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ABSTRACT      
When designing SOCs, a unique opportunity exists to generate 
custom FPGA architectures that are specific to the application 
domain in which the device will be used.  The inclusion of such a 
device will provide an efficient compromise between the 
flexibility of software and the performance of hardware, while at 
the same time allowing for post-fabrication modification of 
circuits.  To automate the layout of reconfigurable subsystems for 
system-on -a-chip we present template reduction, standard cell, 
and circuit generator methods.  We explore the standard cell 
method, as well as the creation of FPGA-specific standard cells.  
Compared to full custom circuits, we achieve designs that are 
46% smaller and 36% faster when the application domain is well 
known in advance.  In cases where no reduction from the full 
functionality is possible, the standard cell approach is 42% larger 
and 64% slower than full-custom circuits.  Standard cells can thus 
provide competitive implementations, with significantly greater 
opportunity for adaptation to new domains. 
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1. INTRODUCTION 
With the advent of new fabrication technologies, designers now 
have the ability to create integrated circuits utilizing over one 
hundred million gates, with operating frequencies in the GHz 
range.  This large increase in transistor count has increased the 
complexity of devices, but it is also enabling designers to move 
away from the well known system-on-a-board to a heterogeneous 
system-on-a-chip (SOC) methodology [5].  This evolution in 
integration is driven by the need to reduce the overall cost of the 
design, increase inter-device communication bandwidth, reduce 

power consumption, and remove pin limitations. 
There are several drawbacks to the SOC design methodology.  
Designers of SOCs have a larger design space to consider, an 
increase in prototyping costs, a more difficult job of interfacing 
components, and a longer time to market.  There is also a loss in 
post-fabrication flexibility.  In the system-on-a-board approach, 
designers have the ability to customize the system by careful 
selection of components, with easy component replacement in late 
stages of the design cycle.  But in the current SOC design 
methodology framework, in which only ASIC components are 
used, very tight integration is the goal.  Therefore, component 
changes late in the design cycle are not feasible. 
This loss of post-fabrication flexibility can be alleviated with the 
inclusion of FPGA logic onto the SOC.  Unlike application 
specific integrated circuits (ASICs), by including FPGAs, 
designers would gain the ability to alter the SOC to meet differing 
system requirements after the SOC has been fabricated.  
However, FPGAs are often several times slower, larger, and less 
energy efficient than ASICs, making them a less ideal choice for 
high performance, low power designs.  Domain-specific FPGAs 
can be utilized to bridge the gap that exists between flexible 
FPGAs and high performance ASICs. 
A domain-specific FPGA is a reconfigurable array that is targeted 
at specific application domains, instead of the multiple domains a 
standard FPGA targets.  Creating custom domain-specific FPGAs 
is possible when designing an SOC, since even early in the design 
stage designers are aware of the computational domain in which 
the device will operate.  With this knowledge, designers could 
then remove from the reconfigurable array hardware and 
programming points that are not needed and would otherwise 
reduce system performance and increase the design area.  
Architectures such as RaPiD [4], PipeRench [6], and Pleiades [1], 
have followed this design methodology in the digital signal 
processor (DSP) computational domain, and have shown 
improvements over reconfigurable processors within this space.  
This ability to utilize custom arrays instead of ASICs in high 
performance SOC designs will provide the post-fabrication 
flexibility of FPGAs, while also meeting stringent performance 
requirements that until now could only be met by ASICs. 
Possible application domains could include signal processing, 
cryptography, image analysis, or any other computationally 
intensive area.  In essence, the more that is known about the target 
applications, the more inflexible and ASIC-like the custom array 
can be.  On the other end of the spectrum, if the domain space is 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FPGA ’02, February 24-26, 2002, Monterey, California, USA. 
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00. 



only vaguely known, then the custom array would need to provide 
the ability to run a wide range of applications, and thus look and 
perform more like a standard FPGA.    
Since all of the components in an SOC need to be fabricated after 
integration, this provides designers with a unique opportunity to 
insert application specific FPGAs into their devices. 
Unfortunately, if designers were forced to create custom logic for 
each domain-specific subsystem, it would be impossible to meet 
any reasonable design cycle. However, by automating the 
generation of the application specific FPGAs, designers would 
avoid this increased time to market and would also decrease the 
overall design cost. 
These factors have led us to start the Totem project, which has the 
ultimate goal of automatically generating custom reconfigurable 
architectures based upon the perceived application domain in 
which the device will be used.  Since the custom array will be 
optimized for a particular application domain, we expect that it 
will have a smaller area and perform better than a standard FPGA, 
while retaining most of the benefits of reconfigurability. 
First we present a short background on RaPiD and Totem.  Next, 
we examine the approach and experimental setup that we have 
taken to automate the layout of a domain-specific reconfigurable 
subsystem.  Finally, we will show how our approach was able to 
create circuits that perform within Totem’s design specifications, 
paving the way for future work in providing custom 
reconfigurable subsystems in SOCs. 

