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As artificial neural networks (ANNs) continue to make strides in wide-ranging and diverse fields of technology,
the search for more efficient hardware implementations beyond conventional electronics is gaining traction. In
particular, optical implementations potentially offer extraordinary gains in terms of speed and reduced energy
consumption due to the intrinsic parallelism of free-space optics. At the same time, a physical nonlinearity—a
crucial ingredient of an ANN—is not easy to realize in free-space optics, which restricts the potential of this
platform. This problem is further exacerbated by the need to also perform the nonlinear activation in parallel
for each data point to preserve the benefit of linear free-space optics. Here, we present a free-space optical ANN
with diffraction-based linear weight summation and nonlinear activation enabled by the saturable absorption of
thermal atoms. We demonstrate, via both simulation and experiment, image classification of handwritten digits
using only a single layer and observed 6% improvement in classification accuracy due to the optical nonlinearity
compared to a linear model. Our platform preserves the massive parallelism of free-space optics even with physical
nonlinearity, and thus opens the way for novel designs and wider deployment of optical ANNs. © 2021 Chinese

Laser Press

https://doi.org/10.1364/PRJ.415964

1. INTRODUCTION

Artificial neural networks (ANNs) have recently proven
phenomenally successful in tasks such as image, sound, and lan-
guage recognition and translation [1]. The increasing deploy-
ment of ANNs, from facial recognition on smartphones to
self-driving cars, has brought new attention to improving their
hardware implementation in terms of speed, energy consump-
tion, and latency [2]. In contrast to conventional electronics-
based platforms, optical implementations stand out due to
light’s intrinsically massive parallelism. For instance, the ability
of a simple lens to carry out a two-dimensional (2D) Fourier
transform with zero energy has long been utilized in optical
signal processing [3]. Especially, free-space optics (FSO) with
an aperture area A and wavelength λ can potentially provide an
extremely large number of information channels ∼A∕λ2,
thanks to the availability of two spatial dimensions.

One of the biggest hurdles for an optical implementation of
an ANN, however, is the lack of physical optical nonlinearity.

While the parallelism of FSO naturally lends itself to carrying
out linear operations, the lack of corresponding parallel non-
linearity without requiring high-powered lasers or active optical
components has led to a multitude of non-FSO workaround
solutions. Shen et al. demonstrated an electronic-optical hybrid
neural network, in which the output of an integrated photonic
mesh was outsourced to an external computer for nonlinear
processing [4]. Nevertheless, it was shown by Colburn et al.
that the benefits of such a design with repeated data conversions
between the optical and the electronic domains were severely
limited due to large power consumption and latency incurred
during signal transduction [5]. Furthermore, an integrated pho-
tonics platform foregoes the intrinsic parallelism of 2D FSO.
For example, Feldmann et al. demonstrated a fully optical spik-
ing network with on-chip phase-change materials; but scaling
up the number of neurons beyond a few waveguides remains
technically challenging [6]. While wavelength division multi-
plexing (WDM) has been theoretically proposed as a promising
route to mitigating the challenges for scaling the number of
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waveguides [7], such methods need to stabilize high-Q ring res-
onators under thermal fluctuations, leading to excess energy
consumption. Moreover, a large number of additional control
operations are needed to serialize the 2D image data stream and
multiplex those data to encode in wavelengths, all of which will
need an excess amount of energy. Another recent promising
research direction is to completely avoid nonlinearity and em-
ploy multiple diffractive layers for classification [8,9]. While
such an approach provided impressive classification results for
the MNIST data set for a linear network combined with logistic
regression, the lack of nonlinearity poses a serious question
about its generalizability to solving more complicated tasks.

Recently, Zuo et al. presented an FSO neural network where
the nonlinearity comes from the electromagnetically induced
transparency in ultracold atoms [10]. Besides extensive labora-
tory setup for trapping and cooling atoms, the need to hand off
the data from one laser to another prevents the extension of this
method to having multiple hidden layers. In a similar vein, the
quantum well exciton–polariton-based nonlinear activation re-
quires a cryostat and is difficult to scale [11].

