compare against a XILINX CoolRunner-
like architecture. The XILINX CoolRunner uses 36-48-
16 PLAs for its functional units, so we will compare our
domain-specific results to a fixed architecture that uses
these PLAs.

Note that we are NOT making a direct comparison to
XILINX’s CPLDs or any other fixed CPLD architecture.
By implementing everything using our own physical
layouts, we intend to remove the designer from the cost
equation and simply show the advantages obtained by
making domain-specific architectures rather than
implementing designs on fixed architectures.

5. Results
Of the four Architecture Generator algorithms, two of
them, the Choose N Regions and Run M Points
algorithms, have a user-supplied variable. In the Choose
N Regions algorithm we must choose how many regions
get explored each iteration, while in the Run M Points
algorithm we need to determine how many overall
PLAmap runs get executed in each of the three steps.

For the choose N Regions algorithm, the input step and
output step both break the 1-D search space into 6
regions, meaning that N can be no larger than 6. We
decided to vary N from 1 to 4 when evaluating the

algorithm, as this would result in a reasonable number
total PLAmap runs. Results for running the Choose N
Regions algorithm on the small, medium, and large
LGSynth93 domains are shown in Figure 10. The figure
shows that gains are achieved by increasing N from 1 to
2, but that further gains are not achieved when setting N
to 3 or 4. From this, we determined that N = 2 is a good
value to use.

Figure 10. Determination of N in Choose N
Regions algorithm.

For the Run M Points algorithm, we must determine how
many total PLAmap runs are performed for each step of
the algorithm. Setting M to 25 would exhaustively search
the 1-D input and output spaces, while setting M to 7
would only search the top level without making any
interesting descents. We decided that setting M to 10, 15,
and 20 would provide a good span of results in a
reasonable number of PLAmap runs. The results of
running this test on the LGSynth93 domains are shown in
Figure 11. The graph shows that M = 15 always
outperformed M = 10, and the going up to M = 20 only
provided further gains in the small domain, and those
gains were very small. From these results, we chose to
use M = 15 in future runs of the Run M Points algorithm.

Table 2. Architecture results for domain-specific algorithms and fixed architectures. Results are
normalized to the Choose N Regions algorithm. Geometric mean is used for area-delay results (shaded).

 10

Now that we have chosen the user-defined variables in the
Choose N Regions and Run M Points algorithms, all of
the algorithms are fully specified. Next, we took our five
main domains and ran each of the four algorithms on each
domain. Additionally, we mapped the circuits of each
domain to the fixed architectures that we described
earlier. These results are shown in Table 2. All results
are normalized to the values obtained for the Choose N
Regions algorithm, and the columns pertaining to
architecture area-delay product are shaded. The columns
labeled “Runs” depict how many architectures each
algorithm tested for each domain. The bottom row shows
the geometric mean for area-delay products, and the
average for runs.

Figure 11. Determination of M in Run M Points
algorithm.

From Table 2 it is apparent that creating domain-specific
CPLD architectures is a win over using fixed
architectures. For each of the five domains that we
considered, the algorithms that we developed always
came up with a better CPLD architecture than any of the
fixed architectures. The closest that any of the fixed
architectures comes to a domain-specific algorithm in
terms of area-delay product is .54x, which occurred with
the 36-48-16 architecture versus the domain-specific
architectures found for the sequential domain. At the
other end of the spectrum, the 10-12-4 architecture was
37.7x worse than the domain-specific architectures found
for the arithmetic domain. Considering the mean
performance, the fixed architectures perform 4.1x to 9.5x
worse than the Choose N Regions algorithm.

Among the algorithms, the Successive Refinement,
Choose N Regions, and Run M Points algorithms tend to
choose the same architectures. The only different
architectures are from the Run M Points algorithm on the
combinational domain, and the Successive Refinement
algorithm on the floating point domain. The simpler Hill
Descent algorithm was able to match these results for
three of the five domains (although with a different

architecture for the encryption domain), but came up with
decidedly sub-optimal results for the Combinational and
Floating Point domains. With respect to runtime, the Hill
Descent algorithm took 3.7x to 5.7x fewer runs than the
other algorithms.

The successive refinement, Choose N Regions, and Run
M Points algorithms all chose 4-8-2 PLAs for the floating
point and arithmetic domains in the first step, causing
them to be stuck in architectures with small PLAs. The
algorithm add-on described in 3.1.2.3 was applied to these
instances to remove them from their suboptimal areas.
This caused a slight increase in the number of runs that
were needed for these algorithms, most notably in the
Choose N Regions and Run M Points results.

In addition to the base algorithms, each algorithm was
also run with a second iteration that used the IN-PT-OUT
ratios found in the first iteration. The thought is that the
first iteration would find an IN-PT-OUT ratio that the
domain prefers, and the second iteration can use this
multiplicative ratio to hone in on a good architecture. The
best result from running a second iteration of the
algorithms on each domain is shown in Table 3.

Table 3. Best base algorithm results compared to
best results after a second iteration.

As Table 3 shows, running a second iteration of the
algorithms was able to improve upon our result for every
domain, by anywhere from .09x to .30x. A mean gain of
.19x was achieved, at a runtime cost of about 2x (because
the second iteration takes about as long as the first
iteration). All of the algorithms were able to find
improvements by running a second iteration, but it is
interesting to note that the best iterated result always
came from iterating the Run M Points algorithm. In
general, this table shows that running a second iteration
can be a profitable add-on to the base algorithms.

