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Sub-wavelength diffractive optics, commonly known as meta-optics, present a complex

numerical simulation challenge, due to their multi-scale nature. The behavior of constituent

sub-wavelength scatterers, or meta-atoms, needs to be modeled by full-wave electro-

magnetic simulations, whereas the whole meta-optical system can be modeled using ray/

Fourier optics. Most simulation techniques for large-scale meta-optics rely on the local phase

approximation (LPA), where the coupling between dissimilar meta-atoms is neglected. Here

we introduce a physics-informed neural network, coupled with the overlapping boundary

method, which can efficiently model the meta-optics while still incorporating all of the

coupling between meta-atoms. We demonstrate the efficacy of our technique by designing

1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed

under LPA. We experimentally validated the maximum intensity improvement (up to 53%) of

the inverse-designed meta-lens. Our reported method can design large aperture

( ~ 104− 105λ) meta-optics in a reasonable time (approximately 15 minutes on a graphics

processing unit) without relying on the LPA.
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In the age of silicon computing, numerical simulations are at
the heart of understanding and designing physical systems.
For many cases, analytical solutions to complex device geo-

metries are intractable to compute, or simply do not exist. From
extremely large systems like rockets1 to ultra-small nanophotonic
devices2, numerical simulations provide scientists and engineers
with the necessary tools to design nonintuitive structures. In
electromagnetics, direct solvers, including the finite difference
time domain (FDTD)3 and the finite difference frequency domain
(FDFD)4,5 simulators, are the usual choices when dealing with
heterogeneous structures with subwavelength features that
require a high degree of numerical accuracy. Most commonly,
electromagnetic simulation tools serve to validate the qualitative
designs created by engineers based on prior knowledge and
intuition. In recent years, the field of nanophotonics has incor-
porated a new paradigm of computer-aided device design, where
a device’s performance is summarized by a quantitative figure of
merit (FOM) that is optimized over. This method involves run-
ning a forward numerical simulation, computing the FOM, and
iteratively modifying the device’s geometry based on an optimi-
zation algorithm to reach the desired FOM. Such optimization
methods, often termed as inverse design, have already been used
to create multi-functional and efficient nanophotonic
structures2,6–15. However, electromagnetic simulators suffer from
a computational resource problem when the device dimension
becomes large (≳103λ), where λ is the device’s operating wave-
length. As most electromagnetic simulations are performed over a
sub-wavelength grid size, with increased size, the number of input
variable becomes prohibitively large, making the simulation slow
and memory extensive. The limitation of such forward electro-
magnetic simulators becomes even more severe for inverse
design, where many such forward simulations are needed.

Sub-wavelength diffractive optics, also known as meta-optics,
present an important test-bed for these problems: the constituent
elements of the meta-optics, i.e. meta-atoms, are sub-wavelength,
but the dimensions of the whole meta-optics are on the order of
~103λ− 105λ. Thus the underlying physics of each scatterer has
to be modelled using full-wave electromagnetic simulation, but
the whole meta-optical system needs to be simulated using ray or
wave optics. Such multiscale electromagnetic simulators invari-
ably rely on approximations, the most common of which is the
local phase approximation (LPA): the scattering in any small
region is taken to be the same as the scattering from a periodic
surface9. This approximation allows the simulation of each
scatterer in a periodic array, abstracting out the electromagnetic
response as a simple phase shift. While this significantly reduces
the computational complexity of simulating a meta-optic, this
approximation fails to consider the coupling of each scatterer
with their dissimilar neighbors. In fact, it has already been shown
that meta-optical lenses designed under LPA have suboptimal
efficiencies16, especially when the numerical aperture is large. The
LPA becomes even more inaccurate when the material used to
create the meta-lens has low index, such as SiN17. We note that,
while a full FDTD coupled with adjoint optimization has been
used to design a meta-optic without relying on LPA, their size has
been limited to only ~100λ18. LPA can also be bypassed using
Mie scattering approaches19, which however limits the shape of
scatterers.