In this paper, we propose and demonstrate a fully optical
ANN that utilizes the optical nonlinearity from thermal atomic
vapor. Specifically, we exploit the saturable absorption behavior
of room-temperature rubidium atoms housed in a vapor cell.
We observed the nonlinearity in a single pass without any cav-
ity, which allows point-by-point nonlinear activation of an in-
cident image [12]. For the linear operations, we employ the
diffractive model, where phase masks directly set the trainable
weights of the neural network [8]. We emphasize that both the
linear and the nonlinear components of our neural network
operate on a “pixel-by-pixel” basis, within the diffraction-
induced limit set by the propagation length, thus preserving
and fully exploiting the intrinsic massive parallelism of FSO.
Via numerical simulations, we observed an increase in classifi-
cation accuracy in a single linear layer ANN by 10% due to the
atomic nonlinearity. Following the training of our optical neu-
ral network in simulation using experimentally relevant param-
eters, we experimentally demonstrate an image recognition task
of handwritten digits using a spatial light modulator (SLM).
We observed an increase in classification accuracy by 6% in
experiment with the addition of the nonlinear layer. We
attribute the moderate classification accuracy (∼33%) of our
experimental system to using only a single diffractive linear op-
eration, currently limited by the number of SLMs in our setup.
Our work, combining machine learning with optics and atomic
physics, opens a new front in the ongoing effort to advance
optical ANN theory and hardware.

2. OPTICAL NEURAL NETWORK
ARCHITECTURE

A. Overview
A typical deep neural network consists of multiple layers of
neurons. Except for those in the first layer, each neuron receives
input signals from neurons in the previous layer. Excluding
batch normalization, the neuron takes the sum of the signals
multiplied by adjustable weights and performs a nonlinear op-
eration, the output of which subsequently becomes an input
signal for one or more neurons in the following layer.

Many variations in the neural network architectures exist,
along with different training algorithms for specific applica-
tions. For a typical image classification task under supervised
learning, the network is presented with a set of training data
and corresponding labels. By repeatedly comparing the result
of the output against the labels, the network can gradually ad-
just its weights until finally the weights converge on an opti-
mum solution.

Our optical neural network follows a similar architecture: a
2D, monochromatic wavefront containing the input data prop-
agates sequentially through a series of linear and nonlinear
layers before being imaged on a camera. However, as explained
earlier, due to a limited number of available SLMs, we only
implemented one single layer that combines the input and one
layer of neurons. Below, we describe each component and its
physical implementation.

B. Input Layer
The input layer is the direct representation of 2D data encoded
as spatially varying intensity of light, or an image. In order to
convert electronic data into optical images, we use an SLM,
which can manipulate the amplitude, phase, or both of an in-
cident laser beam’s wavefront. The use of coherent, monochro-
matic light is crucial for the reported optical network, since we
utilize diffraction and light–matter interaction to perform both
linear and nonlinear operations, as will be described next.

C. Linear Layer
In a generic ANN, the role of a linear layer is to perform sum-
mation of signals from a previous layer with adjustable weights
before passing it off to a nonlinear layer. A direct implementa-
tion of matrix–matrix multiplications in FSO is possible but
complex and requires many optical elements [3]. Instead, we
adopt an alternative approach, in which the linear layer is
implemented by first element-wise multiplying an image with
a phase mask and then letting the image propagate in free space.
The first step is enabled by the SLM, which can directly display
the product of an input image with the phase mask. The second
step allows the signals of neighboring pixels of the image to mix
due to diffraction. Such a diffractive model was demonstrated
for several phase masks in the terahertz regime [8]. The amount
of mixing depends on the propagation distance, the wavelength
of the image, and the spatial frequency spectrum of the image.
We note that it is difficult to map such a phase-mask-based
approach to a traditional convolutional layer or fully connected
layers used in ANNs. However, as the pixels mix with the
neighboring pixels, the operation is effectively a convolution
operation, the kernel of which depends on the propagation
length. However, using a stack of diffractive optics [8], meta-
surfaces [13], or even more than one SLM, multiple layers can
be implemented.

D. Nonlinear Layer
The nonlinear layer is implemented by an evacuated vapor cell
filled with rubidium atoms. The phenomenon of saturable ab-
sorption is briefly outlined here and further detailed in the
Appendix. When a near-resonant photon is incident on an
atom, the atom absorbs the photon and reaches an excited state.
After a brief time that is inversely proportional to the atomic
linewidth, the excited atom emits a photon and returns to the
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ground state. The emitted photon travels in a random direction
and is “lost” from the undisturbed wavefront, which continues
to propagate in the original direction. Thus, for a fixed density
of atoms, a low-intensity beam passing through the gas be-
comes attenuated. On the other hand, a high-intensity beam
can excite all the available atoms, saturating the medium.
The input–output curve of an optical beam of varying intensity
thus exhibits a nonlinear shape, similar to the nonlinear acti-
vation function type “SmoothReLU” commonly used in ma-
chine learning. The key to our nonlinear layer is the fact
that the saturation of atoms is a local effect, and thus, different
parts of an incident image, which can be viewed as a collection
of multiple beams with each beam denoting one pixel, undergo
the nonlinear activation independently.

