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In recent years, sub-wavelength, aperiodic gratings, currently coined metasurfaces have the

potential to manipulate electromagnetic fields with extreme control in a remarkably small

form factor. These planar optical components promise to manipulate incident fields at the

wavelength scale to achieve unprecedented functionalities. This extraordinary flexibility

arises from the extremely large numbers of tunable degrees of freedom characterizing the

individual discrete scatterers. This thesis details two methods for the design of these op-

tical elements, a forward method, and an inverse method. First, a forward design method

is described for metasurfaces based on a silicon nitride nanopost platform. Results from

experiments characterizing metasurface lenses, vortex beam generators, cubic phase plates,

and Alvarez lenses are presented. These optical elements were all designed to operate in the

visible frequencies, and fabricated using conventional top-down semiconductor lithography.

Then, a general inverse design method is described for discrete spherical scatterer based op-

tical elements. Simulation results for single layer and multilayer lenses for fabrication using

a 3D printer are shown, and simulation and experimental results for a novel optical element

producing a discrete helical focusing pattern is presented.
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Chapter 1

INTRODUCTION

The human fascination with understanding and manipulating light dates back to early

antiquity, with the polishing of obsidian to create mirrors possibly dating back to as early

as 6000 BC in ancient Anatolia [2]. References to a lens or “burning stone”, another funda-

mental optical element can be found on ancient Egyptian hieroglyphs from 800 BC [3]. The

discovery and use of these ancient devices often preceded a concrete physical understanding

of the relevant physics, which today are the concepts of refraction and reflection.

Much of the early development of geometric optics can be attributed to early Greek and

Islamic scholars such as Euclid and Ibn al-Haytham. Euclid treated vision geometrically, and

formalized the use of lines (or rays) and angles to describe properties of magnification. Ibn

al-Haytham produced a theory of vision based on Euclid’s rays, and physically associated

these rays with light and color [4]. A theory of geometric optics mediated by minute particles

was later formalized by Isaac Newton, and its failures to describe interference and diffrac-

tion were experimentally documented by Francesco Grimaldi, James Gregory, and Thomas

Young. Christiaan Huygens and later Francois Arago and Augustin-Jean Fresnel theoreti-

cally described these phenomenon using a wave theory of light. Finally, when wave optics

was unified with the theory of electromagnetism, a modern understanding of light or physical

optics emerged.

Utilizing the results of the experimental and theoretical knowledge on the principles of

optics, scientists and engineers developed impressive optical systems such as the microscope,

telescope, and spectrometer to further research in other fields such as biology and astronomy.

In addition, this research has enriched every day life by producing more practical gadgets
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such as reading glasses, polarized sunglasses, and 3D television. Since our initial curiosity

with luminosity, research in optics has allowed us to study length scales that are ludicrously

large and surprisingly small. In astronomy, the use of adaptive optics has allowed ground

based telescopes to correct for aberrations originating from atmospheric turblence to accu-

rately locate stars [5]. In biology, numerous microscopy methods have been developed to

obtain images at a higher resolution than allowed by the diffraction-limit [6]. This thesis

focuses on extending this entire body of work using dielectric metasurfaces that allow for

both miniaturization and increased functionality when compared to traditional refractive or

diffractive optics.

1.1 Introductory Optics

While today’s optical systems have impressive performance and functionality, they are still

largely composed of elements morphologically identical to the lenses and mirrors of antiquity,

or ‘bulk’ optics. While our prowess at polishing smooth surfaces has improved significantly

compared to our ancestors, the function and form factor of these bulk optics is still intrisically

tied to the geometry of its surface, and is ultimately constrained by Snell’s law, or the law

of reflection.

As an example, we consider normally incident monochromatic light on a plano-convex

spherical lens. We can understand its function using two complementary approaches, ray or

wave optics. Using ray optics, we can consider an incident bundle of rays, and use Snell’s law

to calculate the deflection of each ray as it transmits across the spherical interface. Based

on these deflections, we can then calculate the trajectory of the ray and see that it focuses

most of the rays at the focal point.

Using wave optics, we dispense with the notion of the incident light as a bundle of rays,

and instead consider it to be a planar wavefront with some characteristic wavelength λ. As

the wavefront propagates through the bulk of the optical element, it travels some optical

path length dOPL = n1d where n1 is the refractive index of the optical element, and d is the

thickness, and accrues a spatially varying phase delay φdelay = 2πn1d
λ

. After the wavefront
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exits the optical element, there is a spatially varying delay imprinted on the wavefront

corresponding to the spherical surface. Using Huygen’s principle, we can conceptualize our

system as a planar surface with spherical point sources radiating with a spatially varying

phase delay, and the far field output can be understood as the interference of these point

sources.

In this manner, wave optics opens a larger design space by allowing us consider systems

that do not correspond to a smooth geometric surface. Instead, we abstract our optical

system to that of a planar surface imposing some spatially varying phase delay. This more

general model of optical elements as wavefront shaping is an idealized version of a gradient

metasurface, and its use is the basis of the first chapter of the thesis.

1.2 Metasurfaces Optics

As mentioned previously, the function of bulk optics is determined by the geometry of the

surface. Metasurfaces, or metastructures as they are currently deemed, are typically sys-

tems composed of discrete electromagnetic scatterers arranged on a sub-wavelength two

dimensional grid [1,7]. These large grids of discrete electromagnetic scatterers have received

renewed interest during the last decade [8–11] due to their unprecedented ability to control

the propagation of light on a form factor with wavelength-scale thickness. Their unique flex-

ibility arises from the large numbers of degrees of freedom that characterize the system, as

each discrete scatterer on the lattice can be individually tuned to locally control the phase

and amplitude of a scatterered wave. Metasurface optics, like many other fields has been

researched under many different names throughout its history including, but not limited to

zero-order diffraction gratings, sub-wavelength gratings, high contrast transmit arrays, meta-

surfaces, and metastructures. To this end, I have included a brief summary of the history of

the field.
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1.3 A Multi-Faceted History

In the optical regime, the study of metasurface optics began under the context of zeroth order,

or sub-wavelength diffraction gratings in the early 1990s. These dielectric optical elements

were generally arrays of one-dimensional structures or binary gratings with sub-wavelength

period. Of particular interest was their ability to suppress all orders of diffraction except the

zeroth order [12]. In these initial studies, the dimensions of the nanostructures were changed

to produce a linear phase ramp to act as a beam deflector [12, 13]. The sub-wavelength

binary gratings were modeled as a graded index grating, where increasing the duty cycle

of the grating also increased the local refractive index. This modeling of the devices using

effective medium theory (EMT) was qualitatively correct [14,15], though the periodicities of

the structures were at the edge of the theory’s valid length-scale [16]. It is also interesting

to note that due to the fabrication difficulties at the time, in their manuscript, W. Stork

et al. experimentally demonstrated the diffraction suppressing properties of sub-wavelength

gratings with water waves, rather than optical waves [12].

The early results from the early 1990s were later extended to handle two-dimensional

structures such as cyindrical pillars by the mid 1990s, and there were early optical demon-

strations of reflective [17], and transmissive diffractive optical elements [14, 18–21]. In gen-

eral, these devices were fabricated either using a relatively low-refractive-index material such

as quartz [17–19], or a high-index material such as titanium oxide [14, 20, 21]. The higher-

refractive index of titanium dioxide resulted in higher-performance optical elements, superior

to those of conventional blazed gratings [20]. The realization that these binary elements could

offer efficiencies higher than those of conventional optics was a relative surprise, as the EMT

used at the time did not predict such high efficiencies. An immediate promising applica-

tion that is still the subject of research today was the design of highly efficient compact

high numerical aperture (NA) diffractive lens [20,21]. Conventional blazed gratings used for

diffractive optical element (DOE) design proved unsuitable for efficient high NA operation

due to a shadowing effect [22]. Using rigorous coupled wave analysis (RCWA) [23], Lalanne et
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al. were able to reconcile the efficiencies resulting from using high refractive index materials,

and identified coherent waveguiding within the dielectric nanostructures as the cause [22,24].

When compared to conventional blazed gratings, these flat binary gratings did not exhibit a

shadowing effect on neighboring gratings [22], thus efficient high NA diffractive lenses were

possible.

In parallel to this body of work based on using binary sub-wavelength gratings as waveg-

uides to accrue phase, the Panchatnaram-Berry (PB) phase [25, 26] was adapted to optical

systems [27, 28]. Optical elements based on the PB phase encode phase information in the

polarization of incident light. By locally manipulating the polarization of the incident field,

they imprint a spatially varying phase that is purely geometric, and not explicitly dependent

on an optical path length difference. Though fabrication difficulties limited these elements’

operation to 10.6 µm [27,28], the principle still holds for the visible and near-infrared wave-

lengths of interest today.

Thus, it is fair to say that by the early 2000s, the two dominant models for the operation

of dielectric metasurfaces had been developed. Optical waveguiding through the dielectric

structures had been studied by Lalanne et al [22,24], and the adaptation of PB phase to sub-

wavelength gratings had been performed by Hasman et al [27,28]. This comprehensive body

of research now serves as the foundation upon which this thesis and the field of metasurface

optics builds.

The field has been more recently reinvorgated by contributions from another scientific

community, namely that of metamaterials [29, 30] or designed three-dimensional arrays of

electromagnetic scatterers, from which the term metasurface derives. The Capasso and

Shalaev groups reduced the complexity of metamaterials to two dimensions, and were able

to demonstrate anomalous refraction and a vortex beam plate using engineered plasmonic

antennas [7, 11]. The use of metallic scatterers with their high refractive index contrast

allowed these plasmonc antennas to be much thinner than the operating wavelength [7, 11].

The operating principles of these metallic antennas are understood as interference between

the scattered fields from different plasmonic resonant modes. These highly compact arrays
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of metallic scatterers have been used for devices such as lenses [31], axicons [32], holograms

[33, 34]. However, due to the intrinsic ohmic losses of metallic resonators, efficient devices

were limited to infrared wavelengths or in reflective configuration [1].

In the past decade, sub-wavelength gratings have been shown to be capable of mim-

icking existing optical elements such as lenses [1, 31, 35–43], beam deflectors [44, 45], axi-

cons [32], freeform optics [46, 47], retroreflectors [48], holograms [33, 34] and polarization

optics [49, 50], in addition to producing unprecendented functionalities such as multiplexed

holograms [49, 51], achromatic operation [52–56], controlling the Brewster effect [57], inte-

grated spectrometers [58], and new wave-front coding systems [59–61]. In addition to stand

alone elements, metasurfaces have also been integrated into optical systems consisting of

multiple elements in tandem demonstrating a camera system [62], retroreflector [48], and

varifocal systems [63].

1.4 Thesis Outline

This thesis concerns itself with methods of designing and optimizing complex arrays of dis-

crete scatterers, and experimental demonstrations of these methods. Specifically, it covers the

forward and inverse design of discrete-scatterer-based optics with relatively low-refractive-

index materials. It is organized in chronological order in order to provide the reader with a

coherent understanding of the motivations and challenges behind the research. Chapters two

and three focus on the use of the standard forward design method, and presents metasurface

optics based on a silicon nitride platform. Chapters four and five focus on the development

of an inverse design methodology based on spherical scatterers capable of simulating and op-

timizing large arrays of spherical scatterers. Finally, chapter six focuses on a generalization

of the method presented in chapters four and five to scatterers of an ellipsoidal geometry.

• Chapter 2 focuses on the forward design methodology used to design metasurfaces com-

posed of cylindrical silicon nitride nanoposts for operation in the visible wavelengwth

regime. We use RCWA to compute the scattering properties of these scatterers, and
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use them to implement a lens and vortex beam generator. The design method, and

characterization of the optics is presented. During the research that culminated in

this chapter, the contemporary metasuface community had not explored lower refrac-

tive index materials. In order to enable high efficiency operation, materials that are

transparent at visible wavelengths, which generally have low refractive indices must

be used. Previous demonstrations around the same time period had generally been

based on silicon or noble metal platforms. It is important to note that as mentioned

in the previous historical overview, during the late 1990s there was a large amount

of work based on titanium oxide devices highly analogous to metasurfaces for visible

wavelengths.

• Chapter 3 focuses on the forward design methodology applied towards freeform ele-

ments. While metasurfaces show promise in designing rotationally symmetric elements,

they also excel in designing elements with asymmetric forms. We present dielectric

metasurface element analogues of a cubic phase plate and the Alvarez lens. This work

presented the first explicit demonstration of the compatibility of metasurface optics

for adapting freeform optical systems. In particular, we demonstrated one of the first

dynamic, compound metasurface optical systems in the Alvarez lens.

• Chapter 4 focuses on the inverse design methodology used to design discrete-scatterer-

based optics composed of spherical polymer resist scatterers for near-infrared wave-

lengths. Generalized multi-sphere Mie theory (GMMT), or alternatively generalized

Lorenz-Mie theory (GLMT), is used as the basis for implementing an adjoint gradient-

based inverse-design method. Singlet and doublet lenses are simulated and their

theoretical performance is characterized. The method is then validated using finite-

difference time-domain method (FDTD) simulations. This project was primarily mo-

tivated by a fundamental issue of simulating large metasurface systems as the simula-

tion of large metasurfaces were either accurate, but limited by memory scaling issues

(FDTD), or fast, but abstracted away too much of the physics (phase profile). The
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use of GMMT serves as a middle ground between full-wave electromagnetic solvers

and the phase profile abstraction model. With an efficient forward-simulation method

developed, we were able to develop an efficient inverse-design method.

• Chapter 5 focuses on an experimental demonstration of the methodology presented in

Chapter 4. A discrete spherical scatterer based optic is demonstrated that is capable

of focusing light into a discrete helical pattern along the optical axis. This optical

element is fabricated using a Nanoscribe GT two photon lithography system. In this

work, we sought to fully demonstrate the advantages that Chapter 4 claimed in the

design of a large-scale metasurface with a non-trivial function that would be difficult

to design using forward-design methods.

• Chapter 6 focuses on a work extending the inverse-design methodology of Chapter

4 to scatterers of ellipsoidal geometry using T-matrix theory. The derivation of the

derivative scattering matrices for ellipsoidal particles, and a demonstration of the ac-

curacy of the method is presented. The restriction to spherical scatterers is a fairly

serious drawback to the method presented in Chapter 4 and demonstrated in Chapter

5. Fortunately, the T-matrix method or extended boundary condition method provides

a straightforward extension to non-spherical scatterers that is also easily parallelizable,

offering a truly scalable way to simulate large-scale metasurfaces.

