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Optimal condition to probe strong coupling of two-dimensional excitons
and zero-dimensional cavity modes
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The light-matter interaction associated with a two-dimensional excitonic transition coupled to a zero-
dimensional photonic cavity is fundamentally different from cavity-coupled localized excitations in quantum
dots or color centers, which have negligible spatial extent compared to the cavity-confined mode profile. We
provide a succinct expression for calculating the light-matter interaction of a two-dimensional optical transition
coupled to a zero-dimensional confined cavity mode. From this expression, we found there is an optimal spatial
extent of the excitonic transition that maximizes such an interaction strength due to the competition between
minimizing the excitonic envelope function area and maximizing the total integrated field. We also found that
at near zero exciton-cavity detuning, the direct transmission efficiency of a waveguide-integrated cavity can be
severely suppressed, which suggests performing experiments using a side-coupled cavity.
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I. INTRODUCTION

Realizing single-photon nonlinear optics in a scalable
platform could revolutionize both classical and quantum in-
formation science and engineering [1–4]. Cavity integrated
excitonic materials show great promise among the vari-
ous systems being explored to reach this strongly nonlinear
regime. In general, the light-matter interaction depends on the
dimensionality of both excitonic and photonic fields. Quan-
tum confinement of the excitonic wave function yields an
increased density of states, which increases the light-matter
interaction. This interaction can be further enhanced by inte-
grating the material into a wavelength-scale photonic cavity
for temporal and spatial confinement of the electromagnetic
field. Furthermore, nonlinearities derived from Coulomb in-
teractions among the charged particles are enhanced due to
strong photonic and electronic wave function confinement
[5–7], which holds promise for application of these systems
as analog quantum simulators [8].

To reach this advantageous nonlinear regime, the cavity
mode and the excitonic transition must be strongly coupled,
i.e., the coherent coupling strength between the two oscilla-
tors should be larger than the system losses. In this regime,
the cavity-confined photons and the excitons are hybridized
to create a new elementary excitation, known as a polari-
ton, whose properties crucially depend on the dimensionality
of the exciton and photon degrees of freedom. Strong cou-
pling and subsequent single photon nonlinear optics have
been demonstrated in self-assembled quantum dots coupled to
zero-dimensional (0D) cavity systems [9–12]. In a quantum
dot, the exciton is confined in all three dimensions, which
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is defined as a 0D exciton. Similarly, in a photonic crystal
defect cavity [13] or a fiber-distributed Bragg reflector (DBR)
cavity [14] light is confined at wavelength scale in all three
dimensions, making these systems 0D cavities. While such
0D polaritons can provide the strongest nonlinearity, arising
from the quantum anharmonicity induced by the 0D exci-
ton [12,15], practical limitations, such as limited range of
cavity tuning and the stochastic nature of the position and
wavelength of quantum dots, prevent the scalability of such a
platform. Another well-studied polaritonic system consists of
two-dimensional (2D) excitons in quantum wells integrated
with 2D cavities, such as a DBR cavity or nonlocal meta-
surfaces [16–18]. While many quantum optical effects have
been predicted in these 2D exciton-polariton systems [19,20],
the lack of excitonic wave function confinement in all three
dimensions precluded a clear observation of single photon
nonlinearity, i.e., reaching the regime of polariton blockade
under resonant excitation [21].

Recently, signatures of single photon nonlinearity have
been reported in a III-V quantum well system coupled to an
optically confined mode of a curved fiber DBR [22,23]. While
these works provide remarkable proof of concept demon-
strations with promising perspectives [24], the in situ tuning
advantage of a fiber-DBR cavity comes at the expense of a
larger mode volume as compared to a photonic crystal defect
cavity [25,26], as well as an unclear path for scaling to a
cavity array. We emphasize that, assuming strong coupling is
achieved, a small cavity mode volume is the primary figure of
merit for maximizing the optical nonlinearity [27]. As such,
on-chip 0D subwavelength mode volume cavities coupled to
a 2D excitonic transition can simultaneously provide a large
light-matter interaction and a clear path to a scalable architec-
ture. However, strong coupling between such an on-chip 0D
cavity mode and 2D exciton has not yet been demonstrated.
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A primary difficulty to achieve such an accomplishment is
the inevitable deterioration of quantum well excitons due to
etching, when inorganic semiconductor material platforms are
used. This problem can be alleviated by using atomically thin
van der Waals materials, such as transition metal dichalco-
genides (TMD), as they can be transferred on a prefabricated
photonic crystal cavity. However, even though these materials
have long been integrated with 0D on-chip photonic crystal
defect cavities [28,29], to date there has been no report on
light-matter strong coupling beyond the dispersive coupling
results observed recently at large exciton-cavity detunings
[30,31].