E. Output Layer
The optical signal after the vapor cell is imaged on a CCD cam-
era. The intensity pattern of the captured image becomes a di-
rect representation of the final output of the neural network.
For an image classification task with multiple categories, we can
predefine certain physical locations on the camera plane to cor-
respond to those categories. These locations then can be read by
either a human or a computer to identify the categories.

We note that the absolute squaring operator inherent in tak-
ing the intensity is in itself a nonlinear process; however, as it is
bound to the final measurement, we take it as part of the output
layer and only refer to the independent saturable absorption
layer as our nonlinearity.

3. SIMULATION OF A TWO-LAYER OPTICAL
NEURAL NETWORK FOR IMAGE
CLASSIFICATION

While atomic vapors provide a nonlinear input–output rela-
tionship, it is not clear a priori whether such a nonlinear func-
tion will be useful for an optical neural network, especially
given that there is no energy gain in the system, only loss.
To probe the efficacy of the saturable absorption nonlinearity
in thermal atoms, we first simulate a two-layer optical neural
network: one linear layer (to be implemented by an SLM) and
one nonlinear layer (to be implemented by the saturable ab-
sorption nonlinearity). We focused on the classic image classi-
fication of handwritten digits from the MNIST database. The
goal is to define an optical model, train it entirely offline, and
implement the trained neural network as closely as possible in
experiment. In this section, we describe the training procedure,
including the use of the atomic nonlinearity, and discuss the
simulation results.

The raw input data are 8-bit, 28 × 28 pixels images of hand-
written digits. Before feeding them to the model, we make the
following modifications. First, in order that the image remains
reasonably collimated during tens-of-centimeters-long free-
space propagation in the experiment, we rescale the dimensions
from the original 28 × 28 pixels to 300 × 300 pixels. Second,
we further embed the 300 × 300 pixels image within a larger
600 × 600 pixels image, with the area outside the image having
zero value. This larger dimension allows us to directly employ
the angular spectrum method without applying any band limit
[14]. Finally, all the values of the image-pixels are normalized so

that the maximum pixel value is 1. The size of the pixel is set to
8 μm to match the physical pitch of our SLM. The first oper-
ation on the modified input is element-wise multiplication by a
phase mask, which consists of an array of complex numbers
whose magnitude is unity and whose phase ϕ�x, y� is a trainable
variable.

After the phase mask, the image is propagated along the op-
tical axis by a distance zo, which is a hyperparameter for our
neural network, via the angular propagation method. The an-
gular propagation method consists of decomposing a given
wavefront into plane waves traveling in different directions, ap-
plying a zo-dependent transfer function to each plane wave, and
finally reconstructing the new wave. Computationally, the
process involves a pair of forward and inverse fast Fourier trans-
forms along with a Hadamard product with a matrix in be-
tween the pair [12].

After propagation, the image undergoes a nonlinear activa-
tion. The nonlinearity is a function of the optical intensity, so
we take the absolute square of the image field, apply a nonlinear
function, and take the square root, all while preserving the
phase of the original wavefront. The functional form of the
nonlinearity is derived in the Appendix; the nonlinear param-
eters were determined by a calibration process described in
Section 4.B.

Finally, for detection, the intensity of the output of the non-
linear layer is element-wise multiplied by a special detector layer
that defines where the light of a given MNIST digit should go.
In our simulation, the detector layer consists of ten circles that
are equidistant from the center. The result of the matrix multi-
plication is a list of ten numbers, each of which is the sum of the
image intensity values within the circle. The maximum num-
ber, indicating the location with the highest intensity, is the
final output of the neural network for the given sample image.

The entire model was defined and trained using TensorFlow
2.0 on AWS EC2. For training, we used 10,000 training im-
ages, 1000 test images, and 50 epochs, and chose Adam for
optimization. The images are taken from the MNIST database.
Figure 1 shows the results of a trained neural network.
Figures 1(a) and 1(b) show the detector layer and the trained
phase mask. The general layout of the light locations is a hyper-
parameter. Figures 1(c) and 1(d) show the sample input and the
output of the neural network for the input. As can be seen,
the location corresponding to the “2” label has the highest
intensity.