• Chapter 7 is the conclusion and outlook, and covers some of the outstanding challenges

facing metasurface optics from both a design and device perspective. In particular,

it discusses high corrected metalenses, inverse design, volume optics, and dynamic

metasurfaces.
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Chapter 2

SILICON NITRIDE METASURFACE FORWARD DESIGN

In this chapter, we use the tried-and-true forward method that is central to metasurface

optics design. While the method has been extended to implement many different functional-

ities, the basic idea remains the same. Using this method, we implement visible wavelength

metasurface analogues of existing optical elements such as lenses and vortex beam generators.

First, we introduce the idealization of a metasurface as a phase modulation plate. Then,

we review the forward design process, including parameter search using rigorous coupled-

wave analysis (RCWA), the phase to metasurface mapping method, and the characterization

of these elements using small-scale simulations via the Lumerical implementation of the

finite-difference time-domain (FDTD) method. Finally, we show the fabrication process and

steps used, and characterize the performance of these optical elements experimentally. This

chapter presents work that contributed to and composed reference [63].

2.1 Motivation

The miniaturization and functionality of current optical sensors is largely limited by the size

of optical components. Conventional transmissive macroscopic optical elements primarily

depend on the principle of refraction to control light propagation. These refractive elements

rely upon their exact surface curvature and their spatial extent in order to achieve gradual

phase accumulation. This places fundamental and practical limitations on their miniatur-

ization and their available functionalities. The limitation on miniaturization is the trade off

between the volume and weight of the optical package. For the case of a plano-convex lens,

we can characterize the system size as the sum of the focal length and the length of the lens

along its optical axis. To decrease the system size, we must decrease the radius of curvature
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of the lens, but this in turn causes the weight of the optical package to increase, as more

material is now required for the lens. The limitation on achievable functionalities is also

based on the curvature. Implementing an arbitrary phase mask requires extremely accurate

control of the surface profile of a lens that is currently not practical for mass production, or

for small scale elements.

Metasurface optics are curvature agnostic, and readily accept any arbitrary phase profile.

This flexibility allows metasurface optics to eliminate the trade off in miniaturization, as

any optical element, independent of its focal length, will have negligibly different weights

and physical sizes. In addition, metasurfaces are compatible with conventional top-down

lithography techniques, allowing for production to be scaled up with current technologies.

Specifically, we chose to produce analogues of conventional hyperbolic singlet lenses and

vortex beam generators using metasurfaces based on silicon nitride for the visible spectrum.

Previous demonstrations of high quality metasurface lenses were produced using noble metals

[31,32,34], amorphous silicon [1,49], and titanium oxide [20], but the first two materials have

significant absorption loss in the visible spectrum, and titanium oxide is complex metal oxide

semiconductor (CMOS) incompatible. Demonstrations of silicon dioxide lenses [19], which

are transparent at the visible frequencies had been reported, but they had low numerical

apertures and resulted in large beam spots.

2.2 Idealized Model

Metasurface optics are a class of diffractive optics that operate by modulating the amplitude

and/or phase of the incident wavefront. As our work is focused on high-efficiency optics,

we focus on modulating only the phase and maintaining near-unity amplitudes. This sim-

plification allows us to idealize a perfect metasurface as a two-dimensional phase plate. By

modifying the spatial phase distribution of the phase plate, we can control the intensity

pattern in the far field. The first step to converting a traditional optical element to a meta-

surface is to identify the phase profile associated with that specific function. Using wave

optics, the phase profile for a hyperbolic lens in radial coordiantes for a given wavelength λ
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and focal length f is given by:

φlens(r, θ) =
2π

λ
(
√
r2 + f 2 − f), (2.1)

where r is the radial coordinate. Then, a focusing vortex beam generator with the same

parameters, and associated with a winding number l is given by:

φvortex(r, θ) =
2π

λ
(
√
r2 + f 2 − f) + lθ. (2.2)

With these specified phase profiles, we can use the angular spectrum method [64] to

compute the electric field distribution at a specific plane zf produced by a plane wave with

some wavelength λ incident on a phase distribution φ(r, θ). The angular spectrum method

decomposes any field into a basis of plane waves and allows us to propagate fields forward

or backward through a homogeneous medium. Given some complex initial field E(x, y, z0)

defined at some plane z0, we can express its Fourier dual as Ê(kx, ky, z0) using the Fourier

transform:

Ê(kx, ky; z) =
1

4π2

∫∫ ∞
−∞

E(x, y, z)e−i[kxx+kyy] dx dy, (2.3)

where both integrals are performed over all space, and similarly the inverse Fourier transform:

E(x, y, z) =

∫∫ ∞
−∞

Ê(kx, ky; z)ei[kxx+kyy] dkx dky, (2.4)

where now both integrals are performed over all k-space. The above is generally true for any

E(x, y, z), but to continue we make the assumptions that the transverse plane containing the

coordinates x and y consists of a homogeneous, isotropic, nonmagnetic, linear medium that

is source free. We can then enforce that this field is a solution to the vector wave equation:

∇2E = εrµ0ε0
∂2E

∂t2
, (2.5)

where µ0 and ε0 are the permeabilty and permittivity of free space, and εr is the relative

permittivity of the material. Using the relative permttivity we can define a refractive index

n =
√
εr. Then a time harmonic field with time dependence e−iωt for some given angular

frequency ω must satisfy the vector Helmholtz equation:

(∇2 + k2)E = 0, (2.6)
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where we have defined k = nω/c as the wave vector. Using the relation:

k2 = k2x + k2y + k2z , (2.7)

and inserting our Fourier representation (2.3) into the Helmholtz equation (2.6), we find a

relation between two Fourier planes:

Ê(kx, ky; z) = Ê(kx, ky; 0)e±ikzz. (2.8)

Finally, inserting the relation between different Fourier planes (2.8) into our real space defi-

nition (2.4), we arrive at the angular spectrum representation:

E(x, y, z) =

∫∫ ∞
−∞

Ê(kx, ky; 0)ei[kxx+kyy±kzz] dkx dky, (2.9)

where the ± indicates we are allowed to propagate both in the forward and backward di-

rections. Using this representation, we can quickly calculate the far field corresponding to

a plane wave incident onto some arbitrary phase plate by defining E(x, y, 0) = eiφ(x,y). This

ideal model of a metasurface serves as the reference to which we compare our full wave

electromagnetic simulations.

2.3 Forward Design

With this idealized model, we can quickly check if the phase profiles we use correspond to the

desired optical functions. After validating our phase profiles, we now describe the forward

design procedure we use to implement them using our arrays of dielectric scatterers. This

process includes selecting the appropriate material platform, performing electromagnetic

simulations to determine the parameters of the scatterers needed to implement the phase

profile, and finally validating the metasurface using a full-wave, electromagnetic solver.

2.3.1 Material Selection

The first step is to choose the material platform the metasurface will be fabricated on. The

main goal for this work was to produce efficient metasurfaces operating in the visible wave-

length regime. To do this, we used plasma-enhanced chemical vapor deposition (PECVD)
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silicon nitride as it has a wide band gap Eg around 4.5 eV (depending on its silicon to nitride

ratio), a refractive index of n = 2, and is CMOS compatible. In addition, its deposition and

etching recipes were readily available in the Washington Nanofabrication Facility (WNF)

cleanroom. The wide band gap ensures full transparency of the metasurface over the entire

visible spectrum, and the high refractive index allows us more flexibility in parameter choice

than silicon oxide (n=̃1.45) [22]. It’s CMOS compatibility allows for its processing to be

scaled to existing commerical foundries. Our substrate was chosen to be a fused quartz or

silica wafer.

2.3.2 Parameter Search

With our material selected, we need to find a suitable family of dielectric scatterers to im-

plement our metasurface. Following the lead of a previous demonstration in amorphous

silicon [1], we chose to use cylindrical pillars. The primary building block of a metasurface is

a grating composed of scatterers arranged on a periodic lattice with period p, and thickness

t as shown in Figure 2.1. When the period p of the lattice is sub-wavelength, all orders of

diffraction higher than the zeroth become evanescent. The complex transmission amplitude

of the scattered plane wave depends on the grating periodicity p, the scatterer dimensions

(thickness t, and diameter d), and the refractive index n. In general, implementing a meta-

surface requires selecting the correct geometric and material parameters to achieve a full

range of phase shifts from 0 to 2π, while maintaining a high transmission amplitude.

Using RCWA, we were able to find suitable sets of parameters to achieve the required

phase range, while maintaining high transmission amplitudes. In these simulations, we calcu-

late the complex amplitude coefficient by varying the diameter d of the posts with refractive

index n = 2 for a fixed periodicity p, substrate thickness tsub = λ, and substrate refractive

index nsub = 1.45. We found that by varying the thickness and periodicities of the posts,

we were able to transition between a resonant regime where the simulated lattice exhibits

guided-mode resonances, or a nonresonant regime where there exists no guided-mode reso-

nances as shown in Figures 2.2j and k. In general, the nonresonant regimes had the attractive
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Figure 2.1: Typical unit cell showing the different views. The geometric parameters allowed

to be changed are the thickness t, diameter d, and periodicity p.

properties of smoothly varying phase and high transmission amplitudes, but required high

aspect ratios (t/d) that are difficult to reliably fabricate. Increasing the periodicity for a

given thickness results in the appearance of more resonances where the phase and amplitude

displayed sharp discontinuities. Increasing the thickness for a given periodicity results in

sharper resonances that are easier to avoid, but this increases the aspect ratio of the pillars,

and makes them harder to fabricate. These discontinuities make those specific ranges of

duty cycles unattractive for high-performance metasurfaces, and when selecting parameters

we ignored them.

On the basis of these simulations, we decided on a set of parameters t = λ and p = 0.7λ

shown in Figure 2.2e to ensure a moderate aspect ratio for fabrication while maintaining full

phase coverage and high transmission amplitudes. The parameters that displayed resonant

behavior were removed during the parameter search.
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Figure 2.2: Amplitude and phase of the transmitted light through low-contrast metasurfaces

with different duty cycles, periodicities, and thicknesses. Plotted are the phase delays (red)

and transmission amplitudes (blue) associated with these gratings as a function of the duty

cycles for varied periodicities and thicknesses. (a)-(i) represent parameters in the resonant

regimes while (j) and (k) represent parameters in non-resonant regimes. In our paper, we

decided to choose the parameters shown in (e).
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2.3.3 Simulation

With the parameters in hand, we can now implement and simulate the phase profiles from

equations (2.1) and (2.2) identified earlier. The parameter search gives us a lookup table that

matches a specific phase to a specific pillar radius. By discretizing the phase profile onto a

grid with our chosen periodicity, we can then choose a specific pillar radius that reproduces

the desired phase. In our design we chose to further discretize the phase profile with six

linear steps between 0 and 2π, corresponding to six different pillar diameters. In all of our

devices, we ultimately chose a design wavelength of 633 nm, which corresponds to geometric

parameters of t = 633 nm, p = 443 nm, and pillar diameters that vary between 192 to 440

nm.

We simulated multiple miniaturized metasurfaces using the FDTD method at their design

operation wavelength 632 nm. As FDTD is a volume discretization method, its memory

consumption scales quickly with increased device size. Due to this limitation, we were only

able to simulate metasurfaces with diameters up to 30 μm, and focal lengths up to 40 μm.

We characterized the effect of angular incidence on the lens performance in addition to the

focal spot size and the focusing efficiency. As expected, for differing beam incidence angles,

we found that increasing the angle of incidence resulted in a deflection of the focal spot in

addition to decreasing the focusing efficiency as shown in Figure 2.3. The focal spot size and

focusing efficiency were tested for varying numerical apertures (NA) and also for refractive

indices of 2 and 3.5 corresponding to silicon nitride, and a fictional silicon-like material

that is transparent in the visible. We found that for the specific parameters we chose, the

focusing efficiency and spot size were not highly dependent on the refractive index. We can

see from Figure 2.4 that both the high-index and low-index lenses fail to reach the diffraction-

limited spot sizes for low focal lengths (high NA), but for longer focal lengths (low NA), they

approach the diffraction limited value. The efficiencies plotted in figure 2.5 show that the

efficiencies increase as the NA decreases, which is expected of the system, as high NA lenses

must bend the light more obliquely and require faster phase variation to do so [22]. Both
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the high-index and low-index lenses had similar performance for lower NA lenses, though

the silicon like lens showed higher efficiencies for high-NA lenses. This was an encouraging

result, as many other works had cited high refractive index as a central factor in the design

and fabrication of high-performance metasurfaces [1, 22, 42].

2.3.4 Focal spot characterization

An important figure of merit to assess the quality of a lens is the spot size as it ultimately

determines the resolution with which the lens can image. The smallest focal spot achievable

by a perfect circular lens is defined by the first zero of the airy disk. This limit depends on

both the geometry of the lens, and the wavelength of the light, and is given by:

∆x = 1.22λ
f

d
, (2.10)

where ∆x is the diffraction limited spot radius, λ is the wavelength of interest, f is the focal

length of the lens, and d is the diameter of the lens. This limit depends only upon the incident

wavelength and the geometric parameters of the lens, and is a valid approximation for lenses

with focal lengths much larger than their diammeter. However, our low-focal-length lenses

(50 and 100 μm) do not satisfy this requirement and require a different methodology for

determining their focusing performance.

Instead we use a consistent criterion for characterizing the focusing performance of a lens

with any combination of geometric parameters. An ideal lens with focal length f and radius

a will produce in intensity profile given by the Airy disk:

I(θ) = I0

(
2J1(kasinθ)

kasinθ

)2

, (2.11)

where I0 is the maximum intensity of the central peak, J1(x) is the first order Bessel function

of the first kind, k is the free space wave vector of the incident light, a is the radius of the

lens, and θ is the angular position as shown in figure 2.6a. We can then determine the

diffraction-limited full-width at half-maximum (FWHM) for a lens with a focal length f and

radius a by fitting the Airy disk using a Gaussian as shown in Figure 2.6b and c. We then
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Figure 2.3: The response of a metasurface designed for focus at 20 μm with diameter 20 μm

to both normally incident (a), and oblique incidences (b)-(e). Tested are 10 degree (b), (c),

and 20 degree (d), (e) incidences.
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Figure 2.4: The spot sizes in FWHM plottted against the ratio of focal length to diameter.

The red and black lines correspond to metasurfaces with indices of refraction n = 2 and

n = 3.5 respectively. The dotted green line is the geometric diffraction limited spot size

for an ideal lens. (a) and (b) show the dependence of the focal spots for a lens of diameter

20 μm and 30 μm respectively. The n = 3.5 set uses periodicity p = 0.52λ, with thickness

t = 0.61λ, and pillar radii varying from 59 nm to 91 nm.
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Figure 2.5: The focusing efficiencies plotted against the ratio of focal length to diameter.