In this work, we theoretically analyze such a system to
elucidate the conditions for experimentally probing the strong
coupling regime between 2D excitons and the 0D cavity mode
of a subwavelength photonic nanocavity. More specifically,
we considered the neutral exciton in a monolayer TMD, such
as MoSe2, deposited on a silicon nitride, in-line photonic
crystal defect cavity as a model system to be quantitatively
analyzed. We have numerically calculated the light-matter
interaction strength depending on the specific near field profile
of the confined mode. We show that there is an optimal spatial
coverage of the 2D exciton in such a 0D cavity where the
light-matter interaction is maximized. Additionally, applying
an input-output approach to calculate the cavity transmission,
we show that due to the absorption from 2D material the cavity
transmission drops significantly for a resonant exciton-cavity
system. By exploiting side coupling between a waveguide and
the cavity containing the excitonic material, strong coupling
could be probed in a transmission configuration. The theoret-
ical estimate of the light-matter interaction and manifestation
of significant transmission suppression agree well with exper-
iments reported on this system [30].

II. THEORETICAL MODEL

The Hamiltonian describing the in-line, single-mode cavity
and the excitonic mode as two coupled oscillators is (in a
frame rotating at the frequency of an external driving laser)
[32,33]

HXC = h̄�XLâ†â + h̄�CLĉ†ĉ + h̄g(â†ĉ

+ ĉ†â) + ih̄
√

γ1(αĉ† + α∗ĉ), (1)

with a light-matter interaction strength g, where �XL = ωX −
ωL and �CL = ωC − ωL are the detunings of the excitonic
transition (ωX ) and cavity mode (ωC ) from the laser frequency
(ωL), respectively; â (ĉ) is the bosonic annihilation operator
for the exciton (cavity) mode. γ1 is the input coupling to the
cavity and |α|2 is the incident photon flux for a coherent,
classical cavity drive. We are only concerned with the exciton
mode with the same spatial wave function as the cavity mode
due to the limited dispersion of a 0D cavity [6,21]. Hence, we
neglect the in-plane momentum distribution of the 2D exciton
in our model.

We estimate the light-matter interaction strength g between
the 2D exciton and the 0D cavity by noting that the dielectric
function of monolayer MoSe2 can be modeled as a Lorentzian
oscillator ε(ω) = εb + A

ω2
X −ω2−iγX ω

[34], where εb = 26 is the
background dielectric constant of the TMD layer [35], which

FIG. 1. (a) Top-view pictorial representation of a photonic crys-
tal defect cavity embedded in line to a waveguide, coupled to a
quantum well supporting a two-dimensional excitonic transition.
Blue is the confining dielectric and orange is the quantum well. γ1,2

are the waveguide-coupled losses. Lx is the length of the integrated
quantum well. Ly is the width of the integrated quantum well. (b) Side
view of the waveguide. κ and γX are the intrinsic losses of the cavity
and exciton, respectively. Lz is the effective height of the integrated
quantum well. (c) Electric field intensity simulated at the center of
a silicon nitride nanobeam cavity by a finite-difference time-domain
electromagnetic solver at the cavity mode resonant frequency, show-
ing wavelength scale field confinement. The maximum field intensity
is seen in the center of the nanobeam.

results in a perturbative shift of the cavity resonance; A is an
“effective” oscillator strength having dimensions of a squared
energy, ωX is the energy of the excitonic transition (with
h̄ = 1), and γX is the total exciton loss rate (including both
radiative and nonradiative contributions). In the following, we
fix A = 0.4 eV2 as a representative value from experimental
reflectivity measurements [34]. By treating the monolayer
TMD as a delocalized semiconductor quantum well exciton
in a dielectric medium coupled to a confined optical mode of
the cavity a concise expression for the light-matter interaction
energy can be derived (Appendix A):

h̄g =
√

A

2

√
Lz

Leff
. (2)

A is the effective oscillator strength contained in the dielectric
constant, Lz is the thickness of the monolayer material, and
Leff is a length scale defined by the competition between min-
imizing the excitonic envelope function area and maximizing
the total integrated field:

Leff =
(

1

LxLy

∫ Lx

0
dx

∫ Ly

0
dy

[
E(2D)

norm,x(x, y)+E(2D)
norm,y(x, y)

])−2

.

