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Abstract 
Many System-on-a-Chip devices would benefit from the 
inclusion of reprogrammable logic on the silicon die, as it 
can add general computing ability, provide run-time 
reconfigurability, or even be used for post-fabrication 
modifications.  Also, by catering the logic to the SoC 
domain, additional area and delay gains can be achieved 
over current, more general reconfigurable fabrics. This 
paper presents tools that automate the creation of 
domain-specific CPLDs for SoC, including an 
Architecture Generator for finding appropriate 
architectures and a Layout Generator for creating 
efficient layouts.  By tailoring CPLDs to the domains that 
they are supporting, we provide results that beat 
representative fixed architectures by 4.1x to 9.5x on 
average in terms of area-delay product. 

1. Introduction 
As the semiconductor industry continues to follow 
Moore’s Law, a switch in design paradigm is occurring.  
The former “System-on-a-Board” style, which had several 
discrete components individually fabricated and then 
integrated together on a board, is becoming obsolete.  As 
gate count continues to increase (currently chips can hold 
hundreds of millions of wirable gates), distinct VLSI 
components can now be incorporated onto the same piece 
of silicon and this “System-on-a-Chip” methodology is 
becoming more prevalent. 

Integrating several components in the same piece of 
silicon has several advantages.  The most obvious of these 
is reduced area, as the move from a board to a single chip 
is a clear win.  The smaller area also leads to lower path 
delays and less power dissipation, two factors that are 
important in VLSI designs.  Another advantage is that 
inter-device communication can be richer, as pin 
limitations are no longer a concern. 

Of course, as more resources are put onto a single chip, 
the actual design of that chip becomes more difficult.  In 
SoC designs, this is often alleviated by using hardware 
description languages (HDLs) to describe the hardware.  
Synthesis tools map the HDL designs to gates, and they 

are ultimately laid out using a library of standard cells. 

Standard cells, however, do not perform as well as 
manually laid out designs.  Because of this, a second SoC 
design paradigm has emerged: intellectual property (IP) 
reuse.  The basic idea of IP reuse is that once a device is 
carefully designed, tested, and verified, the next user who 
wishes to use the device won’t have to repeat any of those 
steps.  IP Cores are becoming available in a wide variety 
of flavors, including processors, DSPs, memories, and of 
particular interest to us, reconfigurable logic cores. 

Reconfigurable logic fills a useful niche between the 
flexibility provided by a processor and the performance 
provided by custom hardware.  This usefulness extends to 
the SoC realm, where reconfigurable logic can provide 
cost-free upgradability, conformity to different but similar 
protocols, coprocessing hardware, and uncommitted 
testing resources.  Additionally, the paradigm of IP reuse 
makes it even easier to incorporate reconfigurable logic 
into a SoC device as a pre-made IP core. 

Traditional reconfigurable logic needs to provide a high 
level of flexibility so that it will be useful in a wide range 
of designs.  This flexibility, however, comes at the cost of 
increased area, delay, and power.  As such, it would be 
useful to tailor the reconfigurable logic to a user specified 
domain in order to reduce the unneeded flexibility, 
thereby reducing the area, delay, and power penalties that 
it suffers.  The dilemma then becomes creating these 
domain-specific reconfigurable fabrics in a short enough 
time that they can be useful to SoC designers. 

The Totem project is our attempt to reduce the amount of 
effort and time that goes into the process of designing 
domain-specific reconfigurable logic.  By automating the 
generation process, we will be able to accept a domain 
description and quickly return a reconfigurable 
architecture that targets that domain. 

This paper deals with the creation of domain-specific 
CPLD architectures, a project termed Totem-CPLD.  
CPLDs are relatively small reconfigurable architectures 
that typically use PLAs or PALs as their functional units, 
and which connect the units using either a single, central 
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interconnect structure (Figure 1) or some sort of 
hierarchical interconnect.  In commercial architectures, 
the functional units tend to be relatively coarse grained in 
order to provide shallow mappings, leading to low and 
predictable delays.  

 

 

 

 

 

 

 

 

 

 

Figure 1. A CPLD with central interconnect 

CPLDs have traditionally been used for implementing 
control logic, state machines, and other seemingly random 
logic, but they are not limited to these applications:  the 
generality of a CPLD allows it to implement almost any 
logic of small enough size.  This is the same generality, 
however, which causes performance penalties in terms of 
area, delay, and power. 

Totem-CPLD will tailor CPLDs to a specific domain, 
thereby removing some of these performance penalties.  
Specifically, by altering the sizes of the functional units 
(PLAs) in terms of inputs, product terms, and outputs, 
CPLD architectures can be created that perform better 
than “typical” CPLD architectures for a specified domain. 

