EDTN Network     February 25, 2001
EETIMES.COM

The Technology Site for Engineers and Technical Management



Click here!


Embedded Systems
News Channels
Semiconductors
Systems & Software
Design Automation
Technology

Departments
  Columns
Editorials
In Focus
Special Reports
Immortal Works

Careers
  Ask the Headhunter
Salary Survey
TimesPeople
Mentoring Board

Events
  Calendar
Conference Coverage
Regional Seminars
On-line Seminars

ProductWeek
  Product of the Week
Focus on
Chips
Components
Subsystems
Power
Test

EDTN Network
  EDTN Home
EDTN e-cyclopedia
Broadcast News
EEdesign
Planet Analog

EETimes Info
  Editorial Contacts
Sales Contacts
Subscribe
Media Kit
Reader Service
e-Sources
Custom Supplements
eeMarketing

Click here!

Click here!
Network Partners

 Privacy Statement

 

FPGA tools need hardware assistance

By Scott Hauck, Associate Professor, Department of Electrical Engineering, University of Washington, Seattle
EE Times
(02/16/01, 1:13 p.m. EST)

Semiconductors News


  RESOURCES
  Programming enters designer's core
  Common gateway networks enable remote programs
  FPGAs don remote reprogram habits
  Embarrassment of riches hinders proper use of Moore's Law

Reconfigurable systems make it possible to create extremely high-performance implementations for many different types of applications. While techniques such as logic emulation provide a new tool specifically for logic designers, many other FPGA-based systems serve as high-performance replacements for standard computers for everything from embedded systems to supercomputers.

The creators of these implementations are often software programmers, not hardware designers. However, if these systems hope to be usable by software programmers, they must be able to translate applications described in standard software programming languages into FPGA realizations. Thus, mapping tools that can synthesize hardware implementations from C, C++, Fortran or assembly language descriptions must be developed.

Although there are ways to transform specifications written in hardware-description languages into electronic circuits, translating a standard software program into hardware presents extra challenges. HDLs focus mainly on constructs and semantics that can be efficiently translated into hardware (though even these languages allow the creation of nonsynthesizable specifications).

Software programming languages have no such restrictions. For example, hardware is inherently parallel and HDLs have an execution model that easily expresses concurrency. Most standard software languages normally have a sequential execution model, with instructions executing one after another.

This means that a hardware implementation of a software program is either restricted to sequential operation, yielding an extremely inefficient circuit, or the mapping software must figure out how to make parallel an inherently sequential specification. Also, there are operations commonly found in software programs that are relatively expensive to implement in hardware. This includes multiplication and variable-length shifts, as well as floating-point operations.

Although hardware can be synthesized to support these operations, software that makes extensive use of these operations will result in extremely large designs. Finally, software algorithms operate on standard-size data values, using 8-, 16-, 32- or 64-bit values even for operations that could easily fit into smaller bit-widths. By using wider than necessary operands, circuit data paths must be made wider, increasing the hardware costs. Thus, because we are using a language designed for specifying software programs to create hardware implementations, the translation software faces a mapping process more complex than for standard HDLs.

Code translators
Many research projects have developed methods for translating code in C , C++ , Ada, Occam, data parallel C, Smalltalk, assembly and Java, as well as special HDLs into FPGA realizations. These systems typically take software programs written in a subset of the programming language, translate the da-ta computations into hardware operations and insert multiplexing, latches and control state machines to recreate the control flow.

But software programming languages contain constructs that are difficult to handle efficiently in FPGA logic. And because of this such translating techniques can restrict the language constructs that can be present in the code to be translated. Most do not allow multiplication, division or floating-point operations; some ban the use of structures, pointers or arrays, eliminate recursion or do not support function calls or control flow constructs such as case, do-while and loops without fixed iteration counts.

Some techniques, which are intended primarily to compile only short code sequences, may restrict data structures to only bit vectors, or not support memory accesses at all. Other techniques extend C++ for use as an HDL.

It is relatively simple to translate straight-line code from software languages into hardware. Expressions in the code have direct implementations in hardware that can compute the correct result (they must, since a processor on which the language is intended to run must have hardware to execute it). Variables could be stored in registers, with the result from each instruction latched immediately and one instruction executing at a time. However, this loses the inherent concurrency of hardware. We can instead combine multiple instructions, latching the results only at the end of the overall computation.

Renaming is a standard compiler technique for making such code parallel, a variant of which is contained in the Transmogrifier C compiler developed at the University of Toronto. The compiler moves sequentially through a straight-line code sequence, remembering the logic used to create the value of each assignment. Variables in an assignment that comes from outside this piece of code draw their values from registers for that variable. Variables that have been the target of an assignment in the code sequence are replaced with the output from the logic that computes its value earlier in the sequence.

For complex control flow, such as loops that execute a variable number of times or "if" statements containing function calls, control-state machines must be implemented. The code is broken into blocks of straight-line code. Each of these code segments is represented by a separate state in the control state machine. The straight-line code is converted into logic functions with the series of operations collapsed into a combinational circuit. Variables whose scope spans code segments are held in registers. The input to the register is a mux that combines the logic for assignment statements from different code sequences.