(3)

Lx (Ly) is the length (width) of the integrated monolayer
material [Fig. 1(b)] and E(2D)

norm,x (E(2D)
norm,y) is the normalized

electromagnetic field in the x (y) direction.
While this formalism can be applied to any extended 2D

coherent media in confined cavity geometries, we illustrate
this result assuming parameters appropriate for a MoSe2

monolayer deposited on a silicon nitride in-line nanobeam
cavity, because such a system can be readily fabricated in
practice [30]. Using a finite difference time domain (FDTD)
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FIG. 2. Light-matter interaction for different lengths Lx of the
integrated quantum well with Ly fixed to the width of the waveguide.
The oscillations seen in the light-matter interaction originate from
the periodic variation of the electric field commensurate with the
lattice spacing of the nanobeam air holes. g/2π = 1.2389 THz is
the maximum value for this cavity design and oscillator strength. The
dotted line is a fit to the heuristic equation in the main text elucidating
the peak in the light-matter interaction for a cavity confinement
length of σ = 1.77μm.

electromagnetic solver (from Lumerical-Ansys), we calculate
the cavity field profile [Fig. 1(b)] to be used into Eq. (3)
with a resonance at ωC/2π = 395.777 THz (λC = 757 nm,
Appendix B). Taking the effective thickness of the mono-
layer material to be equal to the measured thickness, Lz ≡ 0.7
nm, we find a maximal value for the light-matter interaction
with monolayer length Lx = 4.31μm (Fig. 2). This result runs
counter to the result associated with the Dicke model, in
which a giant oscillator is expected to grow monotonically
with the number of oscillators (g ∝ √

Ng0) [36], which in this
case correlates to the area of monolayer MoSe2 assuming the

excitonic wave function is delocalized over the entire field
integration region. For a confined field in the cavity we would
then expect the light-matter interaction strength g to saturate
with the length of the monolayer material and not have a
nonmonotonic behavior as shown in Fig. 2. Note that we
experimentally observed a light-matter interaction commen-
surate with our theoretical estimate [30].

Heuristically, we can understand this optimal overlap be-
tween the 2D exciton envelope function and the cavity field
profile in terms of the light-matter interaction by recognizing
that the steady state electric field of the nanobeam cavity
has an approximately Gaussian envelope along the cavity
axis, with a width σ (units of length) modulated by a si-
nusoidal signal of the photonic lattice periodicity [37] [e.g.,
Fig. 1(c)]. Assuming the length of the coherent polarization
due to the delocalized excitonic wave function is the same
as the length of the cavity integration, Lx, substitution of a
Gaussian cavity field profile into Eq. (3) gives a light-matter
interaction strength of the form g ∝ 1√

Lx

∫ Lx/2
−Lx/2 e− 1

2 ( x
σ

)2
dx ∝

σ√
Lx

erf ( Lx

2
√

2σ
). The latter function gives a peak in the

light-matter interaction strength Lx ∼ 2.80σ , which roughly
corresponds to Lx = 2.44σ that is numerically calculated for
the designed in-line nanobeam cavity. For the sake of clarity
and completeness, we overlay this estimate on top of the
numerical simulation in Fig. 2.

We now discuss the experimental scheme allowing us
to probe these polaritons. Often, such light-matter coupled
systems are measured via incoherent photoluminescence.
However, coherent driving in the transmission configuration
is necessary in view of practical development of quantum
technology applications [38]. For the on-chip configuration,
the exciton-polariton modes are generally probed using a
two-sided cavity [39] [Fig. 1(a)]. An input grating is used to
send light to the coupled system and the transmitted light is
collected via an output grating [30]. Using the input-output
formalism [40] an analytic transmission function for the sys-
tem described by the Hamiltonian in Eq. (1) can be derived
(Appendix C):

T (ω) = γ1γ2[
ω − ωC − (ω−ωX )g2

(ω−ωX )2+γ 2
X

]2 + [
κ + 1

2 (γ1 + γ2) + γX g2

(ω−ωX )2+γ 2
X

]2 . (4)

We include intrinsic cavity losses κ , cavity coupling to the in-
put (output) waveguide γ1(γ2), and excitonic losses γX . In our
model system, the in-line nanobeam cavity is symmetrically
coupled to the waveguide (i.e., γ = γ1 = γ2).