Figure 2 shows the accuracy of the neural network versus the
number of training epochs. In order to test the efficacy of our
nonlinearity, we simulate a network without any nonlinearity
(linear model) as well as the one containing the nonlinear layer
(nonlinear model). As can be seen, in both cases, the accuracy
rises quickly during the first few epochs and reaches a steady
state. After 50 epochs, the accuracy is 74.4% for the linear
model and 84.4% for the nonlinear model, showing a
significant improvement. We emphasize that these accuracy
values are significantly lower than that of the state-of-the-art
ANNs, only because we have only one linear layer. Using multi-
ple linear layers, our model can reach ∼100% accuracy for
MNIST digits. However, multiple layers will be unfeasible
to experimentally probe in our lab because of the limited
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resource. Nevertheless, the increase in the classification accu-
racy due to the thermal atomic nonlinearity clearly shows that
the physical optical nonlinearity is suitable for implementing
an ANN.

4. EXPERIMENTAL RESULTS

A. Setup
Figure 3 shows the layout of our experimental setup in addition
to a photograph. The source of the monochromatic light is a
780-nm-wavelength laser (Toptica DL Pro), whose wavelength
is fine-tuned to be resonant with the 5S1∕2 → 5P3∕2 transition
of Fg � 3 85Rb atoms. We first expand the collimated beam

with a 1:6 telescope in order to illuminate the SLM (Holoeye
Pluto), the size of which is roughly 15.4 mm by 8.6 mm. A pair
of 150-mm-focal length lenses then form a relay, between
which an iris is placed to pick out the first-order diffracted
beam. The resulting light, which now encodes the product of
a handwritten digit and the trained phase mask, propagates for
100 mm before arriving at the front surface of a 72-mm-long
vapor cell (Thorlabs GC25075-RB). The vapor cell can be low-
ered or raised to easily add or remove the nonlinear layer from
the neural network. Furthermore, the vapor cell is wrapped in a
variac-controlled heater tape (Omega) for tuning the vapor
density via temperature control. During the experiment, the
temperature of the cell is maintained at 50°C. Finally, a single
100-mm-focal length lens is used to image the front surface
plane of the vapor cell onto a CCD camera (FLIR USB2).

B. Nonlinearity
Here we describe the calibration process used to derive the
nonlinear parameters for both simulation and experiment.
The nonlinear input–output curve (see Appendix A) can be
given by

I out � I in exp�−N sat∕�1� I in∕I sat��,

where I in and I out are input and output intensities, N sat is the
generalized atom density, and I sat is the generalized saturation
intensity. To determine the last two parameters, we varied the
laser intensity with a wave plate and a polarizer and measured
the output with and without the vapor cell. Because we are
imaging the entrance plane of the vapor cell, the output mea-
sured without the vapor cell can be taken as the input into the
vapor cell. From the curve fit, N sat and I sat were determined to
be 2.6 and 0.6 μW, respectively, which were then used for sim-
ulation in Section 3.

For experiment, it is very difficult to exactly implement the
simulated model of the neural network directly due to the at-
tenuation by many optical elements as well as the fact that the
vapor cell itself has a finite length on the order of many cen-
timeters. The latter presents a serious challenge, since the sim-
ulation assumed that the nonlinear effect took place in a single
plane, whereas in the experiment, the nonlinearity occurs over a
continuous distance such that a propagating image would be a
continuously changing attenuation.

A solution can be found if the intensity is measured not in
terms of watts but the pixel value of the CCD camera itself. The
parameters N sat and I sat then no longer refer to physical quan-
tities, but act as general fit parameters for the nonlinear input–
output curve. Figure 4 shows the plot of the average pixel value
without (x axis) and with (y axis) the vapor cell in place for a
sample image with varying overall intensity. The intensity range
was chosen to avoid saturation of the camera without having to
add an optical attenuator. Once the values of the fit parameters,
1.3 and 520, respectively, were determined, they were used to
train the neural network for our experimental results with
higher intensity. We emphasize that for the actual experiment,
we employ the whole dynamic range of the SLM, i.e., pixel
values ranging from 0 to 255.

Fig. 2. Accuracy versus epoch for the linear model (blue dot) and
the nonlinear model (red cross).