The red and black lines correspond to metasurfaces with indices of refraction n = 2 and

n = 3.5 respectively. (a) and (b) show the dependence of the focal spots for a lens diameter

of 20 μm and 30 μm respectively. Efficiencies are defined as in [1]. The n = 3.5 set uses

periodicity p = 0.52λ, with thickness t = 0.61λ, and pillar radii varying from 59 nm to 91

nm.
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Figure 2.6: Fitting of an Airy disk with a Gaussian. (a) Schematic of the setup used for

the calculation of the Airy disk profile. Examples of an Airy disk which represents the

intensity profile of an ideal (b) 50 μm and (c) 1 mm lens. (d) is experimental data from

a 250 μm metasurface lens showing showing deviation from the diffraction limit plotted in

dashed green.
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Figure 2.7: SEMs of (a) a 250 μm focal length lens with radius 56 μm, and (b) a vortex

beam generator with l = 2, a 100 μm focal length, and radius 60 μm. Both are shown with

the aluminum hard mask intact after completing a fluorine etch.

compare our experimentally measured FWHM against that of a perfect lens with the same

geometric parameters as shown in Figure 2.6d.

2.4 Fabrication

We chose to fabricate a set of five lenses with focal lengths 50, 100, 250, 500, and 1000 μm

all with diameter 112 μm, and a set of two vortex beam generators with l = 1, 2, focal length

100 μm, and diameter 120 μm. As our feature sizes are as small as 192 nm and below the

diffraction limit of conventional and commonly available photolithography systems, we used

electron beam lithography (EBL) to define our patterns. We note however that deep UV

lithopgrahy is capable of producing these feature sizes. Two scanning electron micrographs

(SEM)s of fabricated devices are shown in Figure 2.7 where (a) shows a lens with a focal

length of 250 μm and (b) is a vortex lens with l = 2 and a focal length of 100 μm. All

fabrication of the samples was performed at the WNF. The fabrication procedure is outlined

in Appendix A.1.
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Figure 2.8: Translatable microscope used to measure intensity profiles of the metasurface

lenses and vortex beams

2.5 Experimental Results

We tested the lenses and vortex beam generators with a homebuilt microscope consisting of a

Nikon Plan Fluor 40x objective, a Thorlabs TTL-200 tube lens, and a Point Grey Chameleon

camera. The specific setup is shown in figure 2.8 where our excitation source was a set of

three LEDs centered around red (Thorlabs M625 F1, 625 nm), green (Thorlabs M530F1,

540 nm) and blue (Thorlabs M455F1, 455 nm). By translating the microscope and camera

along the optical axis, we can move into and out of the focal plane and image the x-y plane

intensity profile at varying z distances. This allows us to accurately characterize the optical

elements as they focus and defocus. During characterization we can clearly see the beam

radius change as we translate through the focus of the 250 μm focal length lens and the

FWHM values obtained by a Gaussian fit are plotted in Figure 2.9a. Based on the intensity

profile at the focal point in Figure 2.9b, we can clearly see the lens focusing at the design

focal length. An example of the Gaussian fits used to characterize the intensity profiles are

shown in Figure 2.9c.

We tested all five different focal length lenses with focal lengths of 50, 100, 250, 500, and

1000 μm, all with radus 56 μm. The measured FWHM of the focal spot sizes for all of the
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lenses are plotted against the ratio of the focal length (f) to diameter (d) in Figure 2.10,

where the dotted green line represents the FWHM of a diffraction-limited spot of a lens with

the given geometric parameters. The deviation from the diffraction limit is attributed mostly

to fabrication imperfectiions. In particular, we note that the 50 μm lens achieves a FWHM

less than 1 μm and is close to diffraction-limited. The measurement of the focal lengths of

these lenses also agrees well with our design parameters.

Another important figure of merit for a lens is the focusing efficiency. To measure this,

we inserted a flip mirror before the camera to direct the beam to a power meter (Newport

1918-R). We then measure the incident power to the focus by using a pinhole in a confocal

microscope to isolate a spot with radius 3 times the FWHM. The focusing efficiency was taken

to be the ratio of the power incident into the focus to the power incident on the entire lens.

The transmission efficiency was taken to be the ratio of the power incident on the detector

through the lens to the power incident through the glass substrate. Both the transmission and

focusing efficiencies increase as the ratio f/d increases as shown in Figure 2.10b. The focusing

efficiency rises to a maximum of 40% for the 1 mm lens, and the transmission effiency rises to

near 90% for the 500 μm lens. However, the high-NA metasurfaces generally had comparably

lower transmission and focusing efficiencies. However, these transmission efficiencies are

significantly higher than other metasurfaces in the visible frequency range. The focusing

efficiencies are lower than we would have expected based on our initial simulations. We

attribute this error largely to the fabrication error of our pillars as the final devices showed

overetching of around 50 nm, which affects the produced phase profile.

We then investigated the chromatic behavior of the lens for red, green, and blue light.

The wavelength dependence of the 250 μm focal length lens is shown in Figure 2.10c. The

focal distances of the lens increases with decreasing wavelength, showing the characteristic

diffractive optic chromatic aberration. The focal length increases from 0.26 mm at 625 nm to

0.35 mm at 455 nm. We also observe an increase in the size of the focal spot with decreasing

wavelength, from a minimum of 3 μm at 625 nm to a maximum of 4 μm at 455 nm. We

remark that the product of the experimentally measured focal length (f) and illumination
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wavelength (λ) is roughly constant for our design as expected for diffractive optics.

Lastly, we characterized the fabricated focusing vortex beam generators, and imaged

their intensity profiles as shown in Figures 2.11a-d. They were all fabricated for a design

wavelength of 633 nm with focal lengths of 100 μm and radii of 60 μm. One plate was

fabricated for angular momentum state l = 1 and the other for l = 2. The measured

intensity profiles were taken with the same setup as the lenses using the 625 nm LED. The

spiral intensiity profiles were taken at a point off the focal plane, and as expected, the l = 1

plate produced only one curl while the l = 2 plate produced two curls. Both spirals also

wind along the same direction indicating that they are of the same parity. In order to image

the characteristic donut profile, we translated the microscope into the focal plane of the

vortex beam generators. Comparing the donut profiles, the higher angular momentum beam

has a larger donut radius, which is consistent with the behavior of the higher order vortex

beams. The efficiencies of the vortex beam generators are measured using the same confocal

setup, but instead of isolating a spot size 3 times the FWHM, the pinhole is adjusted to

isolate just the donut beam. For the focusing efficiency, we isolate the power concentrated

into the donut field intensity profile at the focal plane using a pinhole. Both of the devices

show transmission efficiencies of up to 80% and focusing efficiencies of up to 10%. These

devices show higher transmission efficiencies and lower focusing efficiencies than that of a

metasurface lens fabricated with a 100 μm focal length shown in Figure 2.10b, which had

transmsission and focusing efficiencies of around 40% and 20% respectively. We attribute

this to the fabrication of the vortex beam generator, as its phase profile results in a higher

pillar radius gradient that is more difficult to realize in fabrication. In our case, this resulted

in the overexposure and ultimately overetching of the pillars. We posit that the overetching

would allow more incoming light to pass through undiffracted, increasing the transmission

efficiency. However, this also decreases the focusing efficiency as less of the light is diffracted

towards the donut profile.
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Figure 2.9: Characterization of a 250µm focal length lens with an LED centered at 625 nm.

In (a) the FWHM is plotted as a function of the distance translated along the z direction.

The error bars denote the 95% confidence interval for the Gaussian fits. The blue curve

serves as an eye guide. (b) is a 2D intensity profile at the focal plane, the red dot in (a).

(c) is a Gaussian funtion fit to the cross-section data taken at the dashed line in (b). The

FWHM of the fit is extracted to estimate the beam size.

2.6 Conclusion

In this chapter, we demonstrated the suitability of silicon nitride for implementing both

metasurface lenses and vortex beam generators. The use of low contrast materials such

as silicon nitride extend the range of materials available for metasurface optics into those

that are transparent at visible wavelengths. By using silicon nitride as our material, we

can also leverage its compatibility with existing CMOS foundries for scalable fabrication.

The wavelength-scale thickness and planar geometry of these optical elements allows the

miniaturization of optical elements for integration onto optical fibers and other small-scale

optical systems. In addition, the approach greating simplifes the design and fabrication

process of complicated aspherical optical elements.
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Figure 2.10: Performance of the metasurface lenses with different focal lengths plotted as

a function of their focal length to diameter ratio f/d. (a) is the measured focal spot sizes

for the fabricated lenses, and the dotted green line shows the diffraction-limited fwhm. (b)

Shows the measured transmission and focusing efficiencies for all fabricated lenses. error bars

are obtained from the standard deviation of three measurements on each device. (c) shows

the chromatic dispersion of the 250 μm device. The red, green, and blue curves correspond

to illumination with 625, 530, and 455 nm LEDs, respectively. Plotted curves are a guide to

the eye, and error bars represent 95% confidence intervals for the Gaussian fits.
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Figure 2.11: Focusing vortex beam generator field profiles. The intensity profiles are nor-

malized to their maximums. Plotted are the (a) helical wavefront with one curl and (c) the

characteristic donut distribution for the l = 1 vortex plate. (b) and (d) are the helical wave-

front with two curls, and the bigger donut profile respectively, corresponding to the l = 2

plate. All figures share the same colorbar. (c) and (d) are taken at the focal plane (100 μm)

of the focusing vortex beam generator.
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Chapter 3

FREEFORM SILICON NITRIDE METASURFACES

In the previous section, we discussed the design, fabrication, and characterization of

silicon nitride-based metasurface lenses and vortex beam generators. In those cases, the

forward design technique allowed us to design lenses with different NAs at the same thickness.

Metasurface optics can miniaturize lenses, but due to their rotational symmetry, lenses are

easily fabricated using traditional methods such as diamond turning and polishing. In the

case of freeform optics, metasurfaces can offer a pathway to both miniaturization and scalable

fabrication.

In this chapter, we will present work in the adaptation of freeform optics to a metasurface

platform. First we will discuss the motivation for freeform optics based on a cubic phase

function. Then we present a procedure for converting a sag profile to a metasurface with

simulation results of the cubic-phase plate and Alvarez lens. We characterize the simulation

results characterizing the performance of a scaled down version of the Alvarez lens. Finally,

we show experimental results for the cubic and Alvarez phase plates. We show the suit-

ability of a cubic function for mitigating the known chromatic aberrations associated with

a diffractive optical element, and also a large tunable-power Alvarez lens. In particular, our

demonstration of cubic phase plate shows an extended depth of field of over 300 μm, and the

Alvarez lens shows a change in optical power of 1600 diopters with only 100 μm of physical

displacement. This chapter consists of work that was included in and the basis of Ref. [47].

3.1 Motivation

The function of an optical element is instrically tied to the geometry of its surface. The ease

of manufacturing has often constrained mass produced optical elements to have rotational
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invariance. The emerging field of freeform optics leverages more complex curvatures to

enable novel functionalities and simplified optical systems [65]. These freeform geometries

have been shown to be useful for correcting aberrations [66], off-axis [67] and on-axis [68]

imaging, expanding field of view [68] and increasing depth of field [69]. Recent interest in

this field has been driven by potential applications in near-eye displays as well as compact

optical systems for medical, aerospace, and mobile devices where stringent restrictions exist

limiting the form factor of the optical package. The surfaces we will concentrate on are

based on the cubic profile, where the surface of the optical element is defined by a cubic

function. These elements have been known to exhibit extended depth of focus [69], and in

tandem they form a compound optical element with adjustable power called the Alvarez

lens [70–73]. The extended depth of focus can be used to mitigate the intrinsic diffractive

chromatic aberrations

Unlike conventional optics, metasurface optics design is curvature agnostic, and readily

accepts both conventional spherical curvatures as well as complex freeform surfaces with

no additional design difficulties. Moreover, well-developed semiconductor nanofabrication

technology can be readily employed to fabricate these wavelength-scale thickness devices. In

this work we demonstrate that freeform surfaces are an excellent candidate for adaptation

using metasurfaces. This compatibility allows us to demonstrate a high-performance wave-

front coded device and highly tunable optical systems.

3.2 Freeform Phase Profiles

An arbitrary freeform element is some phase profile φ(x, y), but generally, the element is

specified as a height map z(x, y), also known as the sag profile. This map describes the

curvature of the optical element and is readily converted into a phase profile for a specific

illuminating wavelength λ as:

φ(x, y) =
2πn

λ
z(x, y), (3.1)

where n is the refractive index of the optic. To do numerical simulations with this idealized

phase plate model, we can use the angular spectrum propagation method described in Section
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(2.2). In general, z(x, y) is some smooth function, meaning φ(x, y) will also be a smooth

function. In order to map this phase profile onto a metasurface, we discretize it in terms

of the grating periodicity we use for the metasurface, and choose six phase values linearly

spaced between 0 and 2π.

3.2.1 Cubic-phase plate

Cubic-phase elements have been used in the context of wave-front coding as part of an

extended depth of focus system [69]. Systems exhibiting depth of focus are characterized

by a point spread function (PSF) that is independent of varying degrees of defocus for an

extended length along the optical axis. This means that for a range of displacements along

the optical axis, the optical element produces the same or a similar intensity pattern. A PSF

is a characterization of an optical system’s response to a point source and characterizes its

imperfections. The PSF of a lens for example, changes drastically as it is defocused, however

the PSF of a cubic-phase plate does not. These systems can be characterized by a phase

function:

φcubic(x, y) =
Acubic
L3

(
x3 + y3

)
, (3.2)

where x and y are spatial coordinates, L is the size of the device, and Acubic is a constant

characterizing the strength of the cubic-phase plate. Higher values of Acubic result in larger

regions where the PSF remains constant, at the cost of lower image quality [69]. For our

experiments we choose a value of Acubic = 14π, and L = 150µm.

3.2.2 Alvarez lens

The Alvarez lens is a compound optical element consisting of two cubic phase plates, with

one obeying the phase profile:

φalv(x, y) =
2π

λ
Aalv

(
1

3
x3 + xy2

)
(3.3)

and the other obeying its inverse such that φalv(x, y) + φinv(x, y) = 0. λ is the operating

wavelength of the device and Aalv is a constant that determines the power and tuning range
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of the Alvarez lens. If the two elements are perfectly aligned, the Alvarez lens does not focus

light and can be interpreted to have an infinite focal length or zero optical power. Laterally

displacing the elements relative to each other along the x-axis allows us to focus at finite

distances. Morever, by controlling the lateral displacement along the x-axis we can change

the focal length continuously. Large values of Aalv increase the range of tunable focal lengths

at the expense of image quality. For our Alvarez design, we chose a value of Aalv = 1.17×107

m-2, with an square aperture of side length 150 μm.