The intrinsic cavity loss and cavity-waveguide coupling
can be inferred from the FDTD simulations. The designed
in-line nanobeam cavity has a loaded quality factor Qloaded =
11 924 and an intrinsic quality factor Qintrinsic = 25 480. The
intrinsic quality factor of the cavity is found by increasing
the number of Bragg mirror holes until the waveguide is
no longer coupled to the cavity and the simulated quality
factor approaches an asymptotic value. We note that, for
this particular cavity, we are choosing an on-substrate, sili-
con nitride, in-line, nanobeam cavity due to its mechanical

stability [26], hence the reduced quality factor compared to a
suspended nanobeam cavity. The decay rate of the cavity field
is κ = 1

2
ωC

Qintrinsic
= 2π × 7.77 GHz. Similarly, the decay rate of

the loaded cavity field is κ + γ = 1
2

ωC
Qloaded

= 2π × 16.6 GHz,
which gives a waveguide-coupled field decay rate γ = 2π ×
8.83 GHz. This results in an estimated maximum transmission
efficiency Tmax = ( γ

κ+γ
)2 = 0.28 [41].

To probe the system in the strong coupling regime we
need to calculate the transmission efficiency for a resonant
exciton-cavity system. The temperature-dependent excitonic
loss can be approximated using the Rudin equation γX (T ) =
1
2 [γ0 + c1T + c2

e�/kBT −1 ], where γ0 is the intrinsic linewidth, c1

includes exciton interactions with acoustic phonons, c2 in-
cludes exciton interactions with longitudinal-optical phonons,
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FIG. 3. (a) Transmission spectrum relative to Tmax [Trelative =
T (ω)/Tmax] at different exciton-cavity detunings �XC . �CL = ωC −
ωL is the laser detuning from the bare cavity resonance. For clar-
ity, the transmission spectrum are offset by 0.5 from the lower
to upper plots. (b) Transmission spectrum relative to Tmax at zero
exciton-cavity detuning. The solid line in panel (b) is the magnified
middle line of panel (a) corresponding to �XC = 0. Note the different
x-axis range. Parameters: κ/2π = 7.77 GHz, γ /2π = 8.83 GHz,
γX /2π = 566 GHz, and g/2π = 1.2389 THz.

and � is the average phonon energy [42]. We fix h̄γ0 =
4.3 meV, c1 = 91 μeVK−1, c2 = 15.6 meV, and � = 30 meV
as representative values for unencapsulated monolayer MoSe2

[43]. We assume γX = 2π × 566 GHz at the temperature T =
4.2 K, as a representative value for the excitonic linewidth in
the strong coupling regime.

With these values we calculate the transmission spec-
trum of the coupled exciton-cavity system [Fig. 3(a)]. At
large exciton-cavity detuning the transmission efficiency ap-
proaches the bare cavity value Tmax. At smaller detunings, the
dispersive cavity shift is noticeable with broadening of the
transmission peak. Near zero detuning, however, the intensity
of the transmission peak in the strong coupling regime is
several orders of magnitude smaller than the bare cavity trans-
mission [Fig. 3(b)]. Substituting the parameters, for example,
from Fig. 3 into Eq. (C16) we find the maximum transmission
efficiency with the integrated 2D exciton relative to the bare
cavity transmission maximum is only 0.098%. Thus a major
drawback of an in-line symmetric two-sided cavity is the
drastic suppression of transmission near zero exciton-cavity
detuning. Note that we experimentally observed a similar
reduction in cavity transmission in our exciton-cavity system
[30].