2. Background 
Many papers have been published with respect to CPLD 
architectures, but very few of them have aimed at creating 
reconfigurable architectures for SoC.  The most 
applicable of these was “Product-Term Based 
Synthesizable Embedded Programmable Logic Cores” by 
A. Yan and S. Wilton [1].  In this paper they explore the 
development of “soft” or synthesizable programmable 
logic cores based on PLAs, which they call product term 
arrays.  In their process they acquire the high-level 
requirements of a design (# of inputs, # of outputs, gate 
count) and then create a hardware description language 
(HDL) representation of a programmable core that will 
satisfy the requirements.  This HDL description is then 
given to the SoC designer so that they can use the same 
synthesis tools in creating the programmable core that 
they use to create other parts of their chip.  A similar 
LUT-based design was also proposed [2]. 

Their soft programmable core has the advantages of easy 
integration into the ASIC flow, and it will allow users to 
closely integrate this programmable logic with other parts 
of the chip.  The core will likely be made out of standard 
cells, however, whose inefficiency will cause significant 
penalties in area, power, and delay.  As such, using these 
soft cores only makes sense if the amount of 
programmable logic required is relatively small. 

In another related work, a highly regular “River” PLA 
(RPLA) structure is proposed which provides ease of 
design and layout of PLAs for possible use in SoC [3].  
Their proposal is to stack multiple PLAs in a uni-
directional structure using river routing to connect them 
together, resulting in a structure that benefits from both 
high circuit regularity and predictable area and delay 
formulation.  Also touched upon is a reconfigurable 
version of RPLA, called Glacier PLA (GPLA), which 
would retain the benefits of RPLA in addition to being 
programmable. 

GPLAs are similar to our work in that they are hard 
programmable cores that can be integrated into SoC.  The 
interconnect between their PLA units, however, is fairly 
sparse, and it is confined by their need for directionality.  
An architecture with more robust routing would 
undoubtedly be able to support a wider range of designs, 
and therefore a wider range of domains.  

As a precursor to Totem-CPLD, we performed some work 
in which we explored the feasibility of making domain-
specific reconfigurable PLAs and PALs [4].  In this work 
we wrote an architecture generation tool that mapped 
domains of circuits to either a PLA or a PAL in such a 
way that it could remove some of the unneeded 
programmable connections in the arrays.  By doing this 
intelligently, we were able to remove 60%-70% of the 
programmable connections in the arrays, which provided 
delay gains of 15% to 30%.  Depopulating the arrays in a 
PLA is very restrictive to future mappings, however, so 
we chose not to use PLA depopulation in Totem-CPLD. 

In order to create CPLD architectures, we need to have 
the appropriate tech-mapping tool.  We will be using a 
tool called PLAmap, which is currently the best 
technology-mapping algorithm for CPLDs [5].  PLAmap 
is a performance driven mapping algorithm whose goal is 
to minimize the delay/depth of the mapped circuit.  The 
algorithm works on a directed acyclic graph (DAG) in 
three stages: the first stage labels all the nodes according 
to their logic depth, the second stage maps these nodes 
into PLAs, and the third stage attempts further packing of 
the PLAs in order to reduce the PLA count.  Area/Delay 
tradeoffs are also available, but we will be running 
PLAmap in purely delay-driven mode.  PLAmap is run by 
providing it with a PLA size (inputs, product terms, 
outputs) and a circuit (in .blif format) to be mapped, after 
which PLAmap returns the number of PLAs required for 
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the mapping, the depth of the mapping, and saturation 
statistics for the PLAs. 

3. Approach – Tool Flow 
The tool flow for Totem-CPLD is shown in Figure 2.  

 

 

 

 

 

 

 

  

 

Figure 2. Totem-CPLD Tool Flow 

To begin the process, the customer will provide us with a 
domain specification that contains the circuits that need to 
be supported.  These circuits will be fed into an 
Architecture Generator, which will find a CPLD 
architecture that provides good results for the selected 
domain, outputting the architecture description and the 
area-delay product of the implementation.  The 
architecture description is then sent to a Layout Generator 
which creates a full VLSI layout of the specified CPLD 
architecture. 

3.1 Architecture Generator 
The Architecture Generator is responsible for reading in 
multiple circuits and finding a CPLD architecture that 
supports the circuits efficiently.  Search algorithms are 
used to make calls to PLAmap, after which the results are 
analyzed according to area and delay models that we have 
developed.  The algorithms then make a decision to either 
make further calls to PLAmap, or to exit and use the best 
CPLD architecture that has been found.  This is shown 
graphically in Figure 3.  PLAmap assumes full 
connectivity between the PLAs, and the Architecture 
Generator accommodates this by connecting all the PLAs 
through a full crossbar.  Future work will consider other 
interconnect styles. 

