EE529 Semiconductor Optoelectronics

Semiconductor Basics

1. Semiconductor materials
2. Electron and hole distribution
3. Electron-hole generation and recombination
4. p-n junction

Reading: Liu, Chapter 12, Sec. 13.1, 13.5
Reference: Bhattacharya, Sec. 2.1-2.2, 2.5-2.6, 4.2
Energy Bands in Semiconductors

Origin: Periodic lattice structure in the crystal.

E-k diagram details the band structure.

k: Electron wave vector

\[k = \frac{2\pi}{\lambda} \]

Indirect bandgap

Near the band edge:

\[E = E_c + \frac{\hbar^2 k^2}{2m^*_e} \]

\[E = E_v - \frac{\hbar^2 k^2}{2m^*_h} \]

\[m^*_e, h : \text{Effective masses of electrons/holes} \]
Semiconductor Materials

<table>
<thead>
<tr>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
<th>Group VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Al</td>
<td>Si</td>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>Mg</td>
<td>Aluminium</td>
<td>Ge</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Zn</td>
<td>Ga</td>
<td>As</td>
<td>Te</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>In</td>
<td>Sb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>TI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elementary: e.g., Si and Ge

Binary

Ternary

Quaternary

Energy bandgap (eV)

Lattice constant (nm)
III-V Compound Semiconductors

Solid curve: Direct bandgap
Dashed curve: Indirect bandgap

$\text{Al}_x\text{Ga}_{1-x}\text{As}$ closely lattice matched to GaAs

$\text{In}_{1-x}\text{Ga}_x\text{As}_y\text{P}_{1-y}$ lattice matched to InP for $0 \leq y \leq 1$ and $x = 0.47y$

Matching lattice constant is important when depositing one semiconductor on another.
Electron-Hole Generation

How do electrons get to the conduction band (and leave holes in the valence band)?

Free electrons and holes can be generated by:

- Thermal excitation (thermal equilibrium)
- Optical excitation (quasi-equilibrium)
- Current injection (quasi-equilibrium)

It’s important to understand the carrier (electrons and holes) distribution as a function of energy.
Carrier Distribution in the Energy Band

Concentration of electrons (holes) versus energy in the conduction (valence) band =

Density of states
(density of allowed energy levels)
Analogy: Density of available office spaces

Probability of occupancy
(probability that each of these levels is occupied)
Analogy: People’s desire of occupying these spaces

A skyscraper **without** elevators
Probability of Occupancy

Fermi-Dirac function

\[
f(E) = \frac{1}{\exp\left(\frac{E - E_f}{k_BT}\right) + 1}
\]

\(f(E)\) = probability of occupancy by an electron

\(1 - f(E)\) = probability of occupancy by a hole (in valence band)

(Electrons like to sink to the bottom, holes like to float to the top.)
Density of States — Bulk Material

\[\rho(k) = \frac{k^2}{\pi^2} \]

\[\rho_c(E) = \frac{(2m_e^*)^{3/2}}{2\pi^2\hbar^3} (E - E_c)^{1/2} \]

\[\rho_v(E) = \frac{(2m_h^*)^{3/2}}{2\pi^2\hbar^3} (E_v - E)^{1/2} \]

Figure 15.1-7
(a) Cross section of the \(E-k \) diagram (e.g., in the direction of the \(k_1 \) component with \(k_2 \) and \(k_3 \) fixed). (b) Allowed energy levels (at all \(k \)). (c) Density of states near the edges of the conduction and valence bands. \(\rho_c(E) \) is the number of quantum states of energy between \(E \) and \(E + dE \), per unit volume, in the conduction band. \(\rho_c(E) \) has an analogous interpretation for the valence band.
Density of States — Quantum Wells

Discrete energy levels

\[E_q = \frac{\hbar^2 (q\pi / d)^2}{2m}, \quad q = 1, 2, \ldots \]

Density of states

\[\rho_c(E) = \begin{cases} \frac{m_e}{\pi \hbar^2 d_1}, & E > E_C + E_{q_1} \\ 0, & E < E_C + E_{q_1} \end{cases} \]