2. BACKGROUND 
2.1 RaPiD 
We are using the reconfigurable-pipelined datapath (RaPiD) 
architecture as a starting point for the circuits that we will be 
generating [4].  RaPiD is positioned between standard FPGAs and 
ASICs.  Its goal is to provide the performance of an ASIC while 
maintaining reconfigurability.  RaPiD, like an FPGA, achieves 
reconfigurability through the use of block components such as 
memories, adders, multipliers, and pipeline registers.  But, unlike 
a commercial FPGA, RaPiD is not targeted at random logic, but at 
coarse-grained, computationally intensive functions like 
arithmetic. 
RaPiD utilizes a one-dimensional structure to take advantage of 
the fact that all of its functional components are word-width 
computational devices.  One of the advantages of a one-
dimensional structure is a reduction in complexity, especially in 
the communications network.  Another advantage is the ability to 
map systolic arrays very efficiently, leveraging all of the research 
into the compilation of algorithms onto systolic arrays.  Finally, 
while a two dimensional RaPiD is possible, most two-dimensional 
algorithms can be mapped onto a one-dimensional array through 
the use of memory elements. 
The version of RaPiD that we are benchmarking against, RaPiD I, 
consists of memories, ALUs, and multipliers that are all 
connected by a one-dimensional segmented routing structure. 
Data flows through the array along the horizontal axis, with the 
vertical axis being used only to provide connections between 
functional units.  To create different versions of RaPiD that target 
different application domains, the following changes need to be 
made to the array: modify existing or add new functional units, 
change the width of the buses or the number of buses present, and 

modify the routing fabric.  Figure 1 shows an example of one 
possible RaPiD cell.  Multiple cells would be tiled along the 
horizontal axis.  
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Figure 1. A block diagram of a basic RaPiD cell.  Multiple 
cells are tiled along the horizontal axis. 

2.2 Totem 
Reconfigurable hardware is a very efficient bridge that fills the 
gap between software implementations running on general-
purpose processors and ASIC implementations.  But, standard 
reconfigurable hardware targets the general case, and therefore 
must contain a very generic mix of logic elements and routing 
resources that are capable of supporting all types of applications. 
This creates a device that is very flexible, allowing for bug fixes, 
upgrades, and runtime reconfiguration, among others.  Yet, if the 
application domain is known in advance, optimizations can be 
made to make a compact design that is more efficient than 
commercial FPGAs.  While the benefits of creating a unique 
FPGA for each application domain are apparent, in practice the 
design of a new FPGA architecture for each and every application 
space would require an increase in design time and create 
significant additional design costs.  The goal of the Totem project 
is the automatic generation of domain-specific FPGAs, giving 
designers a tool that will enable them to benefit from a unique 
FPGA architecture without the high cost and lengthy design 
cycle.  The automatic generation of FPGAs can be broken into 
three major parts: high-level architecture generation, VLSI layout 
generation, and place-and-route tool creation. 
The high-level architecture generator will receive, as input from 
the designer, information about the set of applications that the 
SOC will target.  The architecture generator will then create a 
coarse-grained FPGA that consists of block components such as 
memories, adders, multipliers, and pipeline registers [3].  Routing 
resources will then connect these components to create a one-
dimensional structure.  Extending Totem to create two-
dimensional arrays of functional units is possible, and will be 
explored in future research. 
The final structure that is created will fall somewhere on the scale 
between ASICs and commercial FPGAs.  Where on this scale the 
final device will fall depends on how much information the 
designer is able to provide in advance about the applications that 
will run on the reconfigurable hardware, and how similar those 
applications are in composition.  If the designer can provide a lot 
of information, and the applications are similar in composition, 
then more hardware and connection points can be removed from 
the FPGA, thus generating a more compact and higher performing 
design.  On the other side of the scale, if the designer does not 