The drastic reduction in the transmission efficiency of an
in-line cavity primarily comes from the large excitonic loss
rate γX . To ensure an appreciable transmission efficiency,
the waveguide-cavity coupling rate (γ ) can be increased. But
this will reduce the quality factor of the cavity and reaching
the strong coupling regime may not be possible. The dif-
ficulty of demonstrating high transmission efficiency of the
cavity mode near zero exciton-cavity detuning stems from
the mismatch between the loss of the hybridized polariton
mode and waveguide-coupled loss [44,45]. This effect is

FIG. 4. (a) Top-view pictorial representation of a photonic crys-
tal defect cavity side coupled to a waveguide, coupled to a quantum
well supporting a two-dimensional excitonic transition. Blue is the
confining dielectric and orange is the quantum well. γSC is the
waveguide-coupled loss for the side-coupled cavity. (b) Side-coupled
transmission spectrum for increasing values of the waveguide-
coupled loss. Parameters: κ/2π = 7.77 GHz, γX /2π = 566 GHz,
and g/2π = 1.2389 THz.

similar to the condition of reaching critical coupling in a
waveguide-coupled microring resonator [46]. One way to
circumvent this loss in transmission will be to employ a
side-coupled waveguide-cavity system [47]. By engineering
the side-coupled, waveguide-cavity coupling rate (γSC) the
radiative loss of the polariton can be kept relatively low while
still maintaining sufficient waveguide coupling to observe po-
lariton modes in transmission.

In a side-coupled nanobeam cavity, by modifying the width
and the gap of the coupled waveguide to the nanobeam
cavity the waveguide-coupled loss can be engineered. Such
side-coupled geometry partially decouples the intrinsic cav-
ity quality factor and field profile from the transmission
properties of the cavity. We analyzed the performance of
such a side-coupled cavity and found that sufficient transmis-
sion contrast can be achieved in the strong coupling regime
[Appendix C, Fig. 4(a)]. Reaching critical coupling in the
side-coupled cavity design requires the waveguide-cavity cou-
pling rate to be the same as the polariton loss, which is
necessarily no longer in the strong coupling regime. How-
ever, in the under-coupled regime, by carefully choosing the
waveguide-cavity coupling rate we can achieve a measurable
transmission contrast, as we verified numerically [Fig. 4(b)].
The side-coupled, waveguide-cavity coupling rate (γSC)
essentially provides an additional degree of freedom for cavity
design that is absent in in-line cavities.
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III. DISCUSSION

We have estimated an optimal length of monolayer MoSe2

for the integration onto a nanobeam cavity. The successful
study of polariton physics in this material platform will likely
require ex situ etching due to the size of the monolayer and
positional accuracy [48]. Despite the improved cooperativity
(C = g2

γX (κ+γ ) ) found by maximizing the light-matter interac-
tion, the small transmission efficiency remains a challenge to
experimentally probe the strong coupling regime [30]. This
low transmission efficiency may be avoided by decoupling the
waveguide-coupled loss from the intrinsic cavity loss, using a
side-coupled nanobeam or ring resonator [41,47]. This allows
for an extra degree of freedom to increase the waveguide-
coupled loss at a similar rate to that of the cavity broadening
from the perturbing monolayer MoSe2. The limiting factor in
this system is the linewidth of the neutral exciton in monolayer
MoSe2. Hexagonal boron nitride encapsulation is a means
to narrow the linewidth by modifying the dielectric envi-
ronment and reducing sample inhomogeneity [49]. However,
experiment may be better served by pursuing two-dimensional
excitonic transitions with intrinsically narrow linewidths [50].
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APPENDIX A: LIGHT-MATTER INTERACTION

The light-matter interaction in the dipole approximation for
an excitonic transition in a quantum well (QW) can be written
[6,32,51,52]

h̄g =
(

h̄2e2

4ε0m0
fxy

)1/2 ∫
�

dx dy d̂ · E2D
norm(x, y)Fexc(x, y),

(A1)

where h̄ is the reduced Planck constant, e is the charge of
an electron, εo is the vacuum permittivity, fxy is an oscillator
strength per unit area, m0 is the free electron mass, d̂ is a unit
vector pointing primarily in the plane of the quantum well,
E2D

norm is the normalized electric field at the surface of the
nanobeam cavity, and Fexc is the normalized exciton envelope
function. The integration is performed over the whole cavity
region.