The Architecture Generator is responsible for finding a 
PLA size that leads to an efficient CPLD architecture for 
the given domain.  PLAs are specified by their number of 
inputs (IN), product terms (PT), and outputs (OUT), so 
the search space for the Architecture Generator is three-
dimensional.  Searching the entire 3-D space is not viable, 
as calls to PLAmap can take on the order of hours for 
larger circuits, and our ultimate goal is to find a suitable 

CPLD architecture in a matter of hours or days.  Also, for 
each PLA architecture that we test a domain on, PLAmap 
must be called once for each circuit in the domain.  
Clearly, minimizing the number of PLAmap calls is 
important to our runtime.  Otherwise effective algorithms 
such as simulated annealing and particle swarm are far 
too costly for our scenario, and smart algorithms will be 
required if we wish to acquire good result in a 3-D search 
space using relatively few data points. 

 

 

 

 

 

 

 

Figure 3. Architecture Generator 

In order to gain some intuition about the search space, we 
ran five random LGSynth93 circuits through PLAmap 
and acquired a coarse representation of the 3-D space for 
each circuit.  The first thing that we noticed by looking at 
these results was that the three PLA variables are related, 
as can be expected.  More specifically, the best results are 
obtained when the number of product terms was roughly 
between 1x and 3x the number of inputs.  Similarly, good 
results were obtained when the number of outputs was 
between .25x and .6x the number of inputs.  To 
generalize, a ratio of 1 to 2 to .5 for the IN, PT, and OUT 
variables respectively was found to consistently provide 
good results.  Within the scope of these ratios, CPLDs 
with 10-20-5 PLAs were shown to provide generally good 
results. 

Another observation we made was that the best results 
tended to be grouped around PLAs with a specific input 
count, as long as the product term and output counts were 
reasonable.  Similarly, good results seemed to be grouped 
around favorable input/output combinations, such that the 
number of product terms played a slightly lesser role in 
affecting the final results.  This led us to the concept of 
breaking the 3-D space into three 1-D spaces, which can 
be searched sequentially and in much less time.  More 
specifically, our algorithms will start by searching for a 
good input size (while keeping a 1x-2x-.5x IN-PT-OUT 
relationship), will next search for a good output size, and 
will finish by searching for a good product term size. 

Lastly, we observed that the 3-D search space generally 
tends to be well behaved.  Results tend to get better as 
you approach the optimal point, and to get worse as you 
go away from the optimal point.  But far from being 
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perfectly behaved, there are many small perturbations in 
the smoothness that lead to local optima.  These local 
optima appear both near and far away from the global 
optima, so measures will need to be taken to avoid being 
caught in such local optima. 

Architectures are evaluated using the metric of area-delay 
product.  When reported for a domain, the area-delay 
product consists of the worst-case area implementation in 
the domain (since the reconfigurable CPLD must be large 
enough to hold each of the circuits), multiplied by the 
average case delay of the domain.  The area model for this 
calculation is derived from the actual sizings of the VLSI 
layout components that we created, and the delay model 
was acquired by performing an hspice static timing 
analysis of the components. 

3.1.1 Search Algorithms 
We developed four different Architecture Generation 
algorithms in order to find good CPLD architectures: Hill 
Descent, Successive Refinement, Choose N Regions, and 
Run M Points.  All algorithms break up the 3-D search 
space into 1-D steps by searching for good input, output, 
and product term sizes, in that order.  Additionally, the 
input step always uses PLAs with a 1x-2x-.5x IN-PT-
OUT ratio, while the output and product term steps 
always alter ONLY the output and product term values 
from data point to data point.  Each variable is explored 
only in a range that provided reasonable results in 
preliminary testing.  Therefore the input variable is 
typically explored for values between 4 and 28, the 
product term variable between 10 and 90, and the output 
value between 1 and 25. 

3.1.1.1 Hill Descent  
The Hill Descent algorithm is the first algorithm that we 
developed, and the most basic.  The algorithm starts by 
running PLAmap on architectures with 10-20-5 and 12-
24-6 PLAs.  Whichever result is better, we continue to 
take results in that direction (i.e. smaller or larger PLAs), 
keeping the 1x-2x-.5x ratio intact and performing steps of 
IN = +/-2 (like descending a hill).  We continue until a 
local optima is reached, as determined by the first result 
that does not improve upon the last result.  At this point 
we explore the PLAs with IN = +/-1 of the current local 
optima.  The best result is noted, and the input value is 
permanently locked at this value, thus ending the input 
step.  This is shown graphically in Figure 4. 

The output optimization step occurs next.  The first data 
point in this step is the local optima from the input step, 
and the second data point is acquired by running PLAmap 
on a PLA with one more output than the current optima 
(IN and PT do not change).  Again, we descend the hill by 
altering OUT by +/-1 until the first result that does not 
improve upon the previous result.  At this point we lock 

the output value and proceed to the product term 
optimization step.  The product term optimization step 
repeats the process from the previous two steps, varying 
the PT value by +/-2 until the descent stops.  At this point, 
the PT values +/-1 of the optima are taken, and the best 
overall result seen is the output of the algorithm. 