By adding the two phase profiles together with some finite displacement d, we can see

how the focal length depends on lateral displacement along the x-axis. First we begin with

the sum of the two plates where one is displaced along the positive direction and another

along the negative direction:

φtotal(x, y) = φalv(x+ d, y) + φinv(x− d, y), (3.4)

which is explicitly:

φtotal(x, y) =
2π

λ
Aalv

[
1

3
(x+ d)3 + (x+ d)y2 − 1

3
(x− d)3 − (x− d)y2

]
. (3.5)

Adding these two functions together, we obtain:

φtotal(x, y) =
2π

λ
Aalv

[
2d(x2 + y2) +

2

3
d3
]
. (3.6)

Finally, neglecting the overall phase in equation (3.6) and identifying the first term as a

spherical lens, we can define the focal length f of the device with respect to displacement as

the expression:

f(d) =
1

4Aalvd
, (3.7)

or alternatively the optical power P defined as:

P (d) =
1

f(d)
= 4Aalvd, (3.8)

where we can conveniently see that the change in optical power has a linear dependence

on the displacement along the x-axis. The theoretical focal length ranges are illustrated in
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Figure 3.1: Example of how the Alvarez lens phase profile changes for three given displace-

ments of 10x (a)-(c), 20x (d)-(f), and 80x (g)-(i) the metasurface sampling periodicity. The

figure shows how the displacment of the two phase plates gives rise to a converging spher-

ical lens in the limit of zero phase plate separation. For large separation we see a short

focal length lens, and for small displacements we see a long focal length lens. (j) shows a

continuous plot of equation (3.7) showing the total tunable focal length range
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Figure 3.2: Phase profile conversion process beginning with (a) some arbitrary sag profile

z(x, y), converted into a radius map using parameters shown in (b) where red is transmission

amplitude, and blue is noramlized phase. (c) and (d) a side and top-down view of the

simulated unit cell with a silicon nitride pillar on a quartz substrate defining the thickness

t, diameter d, and periodicity p.

3.1 where the effect of displacements on the total phase profile is explicitly shown for three

displacements corresponding to 10x, 20x, and 80x the metasurface periodicity of 443 nm.

Importantly, this tunable-power element displaces perpindicular to the optical axis rather

than parallel to it. While it is simple to create a tunable focus system by displacing two lens

along their shared optical axis, this approach requires extra space along the optical axis that

is often unavailable.

3.3 Simulation

As in the previous section, we first simulated scaled-down versions of the final devices in

Lumerical FDTD to confirm their operation. To do this, we followed a similar procedure to

convert the phase profiles from equations (3.2) and (3.3) into maps of dielectric pillars. We

also used the same set of geometric parameters, which were cylindrical pillars of thickness

t = 632 nm on a square lattice with periodicity p = 0.7λ = 443 nm. These parameters are

reiterated in Figure 3.2c

We first simulate a miniaturized version of the design Alvarez lens with Aalv = 6.67×109

m-2 with each plate having total length 10 μm to test the if the cascaded metasurfaces would
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Figure 3.3: Simulated results of a miniaturized Alvarez lens pair with Aalv = 6.67× 109 m-2

using FDTD. (a) shows the simulated (solid) vs theoretical (dashed) focal lengths achieved,

(b) is an example of a focal spot at a displacement of 0.5 μm, and (c) the simulated FWHM

(dots) and theoretical FWHM of a diffraction limited spot (line) along the x and y directions.

The x direction diffraction limited FWHM is larger because the lens increases in size as the

two plates are displaced.

perform the function of an Alvarez lens. The Aalv value is increased from our design value for

an actual device so we can resolve the changes in focal lengths with a small FDTD simulation

region. The initial results are shown in Figure 3.3 showing the focal length ranges, a focal

spot size, and the spot size. These plates are separated by a distance of 1.5 μm for the

simulations where separation is kept constant.

We then simulate the response of this miniaturized system to different incident wave-

lengths, and different axial separations between the two metasurface plates. Chromatic

aberrations are ubiquitous to metasurface optics, and we would like to characterize how the

Alvarez lenses are affected as there are two different plates to account for. In addition, in any

physical system, the Alvarez plates must be separated by some physical distance to mitigate

the possibility of damage to the metasurface plates.

We test the response of the Alvarez lens to seven different wavelengths in the visible range

between 400 nm and 700 nm in Figures 3.4 and 3.5. We see that the lens displays strong
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chromatic aberrations as expected for diffractive optics, and only forms a distinct focal spot

for wavelengths of 550 nm and above. We can see that for wavelengths lower than 550 nm

there are extended focal spots in the x-z plane and the device fails to form distinct focal

spots. However, along the y-z plane we see the standard chromatic aberration associated

with diffractive optics. We then test the response of the system to different separations as

shown in Figure 3.6. In simulation the axial separation has a large effect on the focal spot

along both the x-z and y-z planes. For separations that are large enough in Figure 3.6c and

d, we can see that the beam produced by the first plate clips the edge of the second plate

causing decreases in focal spot intensity in addition to an aberrated focal spot in the x− z

plane. This is due to the displacement of the plates along the x direction while along the y

direction, the lens shape remains the same.

3.4 Fabrication

We fabricated the metasurfaces using the same fabrication flow as that described in Chapter

2, and is presented in Appendix A.1. Scanning electron micrographs (SEM) of the fabrication

results for one of the plates constituting an Alvarez lens and the cubic-phase plate are shown

in Figures 3.7a and b respectively. The fabrication in this work has improved significantly

compared to that of previous attempts. However, there is still some overetching of the pillars

that results in smaller pillar diameters than the design.

3.5 Experimental Results

We tested the Alvarez lens and the cubic-phase plates with homebuilt microscopes consisting

of a Nikon Plan Fluor 40x objective, a Thorlabs TTL-200 tube lens, and a Point Grey

Chameleon, with a setup analogous to that of Section (2.5).

3.5.1 Cubic-phase plate

For the cubic-phase plate, we our experiment is primarily interested in capturing the point

spread function (PSF) of the cubic element for different values of defocus. The device
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Figure 3.4: Behavior of the Alvarez lens under chromatic illumination. Plotted are the

electric field intensity profiles on the x-z and y-z planes centered along the optical axis for

illumination wavelengths covering the visible spectrum (400 − 550 nm) in steps of 50 nm.

The lens begins to form a distinct focal spot for 550 nm in both the x-z and y-z planes. The

white dashed lines indicate the locations of the two metasurfaces comprising the Alvarez

lens.
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Figure 3.5: Behavior of the Alvarez lens under chromatic illumination. Plotted are the

electric field intensity profiles on the x-z and y-z planes centered along the optical axis for

illumination wavelengths covering the visible spectrum (600− 700 nm) in steps of 50 nm.
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Figure 3.6: Simulated Alvarez lens performance for different separations along the optical

axis, As the displacement increases, the x-z plane focal spot deforms, elongating, and also

decreasing in intensity (a)-(d). However the focal length remains near 10 μm. In the y-

z plane,the focal spot remains near 10 μm and retains its shape, but decreases rapidly in

intensity (e)-(h). The design has an in plane displacement along x of 4 μm. The axial

displacement is represented by h, and the dashed white lines show the locations of the two

metasurfaces comprising the Alvarez lens.
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Figure 3.7: SEMs of the fabrication results for one of the (a) Alvarez phase plates, and the

(b) cubic-phase plate. The orange and blue boxes are zooms of the pillars. Overetching of

the cubic-phase plate is noticeable.

is mounted on a glass slide with the metasurface side facing the microscope. Coherent

illumination is provided using either a red helium-neon laser, or a green solid state laser

at 632 nm and 532 nm respectively incident on a 5 μm pinhole. We note that the phase

plates are designed to function with incoherent illumination [69], but the power of our LEDs

was not high enough to measure the PSF. Thus, intensity profiles using high power laser

illumination sources were captured using the microscope and a CCD camera mounted on the

translation stage as shown in Figure 3.8.

As we translate the microscope along the z axis, we image the different PSFs along the

optical axis, and we can characterize its afocal behavior with respect to defocus along the z

axis. The PSFs generated by the cubic phase plate are shown with respect to different values

of defocus in Figure 3.9. We can see that indeed, the PSF of the element changes slowly with

respect to displacements of over a range of 300 μm, confirming the depth-invariant behavior

of the cubic-phase plate when compared to the PSFs generated by the lens as shown in Figure

3.10. The lens PSFs as shown in Figure 3.10 change wildly over a small defocus range of 100

μm. In addition to the PSF, we also computed the modulation transfer function (MTF) as
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shown in Figure 3.11 for the cubic phase plate, and Figure 3.12 for the lens. The MTF is

defined as:

MTF (kx, ky) = FT (PSF (x, y)). (3.9)

Again, we can see that for the cubic-phase plate, the MTFs change slowly across the

ranges of defocus while the lens MTF change wildly over a similar range.

In addition, we can also compare the PSFs and MTFs of the different elements at different

wavelengths. The large chromatic aberrations are a central problem to metasurface optics,

as shown in the previous chapter. We can understand the process of image formation by an

optical system as a convolution between the original image, and the PSF of the optical system.

This way, we can recognize that one pathway towards minimizing chromatic aberration is

ensuring that the PSF (or MTF) of the optical system is the same at the focal plane for the

wavelengths of interest [74]. From Figures 3.9 and 3.11, we can see that for red and green

illumination, the PSFs and MTFs are the similar for the same values of defocus. However,

based on Figures 3.10 and 3.9, we can see that the PSFs and MTFs for a quadratic lens

with a focal length of 500 μm designed for operation at 632 nm vary widely at each value

of defocus for red and green illumination wavelengths. This means we can use the cubic

element’s extended depth of focus to find a value of defocus where the PSF is the same

for our wavelengths of interest. We note that this may truly enable broadband white light

imaging, as the PSF would be the same for a continuous bandwidth of wavelengths at a

specific value of defocus.

3.5.2 Alvarez lens

For the Alvarez lens, our experiment is primarily concerned with characterizing the range

of focal lengths that it is capable of tuning over. We characterize the quality of the focus,

and the actual focal length of the lens with respect to the in-plane displacement along the

x-axis. The Alvarez lenses are mounted such that the two metasurfaces are facing each

other to minimize the axial separation between the two plates as shown in Figure 3.13. The
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Figure 3.8: Layout of the setup used to characterize the cubic-phase element.

Figure 3.9: Dependence of the cubic-phase plate metasurface PSF upon defocus along the

optical axis. Top and bottom rows are the PSFs of the cubic element under coherent illu-

mination by red and green light respectively. The scale bar is 18 μm and the differences in

intensities of the images are due to the difference in incident intensities of the red and green

lasers exiting the pinhole.
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Figure 3.10: Dependence of the lens metasurface PSF upon defocus along the optical axis.

Top and bottom rows are the PSFs of the lens element under coherent illumination by red

and green light respectively. The scale bar is 18 μm and the differences in intensities of the

images are due to the difference in incident intensities of the red and green lasers exiting the

pinhole.
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Figure 3.11: MTF of the cubic-phase element. (a)-(f) show 1D slices of the MTF of the cubic

element for a range of over 300 μm plotted against normalized spatial frequency for both red

and green illumination. The MTFs for green (532 nm) and red (632 nm) are shown in solid

and dotted lines repectively.
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Figure 3.12: MTF of the 500 μm focal length quadratic metasurface lens. (a)-(d) show 1D

slices of the MTF of the quadratic element for a range of 150 μm plotted against normalized

spatial frequency for both red and green illumination. The MTFs for green (532 nm) and

red(632 nm) are shown in solid and dotted lines repectively.
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metasurface closer to the objective is mounted on a thinner glass coverslip with thickness

0.18mm in order to allow imaging for short focal lengths.

We experimentally measure the focal lengths for in-plane displacements d of each meta-

surface from 2 to 50 μm and we find that the focal length changes from a minimum of 0.5 mm

to a maximum of 3 mm as seen in Figure 3.14a. A displacement d is constituted by displacing

one metasurface a distance d, and the other a distance −d along the x-axis, culminating in

a total displacement of 2d. This experiment indicates that with a physical displacement of

100 μm, the focal length changes by 2.5 mm, corresponding to a change in optical power by

about 1600 diopters. While the experimentally measured focal length is significantly smaller

than the simple theoretical predictions made in Figure 3.1, this is still a significant change in

focal length by a mechanically actuated metasurface-based optical system. In addition, we

emphasize that the lens achieves most of its focal tuning range at a small range of physical

displacements, in that we can tune the focal length by 2 mm using only 60 μm of physical

displacement. We performed a simple fit of the form:

f(d) =
1

4Afit(d+B)
(3.10)

to generate the red line shown in Figure 3.14a. The best fitting parameters are Afit =

7.97×106 m-2, similar to our design value of 1.17×107 m-2, while B = 7.6 μm. The parameter

B represents a degree of misalignment, which is one of the major sources of the discrepancy

between the experimental and measured achievable focal lengths. In addition, there is also

an effect of the discretized phase profile as seen in the FDTD simulations performed on the

metasurface shown in Figure 3.3a.

Another important quantity to assess the quality of a lens is its spot size, which we

characterize by calculating the FWHM of a Gaussian fit to a 1D slice of the intensity data.

The FWHM shows a similar dependence on lateral displacement as the focal length, and

the largest focal length of 3 mm has the largest FWHM of about 20 μm, while the smallest

focal length of about 0.5 mm has the smallest FWHM of 5 μm as shown in Figure 3.14b. In

general, the FWHM with respect to displacement follows a similar trend as the focal length
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Figure 3.13: Layout of the setup used to characterize the Alvarez lens elements.

with respect to displacement. We find that our measured FWHM is generally larger than

that of a diffraction-limited spot. We also characterize the behavior of the focal spot as the

microscope moves into and out of the focal plane as shown in Figure 3.14c and d along the

x and y axes respectively. Mirroring our previous simulation results shown in Figure 3.3c,

we find that the focal spot is wider along the axis of displacement (x) than it is along the

perpindicular axis (y).