Quantum Wires and Quantum Dots

Quantum wires

$$\rho_c(E) = \begin{cases} \frac{(2/d_1 d_2)(\sqrt{m^*_e} / \sqrt{2\pi\hbar})}{(E - E_c - E_{q_1} - E_{q_2})^{1/2}}, & E > E_c + E_{q_1} + E_{q_2} \\ 0, & \text{otherwise} \end{cases}$$

(Gudiksen et al., Nature, 2002)

Quantum dots

$$\rho_c(E) = 2\delta(E - E_c - E_{q_1} - E_{q_2} - E_{q_3}) \frac{1}{d_1 d_2 d_3}$$

3 nm, 5.5 nm, 7.5 nm, 8.3 nm
Thermal-Equilibrium Carrier Concentration

Bulk Semiconductor

(a) Energy band diagram. (b) Density of states (number of states per unit energy per unit volume). (c) Fermi-Dirac probability function (probability of occupancy of a state). (d) The product of \(g(E) \) and \(f(E) \) is the energy density of electrons in the CB (number of electrons per unit energy per unit volume). The area under \(n_E(E) \) vs. \(E \) is the electron concentration.

\[
n_0 = \int_{E_c}^{\infty} \rho_c(E) f(E) dE = N_c(T) F_{1/2} \left(\frac{E_F - E_c}{k_B T} \right)
\]

\[
p_0 = \int_{-\infty}^{E_v} \rho_v(E) [1 - f(E)] dE = N_v(T) F_{1/2} \left(\frac{E_v - E_F}{k_B T} \right)
\]

We can simplify this more …
Carrier Concentration and Mass Action Law

For non-degenerate semiconductors, \((E_C - E_F) / k_B T \geq 3.6 \quad (E_F - E_V) / k_B T \geq 3.6\)

\[
n_0 = N_C \exp \left[-\frac{(E_C - E_F)}{k_B T} \right]
\]

\[
N_C = 2(2\pi m^*_e k_B T / h^2)^{3/2} \quad \text{Effective density of states at the conduction band edge}
\]

\[
p_0 = N_V \exp \left[-\frac{(E_F - E_V)}{k_B T} \right]
\]

\[
N_V = 2(2\pi m^*_h k_B T / h^2)^{3/2} \quad \text{Effective density of states at the valence band edge}
\]

The location of the Fermi level energy \(E_F\) is the key.

Mass action law:

\[
n_0 p_0 = 4 \left(\frac{2\pi k_B T}{h^2} \right)^3 (m_e^* m_h^*)^{3/2} \exp \left(-\frac{E_g}{k_B T} \right) = n_i^2
\]

→ Knowing one carrier concentration, you can determine the other (no matter intrinsic or extrinsic)

<table>
<thead>
<tr>
<th>TABLE 15.1-4</th>
<th>Intrinsic Concentrations in Si and GaAs</th>
<th>at (T = 300) K(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_i) (cm(^{-3}))</td>
<td>Si</td>
<td>1.5 \times 10^{10}</td>
</tr>
<tr>
<td></td>
<td>GaAs</td>
<td>1.8 \times 10^{6}</td>
</tr>
</tbody>
</table>
Intrinsic and Extrinsic Semiconductor

Intrinsic: \[E_{Fi} = \frac{E_C + E_V}{2} - \frac{1}{2} k_B T \ln\left(\frac{N_C}{N_V}\right) \]

n-type semiconductor

p-type semiconductor

Electron Energy

\[E_C \quad E_v \]

\[\sim 0.05 \text{ eV} \]

B– B– B– B– B–

~0.05 eV

VB

Electron energy

B atom sites every \(10^6 \) Si atoms

\[x \quad \text{Distance into crystal} \]
Exercise: Fermi Levels in Semiconductors

a) Where is the Fermi level of intrinsic bulk Si at room temperature?
b) What kind of dopants can make it n-type?
c) If the donor concentration N_d is 10^{16} cm$^{-3}$, where will the Fermi level be?
d) If the wafer is compensation-doped with boron ($N_a = 2 \times 10^{17}$ cm$^{-3}$), where will the Fermi level be?