know which applications will run on the SOC, or the applications 
that will run on the SOC are very different, then more 
reconfigurable components will be needed to support a wider 
range of logic, causing the final design to be more like a 
commercial FPGA.  After the high-level architecture generator 
creates an architecture that is able to support the applications that 
will run on it, this information is disseminated to both the VLSI 
layout generator and the place and route tool generator. 
The VLSI layout generator has the task of creating a fabrication-
ready layout for the custom device by using the specifications that 
were provided by the high-level architecture generator.  The 
layout generator will be able to create a layout for any possible 
architecture that the high-level architecture generator is capable of 
producing.  The difficult task for the layout generator is creating 
efficient designs, so as not to squander the performance and area 
gains that the architecture generator was able to achieve  
 

 
Figure 2. Simplified example of template reduction.  The 
initial template (top) is a modified version of the Xilinx 

XC6200.  The high-level architecture generator has found two 
target applications (middle).  Logic resources that are not 

needed, including routing resources, are removed from the 
initial template to create the optimized template (bottom).  

Notice how both DFFs have been removed and how the 2LUT 
in the right cell is reduced to an OR gate. 

over general-purpose FPGAs.  The layout generator will be 
flexible enough to change over time to take advantage of smaller 
device sizes as process technology scales down. In addition, the 
layout generator will produce a bit-stream format that the place 
and route tools will be able to use to configure the custom FPGA.  
Three different methods are being explored to automate the layout 
process: template reduction, standard cells, and FPGA-specific 
circuit generators.  Each of these will be discussed in greater 
detail later in this paper. 
Once the custom architecture is created, the end user will then 
need a tool set that will automatically generate mappings that 
target the custom array.  The place and route tool generator will 
create a physical mapping of a user application by using an 
architecture description that was created by the high-level 
architecture generator and the bit-stream format that was created 
by the VLSI layout generator.  It does this task by the use of a 
placement tool, which is based on the simulated annealing 
algorithm, and a router that is an adaptation of the Pathfinder 
algorithm [7]. 

3. APPROACH 
Current design methodologies for the layout of circuits typically 
fall under either full-custom design or standard-cells, with both of 
these approaches having associated pros and cons.  Producing a 
full-custom circuit is a labor-intensive task, which requires a very 
long and expensive design cycle.  However, the resulting circuit is 
created is usually the fastest and the smallest that is possible at 
that time.  Generating a standard cell library can be a difficult 
endeavor, and therefore companies that have extensive libraries 
vigorously guard them from competitors.  However, once the 
library is created, the ability for indefinite reuse and design 
automation justifies both the time and expense involved.  
Unfortunately, circuits that are created using standard cells are 
larger and slower than full-custom designs [11].  One of the goals 
of the Totem project is to automate the generation of FPGAs that 
begin to approach the level of performance that full-custom 
layouts currently enjoy. 
The Totem project has decided to investigate three different 
approaches to automate the layout process: standard cells, 
template reduction, and FPGA-specific circuit generators.  All 
three methods will be outlined in the following sections.  A goal 
of the Totem project is to decide which of the three approaches 
should be used in a particular situation.  We may find that one 
approach is the best for all situations, or that each approach has 
compelling characteristics that make it the best choice in a 
particular instance.  The objective of this paper is to investigate 
the standard cell approach.  Towards this end, we present the 
creation of a standard cell tool flow and the investigation of how 
standard cell templates compare to a full custom RaPiD array. 
We further refine the standard cell approach by adding cells to the 
library that are used extensively in FPGA designs, thus creating 
an optimized library.  These include muxes, demuxes, and SRAM 
bits, among others.  We predict that by adding a few critical cells, 
the results obtained can be significantly enhanced. 