We choose to normalize the electric field such that
E2D

norm(x, y) = 1√
N E(x, y, zQW ) and N = ∫

ε(r)|E(r)|2. zQW

is the z coordinate of the 2D exciton and E(x, y, z) is the
electric field calculated by a FDTD electromagnetic solver at
the cavity mode resonant frequency. The normalized exciton
envelope function is defined as Fexc = 1/

√
S, where S is the

effective area of the excitonic transition, which we take to
be the physical area of the monolayer material S = LxLy,
assuming the excitonic wave function is delocalized over the
whole monolayer area. These definitions lead to the effective
length scale of Eq. (3).

An equivalent expression for the dielectric function of a
quantum well is [53]

ε(ω) = εb

(
1 + E2

L − E2
X

E2
X − (h̄ω)2 − ih̄2γX ω

)
(A2)

� εb

(
1 + 2ELT EX

E2
X − (h̄ω)2 − ih̄2γX ω

)
, (A3)

where ELT = h̄2e2/(2ε0εbm0EX Lz ) is the longitudinal-
transverse splitting. Lz is an effective thickness that accounts
for the finite penetration of the exciton envelope function into
the barriers of the quantum well. The oscillator strength per
unit area can then be determined from the oscillator strength
measured from reflectivity measurements ( fxy = ε0m0Lz

h̄2e2 A,
where A is defined in the main text as the effective oscillator
strength in the Lorentz oscillator expression) [34]. The
compact expression for the light-matter interaction in Eq. (2)
follows from substitution of this result into Eq. (A1) with the
definition of Leff .

APPENDIX B: CAVITY EXAMPLE

A photonic crystal nanobeam cavity is chosen for its large
quality factor, small mode volume, and high on-resonance
transmission efficiency [37]. We emphasize that the formalism
presented in this paper can be used for any other cavities.
However, to calculate the light-matter interaction strength we
need to use the cavity field profile of a specific cavity de-
sign. The one-dimensional photonic crystal defect cavity, also
known as a nanobeam cavity, is made of a twaveguide = 220
nm thick and wwaveguide = 779 nm wide silicon nitride film
on silicon oxide substrate. From the center of the nanobeam,
where the light is confined, there are 10 tapering holes and 20
Bragg mirror holes. All of the holes are elliptical with a minor
axis radius fixed to 40 nm. The tapering holes begin with a
178 nm major axis diameter and a 215 nm center-to-center dis-
tance. The tapering region is quadratically tapered to a 121 nm
major axis radius and a 233 nm center-to-center distance. The
Bragg mirror region has a major axis radius fixed to 121 nm
and a 233 nm center-to-center distance. The performance of
the nanobeam cavity was optimized using Lumerical’s finite-
difference time-domain (FDTD) electromagnetic solver. The
dimensions are identical to the cavity found in an experimen-
tal dispersive coupling result [30].

APPENDIX C: INPUT-OUTPUT THEORY

Following the input-output theory of Collett and Gardiner
[39], for a single-mode, in-line cavity the quantum Langevin
equations describing the internal cavity and excitonic modes
with a single external driving field are

dĉ

dt
= − i

h̄
[ĉ, ĤXC] − γ1

2
ĉ − γ2

2
ĉ + √

γ1ĉin, (C1)

dâ

dt
= − i

h̄
[â, ĤXC]. (C2)

ĤXC = h̄�̃XLâ†â + h̄�̃CLĉ†ĉ + h̄g(â†ĉ + ĉ†â) is the Hamilto-
nian described in Eq. (1),except �̃CL = (ωC − ωL ) − iκ and
�̃XL = (ωX − ωL ) − iγX are the detunings and intrinsic radia-
tive loss of the resonator mode (ωC, κ) and excitonic transition
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(ωX , γX ) from the laser frequency (ωL), respectively. γ1,2 are
the cavity damping constants for the two sides of the cavity.
ĉin is the external driving field coupled to the cavity through
γ1. The transmitted field ĉout is coupled to the cavity via γ2, as
described by the equation

ĉout = √
γ2ĉ. (C3)

Inserting Eq. (1) into Eq. (C1) and Eq. (C2), and then comput-
ing the commutator gives

dĉ

dt
= −iω̃CLĉ − igâ − γ1

2
ĉ − γ2

2
ĉ + √

γ1ĉin + √
γ1α,

(C4)

dâ

dt
= −iω̃XLâ − igĉ. (C5)