To address the computational bottleneck of large-area inverse
design, here we introduce a physics-informed neural network
(PINN), to model super-cell subsections of a larger
metasurface20–22 which in conjunction with the overlapping
boundary method23–27, can replace a traditional FDTD/ FDFD
solver to predict the electric field distribution for a given dielectric
distribution. PINNs and other model-based deep learning archi-
tectures have already been used in modeling physical systems28.

We also note that a large number of works already used artificial
neural networks to predict spectral responses of meta-optics of
varying scatterer geometries25,29–36. However, these works used
largely periodic structures for which LPA is accurate. We present
a solution via PINNs37,38 for lenses and devices with spatially
varying scatterer geometries, where it is necessary to model the
whole electric field from several scatterers and their neighbors.
The use of PINNs to accurately model the electromagnetic scat-
tering beyond the LPA is the main contribution of this work.
PINNs solve partial differential equations (PDEs) by minimizing
a loss function constructed from the PDE itself. This loss function
is generally some norm of the residual37 or an energy function
derived from the PDE39. PINNs have already seen wide usage in
the field of fluid mechanics40–42, biology43, and solving stochastic
PDEs44. In electromagnetic inverse problems, PINNs have also
been employed to design meta-optics and nanophotonic
devices45,46. These works, however, did not clearly demonstrate a
simulation speedup, and are limited to the inverse design of only
very small devices. We also note that pre-trained PINNs have
been used to design small gratings47; however their methodology
is limited to small gratings that deflect light fields to specific
angles, and thus cannot be readily used for the inverse design of
arbitrary meta-optics or a meta-lens.

In our work, we train PINNs to predict the electric fields from
a parameterized set of dielectric meta-atoms corresponding to
rectangular pillars. We then use this as a surrogate model to
design cylindrical meta-lenses operating in the visible with a
diameter of 1 mm (~1500λ). Large area meta-optics are simulated
by partitioning the simulation region into groups of 11 meta-
atoms, with the outermost meta-atoms overlapping. After simu-
lation, the fields are stitched together. Our PINNs do not require
a training data set. They are trained by randomly generating
distributions of dielectric meta-atoms ϵ, feeding them into a
neural network NN, and minimizing the residual of the linear
Maxwell PDE operator

AMaxwellðϵÞNNðϵÞ � b
�� ��

1 ð1Þ

over the neural network training parameters. This means our
PINNs are trained without ever invoking a forward numerical
simulation of Maxwell’s equations during the training process.
Numerical simulations are invoked only to test the neural net-
work performance (see next section, Supplementary Note 6, and
Supplementary Fig. 5). A similar data-free approach has been
applied to deep-tissue microscopy48, however inverse design was
not demonstrated. Once trained, this method can calculate the
full electromagnetic field response from a 1 mm diameter
cylindrical meta-lens at ~630nm in approximately 3 seconds on a
graphics processing unit (GPU). Furthermore, we demonstrate an
experimental improvement (over 50%) of the maximum intensity
of cylindrical metalenses over their forward designed hyperboloid
counterparts, signifying the improvement over using LPA. We
note that the reported method is robust enough to handle even
larger meta-optics, with simulation time scaling only linearly with
the aperture of the cylindrical lens (see Supplementary Note 9).

Methods
Deep neural network proxy to Maxwell’s equations. Our pro-
blem statement is summarized in Fig. 1c. The monochromatic
electromagnetic scattering equation for an inhomogeneous,
nonmagnetic material is given by:

∇ ´∇ ´ EðxÞ � ω2ϵðxÞEðxÞ ¼ iωJ ðxÞ: ð2Þ

In the 2D case, assuming out of plane polarization ð0; 0; EzÞ, and
the double curl vector identity,∇ ×∇ ×=∇ (∇ ⋅ )−∇2 we can
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simplify Eq. (2) to:

∇2EzðxÞ þ ω2ϵðxÞEzðxÞ ¼ �iωJ z ð3Þ

where Ez and J z are scalar fields. Equation (3) is defined over all
space, with boundary conditions at ∣x∣→∞. To simulate this
equation, we discretize it on a Yee grid3 by replacing the∇
operator with a matrix, and treating the field EzðxÞ and current
J z as vectors E and J at discrete values of x. Similarly, we treat the
dielectric distribution ϵ(x) as a diagonal matrix ε. To truncate the
simulation to a finite domain, we use perfectly matched boundary
layers (PML), by making the transformation on the partial deri-
vative operators ∂