Properties of Selected Semiconductors at 300 K

$\varepsilon_r(0)$ and $\varepsilon_r(\infty)$ represent the relative permittivity at dc (low frequency) and at optical (high) frequencies. $\varepsilon_r(\infty)$ excludes ionic polarization but includes electronic polarization. Effective mass related to conductivity (a) is different than that related to the density of states (b).

<table>
<thead>
<tr>
<th>Property</th>
<th>Ge</th>
<th>Si</th>
<th>GaAs</th>
<th>In${0.53}$Ga${0.47}$As</th>
<th>InP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density g cm$^{-3}$</td>
<td>5.33</td>
<td>2.33</td>
<td>5.32</td>
<td>6.15</td>
<td>4.81</td>
</tr>
<tr>
<td>E_g (eV)</td>
<td>0.66</td>
<td>1.12</td>
<td>1.42</td>
<td>0.75</td>
<td>1.35</td>
</tr>
<tr>
<td>n_e (cm$^{-3}$)</td>
<td>2.4×10^{13}</td>
<td>1.45×10^{16}</td>
<td>1.8×10^{6}</td>
<td>1.2×10^7</td>
<td></td>
</tr>
<tr>
<td>N_e (cm$^{-3}$)</td>
<td>1.04×10^{19}</td>
<td>2.8×10^{19}</td>
<td>4.7×10^{17}</td>
<td>5.4×10^{17}</td>
<td></td>
</tr>
<tr>
<td>N_d (cm$^{-3}$)</td>
<td>6×10^{16}</td>
<td>1.02×10^{19}</td>
<td>7×10^{18}</td>
<td>1.2×10^{19}</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_r(0)$</td>
<td>16</td>
<td>11.9</td>
<td>13.1; 10.6</td>
<td>12.5; 9.3</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_r(\infty)$</td>
<td>0.07a,b</td>
<td>0.07a,b</td>
<td>0.07a,b</td>
<td>0.07a,b</td>
<td></td>
</tr>
<tr>
<td>m_e^*/m_e</td>
<td>0.12a</td>
<td>0.26a</td>
<td>0.40a</td>
<td>0.40a</td>
<td></td>
</tr>
<tr>
<td>m_h^*/m_e</td>
<td>0.56b</td>
<td>1.08b</td>
<td>0.56b</td>
<td>0.56b</td>
<td></td>
</tr>
<tr>
<td>μ_e (cm2 V$^{-1}$ s$^{-1}$)</td>
<td>3900</td>
<td>1350</td>
<td>8500</td>
<td>13800</td>
<td></td>
</tr>
<tr>
<td>μ_h (cm2 V$^{-1}$ s$^{-1}$)</td>
<td>1900</td>
<td>450</td>
<td>400</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 15.1-2 A Section of the Periodic Table

<table>
<thead>
<tr>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc (Zn)</td>
<td>Aluminum (Al)</td>
<td>Silicon (Si)</td>
<td>Phosphorus (P)</td>
<td>Sulfur (S)</td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>Gallium (Ga)</td>
<td>Germanium (Ge)</td>
<td>Arsenic (As)</td>
<td>Selenium (Se)</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>Indium (In)</td>
<td>Antimony (Sb)</td>
<td>Tellurium (Te)</td>
<td></td>
</tr>
</tbody>
</table>
Quasi Equilibrium

— What happens to the Fermi levels during photon absorption

Probability of occupancy for electrons:

\[
f_c(E) = \frac{1}{\exp\left(\frac{E - E_{F_c}}{k_B T}\right) + 1}
\]

Probability of occupancy for holes:

\[
f_v(E) = \frac{1}{\exp\left(\frac{E_{F_v} - E}{k_B T}\right) + 1}
\]

How to calculate the quasi Fermi levels?
Quasi-Fermi Levels

The figure below shows positions of quasi-Fermi levels as a function of photo-generated electron-hole pair density. The semiconductor is n-type GaAs with $N_D = 10^{15}$ cm$^{-3}$.