3.1 Template Reduction Method 
The template reduction method will leverage the performance 
edge that full-custom layouts provide, in an automated fashion.  
This is achieved by using feature rich macro cells as templates 



that are reduced and compacted to form the final circuit.  
Providing quality macro cells that can cover a wide range of 
applications is critical to the success of this method.  Therefore, 
extensive profiling of application domains will be required to 
establish what resource mixes are needed for each template.  
The potential exists to create designs that achieve a performance 
level that is at parity with that of ASICs.  But this is only possible 
if two conditions are met: the applications that the template needs 
to support are similar in composition, and the domain that 
contains the applications is a subset of the initial template.  The 
first condition implies that if a template is required to support a 
wide range of applications, then it will have to retain most of its 
reconfigurability.  This means that the performance of the final 
template will be near that of an FPGA, which, as noted earlier, is 
usually not optimal.  While the first condition may mean the final 
template may not perform well, the second condition, if not met, 
may mean that the applications specified cannot be mapped onto 
the initial template.  This could occur, for example, if the initial 
template does not contain a multiplier, but the applications that 
need to run on the template require one. 
With these conditions in mind, if the design specified by the 
architecture generator does not deviate significantly from the 
available macro cells, we can use the template reduction method 
to automate the layout generation in a fast and efficient manner 
without sacrificing performance.   Since our initial focus is on a 
one-dimensional array as our target FPGA, we will be using 
variations of the RaPiD architecture as a basis for our feature rich 
macro template. 

3.2 Standard Cell Implementation 
The use of template reduction produces very efficient 
implementations, but it only works well if the proposed 
architecture does not deviate significantly from the provided 
macro cells.  To fill the gaps that exist between templates’ 
domains, we have implemented a standard cell method of layout 
generation. This method will provide Totem with the ability to 
create a reconfigurable subsystem for any application domain. 
Using standard cells also creates an opportunity to more 
aggressively optimize logic than if templates were used, since the 
circuit can be built from the ground up.  It will also allow the 
designer to easily integrate this method into the normal SOC 
design flow.  In addition, the structures created will retain their 
reconfigurability since the CLBs and routing interconnect will be 
programmable.  This is achieved by creating a structural Verilog 
representation of the FPGA, and then generating a standard cell 
layout based upon that Verilog.  Since the Verilog design includes 
SRAM bits and programmability, the result is a reconfigurable 
ASIC. 

Unfortunately, this method also inherits all of the drawbacks 
introduced into a design by the use of standard cells, including 
increased circuit size and reduced performance.  To overcome 
these failings, we will create standard cells that are often used in 
FPGAs.  These cells will include LUTs, SRAM bits, muxes, 
demuxes, and other typical FPGA components.  Some of these 
units are shown in Figure 3. Since these cells are used extensively 
in FPGAs, significant improvement could be attained.  In this 
work we compare a standard cell library and a more 
comprehensive optimized library. 

3.3 FPGA-specific Circuit Generators 
The standard cell design method is very flexible, and it gives the 
designer the ability to implement almost any circuit.  However, 
one drawback associated with the flexibility of this design method 
is its inability to leverage the regularity that exists in FPGAs.  By 
taking advantage of this regularity, a method may produce 
designs that are of higher quality than standard cell based 
designs.   
One way of creating very regular circuits is through the use of 
generators.  Circuit generators are used to great effect in the 
memory industry, and it is our belief that we will be able to 
achieve similar results. FPGA components, like memories, have 
well-known, constrained structures, positioning them as viable 
candidates for circuit generators.  
Circuit generators will be able to create structures that are of 
higher quality than those created by the standard cell method.  
However, unlike the template reduction method, the circuit 
generators will be able to handle a wider variety of possible 
architectures.  Thus, circuit generators will be positioned to fill 
the gap between the inflexible, but powerful, template reduction 
method and the very flexible, but less efficient, standard cell 
method.   
Circuit generators will be implemented to create the parts of the 
FPGA that inherently have regularity.  This includes generators 
for the routing channels, LUTs, and muxes and demuxes for 
routing interconnect.  To create an entire reconfigurable 
subsystem out of blocks of logic that circuit generators have 
created, one would only need to abut the blocks together.  
Therefore, all of these generators will be combined to create a 
method that is capable of generating a complete reconfigurable 
subsystem. 

4. EXPERIMENTAL SETUP AND 
PROCEDURE 
4.1 Setup 
To retain as much flexibility as possible in our standard cell 
implementation, behavioral Verilog representations were created 

Figure 3. FPGA-specific standard cells: (left) 1-bit DFF, (middle) 4:1 mux, (right) 1:4 demux 



for all of the RaPiD components.  Synopsys was used to synthesize the behavioral Verilog to produce structural Verilog 
Table 1. Template nomenclature and description, reflecting a range of realistic domain-specific optimizations. 