 

 

 

 

 

 

 

Figure 4. Hill Descent Algorithm 

The Hill Descent algorithm is decidedly greedy, as it 
always moves in the direction of initial improvement.  It 
also has no method for avoiding local minima, as any 
minima will stop the current step.  Therefore it is 
somewhat difficult for this algorithm to find architectures 
that vary much in size from the 10-20-5 PLA starting 
point, but decent results are still obtained due to the fact 
that the 10-20-5 starting point is a relatively good point in 
the 3-D search space. 

3.1.1.2 Successive Refinement 
The successive refinement algorithm is intended to slowly 
disregard the most unsuitable PLA architectures, thereby 
ultimately deciding upon a good architecture by process 
of elimination.  In the input optimization step (Figure 5), 
data points are initially taken for PLAs with input counts 
ranging from 4 (lower bound) to 28 (upper bound) with a 
step size of 8.  So initially, 4-8-2, 12-24-6, 20-40-10, and 
28-56-14 PLAs are run (part a in Figure 5).  The left and 
right edges are then examined, regions that do not contain 
local/global minima are trimmed from consideration 
(shaded region of part a), and the bounds are adjusted 
accordingly.  The step size is then halved, and the above 
process is repeated (part b).  This occurs until we have 
performed an exploration with a step size of 1 (part d).  

For the output optimization step, the IN and PT values are 
locked at the best result we found in the input step.  The 
output values are now varied according to the above 
refinement algorithm, using an initial lower bound of 1, 
upper bound of 25, and step size of 8.  The recursion 
again continues until the results for a step size of 1 have 
been taken, at which point we lock the IN and OUT 
values.  The product term optimization step next repeats 
this process for PT values between 2 and 90, after which 
the best result is returned as the best architecture found. 
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The Successive Refinement algorithm is greedy in the 
way it trims sub-optimal PLAs from the edges of its 
consideration.  It does not trim sub-optimal regions from 
the middle, however, and can therefore require more 
PLAmap runs than is absolutely necessary.  Typically, 
several local optima get explored at maximum 
granularity, providing a good survey of the areas around 
the minima at a small cost to runtime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Input Optimization Step of the 
Successive Refinement algorithm.  At each 
iteration, shaded regions are trimmed and the 
step size halved. 

3.1.1.3 Choose N Regions 
The Choose N Regions algorithm basically makes a wide 
sweep of each 1-D space, and then uses the results to 
choose N regions to explore at a finer granularity.  A 
region consists of the space between two data points. 

Like the Successive Refinement algorithm, the input 
optimization step of the Choose N Regions algorithm is 
initiated by taking data points for PLAs with inputs 
ranging from 4 to 28, but now with a step size of 4.  N 
regions are then chosen for further exploration (N=2 was 
experimentally found to be a good value).  A region 
consists of a data point on the left side, a data point on the 
right side, and the unexplored space between them.  The 
N best regions are the regions with the best primary 
result, where the primary result is: min(left result, right 
result).  For ties, the region with the best secondary result 
max(left, right) is taken (see Figure 6).  These N regions 
are retained, the step size is halved, and we iterate on the 

new regions.  This continues until N regions have been 
explored with a step size of 1. 

For the output optimization step, we lock the input and 
product term values from the best result found in the 
inputs step.  The output value ranges from 1 to 25, with a 
step size of 4, and the process is repeated.  For the product 
term optimization step, the input and output values from 
the best result are locked, and the PT values are ranged 
from 2 to 90 with a step size of 8.  After the product term 
step has completed its step size of 1, the best overall result 
is returned. 

 

 

 

 

 

 

 

 

Figure 6. Choose N Regions algorithm.  Region B 
is the best, because it has the best primary point 
(along with A) and the best secondary point.  
Region A is 2nd best, region C is 3rd best. 

The Choose N Regions algorithm has the advantage of 
retaining, at all steps, N regions of consideration.  This 
allows the algorithm to hone into multiple local minima, 
as well as throw out old minima that get replaced by new, 
better results. 

3.1.1.4 Run M Points  
The Run M Points algorithm initiates each step by making 
a wide sweep of the 1-D space, and then iteratively 
explores points near the best current point.  For each 1-D 
space, the algorithm collects data for M points before 
progressing to the next step.  Experimentally, a value of 
M=15 was found to provide good results. 

Again, the input optimization step starts by taking data 
points for PLAs with inputs ranging from 4 to 28, with a 
step size of 4.  Next, the best data point is found, and 
results are taken on either side of it with the largest step 
size that results in unexplored data points (options are 4, 
2, and 1).  This is shown in Figure 7.  The process is 
repeated on the best current data point, which is 
constantly updated, until M runs have been performed for 
the input step.  Once the direct neighbors of a point have 
been computed, it is eliminated from further explorations; 
this allows other promising candidates to be explored as 
well.   
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For the output step, we lock the input and product term 
values of the best result found in the input step.  We then 
range the output values from 1 to 25, with a step size of 4, 
and repeat the Run M Points algorithm mentioned above.  
The product term step repeats this process, with product 
term values ranging from 10 to 90 and a step size of 8 (so 
possible step sizes are 8, 4, 2, and 1 now).   