Q: Why does ε_{fp} decrease gradually with increasing density while ε_{fn} shows a sudden increase?
A n-type \((n_0 = 5 \times 10^{18} \text{ m}^{-3})\) GaAs is under optical excitation generating excess carrier concentration \(N = n - n_0 = p - p_0\). It has the following recombination coefficients: \(A = 5 \times 10^5 \text{ s}^{-1}\), \(B = 8 \times 10^{-17} \text{ m}^3\text{s}^{-1}\), and \(C = C_e + C_h = 5 \times 10^{-42} \text{ m}^6\text{s}^{-1}\). Assume that \(C_e = C_h = C/2\). (1) Find the range of \(N\) where each of the three different recombination processes (Shockley-Read, bimolecular, Auger) dominates. (2) Plot the spontaneous carrier lifetime \(\tau_s\) as a function of \(N\) for \(10^{18} \leq N \leq 10^{26} \text{ m}^{-3}\). (3) Assume only the bimolecular recombination process is radiative, plot the internal quantum efficiency vs \(N\).
Bimolecular Recombination and Steady-State Concentration

Rate of recombination

\[R = Bnp \quad \left(\frac{1}{\text{cm}^3 \cdot \text{sec}} \right) \]

In thermal equilibrium, generation = recombination

\[G_0 = Bn_0p_0 \quad \left(\frac{1}{\text{cm}^3 \cdot \text{sec}} \right) \]

With electron-hole injection (by external current or photon)

Net radiative recombination rate

\[R = Bnp - G_0 = \frac{N}{\tau_{rad}} \]

\[\tau_{rad} = \frac{1}{B(N + n_0 + p_0)} \]

In steady state:

\[\frac{dN}{dt} = G - \frac{N}{\tau_{rad}} = 0 \]

→ Determines \(N \) if \(G \) is known, and therefore the quasi-Fermi levels.
Exercise: Carrier Injection at Steady State

Electron-hole pairs are injected into n-type GaAs at a rate $G = 10^{23}/\text{cm}^3\text{s}$. At room temperature GaAs has the following parameters: $E_g = 1.42 \text{ eV}$, $n_i = 2.33 \times 10^6 \text{ cm}^{-3}$, $N_c = 4.35 \times 10^{17} \text{ cm}^{-3}$, and $N_v = 9.41 \times 10^{18} \text{ cm}^{-3}$. The thermal equilibrium concentration of electrons is $n_0 = 10^{16} \text{ cm}^{-3}$. Assume bimolecular recombination process dominates and the coefficient for bimolecular recombination $B = 8 \times 10^{-11} \text{ cm}^3\text{s}^{-1}$. Determine:

(a) The thermal equilibrium concentration of holes p_0.

(b) The steady-state excess carrier concentration N.

(c) The recombination lifetime τ_{rad}.

(d) The separation between the quasi-Fermi levels $E_{Fc} - E_{Fp}$.
The p-n Junction

Build-in field

\[E_0 = -\frac{eN_d W_n}{\varepsilon} = -\frac{eN_a W_p}{\varepsilon} \]

Built-in potential

\[V_0 = -\frac{1}{2} E_0 (W_n + W_p) \]

\[= k_B T \frac{e}{\ln \left(\frac{N_a N_d}{n_i^2} \right)} \]

Depletion widths

\[W_n = \sqrt{\frac{2e N_a}{e N_d \left(\frac{1}{N_d + N_a} \right)} V_0} \]

\[W_p = \sqrt{\frac{2e N_d}{e N_a \left(\frac{1}{N_d + N_a} \right)} V_0} \]

\[W_0 = W_n + W_p \]

\[= \sqrt{\frac{2e N_a + N_d}{e N_a N_d} V_0} \]
Figure 12.9 Spatial distributions of the p and n regions, the energy bands, and the electrostatic potential of an abrupt p–n homojunction (a) in thermal equilibrium, (b) under forward bias, and (c) under reverse bias.
p-n Junction Under Forward Bias