∂x ! 1
1þiσðxÞω

∂
∂x. Making these substitutions, Eq. (3)

becomes:

Dh
xD

e
x þ Dh

yD
e
y þ ω2ε

h i
E ¼ �iωJ ð4Þ

with matrices Dh
x;D

e
x;D

h
y ;D

e
y being the matrix representations of

corresponding derivative operators on a Yee grid with incorpo-
rated PML boundaries. See Supplementary Note 5 and Supple-
mentary Fig. 4 for a more detailed description of the matrices.
These matrices were extracted from a modified version of the
package angler49 with constants c, ϵ, μ set to 1 and the length scale
set to μm. To build a neural network proxy to solve Eq. (4), we
employ a PINN (Fig. 1a and b). PINNs generally use the coor-
dinates of the computational grid as the input to the neural
network, and then minimize the residual of the physical equations
by approximating the target quantity being solved for with a
neural network. This approach is slow since it effectively func-
tions as an iterative solver re-parameterized over neural network
weights and biases. It also required retraining the neural network
for all different dielectric distributions. Our approach is to build a
proxy solver that predicts the field E from a dielectric distribution
ε. We pretrain the PINN to predict fields from inputs ε before
optimizing our meta-lenses. The minimization problem to train

the PINN becomes:

min
θ

f ðε; θÞ

where f ðε; θÞ ¼ Dh
xD

e
x þ Dh

yD
e
y þ ω2ε

h i
NNðε; θÞ þ iωJ

���
���
1

ð5Þ
with NN(ε; θ) being the output field from the PINN, and ∣∣ ⋅ ∣∣1 is
the vector l1 norm. Here θ refers to the weights and biases of the
neural network NN. A lower physics informed loss indicates that
the neural network is actually satisfying the PDE, and thus pre-
dicting the field more accurately. We re-emphasize that there is
no data term in f(ϵ; θ), which simplifies the neural network
training process. Furthermore, we believe that it mitigates the
accumulation of error in the gradients during the inverse design
process observed by Chen et. al.47. Figure 1 outlines the general
strategy for building the proxy model. During each epoch, 10
(batch size) dielectric distributions consisting of rectangular pil-
lars of height h= 0.6 μm with dielectric constant 4 (corre-
sponding to SiN), are generated from 11 random pillar half-
widths per batch. The operation wavelength is λ= 0.633 μm. The
neural network architecture chosen is a UNET, shown in Fig. 1a
and b, due to previously reported good performance with scat-
tering problems47. The model is trained for 5 × 105 epochs using
the ADAM optimizer50 with a learning rate set to 5 × 10−4. The
final residual of the fields predicted by the neural network are of
the order of ~0.5, compared to the numerical residual produced
by FDFD which is on the order of 10−16. Although there is a large
difference, in the next section we show that this still produces a
simulator which is capable of outperforming the LPA when
optimizing the efficiency of a metalens. Figure 2a shows an
example of a field predicted from a random set of pillars by the
neural network, by a 2D FDFD code, and their difference,
showing good qualitative match. A more quantitative measure of
the errors is shown in Fig. 2b, where we show the point-wise error
probability density functions for the relative error between the
complex fields predicted by FDFD and that predicted by the
neural network and the field predicted under LPA, and the
absolute error between pillar-wise average transmission

Fig. 1 Problem outline. a Neural network schematic. (For a more detailed schematic see Supplementary Fig. 10). ε distributions of 11 pillar meta-optics are
meshed by randomly generating sets of pillar half-widths of height h= 0.6μm with a dielectric constant 4 corresponding to SiN. The background medium is
air. The loss function is the ∣∣ ⋅ ∣∣1 norm of the residual of Eq. (2). b Neural network architecture. Encoder layers are down-sampled by a maxpool operation
with a 2 × 2 kernel. The decoder part of the network is up-sampled by the Conv2DTranspose operation with a 2 × 2 kernel. c Render of the system under
optimization. A current J is incident on a cylindrical metalens with dielectric distribution ε, with output response E.
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coefficients. See Supplementary Note 3 for a more detailed
description of the pillar wise transmission coefficient error. The
relative error is expressed as:

Eapprox � EFDFD

���
���
2

2

EFDFD

�� ��2
2

: ð6Þ

For the PINN, Eapprox is the field predicted from a set of 11 pillars.
For the LPA, Eapprox is fields predicted from the same set of
pillars, and then stitched together over the same region. See
Supplementary Fig. 2 for a visual explanation. The mean expected
relative error for the neural network is μ= 0.21 with a standard
deviation of σ= 0.103. When using the LPA over the same
region, we get a mean relative error of μ= 1.01 with a standard
deviation of 0.411. Thus, based on the relative field error, our
method is 4.8 × more accurate than the LPA. For the pillar-wise
transmission coefficient error, we get an expected error of
μ= 0.051 for the neural network with a standard deviation of
σ= 0.033 and for the LPA method we get an expected error of
μ= 0.38 with a standard deviation of 0.14. Thus, based on the
transmission coefficient error, our method is 7.2 ×more accurate
than the LPA.

Device optimization. The optimization process based on auto-
matic differentiation functionality of PyTorch for large area meta-
optics is outlined in Fig. 3. The forward problem is solved via a
pre-trained PINN. Since the input into the neural net is a meshed
grid of pillars, a differentiable map from pillar half-widths (3a.) to
meshed geometries (3b) must be generated. This is achieved by
generating Gaussian functions centered around pillar centers,
with standard deviations of pillar half-widths in the x dimension,
and pillar height in the y dimension, and then using a modified

softmax function to transform the Gaussians into rectangles with
slightly rounded edges, making them differentiable via automatic
differentiation (see Supplementary Note 4 and Supplementary
Fig. 3). The meshed structures are fed into two separate neural
networks that have been pre-trained to predict the complex
electric field (3c.). The fields are then stitched together with
regions of the outer half-widths overlapping. The total field is
then propagated using the angular spectrum method (3d). The
propagated field is used to calculate the FOM f (3e.)from Eq. (5).
We use automatic differentiation to compute the gradients of the
FOM with respect to the input half-widths ∇

r!f , and iteratively

update them with the ADAM optimizer50.

Results
We used the PINN surrogate model to optimize 9 different lenses,
all with 1 mm aperture, with focal lengths ranging from 250 to
1500 μm in increments of 250 μm. The minimum feature size is
set to 75 nm, to ensure fabricability. To compare our optimization
approach, we also generated lenses according to the hyperboloid
phase equation:

ϕðx; yÞ ¼ 2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ F2

p
� F

� �
ð7Þ

The phase is implemented under LPA using SiN (refractive
index 2), a wavelength of 0.633μm, and periodicity of
p= 0.443 μm (see Supplementary Fig. 9). We then optimize the
lens employing our PINN to increase the intensity at the focal
spot, i.e., the FOM is given by:

f ¼ jEðx ¼ 0; z ¼ FÞj2 ð8Þ
Figure 4a and b show the intensity profile of a forward designed
and optimized lens with F= 500 μm focal length. Figure 4c shows
the normalized intensity slice at the focal spot of both lenses. As

Fig. 2 Neural network performance analysis. a An example field. (left) is the absolute value of the ground truth finite difference frequency domain (FDFD)
simulated field, (middle) difference between the true value of the field and the field produced by using the local phase approximation (LPA), and (right) is
the absolute difference between the neural network field and the FDFD field. b Comparison between the performance of the proposed neural network and
LPA methods. (left) Shows the relative error between FDFD predicted fields and the fields predicted by LPA. (right) Error comparisons between the
transmission coefficients predicted by LPA and the neural net.
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seen in Fig. 4d the maximum intensities at the focal spots
improve in every case. Figure 4e shows that the efficiency
improves in all except for the lens with the highest NA. We also
find a trend that the improvement in the maximum intensity of
the inverse-designed meta-lens over the forward-design meta-lens
increases with increasing NA. As with higher NA, the phase
gradient becomes larger, we expect the LPA to be a worse
approximation. Interpreting the efficiency improvement is more
convoluted. We defined the efficiency as the ratio of the light
energy inside a circle of radius of three times the full width half
maximum (FWHM) at the focal spot over the total energy in the
focal plane. With increasing NA, the FWHM decreases, making
the efficiency improvement lower with increased NA. For the
highest NA, the FWHM of the inverse-designed meta-lens is

significantly lower than the forward-designed meta-lens, making
the efficiency lower.