 

 

 

 

 

 

 

Figure 7. Run M Points algorithm.  The best point 
is always chosen, and the regions to it’s left and 
right are explored. 

Because we are exploring to either side of the best result, 
the range of 10 to 90 is not strictly enforced for the 
product term step, as exploration around 10 or 90 would 
take data points on both sides of the given point.  This 
concept is true for all steps in the Run M Points 
algorithm.  Also note that the input and output steps have 
the same interval size and step size, while the product 
term step has a larger interval and larger step size.  To 
account for this, the product term step is allowed to run 
slightly more than M runs so that it can closely explore as 
many regions as the input and output steps. 

While the Choose N Regions algorithm explores N 
possible optima in parallel, the Run M Points algorithm 
can be seen as exploring the optima one at a time.  It will 
explore the best optima until it runs out of granularity, 
then will turn to the second best optima, and so on.  In 
this way it also considers multiple possible optima, as 
determined by the value chosen for M. 

3.1.2 Algorithm Add-Ons 
The four algorithms mentioned above comprise the bulk 
of the Architecture Generator, but some additional 
routines have been deemed necessary in order to obtain 
either better or more robust results. 

3.1.2.1 Radial Search 
As mentioned before, the 3-D search space for this 
problem is relatively well shaped, but not perfectly so.  
There are many local optima that might prevent the above 
algorithms from finding the global optima.  One way to 
look outside of these local optima is to search the 3-D 
space within some radius of the current optima.  So for a 

radius R search around an X-Y-Z architecture, we would 
vary IN from X-R to X+R, PT from Y-R to Y+R, and 
OUT from Z-R to Z+R, testing all architectures in this 3-
D subspace. 

We have a strict time constraint on the runtime of the 
Architecture Generator, so performing the (2R+1)^3 extra 
PLAmap runs necessary for a radius = R search is not 
feasible as part of our finalized tool flow.  Given looser 
time constraints and moderately sized circuits, however, 
small radial searches are not out of the question.  Another 
reason to run radial searches is that it can search a small 
(but good) part of the 3-D search space exhaustively, and 
give an idea of how well the basic algorithms are 
performing.  For this reason, we have performed radial 
searches of up to R = 3 at the conclusions of the basic 
algorithms listed above. 

3.1.2.2 Algorithm Iteration 
The Architecture Generator algorithms all assume that the 
PLAs should be in a 1x-2x-.5x relationship in terms of 
inputs, product terms, and outputs.  This is just a rough 
guideline, however, and is very rarely the optimal ratio 
for a given domain.  Thus, an interesting idea is to run the 
basic algorithms (with or without a radial search) and then 
look at the resulting PLA to obtain a new IN-PT-OUT 
relationship.  A second iteration of the algorithm can be 
run with this new IN-PT-OUT relationship, exploring the 
3-D search space using a relationship that the domain has 
already been shown to prefer.  For example, if the first 
iteration chose a 10-30-8 architecture, then the IN-PT-
OUT relationship for the next iteration would be 1x-3x-
.8x.  A second iteration has been carried out for all of the 
algorithms on each domain. 

3.1.2.3 Small PLA Inflexibility 
The initial step of each algorithm locks the input value at 
a value that it deems to be appropriate by testing a wide 
range of PLA sizes.  During the course of algorithms 
development, we found that domains that migrate to small 
input values during the input step (i.e. a 4-8-2 PLA) are 
left with very little flexibility for the corresponding output 
and product term steps.  The PLAs become strictly input 
limited, and very few ranges of outputs or product terms 
will result in reasonable results.  When this occurs, the 
final result of the algorithm tends to be very poor. 

To alleviate this, we have added a modification to all of 
the algorithms.  Now, if the input step chooses a PLA 
with 4 or fewer inputs, the output step will be run both 
with the PLA found in the input step (4-8-2 or smaller) 
and with a 10-20-5 PLA.  Both of these branches are 
propagated to the product term step, and the best overall 
result of the two branches is taken.  We found that this 
process alleviated the problem of being trapped in small 
PLA sizes, and provided better results in all but one of the 
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applicable cases. 

3.2 Layout Generator 
The Layout Generator is responsible for taking the CPLD 
architectures description from the Architecture Generator 
and turning it into a full VLSI layout.  It does this by 
intelligently tiling pre-made, highly optimized layout cells 
into a full CPLD layout.  The Layout Generator runs in 
Cadence’s layoutPlus environment, and uses a SKILL 
routine that was written by Shawn Phillips [6].  The 
layouts are designed in the TSMC .18-micron process. 