Once the controller for the hardware is constructed, techniques can be used to simplify this state machine. States can be combined sequentially or in parallel, allowing greater concurrency in the hardware as well as minimizing the hardware cost of the controller. However, an even more important matter is the simplification of the data path, something that hasn't yet been dealt with adequately. In the construction given above every operation in the source code generates unique hardware. For simple computations this is fine.

However, complex opera-tions such as multiplication and division will be scattered throughout the source code, implying that a huge amount of hardware will be needed to implement all of these computations. But each multiplier will be used only within the state corresponding to that portion of the source code; otherwise, it will sit idle. The circuit's size could be greatly reduced if those hardware multipliers were reused in different places in the code. A single hardware multiplier can be used for many separate multiplication operations from the source code, as long as each occurs in different states.

There are several different systems that convert code sequences in software programming languages into hardware realizations. While they all support the translation of control flow and data path operations into circuits, they differ on the amount of code they convert and the model of operation they assume.

Perhaps the most straightforward is the Transmogrifier C system. It takes a complete program written in C and translates it into a circuit that can be implemented directly in the configurable logic blocks of Xilinx FPGAs. Special pragma (compiler directive) statements are included to declare external inputs and outputs, including the assignment of those communications to specific FPGA pins. This yields a system where the resulting hardware implementation is expected to be a complete self-contained system implementing the entire functionality of the desired behavior.

Critical assumption
Most of the systems for translating software programs into hardware algorithms assume that only the most time-critical portions of the code are mapped. Those systems use the FPGA, or FPGAs, as a coprocessor to a standard CPU. The processor implements most of the program, handling much of the operations that are necessary to implement complex algorithms, but which contribute little to the total computation time. The truly time-critical portions of the algorithm are translated into hardware, using the FPGA to implement the small fraction of the total code complexity that accounts for most of the overall run-time. In that way the strengths of both FPGAs and standard processors are combined into a single system. Processors can easily implement a large variety of operations by working through a complex series of instructions stored in high-density memory chips.

Mapping all those instructions into FPGA logic means that the complete functionality of the entire program must be available simultaneously, using a huge amount of circuit space. However, we can implement only the most frequently used portions of code inside the FPGA, achieving a significant performance boost with only a small amount of hardware. During the execution of the program, the processor executes the software code until it hits a portion of the code implemented inside the FPGA coprocessor. The processor then transfers the inputs to the function to the FPGA coprocessor and tells it to begin computing the correct subroutine.

Once the FPGA has computed the function, the results are transferred back to the processor, which continues with the rest of the software code. An added benefit of the coprocessor model is that the software-to-hardware compiler does not have to support all operations from the software programming language, since complex functions such as multiplication or memory loads can be handled instead by the host processor.

Limited portions
This does limit the portions of the code that can be translated into hardware. However, a system that converts the complete program into hardware must either convert those operations into FPGA realizations, yielding much larger area requirements, or ban those constructs from the source code, limiting the types of operations and algorithms that can be supported. Systems such as the Nimble compiler developed at Synopsys provide a middle ground, making effective use of both FPGA and CPU components for different portions of a given computation.

Although compiling only the critical regions of a software algorithm can reduce the area requirements and avoid hardware-inefficient operations, it does introduce problems unique to those types of systems. One problem is that some mechanism must be introduced for communicating operands and results between the processor and the coprocessor. For systems like Harvard's Prisc, which view the FPGA as merely a mechanism for increasing the instruction set of the host processor, instructions are restricted to reading from two source registers and writing one result register, just like any other instruction on the processor.

However, other systems have much less tightly coupled FPGAs and require protocols between the two systems. In most of these systems the communication mechanism puts a hard limit on the amount of information that can be communicated and thus the amount of the computation that can be migrated to hardware. For example, if only two input words and a single output word are allowed, there is obviously only so much useful computation that can be performed in most circumstances.

A second important concern with compiling only a portion of a program into hardware is determining which portions of the code to so map. Obviously, the code that gets mapped to the hardware needs to contain a large portion of the run-time of the overall algorithm if the designer hopes to achieve significant performance improvements.

However, it is difficult to determine strictly from the source code where the critical portions of a program are. In general, the solutions are to profile the execution of the software on a sample input set, to find the most frequently executed code sequences, or to have the user pick the code sequences to use by hand.

But simply identifying the most often executed code sequences may not yield the best speedups. Specifically, some code sequences will achieve higher performance improvements than others when mapped to hardware. Also, some code sequences may be too complex to map into hardware, not fitting within the logic resources present in the FPGA. In general, greater automation of this decision process is necessary.


Search EET's
Web Site
 


Sponsor Links
Murata
We're creating better components for nearly every area of broadband

EEdesign
How to find news and tools for your design? Visit EEdesign.com

On Semiconductor
Take control of Broadband's destiny with our opportunities.

Comms Designers Unite!
Focus on CommsDesign.com for all the latest industry news and product information.

Click here!

CMPnet
All material on this site Copyright 2001 CMP Media Inc. All rights reserved.
red line

Click Here

Click here