We validated our designs by fabricating and experimentally
testing the meta-lenses using a microscope (details of fabrication
and characterization in Supplementary Note 1.1 and Supple-
mentary Note 1.2). Figure 5 shows an example of the inverse
optimized device. Figure 5a–c shows the scanning electron
micrographs (SEMs) of the fabricated optimized lens with focal
length F= 500μm. Figure 5d shows the distribution of the
dielectric pillar half-widths of the same forward and optimized
lens. signifying the two designs are very different. Figure 5e shows
the focal spot intensities of the lenses integrated over a r= 3 ×
FWHM region at the focal spot, which yields a quantitative value
to compare the lens efficiency51 among different devices.

Fig. 3 Optimization strategy of 2D meta-optics with physics informed neural networks (PINNs). a We start with a vector, which contains a list of all
pillar half-widths, characterizing the meta-optic. These half-widths are then batched into groups of 11 with an overlap of 1 pillar on each side (see
Supplementary Note 2 and Supplementary Fig. 1 for notes on the computational domain set up). The choice of 11 pillars was made based on the GPU
memory required to train the PINN. b The half-widths are meshed into dielectric distributions which get fed into the neural network. c The neural network
predicts patches of fields which are then stitched together, and d propagated via the angular spectrum method. e The objective function is formed from the
resulting field, and backpropagated using PyTorch’s automatic differentiation functionality to update the initial radius distribution.

Fig. 4 Efficiency and intensity sweeps of forward designed lenses and optimized lenses. a Focal spot intensity profile of a forward designed lens with
focal length F= 500μm. b Focal spot intensity profile of an optimized lens. c Slices of intensity profiles for both lenses. The intensity was normalized such
that the maximum intensity of the forward designed lens is 1. The theoretical performance improvement is ~3%. d Maximum intensity at the focal spot vs
lens numerical aperture (NA). Intensities are normalized such that the maximum of the largest forward designed intensity is set to 1. e Theoretically
computed efficiencies of the lenses vs NA. The solid lines are visual aids for the trend and do not correspond to a theoretical prediction.
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Figure 5f plots the maximum intensity plot as a function of the
lens NA. For optimized lenses with NA > 0.44, we see
improvements of more than 25%, with a maximum improvement
of 53% for the NA = 0.9 lens. The experimentally determined
intensity integral, which is analogous to the efficiency of a lens, on
has improvements of more than 18% in all cases except for the
NA=0.9 case. This is because the FWHM of the optimized lens at
the NA=0.9 case is actually smaller than the FWHM of the
forward designed lens, leading to a smaller integration area when
computing the energy. We note that, while a quantitative match
between the experiment and design is not obtained, we did
observe a similar trend in terms of improved intensity and effi-
ciency as predicted by the theory. Fig. 5g shows experimentally
measured field profiles of the forward designed F= 500μm meta-
lens. Figure 5h shows the same for an optimized lens. Figure 5i is
the slice of the focal spot intensity profile along the z= F plane. In
all these figures, the intensity is normalized such that the max-
imum intensity of the forward designed lens is 1.

Discussion
We have developed a PINN to use as a proxy surrogate model for
simulating the full Maxwell’s equations to design dielectric meta-
optics. We used the PINN to optimize pillar half-widths to max-
imize the intensity at the focal spot of 1 mm aperture cylindrical
meta-lenses at 633nm. We demonstrated experimental improve-
ments of the maximum intensity of the lenses up to 53%. We also
want to note that this method was useful for the inverse design of
extended depth of focus lenses10 (see Supplementary Note 7 and
Supplementary Fig. 6). This model did not use the LPA, but
simulated meta-atoms by splitting up the device into chunks with
overlapping boundaries, and stitching the chunks together to
approximate the full field response. We emphasize that FDFD
simulations were never carried out to train the PINN, and we only
minimized the residual of the PDE itself to train the network. The
PINN training took approximately 2 hours on our machine. In our
studies, this method provided approximately a 3-5x speedup (see
Supplementary Figure 8 and Supplementary Table 1) over con-
ventional FDFD with overlapping boundary conditions, and was

much simpler to use as a forward simulator for optimization
problems since it can be used as a simple map from ϵ to E-field
with gradients computed by automatic differentiation.