Figure 8 displays a small CPLD that was created using the 
Layout Generator.  For clarity’s sake, the encoding logic 
required for programming the RAM bits is not shown, but 
would appear along the left and bottom of the laid out 
CPLD.  Pre-made cells exist for every part of the PLA 
and crossbar units, including the RAM encoding logic.  
The Layout Generator simply puts together the pre-made 
layout pieces as specified by the architecture description 
that the Architecture Generator provides.  The PLAs are 
implemented in pseudo-nmos in order to provide a 
compact layout at the cost of power dissipation (power 
dissipation is considered in the future work section). 

4. Methodology 
The use of PLAmap restricts us to the use of blif format 
circuits.  The LGSynth93 suite has a large number of blif 
circuits, but their functions are unknown, so they are 
difficult to group into domains.  For preliminary testing 
purposes, we did choose to create three domains out of 
the LGSynth93 suite: a small domain (43-106 gates), a 
medium domain (246-457 gates), and a large domain 
(2246-3606 gates).  Each of these domains has six 
circuits. 

In order to create more realistic domains, we had to find 
other means of obtaining circuits, as well as determine a 
method of getting non-blif circuits into the blif format.  
Circuits are most easily obtained in HDL (Verilog and 
VHDL) formats, so the problem became transforming 
HDLs into blif.  A second constraint composed by 
PLAmap is that the blif circuits must be 2-bounded: i.e. 
they must be composed of gates with no more than two 
inputs. 

After much effort, we developed a method for translating 
files from HDL format into blif.  The process is shown in 
Figure 9.  The HDL files are initially loaded into Altera’s 
Quartus 2 program, which is able to dump the designs 

 
 

Figure 8. A small CPLD with eight 7-8-4 PLAs (top and bottom) and a crossbar.
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into a blif file (developers at Altera were very helpful in 
providing this hidden functionality to us).  SIS is then 
used to transform the blif file into a 2-bounded network, 
which PLAmap will be able to accept. 

 

 

 

 

 

 

 

 

Figure 9. File transformation process. 

We created five domains of circuits.  Two of them, the 
combinational and sequential domains, consist of files 
gathered from the LGSynth93 Benchmark Suite.  The 
actual functions of these files are unknown, but they are 
grouped for their combinational or sequential 
characteristics.  These circuits were acquired in blif 
format, and simply needed to be 2-bounded by way of 
SIS. 

The remaining three domains consist of floating point, 
arithmetic, and encryption files respectively.  These files 
were accumulated from a variety of sources, including 
OpenCores.org, from Altera software developers, as 
Quartus 2 megafunctions, and from open source floating 
point libraries.  All of these files were provided in HDL 
format, and went through the entire flow shown in figure 
9 in order to be used in our work. 

The floating point domain consists of several different 
units, including floating point multipliers, adders, and 
dividers.  Also included is an LNS divider, an LNS 
multiplier, LNS and floating point square root calculators, 
and a floating point to fixed-point format converter. 

The arithmetic domain consists of several different 
implementations of multipliers and dividers, as well as a 
square root calculator and an adder/subtractor.  The 
encryption domain consists of the Cast, Crypton05, 
Magenta, Mars, Rijndael, and Twofish encryption 
algorithms (all sans memories), all of which were recent 
competitors to become the advanced encryption standard 
[7].  The domains are all summarized in Table 1. 

The domain-specific CPLD architectures that we create 
are going to be compared to results obtained by 
implementing all of the domains in fixed CPLD 
architectures.  All results are in terms of area-delay 
product, and are calculated using the delay and area 
models that we developed for the actual architectures that 

Table 1. The domains used in our work. 

 

HDL Circuits 

Quartus 2 

BLIF Circuit 

SIS 

2-bounded BLIF 
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we create and lay out in the TSMC .18-micron process. 

We have chosen three different fixed architectures to 
compare our results to, all of which will use a full 
crossbar to connect the PLA units in order to conform to 
our area and delay models.  A 1991 analysis of PLA 
sizings in reprogrammable architectures by Kouloheris 
and El Gamal [8] showed that PLAs with 8-10 inputs, 12-
13 product terms, and 3-4 outputs provide the best area 
performance for CPLDs.  To model this, the first 
architecture we will compare to uses 10-12-4 PLAs. 

Secondly, our own initial analysis of running several 
LGSynth93 circuits through PLAmap showed that 10-20-
5 PLAs tended to show good performance.  We will use 
this as our second fixed architecture. 

Third, we will compare against a XILINX CoolRunner-
like architecture.  The XILINX CoolRunner uses 36-48-
16 PLAs for its functional units, so we will compare our 
domain-specific results to a fixed architecture that uses 
these PLAs.   

Note that we are NOT making a direct comparison to 
XILINX’s CPLDs or any other fixed CPLD architecture.  
By implementing everything using our own physical 
layouts, we intend to remove the designer from the cost 
equation and simply show the advantages obtained by 
making domain-specific architectures rather than 
implementing designs on fixed architectures. 