Finally, we characterized the response of the Alvarez lens to axial separation in terms of

its affect on the focal length and on the FWHM as shown in Figure 3.15. The separation was

achieved by keeping the metasurface closest to the objective stationary while the metasurface

near the illumination source was translated backwards to increase the separation. The effect

on the focal spot size was not deterministic, showing no real trend. We see that the separation

has a real impact on the focal length of the Alvarez lens, but not enough to account for the

large discrepancy between the theoretical and experimental focal length changes.
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Figure 3.14: Alvarez lens performance characterization. (a) Measured focal distances of the

Alvarez lens pair plotted against x displacement. The red line is a theoretical fit to the focal

length data. (b) FWHM measured along the x-axis plotted against x displacement. The

measured data are shown as blue points while the blue line serves as an eye guide. The red

line represents the diffraction-limited FWHM. Error bars represent a 95% confidence interval

of a Gaussian fit. Both (a) and (b) were taken with displacement step sizes of 2 μm. (c) and

(d) are the behavior of the FWHM for five displacements along the x-axis measured along

the (c) x and (d) y axes respectively. FWHM data are plotted as points, and the lines are

eye guides.
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Figure 3.15: Alvarez lens performance for changes in separation between the two plates along

the optical axis. (a), (c) focal distances for an Alvarez lens with 25 and 30 μm of transverse

displacement d, respectively. As the displacement increases, both setups displayed a decrease

in the focal length. The axial displacement is not absolute and can be interpretted as an

offset of some finite distance. (b), (d) show the effect of the axial separation on the FWHM

for the same displacements as in (a) and (c). Data in red and blue represent data taken

along the x and y axes respectively. Error bars represent the mechanical error associated

with the translation stage micrometer.
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3.6 Conclusion

We have fabricated and demonstrated the performance of a metasurface-based cubic and

Alvarez lens in silicon nitride. This work extends the scope of the work performed in the

previous chapter into the field of freeform optics. We believe that this metasurface platform

is near ideal for both adapting existing freeform optical elements, and also realizing new

classes of arbitrary, spatial phase profiles. This platform also has the unprecedented ability

to integrate freeform optics at the micron scale, leading to ultra-miniaturized optical systems.

Using these freeform optics, we demonstrated a highly tunable Alvarez lens, in addition to

demonstrating a cubic-phase element capable of mitagating the severe chromatic aberrations

intrinsic to diffractive optical elements.
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Chapter 4

INVERSE DESIGN BASED ON GENERALIZED LORENZ-MIE
THEORY

In this chapter, we introduce a different approach to the design of discrete-scatterer-

array-based optics. The presented gradient-based inverse-design method is based on general-

ized Lorenz-Mie theory (GLMT) and is capable optimizing large arrays of wavelength-scale

spheres towards a given function. We present a general overview of the types of inverse-design

methods, and give a specific treatment of gradient-based methods using the adjoint-state

method. Then we present the basic mathematical structure of the matrix formulation of the

GLMT forward and adjoint problems. Finally, we present some simulation results for singlet

and doublet lenses and characterize them using FDTD simulations. This chapter parallels

the work done in reference [75]

4.1 Motivation

Previously, we had been using a forward-design method where we identify a phase profile

corresponding to an optical function, and implement it with a specific set of scatterers. This

tried and true method has led to many successes in the field of metasurface optics, but has

two major limitations. First, while it is suitable for optical functions with a well-defined

phase profile, it is difficult in general to find a phase profile that corresponds to an arbitrary

optical function. Thus forward design methods can only explore a small subset of the whole

gamut of optical elements that can be built by controlling the electromagnetic waves at the

single scatterer level. Even if forward design is used to produce a working device, the models

generally used to produce these elements work with an idealization of a metasurface that

does not utilize the full complexity of the single scatterer devices. In these systems the
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sheer number of available design variables precludes the possibility of efficiently optimizing

individual scatterers using a forward-design method. Both of these limitations can be avoided

by using an inverse-design method. In addition, as demonstrated in the Chapters 1 and 2,

the lack of memory efficient simulation methods for larger metasurfaces poses a significant

limitation on their development and characterization.

4.2 Overview of Inverse Design

Inverse-design methods are methods where simulation data are interpreted and then used

to produce another improved device in an automated process. In contrast to conventional

forward-design methods where the design is more intuition based, inverse-design methods

are data based [76–79]. Generally, an inverse-design method begins with the specification

of a desired functionality, and the encapsulation of that functionality in a figure of merit

(FOM). This FOM is defined as a function of modifiable variables characterizing the device,

which can include the scatterer dimensions, spacing, and refractive index. Having such an

FOM allows us to formulate the design process as a general optimization problem.

Inverse-design methods have a rich history in other fields, and in the context of com-

putational electromagnetics, they have been applied to phase profile design [33, 34], single

scatterer design [80], beam steering [80], and achromatic metasurface optics [81]. These

methods can be classified into two major groups, local and global methods. Global methods

such as genetic and particle swarm optimizations make no assumptions about the system

to be optimized, allowing them to be broadly applicable in a wide variety of applications.

In particular, these methods can be powerful when computing the gradient of the FOM is

costly or impractical in the cases of non-differentiable, discontinuous, or discrete functions.

These methods have found success in the computational electromagnetics community for

both optimizing existing devices [82], and also generating new structures [83]. However,

while these methods are extremely generalizable, they do not take advantage of underlying

physical principles to accelerate convergence to an optimum. In contrast, gradient-based

methods are more specialized, and utilize these underlying physical principles to accelerate
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convergence [84–87]. While the previously mentioned methods are considered global op-

timization methods, gradient-based methods can only use local information, and are thus

considered local methods. For general nonconvex problems considered in this thesis, local

methods are guaranteed to converge to a local optimum rather than the global optimum.

The following will focus specifically on gradient-based methods that calculate the gradient

using the adjoint-state method.

4.2.1 The Adjoint-State Method for Optimization

The simplest way of computing a gradient is to independently vary a single parameter and

monitor the change in the response of the system. This can be done for a system with N

different modifiable parameters N times to compute the full gradient. However, it is obvious

that for large N , this process becomes untenable as for a single step in the optimization

process, we need to solve N + 1 systems of equations, one for the initial state, and N for the

modifiable parameters. The adjoint-state method is a specific tool for efficiently calculating

the gradient of a system with many variables and was first used in the geophysical modeling

community for solving inverse problems [88,89]. Instead of solving N+1 systems of equations,

the adjoint method allows the entire gradient to be computed by solving only two systems

of equations: one for the initial state, and one for the gradient. This powerful realization

allows gradient-based methods to be suited for large scale optimizations.

It was first used for the sensitivity analysis for the systems geophysicists were interested

in. In the context of optimization, it was first applied in the aerospace community [85] to

generate structural elements. For computational electromagnetics, the first adjoint methods

were used in the microwave regime [90], though in recent years, it has seen success in both the

integrated photonics community [87,91–95], and metasurface community [80,96–99]. As the

method is important to the following discussion, we will present an overview of the method.

The goal of our optimization problem is to optimize some figure of merit F (x) which

is an explicit function of some observables x. Often times we do not have direct access to

the observables x, but can control them through another set of parameters p. In this case,
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our parameters p give rise to the observables x through some set of equations that defines

what we call the forward problem. We can represent a linear forward problem as a matrix

equation:

A(p)x(p) = f(p), (4.1)

where A is some matrix representing the system to be optimized, x(p) are our observables

as a function of the modifiable parameters, and f is some applied drive our system responds

to. Our optimization problem can now be seen as the optimization of F (x(p)) with respect

to our parameters p, so we need to find the gradient with respect to those parameters:

∇F (x(p)) =

[
∂F (x(p1))

∂p1
,
∂F (x(p2))

∂p2
,
∂F (x(p3))

∂p3
, ...

∂F (x(pN))

∂pN

]
, (4.2)

where N is the total number of parameters varied. Now for a specific parameter pi and

assuming only real values, we find:

∂F (x(pi))

∂pi
=
∂F

∂x

∂x

∂pi
. (4.3)

As our figure of merit is defined as an explicit function of x, the first term in (4.3) is easy

to calculate analytically by design. However, the second term in (4.3) is generally not as

straightforward. We can begin by taking a derivative of (4.1) with respect to pi, and we can

find:
∂

∂pi
(Ax) = A

∂x

∂pi
+
∂A

∂pi
x =

∂f

∂pi
. (4.4)

If we are interested in brute forcing the derivatives one by one, we can do it using:

A
∂x

∂pi
=
∂f

∂pi
− ∂A

∂pi
x. (4.5)

This way we can solve (4.5) N times to get the required partial derivatives to complete our

gradient. Alternatively, we can write:

∂x

∂pi
= A−1

(
∂f

∂pi
− ∂A

∂pi
x

)
. (4.6)

By inverting the A, we can simply get each partial derivative from matrix multiplications.

Both of these techniques are suitable for small numbers of parameters or small matrices, but

become untenable for large systems. This realization motivates the adjoint approach.
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If, instead of proceeding with the above two methods, we insert (4.6) into (4.3), we find:

∂F (x(pi))

∂pi
=
∂F

∂x
A−1

(
∂f

∂pi
− ∂A

∂pi
x

)
. (4.7)

At first (4.7) appears to be a step backward as the equation has become more complex, and

we are still required to compute an inverse. However, we can define a new ’adjoint’ set of

equations using:
∂F

∂x
A−1 = λT , (4.8)

which becomes:

ATλ =

(
∂F

∂x

)T
, (4.9)

where λ is now a set of adjoint variables. The important quality to note is here, λ is

completely independent of any parameters pi. So when we insert (4.8) into (4.7), we find:

∂F (x(pi))

∂pi
= λT

(
∂f

∂pi
− ∂A

∂pi
x

)
, (4.10)

where the quantity ∂A
∂pi

contains the information of how the physical system itself is changed

by changing the design parameters p. In the following section regarding GLMT, this will be

seen as the change in the matrices representing the individual particles themselves. This is

the primary result of the adjoint-state method, and from Equations (4.9) and (4.10), we can

see that we only need to solve the adjoint set of equations a single time to arrive at our adjoint

variables. These adjoint variables can be computed a single time using Equation (4.9), and

in order to compute the full gradient (4.2), we only need to perform N matrix multiplications

and solve a single system of equations, instead of solving N systems of equations.

4.3 Why Generalized Lorenz-Mie Theory

While gradient-based optimization methods have been reported and used with great success

in computational electromagnetics [87], in the metasurface community, their application had

been limited to two dimensional devices [84,98,100], or a smaller, single unit cell in a periodic

design [80]. While these devices have shown impressive functionalities, they are not suited
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for the design of large extended devices. This limitation is mostly due to their approach of

either meshing their design space [80,98,100] due to the use of a finite-difference method as

the basis of the optimization method, or a current incompatibility with three dimensional

designs [84].

In particular, finite-difference methods are popular due to their ease of implementation

and general applicability. However, these methods scale poorly with increased system size,

as their accuracy and speed both largely depend on the fineness of the mesh. A finer mesh

allows for more accurate results, but also increases the number of grid points, meaning that

the memory requirement will be higher and the speed lower. A general heuristic for a mesh

capable of producing accurate results is λ/(10n) where λ is the wavelength of interest, and

n is the refractive index of the medium. In the case of a volume, this requires the unit of

discretization to be a cube of dimension
(
λ

10n

)3
. For even a small device requiring simulation

region 100λ × 100λ × 10λ, this would require an unfeasible amount of mesh points, on the

order of a billion.

To circumvent these issues, we decided to use GLMT. Rather than working with finite-

difference methods that require the discretization of space into small volumes, GLMT is

analytical theory that describes the scattering of a plane wave from an ensemble of spheres

[101, 102]. This formalism has been shown to be capable of simulating large ensembles of

spheres numbering up to 100,000 [103] on a modest workstation computer, so it is suitable

for use in a large-scale optimization problem. In addition, the analytical theory allows for

the easy computation of the gradient, as we are guaranteed smooth, differentiable functions

in the regions of interest. By using GLMT, we gain the ability to simulate and optimize large

arrays of dielectric scatterers that had not been considered before. To achieve this benefit

however, we lose the inherent flexibility of the finite-difference methods that allow for near

arbitrary changes in scatterer geometry, so long as the mesh can support it. We deliberately

limit ourselves to spherical scatterers knowing their limitations, and we study their behavior

in large arrays. In the following, we will cover the forward problem largely using the notation

of [103], and then the inverse problem, which is my contribution to this body of literature.
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4.4 Forward Problem

In order for any inverse method to be implemented, first there must be the forward method.

In the style of [102, 103] we will begin with the scattering from a single sphere, and then

generalize our formalism to that of multiple spheres. As we are dealing with spherical ge-

ometries, we begin with a spherical coordinate system (r, θ, φ). For a more detailed coverage

of GLMT theory, references [101,102] are recommended.

In the following, we consider a single or ensemble of spheres characterized by their central

positions ri, radii Ri, and complex refractive index ni, where the index i = 1, 2, 3, ...N runs

over a system of N spheres. These spheres are located in a homogeneous, isotropic, nonmag-

netic background with refractive index n0. The spheres are also homogeneous, isotropic, and

nonmagnetic. All spheres are excited by a monochromatic incident field Ein with angular

frequency ω and a time harmonic dependence is implicitly understood.

4.4.1 Scattering by a single sphere

For a single sphere, we have the well-studied Mie solution, where we can write the total field

as the sum of the incoming and scattered field:

E(r) = Ei
in(r) + Ei

scat(r) (4.11)

understanding in this case with one sphere, i = 1, and with:

Ei
in(r) =

∑
i,n

aiin,nΨ
(1)
n (r− ri) (4.12)

Ei
scat(r) =

∑
i,n

binΨ
(3)
n (r− ri) (4.13)

The incoming and scattered fields are represented in terms of regular (Ψ(1)) and outgoing

(Ψ(3)) spherical vector wave functions (SVWF) respectively and are given by:

Ψ
(ν)
1lm(r) =

eimφ√
2l(l + 1)

bl(kr)
[
imπlm(θ)θ̂ − τlm(θ)φ̂

]
. (4.14)
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Ψ
(ν)
2lm(r) =

eimφ√
2l(l + 1)

{
l(l + 1)

bl(kr)

kr
P
|m|
l (cosθ)r̂

+
1

kr

∂(krbl(kr))

∂(kr)

[
τlm(θ)θ̂ + imπlm(θ)φ̂

]}
,

(4.15)

where P
|m|
l is the associated Legendre polynomial, jl is the spherical Bessel function of the

first kind, bl is either the spherical bessel function of the first kind (ν = 1) or spherical

Hankel function of the first kind (ν = 2), and πlm(θ) and τlm(θ) are given by:

πlm(θ) =
Pm
l (cosθ)

sinθ
, (4.16)

and

τlm(θ) =
∂Pm

l (cosθ)

∂θ
. (4.17)

These form a complete basis and ain (bin) are the coefficients of the incoming and (scattered)

fields, while i indexes over each sphere, and n is a multindex that includes the polarizations

p = 1, 2, the orbital indices l = 1, 2, ..., and azimuthal indices m = −l, ...0, ...l. The spherical

scatterer couples the incoming to the scattered field, and we can characterize this coupling

using the Mie coefficients. The Mie coefficients are obtained by enforcing boundary conditions

at the surface of the sphere, and are given by:

Qi
1,l =

jl(kRi)∂kiRi
(kiRijl(kiRi))− jl(kiRi)∂kRi

(kRijl(kRi))

jl(kiRi)∂kRi
(kRihl(kRi))− hl(kRi)∂kiRi

(kiRijl(kiRi))
(4.18)

Qi
2,l =

k2jl(kRi)∂kiRi
(kiRijl(kiRi))− k2i jl(kiRi)∂kRi

(kRijl(kRi))

k2i jl(kiRi)∂kRi
(kRihl(kRi))− k2hl(kRi)∂kiRi

(kiRijl(kiRi))
(4.19)

where jl and hl are the spherical Bessel function of the first kind, and spherical Hankel

function of the first kind, respectively. k is the wave number of light, defined as k = ω/c,

and ki is the wave number of light inside the sphere, defined as ki = nik. For spheres, these

coefficients are independent of the azimuthal index m and depend only on the polarization

p and orbital index l.