Template Description 

Not_reduced Full template 
PA Removed pipeline registers after the second ALU 
PB Removed pipeline registers before the first ALU 
ALU Converted the ALUs to adders 
PB_PA  Removed pipeline registers before the first ALU and after the second ALU 
PA_ALU Removed pipeline registers after the second ALU and reduced the ALUs to adders 
PB_ALU Removed pipeline registers before the first ALU and reduced the ALUs to adders 

PB_PA_ALU Reduced the ALUs to adders and removed pipeline registers before the first ALU and after the second 
ALU 

 
that uses our standard cells [8].  This will enable us to swap out 
standard cell libraries, since we would only need to re-synthesize 
the behavioral Verilog with a new library file generated for the 
new standard cell library. 
Silicon Ensemble (SE) was used to place and route the cells.  SE 
is part of the Cadence Envisia Tool Suite, and is capable of 
routing multiple layers of metal, including routing over the cells.  
One powerful feature of SE is its ability to run from macro files, 
minimizing the amount of user intervention. 
Cadence was chosen as our schematic and layout editor because it 
is a very robust tool set that is widely used in industry [2].  
Cadence also has tools for every aspect of the design flow.  We 
are currently using the TSMC 0.25µm design rules for all layouts 
created in Cadence.  As technology changes, we will be able to 
scale our layouts down without a loss of quality in our results. 
The full custom RaPiD components that were used in 
benchmarking were laid out by Carl Ebeling’s group for the 
RaPiD I powertest.  All circuits were laid out using the Magic 
Layout Editor for the HP 0.35µm process.  The designs were 
ported over to Cadence and the TSMC 0.25µm process.   
The choice of a standard cell library was based upon the need to 
find an industrial strength library that has been laid-out for the 
TSMC 0.25µm process.  This led us to the Tanner standard cell 
library that is available through the MOSIS prototyping 
production service [10].  This library has thirty-two basic blocks 
at its core, which can then be applied to produce any combination 
of the 1400+ functional blocks that Tanner provides in its Tanner 
SchemLib symbol library. 
We use the Epic Tool Suite to analyze the performance of all of 
the circuits that have been created.  Synopsys has developed the 
Epic Tool Suite as a robust circuit simulator that enables 
designers to verify circuit performance at both pre-layout and 
post-layout without fabrication of the design [8].  The Epic tools 
use a version of the SPICE engine for circuit simulation, and they 
also use the SPICE netlist format as circuit input and the SPICE 
BSIM3V3 as a transistor model format.  The tool that we will be 
mainly using from the tool suite is Pathmill. 

4.2 Procedure 
The experimental procedure was driven by our use of RaPiD as a 
starting point, and the use of the tools that were mentioned in the 
experimental setup section.  While there is still considerable 

manual intervention involved in each step of the flow, our 
eventual goal is a truly automated process. 
We first imported the RaPiD I powertest components from the 
Magic Layout Editor using a HP 0.35µm process to Cadence 
using a TSMC 0.25µm process.  To do this, the files were first 
exported out of the Magic Layout Editor in a CIF file.  We then 
proceeded to modify these CIF files to force compatibility with 
the TSMC 0.25µm process.  Once this was done, the files were 
then imported into Cadence, and all remaining design errors were 
corrected by hand.  Schematic and Verilog representation of the 
RaPiD components were also created. 
The next step was to find an appropriate standard cell library.  As 
stated above, we settled on the Tanner Standard Cell library.  
Even though the library was targeted at the TSMC 0.25µm 
process, the layouts were generated using the more aggressive 
deep sub-micron version of the process with a lambda of 0.12µm. 
However, we are currently using the deep-micron version of the 
TSMC 0.25µm process with a lambda of 0.15µm.  This caused 
some minor problems that were cleaned up by hand using pre-
import scripts and some post-import modifications.  A library 
information file representation of the Tanner Cells was also 
created for Synopsys. 
To generate the standard cell version of RaPiD, the tool-flow 
discussed earlier was used.  A behavioral Verilog representation 
of RaPiD was first created.  Synopsys was then used to synthesize 
this Verilog file to create a structural Verilog file that used the 
Tanner standard-cells as modules.  With this structural Verilog, 
SE was able to then place-and-route the entire design.  The 
utilization level of SE, which is an indication of how dense cells 
are packed in the placement array, was increased until the design 
could not be routed.  For most designs this level was set to 90%.  
The aspect ratio of the chip was also adjusted from 1, which is a 
square, to 2, which is a rectangle that is twice as long as it is high, 
to find the smallest layout.  For all designs, an aspect ratio of 1 
yielded the smallest layout.  Once SE was done creating the 
layout, the EPIC tool-set was used to evaluate the quality of the 
circuit that was created.  