Fig. 1. Trained optical neural network (ONN). (a) The detector
layer determines the location, where the light from the individual dig-
its should be focused. The layout of the layer is a hyperparameter in
our training. Here, each label corresponds to one bright circle
(radius � 100 μm) located 1 mm from the center of the image.
The “0” label is on the positive x axis, and the rest of the labels
are located sequentially counterclockwise on a circle. (b) Trained phase
mask; (c) sample input image; (d) output of the neural network for the
sample input shown in (c). For training, the neural network calculates
the intensity at each label location and returns the highest-intensity
label as its prediction. All images have dimensions of 600 × 600 pixels,
which correspond to 4.8 × 4.8 mm.

Research Article Vol. 9, No. 4 / April 2021 / Photonics Research B131



C. Results
As described before, we trained a new neural network with
the nonlinear parameters that were derived directly from the
camera, using 10,000 training images and 1000 test images,
100 per digit, which necessitated the adjustment of the input
intensity in terms of pixel values rather than milliwatts. The
resulting simulation with the experimental parameters yielded
a similar-looking phase mask to that of the simulation with the
ideal parameters shown in Section 3. However, the predicted
accuracy dropped to 66.4% and 66.6% for the linear and
the nonlinear networks, respectively, and thus, there was virtu-
ally no difference between the two networks in terms of accu-
racy. While it is possible in theory to achieve the original
simulation regime by calibrating each optical element and rec-
onciling simulation and experiment with more advanced tech-
niques such as split-step nonlinear angular propagation [15],
the required experimental effort and computational resources
would be too great, and so we decided to proceed with the
experiment.

In our experiment, we used as input the same 1000 test im-
ages that were modified as outlined in Section 3. Because our

SLM is a phase-only modulator, it cannot directly display an
intensity-varying image or a complex field that is the product
of the image with a phase mask; hence, we resorted to
holography, which allows us to make the complex field in a
conjugate plane [16] using only phase control. For detection,
we calibrated the CCD camera for image magnification and
rotation with separate calibration images. First, we tested the
neural network that contained no phase mask. The overall ac-
curacy was 14.7% for the linear network and 14.2% for the
nonlinear network. As expected, without the phase mask, there
is no significant difference between the two networks, and the
accuracy is offset by a small bias near 10% (the baseline accu-
racy of random prediction).

Next, we repeated the test, this time incorporating the phase
mask via the SLM in the neural network. The overall accuracy
was measured to be 26.7% for the linear network and 33.0%
for the nonlinear network. We attribute the overall reduction in
accuracy compared to the simulation results to the imperfect
experimental system, including fixing the length between op-
tics, phase error in SLMs, and the finite length of the vapor cell.
However, it is surprising that the accuracy is greater with in-
corporation of the nonlinearity, whereas the simulation shows
similar performance with and without the nonlinearity. We
attribute this to the robustness of the nonlinear network to
the experimental noise. There is a large body of ongoing re-
search in the machine-learning community on the effect of
noise in training deep neural networks [17–19], and the exact
nature of the robustness of our nonlinear optical neural net-
work remains to be investigated. Table 1 summarizes all the
accuracy results for both simulation and experiment.

Fig. 4. Nonlinear function showing the input–output curve for the
incident intensity. The x axis is proportional to the input power, or the
average pixel valve on the CCD camera without the vapor cell. The y
axis is proportional to the output power, or the average pixel value on
the CCD camera with the vapor cell in place. Inset, zoom-in plot
showing the curve fit.

Fig. 3. Experimental setup. (a) Cartoon layout of the setup. The focal lengths of the lenses are: L1, 50 mm; L2, 300 mm; L3, 150 mm;
L4, 150 mm; L5, 100 mm. M indicates a flat mirror. (b) Photograph of the experiment.

Table 1. Summary of ONN Accuracy in Percentage

Linear
Network

Nonlinear
Network

Simulation with ideal parameters 74.2 84.2
Simulation with experimental
parameters

66.4 66.6

Experiment without phase mask 14.7 14.2
Experiment with phase mask 26.7 33.0
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We note that the simulated and experimentally measured
efficiencies are significantly lower than that of the state-of-
the-art neural network. However, we have only one layer in
our neural network, and we expect the accuracy to increase with
a larger number of layers. Currently, our experiment is limited
by available resources, i.e., a single SLM, which, while commer-
cially available, is a significant laboratory expenditure. On the
other hand, we note that creating multiple layers has several
technical challenges of its own, including optical loss in each
layer. The reported optical nonlinearity can be tunable by
changing the temperature of the atoms, and thus can be tuned
for each layer. Moreover, as we are using thermal atoms and we
do not rely on cold atoms, the setup is significantly simple.
However, optical regeneration techniques will be needed if
the depth of the network is too large [20]. Finally, an electronic
back end can be used with the optical front end to enhance the
classification accuracy. We emphasize that such an electronic
back end requires only one-time transduction and does
not add to the overall latency, as is needed for repeated signal
transduction.