Equations (4.14) and (4.15) are for the different possible polarizations of incident light,

and these coefficients can be collected into a diagonal matrix called the T-matrix of the form:

T i,i
′

n,n′ = Qi
p,lδp,p′δm,m′δl,l′δi,i′ (4.20)
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The T-matrix of a sphere encapsulates all of its scattering properties that depend on its

geometric or material properties, and depends only on these geometric properties and the

refractive indices of the scatterer itself and the medium. For spherical scatterers, it is impor-

tant to note that the T-matrix is diagonal in our basis. The T-matrix relates the incoming

field to the scattered field:

bin =
∑
n′,i′

T i,i
′

n,n′a
i′

n′ (4.21)

This equation completely describes the scattering of a monochromatic plane wave from a

single spherical scatterer, but the problem becomes more complicated for larger ensembles

of spheres.

4.4.2 Scattering by an ensemble of spheres

In the previous Section (4.4.1), we derived the scattering properties of a single sphere, which

will come in handy now that we attempt to treat multiple spheres. The main difficulty in

the handling of systems of multiple spheres is now not only is there an initial incident wave

onto a specific sphere, but also contributions from the scattered waves of the other spheres

that compose the ensemble. Mathematically, this can be represented as:

Ei
in,total(r) = Ei

in(r) +
∑
i′ 6=i

Ei′

scat(r) (4.22)

Where now Ei
in,total represents the incident wave onto sphere i of the ensemble, and has

contributions from the scattered field of all other spheres composing the ensemble. This

means we must be able to transform the wave scattered from some sphere i′ into the incident

wave for the other spheres in the ensemble.

To accomplish this we must describe the scattered field (Ψ
(3)
n ) using the same basis vector

functions as the incoming field (Ψ
(1)
n ), but referring to a different coordinate system. This is

accomplished by expanding one basis set in terms of the basis set of another basis set using

an addition theorem [102, 104, 105]. These transformations can be compiled into a coupling

matrix W . We can then define a new set of incoming coefficients for each sphere in the
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ensemble:

ain = aiin,n +
∑
i′ 6=i

∑
n′

W i,i′

n,n′b
i′

n′ , (4.23)

where W i,i′

n,n′ represents an element of the coupling matrix that changes the representation

of scattered fields. Now, we can see that the coefficients representing the incident fields

(ain) on a single sphere are not only a function of the initial coefficients (aiin,n), but also the

contributions of scattered field coefficients from other spheres (bi
′

n′). The coupling matrix

element is given by:

W i,i′

n,n′ = An,n′(ri − ri′), (4.24)

with:

Ψ(3)
n (r + d) =

∑
n′

An,n′(d)Ψ
(1)
n′ (r)for|r| < |d|, (4.25)

and explicitly:

Amlpm′l′p′(d) = δpp′Amlm′l′(d) + (1− δpp′)Bmlm′l′(d) (4.26)

and Amlm′l′ and Bmlm′l′ are then given by:

Amlm′l′(d) = ei(m−m
′)φd

l+l′∑
p=|l−l′|

a5(l,m|l′,m′|p)h(1)p (kd)P |m−m
′|

p (cosθd), (4.27)

Bmlm′l′(d) = ei(m−m
′)φd

l+l′∑
p=|l−l′|

b5(l,m|l′,m′|p)h(1)p (kd)P |m−m
′|

p (cosθd), (4.28)

and finally,

a5(l,m|l′,m′|p) =i|m−m
′|−|m|−|m′|+l′−l+p(−1)m−m

′

× (l(l + 1) + l′(l′ + 1)− p(p+ 1))
√

2p+ 1

×

√
(2l + 1)(2l′ + 1)

2l(l + 1)l′(l′ + 1)

 l l′ p

m −m′ m′ −m

 l l′ p

0 0 0


(4.29)

b5(l,m|l′,m′|p) =i|m−m
′|−|m|−|m′|+l′−l+p(−1)m−m

′

×
√

(l + l′ + 1 + p)(l + l′ + 1− p)(p+ l − l′)(p− l + l′)(2p+ 1)

×

√
(2l + 1)(2l′ + 1)

2l(l + 1)l′(l′ + 1)

 l l′ p

m −m′ m′ −m

 l l′ p

0 0 0


(4.30)
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where (d, θd, φd) represent d in spherical coordinates. If we now substitute equation (4.21)

into (4.23), we find:

bin =
∑
n′,i′

T i,i
′

n,n′a
i′

in,n′ +
∑
n′,i′

T i,i
′

n,n′

∑
i′′ 6=i′

∑
n′′

W i′,i′′

n′,n′′b
i′′

n′′ (4.31)

We note here that the T matrix here is now an ensemble T-matrix with all of the individual

particle T-matrices aligned on the diagonal. For a system of spheres, this corresponds to a

diagonal matrix. We then move the scattered field coefficients to the same side and find:

∑
i′,n′

M i,i′

n,n′b
i′

n′ =
∑
n′,i′

T i,i
′

n,n′a
i′

in,n′ (4.32)

where we have defined:

M i,i′

n,n′ = δn,n′δi,i′ −
∑
i′′,n′′

T i,i
′′

n,n′′W
i′′,i′

n′′,n′ (4.33)

as the system matrix. We can see now that the scattering from an ensemble of spheres can be

posed as the solution to a system of linear equations. This problem constitutes the forward

problem we are interested in solving, and has been implemented in a freely available software

package called CELES [103].

There are a few attractive properties about this system. The first being that all of the

matrix components can be easily analytically computed using mathematical functions. This

means that this method does not require storing large finite difference matrices, or meshes.

In addition, there is a natural separation between the material and geometric properties

of the scatterers themselves in the ensemble T-matrix (T ) while their relative locations are

determine the coupling matrix (W ). We will only be concerned about the geometric and

material properties of the scatterers themselves, and not their relative positions, which will

stay constant.

Next, we will describe how the formulate an adjoint problem in the context of GMMT

to give a concrete example of the procedure laid out in Section (4.2.1).
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4.5 Adjoint Problem

To define the adjoint problem, we must first concern ourselves with defining an FOM and

making sure that we can express this FOM as a function of the parameters of interest. In

this paper, we are primarily concerned with finding an optimal distribution of sphere radii

that produce some desired intensity in the far field. We first describe how to define a figure

of merit as a function of the sphere radii. Then, we use this figure of merit to formulate the

full adjoint system of equations to be solved in order to obtain the full gradient.

4.5.1 Figure of merit design

There are many different suitable choices for a figure of merit, but for this first demonstration,

we begin with a simple choice: the intensity at a single point in space or I(r0) where r0 is the

point of interest. There are a chain of variables that are involved in computing an intensity,

and we can explicitly write them as:

FOM(R) = I(r0;Rj) = |E(r0;Rj)|2 = |
∑
i,n

bin(Rj)Ψ
(3)
n (r0 − ri)|2 (4.34)

where the explicit dependences on the sphere radii Rj have been shown. Now we know that

in order to be able to arrive at an expression for the gradient, we must determine how the

scattering coefficients of the sphere array (bin) change with the sphere radii (Rj).

4.5.2 Computing the gradient

As before, we begin by applying a gradient operator onto our figure of merit as in Equation

(4.2).

∇RFOM(R) =

[
∂FOM

∂R1

,
∂FOM

∂R2

,
∂FOM

∂R3

, ....
∂FOM

∂RN

]
(4.35)

where ∇R is the gradient with respect to the particle radii R, and each of the terms inside

the bracket is an individual term. As we are differentiating a real number FOM with respect

to another real number Rj, we should expect all of these individual terms to be real as well.
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However, unlike in the previous case, when we use the chain rule naively in this situation as:

∂FOM

∂Rj

=
∂FOM

∂bin

∂bin
∂Rj

(4.36)

we arrive at a complex value in general. To remedy this we employ the Wirtinger derivatives,

which in essence allow us to treat a variable α and its complex conjugate α∗ as independent

variables. This way, we can remedy equation (4.3) as:

∂FOM

∂Rj

=
∂FOM

∂bin

∂bin
∂Rj

+
∂FOM

∂ (bin)∗
∂ (bin)

∗

∂Rj

= 2 Re

{
∂FOM

∂bin

∂bin
∂Rj

}
(4.37)

where we take the real part in the final step. We can then find the analytical derivative of

the FOM with respect to our scattering coefficients:

∂FOM

∂bin
= E∗(r0) ·Ψ(3)

n (r0 − ri) (4.38)

Where * denotes the complex conjugate of a variable. Now following the procedure outlined

in Section 4.3, we first take a derivative of Equation (4.32) with respect to a particle radius

Ri (now omitting the summations, and understanding that repeated indices are summed

over):

∂bi
′

n′

∂Rj

=
(
M i,i′

n,n′

)−1(∂T i,i′n,n′

∂Rj

ai
′

in,n′ +
∂T i,i

′′

n,n′′

∂Rj

W i′′,i′

n′′,n′b
i′

n′

)
(4.39)

Taking this derivative, we see that there is a new term that we must consider, the partial

derivative of the T-matrix with respect to the parameter we are modifying. In this specific

case, it is easily handled by taking derivatives of the Mie coefficients from equations (4.14)

and (4.15), as shown in [106,107] resulting in a diagonal derivative matrix. We will describe

the formulation of the T-matrix derivative of a general particle in the next chapter. As

before, we can insert equation (4.39) into equation (4.37) to arrive at:

∂FOM

∂Rj

= 2 Re

{
∂FOM

∂bi
′
n′

(
M i,i′

n,n′

)−T (∂T i,i′n,n′

∂Rj

ai
′

in,n′ +
∂T i,i

′′

n,n′′

∂Rj

W i′′,i′

n′′,n′b
i′

n′

)}
(4.40)

and we can define our ‘adjoint’ coefficients (λin) in a system of coupled equations analogously

to equation (4.9): (
M i,i′

n,n′

)T
λin =

(
∂FOM

∂bi
′
n′

)
(4.41)



64

These adjoint coefficients are dual to the scattering coefficients we computed in the forward

problem. If we understand the scattering coefficients as the current system’s response to

an incident plane wave, we can understand the adjoint coefficients as the response of the

current system to the wave that satisfies our FOM. We can then solve the adjoint system of

equations and arrive at an expression of our gradient:

∂FOM

∂Rj

= 2 Re

{(
λin
)T (∂T i,i′n,n′

∂Rj

ai
′

in,n′ +
∂T i,i

′′

n,n′′

∂Rj

W i′′,i′

n′′,n′b
i′

n′

)}
(4.42)

As before we see that λin is independent of Rj, the parameters we are optimizing over.

This means that we only need to compute the adjoint coefficients once per iteration of the

inverse-design algorithm.

4.6 Gradient-based Optimization Loop

The gradient we computed in the previous section provides us with the direction in which

we move our array of spheres to approach a local optimum as our FOM is not shown to be a

convex function of our variables. Gradient-based optimization is an iterative process where a

given initial condition is updated according to the direction given by the gradient. Each iter-

ation of the algorithm consists of two sub-problems; first we must solve the forward problem

to compute the FOM, and then we solve the adjoint problem to compute the gradient. We

continue to iterate the system until the FOM or gradient reaches a set condition where we

determine the optimization to have converged. The above code is implemented in MATLAB,

where the forward problem is solved using CELES [103], and the adjoint problem solver is

our own code added in. The code takes advantage of a CUDA accelerated matrix-vector

multiplication which is the slowest part of the process.

We verify our simulation process by testing the FOM in Equation (4.34). By maximizing

the FOM, we are maximizing the intensity at a single point in space in the far field of the

optical element. This can be thought of as a lens, and is an easy function to check.
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4.7 Results

In this section we present the simulation results of obtained using the gradient optimization

procedure. First, we use the gradient optimization to arrive at an array of spheres that

satisfies our FOM, then we simulate the structure using Lumerical’s FDTD program to

crosscheck our result between a finite difference method and also the analytic GLMT solution.

First we present the general optimization numerics, and then we present specific results.

4.7.1 Optimization setup

The radii of the array of spheres are continually updated using gradient descent with a fixed

step size. The optimization routine runs to a fixed number of iterations, in our case chosen

to be 200. We designed two sets of optical elements, each consisting of a singlet (one layer of

spheres) and a doublet (two layers of spheres) analog. One set of elements is designed with

a sub-wavelength periodicity, the other with a super-wavelength periodicity.

All of the elements are designed to maximize the intensity at a point 50 μm away from the

center of the device. The spheres have a constant refractive index of 1.52 corresponding to

that of the highest resolution resist available for the Photonic Professional Nanoscribe GT.

The devices are taken to lie in the x-y plane with the optical axis along z. Our excitation

is a monochromatic plane wave polarized along the y axis at normal incidence (propagating

along the z axis) at wavelength λ = 1550 nm. For all optimizations, we assume that the

spheres are suspended in a vacuum (n = 1), with no substrate.

Both the forward and adjoint systems of equations are solved using biconjugate gradient

stabilized (BiCGSTAB) with a block-diagonal preconditioner. For such large systems of

equations, iterative solvers are much more memory efficient and faster than direct solvers

such as lower-upper substitution.
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Figure 4.1: Final radius distribution of the sub-wavelength elements with periodicity 1240

nm, which is less than the operating wavelength of 1550 nm. Radii are allowed to range within

150 to 600 nm. The sub-wavelength singlet is shown in (a), while the bottom (illumination

facing) and top (image facing) layers of the doublet are shown in (b) and (c) respectively.

4.7.2 Sub-wavelength devices

Now we present two optical elements designed with a sub-wavelength periodicity. Scatterer-

based elements with sub-wavelength periodicity are termed metasurfaces, and are of great

interest due to their ability to control the propagation of diffractive orders. For both the

singlet and doublet elements we being with a square grid of periodicity 1240 nm populated

with identical spheres with radius 300 nm. We allow these spheres to vary continuously

between 150 and 600 nm. For GLMT, these geometric and material properties correspond

to a multipole cut-off of l = 3. For further discussion on the dependence of multipole cut off

on the sphere parameters we refer to the expansion order cutoff section.
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For the singlet lens we begin with a single layer of 30× 30 spheres with a final dimension

of 36 μm ×36 μm ×1.2 μm. The final radius distribution is shown in Figure 4.1a. We can see

that the result is mostly circularly symmetric, as expected for a lens. There is so asymmetry

near the origin of the lens. For the doublet lens, we begin with two layers of 30× 30 spheres

with a final dimension of 36 μm ×36 μm ×2.4 μm. The final radius distributions of the

bottom (illumination facing) and top (image facing) surfaces are shown in Figure 4.1b and

Figure 4.1c respectively. Again the design is mostly circularly symmetric, as expected based

on our figure of merit, but there is also noticeable asymmetry towards the middle of the lens.