While we cannot realistically run the entire 3-D search
space on any of these domains, we can run a radial search
on the results found in order to see if there are better
optima lying near the found results. This does not show
us how close we get to optimal, but it gives us a small
idea of how much more improvement there might be to
gain. In Table 4, the best results found for each domain
using an r = 3 radial search are compared to the best

 11

results found using our basic algorithms. Since most
architectures were found by multiple algorithms, it didn’t
tend to matter which algorithm ran a radial search, as long
as the search was run for each architecture. As shown,
results were found that reduced the area delay product by
up to .30x. The runtime cost for the radius = 3 add-on is
about 5x to 10x when compared to the base algorithms.

Table 4. Best base algorithm results compared to
best results when augmented by radial search.

The second iteration and radial search algorithm add-ons
show that there are some more gains to be had, and it will
be interesting to see if we can find new algorithms that
can find these results while still using the same number of
PLAmap runs. In general, the second iteration and radial
search add-ons show that our algorithms are doing very
well, as they are within .30x of the best results we can
easily find.

5.1 Benefits of Domain-Specific Devices
We have shown that our domain-specific architectures
outperform certain representative fixed architectures by
4.1x to 9.5x, but these are not necessarily the best
possible fixed architectures for our set of domains. In
fact, we have already found the architectures that each
domain prefers, so it makes sense that these architectures
might work well as fixed architectures. Table 5 shows the
area-delay performance of each domain mapped to the
best architectures found, normalized to the domain-
specific architecture results. These new fixed
architectures still only perform within 2.0x to 7.0x of the
domain-specific results, even though we have hand
selected them to go well with our domains. This shows
that even if you manage to pick the best possible domain-
generic fixed architecture, there is a bound as to how
close you can come to domain-specific results – in this
case, domain-specific beats fixed architectures by 2x.

Table 5. Results of running each domain on the
best domain-specific architectures found.

In Table 5, the entry with an asterisk (*) had to be
estimated because the PLAmap software was unable to
run the SQRT circuit on the specified architecture for
unknown reasons.

6. Conclusion
In this paper we have presented a complete tool flow for
creating domain-specific CPLDs for System-on-a-Chip
devices. This includes an Architecture Generator which
finds a domain-specific CPLD architectures by using any
of four basic search algorithms. When compared to
realistic fixed CPLD architectures, the domain-specific
architectures perform 4.1x to 9.5x better in terms of area-
delay product. Additionally, iterating the algorithms and
performing radial searches around the chosen
architectural points show that our fast algorithms are
finding architectures that are within .30x of the best
architectures that we can easily find.

Of the base results, the Choose N Regions algorithm
provided the best results in terms of performance, with a
runtime that was beaten only by the simple Hill Descent
algorithm. Thus the Choose N Regions algorithm is the
best to use if you are only running a single iteration. If
doubling the runtime is acceptable, then the Run M Points
algorithm should be used and it should be run with a
second iteration, as the best overall results we found were
obtained from this technique.

This paper also presented a Layout Generator which takes
pre-made layout units and tiles them to make full VLSI
CPLD layouts in the TSMC .18-micron process.

7. Future Work
Our cost function currently has no concept of power
consumption, which is a very important component of
modern VLSI components. Future analysis will need to
incorporate power values in order to robustly evaluate our
architectures.

Many CPLDs use central routing architectures that are
smaller than crossbars, or they use hierarchical routing
structures. It would be interesting to see how much more
performance could be achieved by using these routing
structures.

We have provided results strictly in regards to area-delay
product. It is conceivable that an SoC designer would be
much less interested in area-delay product than in simply
area or delay. A likely scenario would have the SoC
designer setting a hard area (or delay) limit that needs to
be met, and we would need to provide him with the fastest
(or smallest) architecture that meets the area constraint.
Similar scenarios can be constructed with regards to
power consumption. We will need to develop algorithms
that can find good domain-specific architectures given
such constraints.

 12

And finally, we have seen from the radial search and
second iteration add-ons that there is at least .30x more
performance to be gained. It would be interesting to
develop new algorithms in order to obtain those gains.

Acknowledgments
The assistance of Mike Hutton and Swati Pathak at Altera
was essential in getting this work done, as they provided
the blif dumper for Quartus and many useful circuits.
Tom Lewellen at UW also provided us with several useful
circuits, and Steve Wilton provided a vqm to blif
converter that was vital in our early data accumulation.
Deming Chen provided assistance with PLAmap.

Mark Holland was supported in part by an NSF
Fellowship, and Scott Hauck by a Sloan Fellowship.

References
[1] A. Yan, S. Wilton, “Product Term Embedded Synthesizable
Logic Cores'', IEEE International Conference on Field-
Programmable Technology, 2003.
[2] N. Kafafi, K. Bozman, S.J.E. Wilton, ``Architectures and
Algorithms for Synthesizable Embedded Programmable Logic
Cores'', FPGA, 2003.
[3] F. Mo, R. K. Brayton, “River PLAs: A Regular Circuit
Structure”, DAC, 2002.
[4] M. Holland, S. Hauck, “Automatic Creation of
Reconfigurable PALs/PLAs for SoC”, FPL, 2004.
[5] D. Chen, J. Cong, M. Ercegovac, Z. Huang, “Performance-
Driven Mapping for CPLD Architectures”, FPGA, 2001.
[6] S. Phillips, “Automating Layout of Reconfigurable
Subsystems for Systems-on-a-Chip”, PhD Thesis, University of
Washington, Dept. of EE, 2004.
[7] FIPS PUB 197, Advanced Encryption Standard (AES),
National Institute of Standards and Technology, U.S.
Department of Commerce, November 2001
[8] J. Kouloheris, A. El Gamal, “FPGA Performance vs. Cell
Granularity”, Proc. Custom Integrated Circuits Conference,
1991.