5. Results 
Of the four Architecture Generator algorithms, two of 
them, the Choose N Regions and Run M Points 
algorithms, have a user-supplied variable.  In the Choose 
N Regions algorithm we must choose how many regions 
get explored each iteration, while in the Run M Points 
algorithm we need to determine how many overall 
PLAmap runs get executed in each of the three steps. 

For the choose N Regions algorithm, the input step and 
output step both break the 1-D search space into 6 
regions, meaning that N can be no larger than 6.  We 
decided to vary N from 1 to 4 when evaluating the 

algorithm, as this would result in a reasonable number 
total PLAmap runs.  Results for running the Choose N 
Regions algorithm on the small, medium, and large 
LGSynth93 domains are shown in Figure 10.  The figure 
shows that gains are achieved by increasing N from 1 to 
2, but that further gains are not achieved when setting N 
to 3 or 4.  From this, we determined that N = 2 is a good 
value to use. 

 
Figure 10. Determination of N in Choose N 
Regions algorithm. 

For the Run M Points algorithm, we must determine how 
many total PLAmap runs are performed for each step of 
the algorithm.  Setting M to 25 would exhaustively search 
the 1-D input and output spaces, while setting M to 7 
would only search the top level without making any 
interesting descents.  We decided that setting M to 10, 15, 
and 20 would provide a good span of results in a 
reasonable number of PLAmap runs.  The results of 
running this test on the LGSynth93 domains are shown in 
Figure 11.  The graph shows that M = 15 always 
outperformed M = 10, and the going up to M = 20 only 
provided further gains in the small domain, and those 
gains were very small.  From these results, we chose to 
use M = 15 in future runs of the Run M Points algorithm. 

  

Table 2. Architecture results for domain-specific algorithms and fixed architectures.  Results are 
normalized to the Choose N Regions algorithm.  Geometric mean is used for area-delay results (shaded). 
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Now that we have chosen the user-defined variables in the 
Choose N Regions and Run M Points algorithms, all of 
the algorithms are fully specified.  Next, we took our five 
main domains and ran each of the four algorithms on each 
domain.  Additionally, we mapped the circuits of each 
domain to the fixed architectures that we described 
earlier.  These results are shown in Table 2.  All results 
are normalized to the values obtained for the Choose N 
Regions algorithm, and the columns pertaining to 
architecture area-delay product are shaded.  The columns 
labeled “Runs” depict how many architectures each 
algorithm tested for each domain.  The bottom row shows 
the geometric mean for area-delay products, and the 
average for runs. 

 
Figure 11. Determination of M in Run M Points 
algorithm. 

From Table 2 it is apparent that creating domain-specific 
CPLD architectures is a win over using fixed 
architectures.  For each of the five domains that we 
considered, the algorithms that we developed always 
came up with a better CPLD architecture than any of the 
fixed architectures.  The closest that any of the fixed 
architectures comes to a domain-specific algorithm in 
terms of area-delay product is .54x, which occurred with 
the 36-48-16 architecture versus the domain-specific 
architectures found for the sequential domain.  At the 
other end of the spectrum, the 10-12-4 architecture was 
37.7x worse than the domain-specific architectures found 
for the arithmetic domain.  Considering the mean 
performance, the fixed architectures perform 4.1x to 9.5x 
worse than the Choose N Regions algorithm. 

Among the algorithms, the Successive Refinement, 
Choose N Regions, and Run M Points algorithms tend to 
choose the same architectures.  The only different 
architectures are from the Run M Points algorithm on the 
combinational domain, and the Successive Refinement 
algorithm on the floating point domain.  The simpler Hill 
Descent algorithm was able to match these results for 
three of the five domains (although with a different 

architecture for the encryption domain), but came up with 
decidedly sub-optimal results for the Combinational and 
Floating Point domains.  With respect to runtime, the Hill 
Descent algorithm took 3.7x to 5.7x fewer runs than the 
other algorithms.   

The successive refinement, Choose N Regions, and Run 
M Points algorithms all chose 4-8-2 PLAs for the floating 
point and arithmetic domains in the first step, causing 
them to be stuck in architectures with small PLAs.  The 
algorithm add-on described in 3.1.2.3 was applied to these 
instances to remove them from their suboptimal areas.  
This caused a slight increase in the number of runs that 
were needed for these algorithms, most notably in the 
Choose N Regions and Run M Points results. 

In addition to the base algorithms, each algorithm was 
also run with a second iteration that used the IN-PT-OUT 
ratios found in the first iteration.  The thought is that the 
first iteration would find an IN-PT-OUT ratio that the 
domain prefers, and the second iteration can use this 
multiplicative ratio to hone in on a good architecture.  The 
best result from running a second iteration of the 
algorithms on each domain is shown in Table 3. 

Table 3. Best base algorithm results compared to 
best results after a second iteration. 