In the frequency domain the internal mode operator is
taken to be

c̃(ω) = 1√
2π

∫ ∞

−∞
eiωt ĉ(t )dt (C6)

and the excitonic mode operator is

ã(ω) = 1√
2π

∫ ∞

−∞
eiωt â(t )dt . (C7)

Equations (C4) and (C5) in the frequency domain are then

−iωc̃ = −iω̃Cc̃ − ig̃a − γ1

2
c̃ − γ2

2
c̃ + √

γ1 c̃in, (C8)

−iωã = −iω̃X ã − ig̃c. (C9)

For observations of the vacuum Rabi splitting we assume a
weak incident field with α → 0. Equation (C9) can be solved
for ã in terms of c̃. This result can be substituted into Eq. (C8),
which can then be solved for c̃ in terms of c̃in. Finally, this
result can be substituted into Eq. (C3). The transmission spec-
trum in the frequency domain for an in-line cavity is then

T (ω) =
∣∣∣ c̃out

c̃in

∣∣∣2

(C10)

=
∣∣∣∣∣

√
γ1γ2

−i(ω − ω̃C ) + 1
2 (γ1 + γ2) + g2

−i(ω−ω̃X )

∣∣∣∣∣
2

. (C11)

Collecting real and imaginary components of the expression
we have

T (ω) =
∣∣∣∣∣∣

√
γ1γ2

−i
[
(ω − ωC ) − (ω−ωX )g2

(ω−ωX )2+γ 2
X

] + [
1
2 (γ1 + γ2) + κ + γX g2

(ω−ωX )2+γ 2
X

]
∣∣∣∣∣∣
2

. (C12)

The transmitted spectrum is then

T (ω) = γ1γ2[
ω − ωC − (ω−ωX )g2

(ω−ωX )2+γ 2
X

]2 + [
κ + 1

2 (γ1 + γ2) + γX g2

(ω−ωX )2+γ 2
X

]2 . (C13)

This is the result reported in Eq. (4). For an in-line resonator symmetrically coupled to the waveguide (γ = γ1 = γ2), the
transmitted spectrum of the exciton-resonator system reduces to

T (ω) = γ 2[
ω − ωC − (ω−ωX )g2

(ω−ωX )2+γ 2
X

]2 + [
κ + γ + γX g2

(ω−ωX )2+γ 2
X

]2 . (C14)

The minima for Eq. (C14) in the strong coupling regime at
zero exciton-cavity detuning (setting ω = ωC = ωX ) gives a
transmission of

T =
(

γ

κ + γ

)2 1

(1 + C)2 , (C15)

where we define the cooperativity as C ≡ g2

γX (κ+γ ) , which ef-
fectively quantifies the visibility of the polariton modes. In

the absence of an optical transition this reduces to the Tmax

discussed in the main article.
At zero exciton-cavity detuning (ωC = ωX ) by setting the

derivative of Eq. (C14) equal to zero ( dT
dω

= 0) we find max-

ima at ω± = ωC ±
√

C′g2 − γ 2
X associated with normal mode

splitting in the strong coupling regime. Substituting ω± into
Eq. (C14), the peaks have an analytic expression

T (ω±) = γ 2C′

g2(C′ − 1)2 + [(κ + γ )2 − γ 2
X ]C′ + 2γX [(κ + γ ) + γX ]

, (C16)

where we define C′ =
√

1 + 2
C [1 + γX /(κ + γ )].
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For a single-mode, side-coupled resonator the quan-
tum Langevin equations describing the internal cavity and
excitonic modes with a single external driving field
are [54,55]

dĉ

dt
= − i

h̄
[ĉ, ĤXC] − i

√
γSCĉin, (C17)

dâ

dt
= − i

h̄
[â, ĤXC]. (C18)

The transmitted field ĉout is coupled to the resonator via γSC ,
as described by the equation

ĉout = ĉin − i
√

γSCĉ. (C19)

The transmission spectrum for the side-coupled cavity can
then be similarly derived to be

T (ω) =
∣∣∣ c̃out

c̃in

∣∣∣2

=
∣∣∣∣1 − iγSC (ω − ω̃X )

(ω − ω̃C )(ω − ω̃X ) − g2

∣∣∣∣2

. (C20)

Here, ω̃C = ωC − i(κ + γSC ) and γSC is the coupling rate be-
tween the waveguide and the cavity.
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