5. RESULTS 
The tool-flow and procedure were discussed in detail in the 
experimental setup and procedure above.  The tools were run on 
nine Sun Ultra Five workstations, four machines with 512MB of 
memory and 5 machines with 384MB of memory.  The runtime 



0

100000

200000

300000

400000

500000

600000

700000

N
R

_1
6

P
A

_1
6

P
B

_1
6

A
LU

_1
6

P
B

_P
A

_1
6

P
A

_A
LU

_1
6

P
B

_A
LU

_1
6

P
B

_P
A

_A
LU

_1
6

N
R

_8

P
A

_8

P
B

_8

A
LU

_8

P
B

_P
A

_8

P
A

_A
LU

_8

P
B

_A
LU

_8

P
B

_P
A

_A
LU

_8

Template Type

A
re

a 
(L

am
bd

a2 )
14 Buses FPGA SC
11 Buses FPGA SC
8 Buses FPGA SC
14 Buses SC
11 Buses SC
8 Buses SC
Full Custom RaPiD

 
Graph 1. This graph shows the area of full custom RaPiD as well as all of the different versions of the templates in l2 vs. template 

types.  The y-axis is the area of the templates in l2, while the x-axis is a list of each version of template, from most feature rich (left) 
to least (right). 
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Graph 2. This graph shows the area of full custom RaPiD, as well as all of the different versions of the templates in l2.  The y-axis 
is the area of the templates in l2, while the x-axis is the percent utilization of the original template, from most feature rich (left) to 

least (right). 
 
of the entire tool-flow to generate each template was 
approximately six hours.  
As a template is customized towards an application domain, gains 
in performance and reductions in power and area are possible.  To 
test this, the RaPiD architecture templates were optimized to 

reflect possible design scenarios.  The scenarios included 
reducing the ALU to an adder, reducing the word size, reducing 
the number of pipeline registers, and all of the associated cross 
products.  The scenarios were created to reflect reasonable design 
tradeoffs.  For example, if a circuit will be used to support 
applications that only need to perform arithmetic, the designer 



could convert the ALUs to adders to increase performance and 
reduce circuit size. Table 1 describes the eight different designs 
that were created.  These designs were further implemented with 
8 buses, 11 buses, and 14 buses for both the Tanner and FPGA 
standard cells.  This reflects varying the richness of the 
interconnect in the system.  Finally, all designs were created with 
both an eight-bit and a sixteen-bit word size. 

5.1 Area 
Graph 1 and Graph 2 show the area of the templates as well as 
full custom RaPiD in units of λ2.  Graph 1 shows the impact of 
each design scenario, varying from the original RaPiD (left) to a 
highly reduced version (right). Graph 2 converts this to % 
utilization of the original, full RaPiD template, measured by the 
proportion of transistors retained by the reduced templates.  As 
can be seen, the full-custom RaPiD is 2.7x smaller than the 
standard cell version.  However, modifications to the architecture 
can reduce this impact, achieving up to a 2.1x smaller design with 
Standard Cells than with the full custom, unreduced RaPiD tile.  
This demonstrates the benefits that are possible by optimizing the 
FPGA architecture to the application domain of the SOC.  Much 
of this benefit comes from a reduced word size (switching from 
16-bit to 8-bit templates), and by reducing the number of routing 
registers in the pipelined interconnect.  Switching to an optimized 
standard cell library, by adding 4 FPGA-specific cells to a generic 
library, achieves an additional reduction of 9% to 18.9%. 