Law of the junction

\[p_n(0) = p_{n0} \exp\left(\frac{eV}{k_B T}\right) \]

\[n_p(0) = n_{p0} \exp\left(\frac{eV}{k_B T}\right) \]

Excess minority carrier concentration

\[\Delta p_n(x') = \Delta p_n(0) \exp\left(-\frac{x'}{L_h}\right) \]

\[\Delta n_p(x'') = \Delta n_p(0) \exp\left(\frac{x''}{L_e}\right) \]

Diffusion length

\[L_{h,e} = \sqrt{D_{h,e} \tau_{h,e}} \]

- \(D_{h,e} \): Diffusion coefficient
- \(\tau_{h,e} \): Minority carrier lifetime
Current in Forward-biased p-n Junction

The total current anywhere in the device is constant. Just outside the depletion region it is due to the diffusion of minority carriers.

Diffusion current

\[
J_{D,\text{hole}} = \left(\frac{eD_h n_i^2}{L_h N_d} \right) \exp \left(\frac{eV}{k_B T} \right) - 1
\]

\[
J_{D,\text{elec}} = \left(\frac{eD_e n_i^2}{L_e N_a} \right) \exp \left(\frac{eV}{k_B T} \right) - 1
\]

\[
J_{\text{diff}} = J_{D,\text{hole}} + J_{D,\text{elec}}
= \left(\frac{eD_h}{L_h N_d} + \frac{eD_e}{L_e N_a} \right) n_i^2 \exp \left(\frac{eV}{k_B T} \right) - 1
\]

Recombination current

A more accurate result:

\[
J_{\text{recom}} = J_{r0} \left[\exp \left(\frac{eV}{2k_B T} \right) - 1 \right]
\]
I-V Characteristics of a p-n Junction

Reverse I-V characteristics of a pn junction (the positive and negative current axes have different scales)

\[I = I_0 \left[\exp \left(\frac{eV}{\eta k_B T} \right) - 1 \right] \]

η: Diode ideality factor
η = 1: Diffusion controlled
η = 2: SCL recombination controlled

Shockley equation
Space charge layer generation.
p-n Junction under Reverse Bias

Current due to thermally generated EHP:

\[
J_{gen} = \frac{eWn_i}{\tau_g}
\]

\(\tau_g\) : Mean thermal generation time

Total reverse current

\[
J_{rev} \approx J_s + J_{gen}
\]

\[
= \left(\frac{eD_h}{L_h N_d} + \frac{eD_e}{L_e N_a} \right) n_i^2 + \frac{eWn_i}{\tau_g}
\]

Minority Carrier Concentration

Hole PE(x)

Electrons → Holes

Diffusion → Drift

\(n_{po}\)

\(\rho_{no}\)

\(+\)

\(-\)

\(V_r\)

Thermally generated EHP

Neutral \(p\)-region

Neutral \(n\)-region

\(E_o + E\)

\(W\)

\(W_o\)

\(W(V = -V_r)\)
Exercise: GaAs p-n Junction

• Device parameters:
 – Cross sectional area $A = 1 \text{ mm}^2$.
 – N_a (p-side doping) = N_d (n-side doping) = 10^{23} m^{-3}.
 – Coefficient of recombination $B = 7.21 \times 10^{-16} \text{ m}^3\text{s}^{-1}$
 – $n_i = 1.8 \times 10^{12} \text{ m}^{-3}$
 – $\varepsilon_r = 13.2$
 – μ_h (in the n-side) = 250 cm2V$^{-1}$s$^{-1}$, μ_e (in the p-side) = 5000 cm2V$^{-1}$s$^{-1}$
 – Carrier recombination time in the depletion region = 10 ns

• What is the I-V characteristics? Calculate the diffusion current and the recombination current under 1V bias.