 
 

As Table 3 shows, running a second iteration of the 
algorithms was able to improve upon our result for every 
domain, by anywhere from .09x to .30x.  A mean gain of 
.19x was achieved, at a runtime cost of about 2x (because 
the second iteration takes about as long as the first 
iteration).  All of the algorithms were able to find 
improvements by running a second iteration, but it is 
interesting to note that the best iterated result always 
came from iterating the Run M Points algorithm.  In 
general, this table shows that running a second iteration 
can be a profitable add-on to the base algorithms. 

While we cannot realistically run the entire 3-D search 
space on any of these domains, we can run a radial search 
on the results found in order to see if there are better 
optima lying near the found results.  This does not show 
us how close we get to optimal, but it gives us a small 
idea of how much more improvement there might be to 
gain.  In Table 4, the best results found for each domain 
using an r = 3 radial search are compared to the best 
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results found using our basic algorithms.  Since most 
architectures were found by multiple algorithms, it didn’t 
tend to matter which algorithm ran a radial search, as long 
as the search was run for each architecture.  As shown, 
results were found that reduced the area delay product by 
up to .30x.  The runtime cost for the radius = 3 add-on is 
about 5x to 10x when compared to the base algorithms.   

Table 4. Best base algorithm results compared to 
best results when augmented by radial search. 

 
The second iteration and radial search algorithm add-ons 
show that there are some more gains to be had, and it will 
be interesting to see if we can find new algorithms that 
can find these results while still using the same number of 
PLAmap runs.  In general, the second iteration and radial 
search add-ons show that our algorithms are doing very 
well, as they are within .30x of the best results we can 
easily find. 

5.1 Benefits of Domain-Specific Devices 
We have shown that our domain-specific architectures 
outperform certain representative fixed architectures by 
4.1x to 9.5x, but these are not necessarily the best 
possible fixed architectures for our set of domains.  In 
fact, we have already found the architectures that each 
domain prefers, so it makes sense that these architectures 
might work well as fixed architectures.  Table 5 shows the 
area-delay performance of each domain mapped to the 
best architectures found, normalized to the domain-
specific architecture results.  These new fixed 
architectures still only perform within 2.0x to 7.0x of the 
domain-specific results, even though we have hand 
selected them to go well with our domains.  This shows 
that even if you manage to pick the best possible domain-
generic fixed architecture, there is a bound as to how 
close you can come to domain-specific results – in this 
case, domain-specific beats fixed architectures by 2x. 

Table 5. Results of running each domain on the 
best domain-specific architectures found. 

 

In Table 5, the entry with an asterisk (*) had to be 
estimated because the PLAmap software was unable to 
run the SQRT circuit on the specified architecture for 
unknown reasons. 

6. Conclusion 
In this paper we have presented a complete tool flow for 
creating domain-specific CPLDs for System-on-a-Chip 
devices.  This includes an Architecture Generator which 
finds a domain-specific CPLD architectures by using any 
of four basic search algorithms.  When compared to 
realistic fixed CPLD architectures, the domain-specific 
architectures perform 4.1x to 9.5x better in terms of area-
delay product.  Additionally, iterating the algorithms and 
performing radial searches around the chosen 
architectural points show that our fast algorithms are 
finding architectures that are within .30x of the best 
architectures that we can easily find. 

Of the base results, the Choose N Regions algorithm 
provided the best results in terms of performance, with a 
runtime that was beaten only by the simple Hill Descent 
algorithm.  Thus the Choose N Regions algorithm is the 
best to use if you are only running a single iteration.  If 
doubling the runtime is acceptable, then the Run M Points 
algorithm should be used and it should be run with a 
second iteration, as the best overall results we found were 
obtained from this technique. 

This paper also presented a Layout Generator which takes 
pre-made layout units and tiles them to make full VLSI 
CPLD layouts in the TSMC .18-micron process. 

7. Future Work 
Our cost function currently has no concept of power 
consumption, which is a very important component of 
modern VLSI components.  Future analysis will need to 
incorporate power values in order to robustly evaluate our 
architectures. 

Many CPLDs use central routing architectures that are 
smaller than crossbars, or they use hierarchical routing 
structures.  It would be interesting to see how much more 
performance could be achieved by using these routing 
structures. 

We have provided results strictly in regards to area-delay 
product.  It is conceivable that an SoC designer would be 
much less interested in area-delay product than in simply 
area or delay.  A likely scenario would have the SoC 
designer setting a hard area (or delay) limit that needs to 
be met, and we would need to provide him with the fastest 
(or smallest) architecture that meets the area constraint.   
Similar scenarios can be constructed with regards to 
power consumption.  We will need to develop algorithms 
that can find good domain-specific architectures given 
such constraints. 
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And finally, we have seen from the radial search and 
second iteration add-ons that there is at least .30x more 
performance to be gained.  It would be interesting to 
develop new algorithms in order to obtain those gains. 
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