5.2 Performance 
Graph 3 and Graph 4 are similar to the previous ones, but in this 
case present the performance of the resulting templates.  As 
described in the experimental setup and procedure section, 
performance numbers were generated using PathMill to find the 
longest-path delays. 
The performance numbers also scale with reductions in the 
amount of resources in the FPGA, but in a much less linear 
manner.  While the elimination of each transistor in the design has 
an approximately equal impact on the area of the overall design, 
the improvements in performance depend much more heavily on 
what specific transistors are removed.  The most striking feature 
of the graph, the sudden dips, can be attributed to the fact that the 
reduction of the number of buses or of the bit width does not 
affect performance nearly as much as converting the ALU to an 
adder.  Specifically, the replacement of an ALU with an Adder 
(which improves area on average by only 19%) yields on average 
a 27% improvement in the performance, while switching to an 8-
bit word size (which approximately halves the chip area) only 
achieves a 13% performance gain.  To separate out these effects, 
the templates were grouped as shown in Graph 5 based on ALU 
vs. adder and 16-bit vs. 8-bit word-size.  Also, while there are not 
any 16-bit templates that have a smaller size than the full custom 
RaPiD, there are eight FPGA standard cell templates and three 
Tanner standard cell templates that have a shorter critical path.  
These benefits range from 7% to 36%. 

6. CONCLUSIONS 
As SOCs move into the mainstream, it is likely that FPGAs will 
play a major role in providing the post-fabrication modification 
that these devices will require.  This presents some interesting 
opportunities for creating high performance FPGAs that are 
targeted at specific application domains, instead of random logic.  

To implement these new architectures in a timely fashion, 
automation of the design flow is a necessity. 

 

 

 

  
Figure 4. Tanner standard cell (top), FPGA standard cell 

(middle), and full-custom RaPiD (bottom).  The relative size of 
the various layouts is preserved. 

Table 2 summarizes the results of automating the design through 
the use of standard cells by providing an easy reference for 
choosing a particular optimization to reach specific design goal.  
For example, if a design called for a reduction in area, and you do 
not need all of the functionality that an adder can provide, than 
reducing ALUs to Adders would give you a 30% reduction in area 
and a 40% increase in performance.  
In this work we have shown that automation of layout generation 
for domain specific FPGAs is possible.  We have further shown 
that as a target application domain narrows, the savings gained 
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Graph 3. This graph shows the performance of full custom RaPiD as well as all of the different versions of the templates in ns.  The 
y-axis is the performance of the templates in ns, while the x-axis is a list of each version of template, from most feature rich (left) to 

least (right). 
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Graph 4. This graph shows the performance of full custom RaPiD as well as all of the different versions of the templates in ns.  The 

y-axis is the performance of the templates in ns, while the x-axis is the percent utilization of the original template, from most 
feature rich (left) to least (right). 

 
from removing unused logic from a design enables a standard cell 
method of layout generation to approach that of a full custom 
layout in area and performance, and in some cases surpass them, 
with areas ranging from 270% larger to 46% smaller, and 
performance raging from 157% slower to 36% faster.  Finally, by 
adding to a standard cell library a few key cells that are used 
extensively in FPGAs, improvements of 9% to 18.9% can be 
achieved. 

The choice of what mechanism to use for implementing domain-
specific reconfigurable subsystems is more than just a choice 
based upon area and performance.  A full-custom tile, such as the 
RaPiD tile used here, provides a highly optimized, but completely 
inflexible, set of resources.  Applications that need different 
resources, or greater amounts of a given type, may simply be 
unable to handle these demands.  A standard cell methodology 
allows for any resource mix to be applied, with at
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Graph 5. This graph shows the performance of full custom RaPiD as well as all of the different versions of the templates 

in ns.  The templates are grouped depending upon whether they contain ALUs or adders, or whether they are 16-bit or 8-
bit.  The y-axis is the performance of the templates in ns, while the x-axis is the percent utilization of the templates, from 

most feature rich (left) to least (right). 
 
most a 42% increase in area, and a 64% increase in 
performance. 
Alternative approaches may help provide the middle-ground 
between the high quality but inflexible full custom tiles, and the 
completely inflexible but high overhead standard cell 
methodologies.  In our future efforts we will investigate 
template reduction and circuit generator approaches.  These four 
approaches combined should provide a spectrum of approaches, 
with each yielding benefits for some users.  Overall, we hope to 
be able to close the gap between fixed tile-based FPGAs 
currently being developed in industry for SOC designs, and the 
traditional benefits of strictly ASIC designs. 

Table 2. Average benefit gained by optimization type. 

 Improvements 
Basic Optimization Area Performance 

16 Bit to 8 Bit 2.0x 1.1x 
ALU to Adder 1.3x 1.4x 
Not Reduced to PA 1.1x 1.1x 
Not Reduced to PB 1.2x 1.1x 
Tanner SC to FPGA SC 1.2x 1.0x 

 
SC to Full Custom 1.3x 1.2x 
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