We attribute this to our algorithm running for a fixed number of iterations instead of full

convergence to a local optimum. Our gradient-based method only guarantees convergence

to a local optimum, and we manually terminate the algorithm when we achieve the desired

performance as described by the FOM. We note that the maximum number of iterations was

a parameter we were able to tune along with the step size during our optimization process.

From our simulations in FDTD, we verify a clear focal spot at 50 μm in the x-z plane

in Figure 4.2a. In addition, we characterized the performance under chromatic illumination

and see that the focal length changes linearly with the wavelength in this small bandwidth

as shown in Figure 4.2b. We note that this is consistent with diffractive optical devices as

the product of our focal length and operating wavelengths fλ are constant [56]. Lastly we

characterize the focal spot size produced (characterized by FWHM), and plot its dependence

on illumination wavelength as shown in Figure 4.2c. We can see that the FWHM along the

x and y directions behave differently, and produce an asymmetric focal spot. We attribute

this choice to our FOM, which does not constrain the optimization routine to a symmetric

focal spot.

To demonstrate the suitability of the algorithm for designing fully three-dimensional

arrays of scatterers, we also demonstrate a doublet design with two layers of spheres. We

simulate the radius distribution in FDTD and again observe a clear focal spot at the design

location of 50 μm in both the x-z and y-z planes as shown in Figure 4.3a. We do the same

set of characterizations as the singlet case, and we find that the chromatic focal shift is
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almost the same as that of the singlet as shown in Figure 4.3b. However, we see a noticeable

improvement in the focal spot size compared to that of the singlet in Figure 4.3c. The

focal spot is noticeably smaller across the entire bandwidth, and again, the focal spot size is

asymmetric.

4.7.3 Super-wavelength devices

We also designed a set of two devices with a super-wavelength periodicity. In contrast to

the sub-wavelength devices, these are not considered metasurfaces as they have a periodicity

that exceeds the wavelength of the incident light. As such they represent elements that are

more easily fabricated with available techniques. For both elements we begin with identical

spheres with radius 700 nm on a square grid with periodicity 2050 nm. We allow the spheres’

radii to vary continuously between 150 and 1000 nm, making our multipole cutoff l = 4.

For the singlet lens we begin with a 30× 30 layer of spheres with final dimensions of 60

μm ×60 μm ×2 μm. The final radii values are shown in Figure 4.4a. For the doublet lens we

begin with two 30 × 30 layers of spheres, separated by a center-to-center distance of 4 μm.

This results in final dimensions of 60 μm ×60 μm ×8 μm. The bottom (illumination-facing)

and top (image-facing) layers are shown in Figures 4.4b and c, respectively.

From our simulation, we find a clear focal spot at a distance of 45 μm away from the

lens in the x-z and y-z planes under 1548 nm illumination as shown in Figure 4.5. This

result is not consistent with the design focal length at 1550 nm, and we attribute this

discrepancy to the difference in mesh sizes of our design space between the super-wavelength

and sub-wavelength devices when validated in FDTD. As the super-wavelength devices are

appreciably larger than the sub-wavelength devices, we were unable to mesh the super-

wavelength devices to the same accuracy. Again, this device’s focal length displays a linear

dependence on wavelength in this bandwidth shown in Figure 4.5b. Lastly we calculate the

FWHM at the focal length of 45 μm, and find spot sizes on the order of the diffraction-limited

FWHM with no spot sizes smaller.

Then, as for the sub-wavelength devices, we also check the performance of the super-



69

Figure 4.2: Performance of the sub-wavelength singlet as simulated using FDTD. (a) Inten-

sity of the x-z plane under illumination at 1548 nm showing a clear focal spot at 50 μm.

The data used to compute the FWHM is taken from the white dashed line, and the layers

of sphere are located at the solid white line. (b) is the dependence of the focal length on

incident wavelength, showing a linear dependence within this bandwidth. The focal length

shifts 7 μm over this bandwidth. (c) is the calculated normalized FWHM of the singlet from

the data taken from the white-dashed line in (a). The FWHM is obtained by fitting the

intensity peak to a Gaussian. The blue dotted and red dashed lines represent fits based on

data taken along the x and y axes respectively. The black line is the diffraction limit for an

ideal lens with the same geometric parameters as the design. All normalized FWHM data

points are obtained by dividing the FWHM data by their respectively wavelengths.
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Figure 4.3: Performance of the sub-wavelength doublet as simulated using FDTD. (a) Inten-

sity of the x-z and y-z planes under illumination at 1548 nm showing a clear focal spot at

50 μm. The data used to compute the FWHM is taken from the white dashed line, and the

layers of spheres are located at the solid white line. (b) is the the dependence of the focal

length on incident wavelength, showing a linear dependence within this bandwidth. The

focal length shifts 7 μm over this bandwidth. (c) is the calculated normalized FWHM of the

doublet from the data taken from the white dashed line in (a). The FWHM is obtained by

fitting the intensity peak to a Gaussian. The blue dotted and red dashed lines represent fits

based on data taken along the x and y axes respectively. The black line is the diffraction

limit for an ideal singlet lens with the same geometric parameters as the design. All nor-

malized FWHM data points are obtained by dividing the FWHM data by their respective

wavelengths.
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Figure 4.4: Final radius distribution of the super-wavelength elements with periodicity 2050

nm. Radii are allowed to range from 150 to 1000 nm. (a) is the super-wavelength singlet. (b)

and (C) are the bottom (illumination-facing) and top (image-facing) layers of the doublet

respectively.
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wavelength doublet. The simulation shows a clear focal spot at 45 μm in both the x-z and

y-z planes as shown in Figure 4.6a. Again, this is not the design focal length, and we attribute

this difference again to the discretization of the mesh. Figure 4.6b shows the same linear

dependence on incident wavelength as the previous devices. The focal spots achieved by the

doublet in Figure 4.6c were generally larger than those of the singlet. We would expect the

addition of the second layer of spheres to improve the performance of the device, and do

not know why the doublet does not result in better focusing performance. The doublet also

produces a more asymmetric focal spot as shown by the differences in the FWHM along the

x and y directions.

4.7.4 Substrate effects

In any feasible experimental demonstration of these presented elements, it is likely that the

spheres will be sitting on some substrate. We attempt to quantify the effect of a likely

experimental configuration of the sub-wavelength doublet in FDTD by adding two 800 nm

spacer layers, one between the top and bottom layers, and one below the bottom layer. Both

of these spacer layers have the same refractive index as the spheres as shown in Figure 4.7,

and then the entire structure is mounted on a quartz substrate with n = 1.45. Lastly the

spheres are displaced such that instead of their center points aligning, they sit flat on the

substrate with their bottoms aligned.

The simulation results of this new device configuration are presented in Figure 4.8. Simi-

larly to the device with no substrate or extra layers, the device still focuses at 50 μm, but the

focal spot intensity shows a noticeable decrease in Figure 4.8a. The same linear dependence

on illumination wavelength is observed as in the previous demonstrations. The spot sizes of

the lens with added substrate are also larger than those of the ideal case as in Figure 4.8c,

but the device still shows high performance. We see that the displacement of spheres and

the addition of extra dielectric layers (substrate and spacer layers) has a noticeable effect on

the performance of the device, but the overall behavior is still qualitatively similar.
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Figure 4.5: Performance of the super-wavelength singlet in FDTD. (a) is the intensity of the

x-z and y-z planes showing clear focusing at 45 μm under illumination by 1548 nm light.

Data used to compute the FWHM is taken from the white dashed line, and the layer of

spheres is located at the solid white line. (b) shows the dependence of the focal length on

illumination wavelength showing a clear linear relationship in this bandwidth. (c) Calculated

FWHM using data from the white dashed line in (a). The FWHM is obtained by fitting

the intensity peak to a Gaussian. Blue dotted and red dashed lines represent fits taken from

data taken along the x and y axes respectively. The black line is the diffraction limit for an

ideal lens with the same geometric parameters as the design. All normalized FWHM data

points are obtained by dividing the FWHM data by their respective wavelengths.
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Figure 4.6: Performance of the super-wavelength doublet in FDTD. (a) is the intensity of

the x-z and y-z planes showing clear focusing at 45 μm under illumination by 1548 nm light.

Data used to compute the FWHM is taken from the white dashed line, and the layers of

spheres are located at the solid white line. (b) shows the dependence of the focal length on

illumination wavelength showing a clear linear relationship in this bandwidth. (c) Calculated

FWHM using data from the white dashed line in (a). The FWHM is obtained by fitting

the intensity peak to a Gaussian. Blue dotted and red dashed lines represent fits taken from

data taken along the x and y axes respectively. The black line is the diffraction limit for an

ideal lens with the same geometric parameters as the design. All normalized FWHM data

points are obtained by dividing the FWHM data by their respective wavelengths.
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Figure 4.7: Substrate schematic diagram showing the sub-wavelength doublet with the spacer

layers and substrate added. The thickness (t) of the spacer layers is 800 nm, periodicity (p) is

1240 nm, and the light with wave vector k is incident from below through a quartz substrate

with index n = 1.45.
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Figure 4.8: Performance of the sub-wavelength doublet with added dielectric layers as sim-

ulated using FDTD. (a) Intensity of the x-z and y-z planes under illumination at 1548 nm

showing a clear focal spot at 50 μm. The data used to compute the FWHM is taken from the

white dashed line, and the layers of spheres are located at the solid white line. (b) is the the

dependence of the focal length on incident wavelength, showing a linear dependence within

this bandwidth. The focal length shifts 7 μm over this bandwidth. (c) is the calculated

normalized FWHM of the doublet from the data taken from the white dashed line in (a).

The FWHM is obtained by fitting the intensity peak to a Gaussian. The blue dotted and

red dashed lines represent fits based on data taken along the x and y axes respectively. The

black line is the diffraction limit for an ideal singlet lens with the same geometric parameters

as the design. All normalized FWHM data points are obtained by dividing the FWHM data

by their respective wavelengths.
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Figure 4.9: Performance of the sub-wavelength singlet under illumination by an x polarized

plane wave. (a) Focal length dependence on wavelength, and (b) spot size (FWHM) de-

pendence on wavelength calculated at 50 μm. Solid black line is the calculated diffraction

limited FWHM, black dotted (dashed grey) line is the FWHM along the x (y) direction. All

normalized FWHM data points are obtained by dividing the FWHM data by their respective

wavelengths.

4.7.5 Polarization dependence

During the optimization process, we assume the incidence of a single linearly polarized plane

wave along the y axis. We neglect to optimize for the orthogonal polarization. In order

to check the performance for the orthogonal polarization, we simulate the performance of

the sub-wavelength singlet under illumination by this orthogonal polarization. As shown in

Figure 4.9, the design still focuses to a similar focal length, and has a similar spot size. We

again plot the spot size and chromatic behavior of the focal length and see little change in

the performance of the device.

4.8 Expansion Order Cutoff

The iteration time of the inverse design method depends on both the particle number and

the expansion order. Larger numbers of particles or expansion orders increase the iteration

time and memory requirement by both increasing the number of stored variables, and the
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dimension of the system of equations to be solved. As we are interested in simulating large

arrays of particles, it is important to find a reasonable cutoff expansion to balance the speed

of the iteration and the accuracy of the result.

The valid cutoff expansion order is ultimately determined by the scattering properties of

individual spheres described by their Mie coefficients. These scattering properties are deter-

mined by the geometric and material properties of the sphere in addition to the wavelength

of input light. Figure 4.10 displays the absolute value of the calculated Mie coefficients for

our spheres with radii ranging between 150 to 1500 nm and a refractive index of n = 1.52

under illumination by a 1550 nm input plane wave polarized along the y axis. We see that

the spheres in the sub-wavelength regime only scatter up to l = 3, and the super-wavelength

spheres only scatter up to l = 4, justifying our cutoff.

From the Mie coefficients, we can find the optical response of particles of varying radii. It

is clear that the use of larger spheres requires larger expansion orders, increasing computation

time. However, larger expansion orders also correspond to being able to control higher-order

spherical waves.

4.9 Machine Specifications and Software

The forward simulation is a version of the freely available CELES software [103]. The inverse

simulation is a custom written extension to CELES. The specification of the hardware and

software used in this paper are as follows:

• 2x Intel E5-2620

• NVIDIA Tesla K40 12GB

• 64 GB DDR3

• CentOS 7

• Matlab 2017a



79

Figure 4.10: Absolute value of Mie coefficients under illumination by 1550 nm light. Light

(dark) dashed boxes indicate the range of parameters used for the devices designed for sub-

wavelength (super-wavelength) devices. The Mie coefficients for isotropic uniform spheres

have no dependence on the azimuthal number m, so all coefficients of a given orbital number

l are equivalent. The two sets of data on the left and right correspond to two different

polarizations.
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• CUDA 8.0

The implementation is available in a zipped file at: https://github.com/azhan137/inverse_

design

4.10 Conclusion

We described and presented an inverse-design method using adjoint optimization and GLMT.

We then demonstrated the suitability of this method for designing fully three-dimensional

single and multi-layer optics by presenting the performance of two sets of singlet and doublet

lenses. The power of this method is in the efficient and accurate simulation of large ensembles

of discrete scatterers made possible by the use of GLMT. While methods such as FDTD

are accurate, they suffer from memory-scaling limitations. Conversely, on the other hand,

methods where the device is modeled as an ideal phase profile are efficient, but do not

accurately capture the physics of the complex system of coupled scatterers. While we have

chosen to present results in the infrared regime, the method makes no assumptions about

the wavelength of light and is well-suited for calculating scattering from any distribution of

wavelength-scale spherical scatterers. This work constitutes a significant step forward in the

use of inverse-design techniques to design scatterer-array-based optical elements.

https://github.com/azhan137/inverse_design
https://github.com/azhan137/inverse_design
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Chapter 5

EXPERIMENTAL DEMONSTRATION OF INVERSE DESIGN
BASED ON GENERALIZED LORENZ-MIE THEORY

In this chapter we present an experimental demonstration of the inverse-design method

presented in Chapter 4. The device is based on wavelength-scale spheres and is fabricated

using the Nanoscribe GT two-photon lithography system. The device that is designed and

characterized is an element that demonstrates both of the strengths of the GLMT based

inverse-design method. First, it is a large-area device with an area of 144 μm ×144 μm,

making it the largest inverse-designed, discrete-scatterer-array-based optic, and it also has a

non-trivial optical function that would be difficult to engineer using forward-design methods.