D. Speed and Power Performance
Our reported optical ANN uses a commercial liquid crystal-
based SLM with 1 million pixels, each pixel with 8-bit preci-
sion. The refresh rate of the SLM is ∼100 Hz, making the
effective supported bit rate in the optical ANN as 800 Mbps.
However, using a grating light valve type of a mechanical SLM,
we can increase the data rate to ∼1 Tbps [21]. At that speed,
however, we need to ensure a faster detector, e.g., an event-
based camera to accommodate ∼μs-level detector response time
[22]. Power consumption of the reported optical ANN pri-
marily comes from the SLM, which is on the order of
∼10 W. However, as we implement only the inference, we
can use a fixed diffractive phase mask, reducing that energy
to zero. For using thermal atom-based nonlinearity, we do
not spend any extra energy on either active preparation or
maintenance of the nonlinearity. Additionally, the reported op-
tical ANN exploits the full potential of the parallelism offered
by FSO, and thus does not require any excess energy needed for
time/wavelength multiplexing. To actuate the nonlinearity, we
need a light intensity of ∼16 μW∕mm2, and the required op-
tical power will depend on the SLM pixel size and the optics
used to guide the light through the nonlinear thermal atomic
vapor. We estimate the average pixel size inside the atomic va-
por to be ∼100 μm × 100 μm, making the total required op-
tical power for a million pixels ∼160 mW. By reducing the
channel area to a diffraction-limited spot (∼1 μm × 1 μm), this
power can be reduced to ∼16 μW.

5. CONCLUSION

We have shown that an atomic vapor cell can perform a local
nonlinear activation in two dimensions, and consequently, a
fully optical ANN can be implemented for image recognition
of handwritten digits. Such a network can handle a large
amount of data in parallel. Furthermore, except for the input
and the output that are fed and detected by the SLM and the
CCD camera, respectively, all data processing occurs in the
time light takes to traverse the physical distance of the network.

Although the model accuracy of 33% is rather low, our proof-
of-concept demonstrates the feasibility of using a simple, off-
the-shelf atomic vapor cell as the source of fully parallel optical
nonlinearity. Along with another commercially available device,
the SLM, the vapor cell solves the enduring challenge of the
missing optical nonlinearity that fully exploits the intrinsic mas-
sive parallelism of free-space light in two dimensions. Our work
is a first step towards creating an all-optical neural network that
can handle a massive amount of data and surpass the perfor-
mance of an electronic neural network.

APPENDIX A: SATURABLE ABSORPTION

Saturable absorption is a general phenomenon that appears in
many different physical systems with discrete energy levels with
finite lifetimes. Here we consider a simple system of two-
level atoms; a detailed derivation can be found in several
resources [23].

Consider a beam of photons passing through a medium with
N atoms per unit volume. If the thickness of the medium isΔz,
then the number of atoms per unit area is given by NΔz. If we
now assign an absorption cross section σ to each atom, then
NσΔz is the fraction of the target area covered by the atoms.
It is also the probability that an incident photon will be ab-
sorbed by the atoms, or, in the case of many photons, the total
fraction of photons that are absorbed. The change in the beam
intensity is then ΔI∕I � −NσΔz, which, upon integration,
yields Beer’s law: I�z� � I0e−κz , where the absorption coeffi-
cient κ � Nσ.

If we assume that the atoms have two levels, the ground state
and the excited state, then the absorption is given by
κ � �Ng − Ne�σ. Imposing the conservation of atom number
�N total � Ng � Ne� and the conservation of energy
[�N g − N e�σI � NeAℏω] where the spontaneous decay rate
A � 1∕τ, we arrive at the steady-state population difference:
Ng − Ne � N total∕�1� I∕I s�, where we have defined the sat-
uration intensity I sat � ℏωA∕�2σ�.

Thus, the output intensity as a function of the input inten-
sity is given by Iout � I in exp�−N totalσL∕�1� I in∕I sat��, where
L is the effective interaction length of the vapor cell. We use
N sat � N totalσL and I sat as our nonlinear parameters. We note
that for the atomic vapor system, the variable N total can be con-
trolled by changing the temperature of the cell. Thus, the dem-
onstrated nonlinearity is tunable, which can be exploited for a
multilayer optical neural network, where the N sat value will be
gradually decreased to accommodate the signal loss in
each layer.
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