We would also like to note that the theoretical intensity and
efficiency improvements are smaller than their experimental
counterparts. While we do not have a clear explanation for this
discrepancy, the theoretical and experimental trends in lens
improvement are similar. One hypothesis could be that the the
inverse designed lenses may be more tolerant to fabrication
imperfections. However, randomly changing the scatterers in our
meta-optics by 10% did not give a similar enhancement. As such
this aspect of the quantitative match between experiment and
theory remains an open problem and further studies will be
needed. We would like to point out however the importance of
experimentally verifying inverse design methodologies, since in
our studies we used open source codes that produce reasonable
looking results, but are not experimentally accurate (see Supple-
mentary Note 8 and Supplementary Fig. 7). The inverse design
solution we introduced in this paper can be integrated into var-
ious computationally intensive tasks which require mate-optical
inverse design such as the end-to-end optimization of computa-
tional imaging systems and the design of optical neural
networks52,53. It is worth noting, however, that this method is not
a general numerical solver. It is limited to predicting electro-
magnetic field responses from fixed source, material, and
boundary parameters. Source type and k-vector, dielectric con-
stant, geometry type (rectangular pillar of fixed height), and
boundary conditions must all remain constant for this method to
work. If any of these parameters are modified, the PINN must be
retrained. Furthermore, the method we presented was only
implemented under a 2D approximation. Extending this method
to 3 dimensions would take significant effort due to the fact that
the electric field E could no longer be treated as a scalar field, and
the full vector nature would have to be modeled. On a n × n grid
in 2D, the Maxwell operator [∇2+ ω2ϵ] results in a n2 × n2

matrix, while for a n × n × n 3D grid the Maxwell operator
[∇ ×∇ ×− ω2ε] result in 9n3 × 9n3 square matrices due to the
additional 2 vector field components that must be modeled.
However, these operators are sparse with a small number of

Fig. 5 Experimental results. a–c Scanning Electron Microscope (SEM) images of the fabricated SiN meta-lens with focal length F= 500μm. The scale bars
correspond to 1 μm, 0.1 μm, and 1 μm, respectively. d Counts of pillar half-widths of the forward and inverse designed lens. e Measured intensity contained
in the region given by 3 × FWHM of the focal spot vs lens numerical aperture. The units are normalized to the largest intensity integral of the forward
design. Error bars are standard deviations of energy computed at 1216 data points (dimension of the sensor). f Maximum intensity at the focal spot. The
inverse designed lenses outperform the forward designed lenses for NA> 0.44. The lines are visual aids and not fits to a theoretical model. Units are
normalized to the largest intensity of the forward designed lens. In the NA= 0.9 (F= 250μm) case an improvement of 53% is observed. The error bars are
standard deviations of intensity at the focal plane. g Experimentally measured field intensities of the forward designed lens and h of the inverse designed
lens. i Intensity slice at the focal spot. The intensities are normalized such that the maximum intensity of the forward designed lens is 1. The intensity of the
inverse designed lens focal spot is 1.25.
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nonzero elements that scale as ~ 38n3 in 3D, making small pro-
blems still manageable. The other problem with generalizing this
method to 3D is the large null-space of the∇ ×∇ × operator
which results in slow convergence of numerical methods54,55. It is
highly likely that this could also affect the training of the PINN,
and require regularization or preconditioning which deflates the
null space of this operator to properly converge onto a solution.
On the other hand, in this work we showed that machine-
precision numerical accuracy of numerical solvers may be not be
needed for inverse design methods with FDFD. Solvers could be
sped up by relaxing the relative error tolerance, such that iterative
solvers converge quicker for predicting the forward and adjoint
problems. Another interesting aspect will be to understand the
optimal PINN to model the meta-optics, and if we can identify a
relationship between the number of trainable parameters and size
of the problem we are solving. In future work we aim to explore
these options.
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