The device focuses an incident plane wave at 1550 nm with linear polarization into a set of

discrete focal spots that wind in a helical pattern about the optical axis. This depth-variant

PSF that changes predictably for a range of defocus values can allow an imaging system to

discriminate between objects at different depths.

5.1 Motivation

We have already described and numerically tested an inverse-design method based on GLMT

to implement a given optical function defined by an FOM using an array of spherical scat-

terers. While this method has been validated in simulation, we also want to verify that it is

able to produce devices that are capable of being fabricated and tested in the real world. Ad-

ditionally, in the literature, there had been no results where a large distribution of scatterers

on a two-dimensional plane were optimized to produce a fully three-dimensional intensity

profile in the far field. Lastly, no previous inverse-design methods were capable of handling

a large array of wavelength-scale scatterers.
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5.2 Optimization Method

The inverse-design method used in this chapter is the same as the method described in Chap-

ter 4.. The general formalisms remain the same and the same forward and adjoint problems

are solved. However, in Chapter 4 the FOM was specified to only be the maximization of

the intensity at a single point in space. In this chapter, we are interested in the optimization

of the intensity at multiple points in a three-dimensional space, and we specify a new FOM

to encapsulate this new function.

5.2.1 Figure of merit

To capture the desired result of having multiple points, we decide to use a sum of squares

FOM based on the desired intensity profile:

FOM(R) =
∑
j

(I0(rj)− Ik(rj,R))2 (5.1)

where I0 is the desired intensity profile, Ik is the iterate intensity profile for iteration k of

the optimization process, R is the set of radii we are optimizing over, and rj are the spatial

locations of the points of the image we are interested in. For this demonstration, we define

I0 as 22 different points, 8 which constitute the desired image points where the intensity

is chosen to be a nonzero value (25), and 14 which serve as regularization points where

the intensity is chosen to be zero. These regularization points are chosen to be zero at the

locations of the previous and next focal spots of a given transverse plane along the optical

axis. A graphical layout of the FOM is shown in Figure 5.1a.

Specifically, each focal spot is located in a distinct transverse focal plane, separated along

the optical axis by 28 μm (57 μm) and is arranged on a circle of radius 12 μm (20 μm) for

the 1.55 μm (3 μm) device.

To solve the adjoint system of equations, we need to find the derivative of this figure of

merit with respect to the scattered field coefficients bin:

∂FOM

∂bin
= −2

∑
j

(I0(rj)− Ik(rj))E∗(rj) ·Ψ(3)
n (rj − ri). (5.2)
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Figure 5.1: Figure showing the optimization scheme with (a) as the specification of the

discrete helix figure of merit. The yellow points denote locations where the helix is specified

with non-zero intensity, and blue points are locations where the helix is regularized with

zero intensity. The helix is produced on 8 transverse planes along the optical (z) axis. (b)

is the optimization flow for the progression of the algorithm. The steps in the dashed box

constitute a single iteration.
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5.2.2 Gradient update

In the Chapter 4, we used a normalized gradient descent with a fixed step size, and a fixed

iteration number. While this approach led to reasonable results for a relatively simple FOM,

namely that of maximizing intensity at a single point, it did not converge reliably for a more

complex FOM. To remedy this, we used L-BFGS-B, a well known and standard gradient

update technique that includes an adaptive step size using both a trust region method and

a memory register. Using L-BFGS-B, our method converged much more reliably to a device

with satisfactory performance. Besides the change in the gradient update, the underlying

method remains the same and the same forward and adjoint problems are solved as shown

in Figure 5.1b.

5.2.3 Optimization numerics

In addition to the choice of the gradient update, we must choose numerics with which to run

the simulation. The numerical values for the initial condition, maximum expansion number,

and numerical accuracy are shown in Table 5.1. The numerical accuracy is residual that

represents the precision to which we solve our linear system of equations.

As GLMT expands the initial and scattered fields in an infinite basis of SVWFs, we need

to introduce a suitable cutoff for the angular momentum expansion lmax determined by the

dimension and refractive index of the scatterer relative to the incident wavelength. This

number determines the maximum number of expansion modes nmax required to accurately

characterize a scatterer and is given by:

nmax = 2lmaxp(lmax + 2), (5.3)

where p specifies the polarization. In general, the scatterers with larger physical dimensions

and refractive index contrasts require higher expansion orders to accurately characterize. In

this chapter, the 1.55 μm device (3 μm) device required a cutoff of lmax = 4 (lmax = 3).

These parameters are visualized in Figure 5.2.
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Table 5.1: Optimization numerics

Wavelength 1.55 μm 3 μm

Initial radius 700 nm 1200 nm

Total spheres 3600 4900

Min, Max radius 250, 1200 nm 250, 1400 nm

lmax, nmax 4, 48 3, 30

Periodicity 2.42 μm 2.9 μm

Device width 144 μm 200 μm

Initial, Final FOM 2800, 0.095 4900, 1.9

Numerical accuracy 1× 10−3 1× 10−3

As before, the forward and adjoint systems of equations are solved by a BiCGSTAB

iterative solver with a blockdiagonal preconditioner.

5.3 Results

The optimization method converged to an asymmetric distribution of spheres shown in Figure

5.4a. This distribution of spheres is clearly unintuitive, and does not correspond to an ordered

distribution. To test our device, we used two separate microscopes for the two wavelengths.

The 1.55 μm device is presented in Section 5.3, and the 3 μm device is presented later in

Section 5.5. In simulation, we see eight clear and distinct focal spots with high contrast

relative to their background that are located where we specified them in the design as shown

in Figure 5.3. The simulation results confirm the satisfaction of our figure of merit, and the

performance of the device to the designed specifications.
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Figure 5.2: Absolute value of the Mie coefficients for the sphere radii used in the device

designed for (a) 1.55 μm, and (b) 3 μm. Dashed white boxes show the cutoffs.

5.3.1 Fabrication

In order to fabricate the spherical scatterers with reasonable fidelity, we used the Nanoscribe

GT two-photon lithography system at the Washington Nanofabrication Facility. The Nano-

scribe has been shown to be capable of fabricating high quality refractive optics with curved

surfaces [108, 109] with its voxel size of 200 nm ×200 nm ×700 nm along x, y, and z make

it a reasonable choice for use in fabricating the spheres we are interested in. The spheres

are fabricated using the 63× objective and the IP Dip resist with n = 1.47 for the highest

possible resolution. The fabrication is described in Appendix A.2.

The final fabrication of the 1.55 μm device is shown in Figures 5.4b-d. We can see that

the final distribution is reasonably accurate when compared to the design, and the two insets

with a top-down and angled view show the single scatterers. The scatterers are not perfectly

spherical, but the dimensions are reasonably consistent with the design. The fabrication
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Figure 5.3: Simulated device performance (a)-(h) are images of the intensity profiles produced

at the specific distances from the device showing the focal spot rotate around the x-y plane

as the element is defocused. Solid white scale bar is 10 μm, and the window size is 80 μm

×80 μm. The color bar is a linear scale.
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Figure 5.4: Schematic (a) and SEMs of the 1.55 μm device (b)-(d). (b) is a top down view

of the entire device. (c) and (d) are zoomed in SEMs showing the fabrication imperfections

from an angled and top down view respectively. All SEMs are of a gold coated device.

imperfections and the addition of a substrate are not accounted for in our simulation and

optimization process, though in Chapter 4 we found only a small effect from the substrate.

5.3.2 Performance

The device was measured using a Santec TSL-510 centered at 1.55 μm emitting 15 mW

continuous wave. The light is incident normal to the device, and is collected by a microscope

with a movable objective. The microscope consists of an infinity corrected 40× Nikon Plan

Fluor and a 20 cm focal length tube lens. The detector is a Xenics Bobcat-6583 infrared

camera with a 320× 256-pixel array and the camera exposure time was set to 10 μs.

In experiment, the eight clear focal spots are produced quantitatively matching the loca-

tions shown in the simulation. However, when compared to the simulation, the experiment

shows a noticeably lower contrast between the focal spot and the background. In addition,

in Figures 5.5a, b, and f we can identify smaller hot spots of significant intensity that are
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Figure 5.5: Experimental device performance (a)-(h) are images of the intensity profiles

produced at the specific distances from the device showing the focal spot rotate around the

x-y plane as the element is defocused. Solid white scale bar is 10 μm, and the window size

is 80 μm ×80 μm. Images can be directly compared to the simulation results in Figure 5.3.

The color bar is a linear scale.

not present in simulation. The actual focal spots are produced in the correct spatial loca-

tions in plane, but there is a slight offset between the expected focal spot along the optical

axis for the spots shown in Figures 5.5e and f. We attribute these discrepancies between

the simulation and experiment primarily to fabrication errors, which we will show have a

significant effect on the device performance. Both the experimental and simulation results

show a gradual increase in focal spot size with increasing focal plane distance, as we did not

control for this quantity in our regularization.

We compared the in-plane locations of the focal spots between the simulation and ex-

perimental results. The simulated (red) spots shown in Figure 5.6a lie on the dashed black
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Figure 5.6: Comparison between experiment and simulation showing (a) the simulated focal

spot locations relative to the experimental positions based on the location of maximum

intensity. Simulated (experimental) data are plotted in red (blue). Dashed black line is a

circle with radius 12 μm serving as an eye guide. (b) is the relative positional error of each

of the focal spots. Numbers correspond to the order in which spots appear with 1 being the

closest focal plane to the device (100 μm) and 8 being the furthest (300 μm)

circle with radius 12 μm. The experimental (blue) spots largely trace out the same shape

and qualitatively behave according to the defined FOM. However, there are some deviations

from the simulated spots, e.g. the first and last spot do not lie perfectly on top of each other.

The position differences between the simulated and experimentally measured focal spots are

shown in Figure 5.6b. These discrepancies can be attributed to an amount of alignment error

during optical characterization in addition to the known fabrication imperfections.

5.4 Effects of Fabrication Quality

We attribute the difference between experimental and simulated performance largely to fab-

rication quality due to the performance of our initial fabricated devices. In this section we

will present an initial device with more pronounced fabrication imperfections as shown in

Figure 5.7. In comparison with Figure 5.4, we can see that the scatterers are noticeably
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Figure 5.7: SEM of a previous fabrication run coated in gold. Top-down view of the entire

device, with inset showing noticeable asymmetry in the spherical scatterers

rougher, and less spherically shaped, and this has a concrete effect on the experimental per-

formance shown in Figure 5.8. The experimental data for this device shows less contrast than

the device presented in Figure 5.5. Noticeably, the focal spots in Figures 5.8a-c are hard to

discern due to both the low contrast and also the presence of numerous hot spots. The later

focal spots are more clearly discernable, and more similar to the simulated result, though

they do appear at different values of defocus. When compared to the simulation results in

Figure 5.9 (same data as Figure 5.3, different colorbar), the contrast is clearly lower, though

the spots show up in the same qualitative locations.

To be able to compare the experimental and simulated results directly, we extract the

positions of the focal spots from the simulated data, and search those locations in the experi-

mental data in an 8 μm ×8 μm window as shown in Figure 5.10. Within the window, we take

the focal spot to be the point of maximum intensity. This data is then used to compare with

the locations of the maximums as shown in Figure 5.11. Relative to the previously presented

experimental data in Section 5.3, it is clear that improved fabrication both increased the

contrast of the closer focal spots and the accuracy of the focal spot location.
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Figure 5.8: Experimental device performance of an initial device. (a)-(h) are images of

the intensity profile produced at specific distances from the device showing the focal spot

rotating in the x-y plane. Solid white scale bar is 10 μm. The color bar is a linear scale.
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Figure 5.9: Simulated device performance of an initial device. This is the same data as

Figure 5.3 with a different colorbar for ease of comparison. (a)-(h) are images of the intensity

profile produced at specific distances from the device showing the focal spot rotating in the

x-y plane. Solid white scale bar is 10 μm.
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Figure 5.10: Extracted experimental focal spots and locations based on simulation data.

(a)-(h) exracted focal spot profiles (top) and their locations in the x-y plane (bottom). The

white dashed box has dimensions of 8 μm ×8 μm and represents where the focal spot profiles

are.
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Figure 5.11: In-plane focal spot comparison of an initial device. (a) Focal spot locations

of the experimental and simulated focal spots are shown in red and blue respectively. (b)

Difference between expected location based on simulation, and actual location of the focal

spot in experiment.
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5.5 3 Micron Device

In addition to the 1.55 μm device, we also designed and fabricated a similar device for

operation at 3 μm. While the 1.55 μm device has a super-wavelength periodicity, the 3 μm

device has a sub-wavelength periodicity, qualifying it as a metasurface. The same experiment

for measuring the helical focal spots is proposed for this device, and this device was tested

by collaborators at the Air Force Research Labs.

5.5.1 Simulation

The simulated performance of the device shown in Figure 5.12 shows a clear focal spot in

the design locations. However, when compared to the focal spots shown in Figure 5.3, the

3 μm device simulations shown in Figure 5.13 show clearly higher background. The final

optimization result had a higher (worse) figure of merit than that of the previous 1.55 μm

device, leading us to expect decreased performance.

5.5.2 Fabrication

The final fabricated device from the optimization process is shown in Figure 5.14. Again

we see that the scatterers are arranged in an unintuitive manner. The inset shows the

fabrication quality of the individual spherical scatterers. In this case, the scatterers show

noticeable asymmetry in their design and are clearly not entirely spherical in shape.

5.5.3 Results

The mid-wave infrared (MWIR) idler of a Ti-sapphire pumped optical parametric oscillator

(OPO), M Squared Firefly IR, was used to illuminate the metalens at normal incidence. A

0.56 NA GeSbSe anti-reflective coated infrared aspherical lens (effective focal length = 4 mm,

working distance = 3.05 mm) was translated in steps of 0.1 μm along the optical axis behind

the metasurface. The focal spots of the metasurface at λ = 3 μm were imaged directly onto

an InSb 640× 512 pixel focal plane array (FPA), FLIR SC6700, with a 15 μm pitch cooled
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Figure 5.12: 3 μm device scheme. The device has dimensions 200 μm × 200 μm.
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Figure 5.13: 3 μm simulated device performance. (a)-(h) Images of the intensity profile

produced at specific focal planes located at distances from the device surface showing the

focal spot rotating in the x-y plane.

to 76K. This optical setup gives a magnification of about 56.2×. The exposure time of the

camera was set to 0.9 ms and integrates 135 pulses from the 150.6 kHz (< 10 ns pulses, 105

mW average power) from the OPO per frame. To maximize the 14-bit dynamic range of the

FPA an ND1 filter is used to attenuate the light prior to the metasurface.

The fabricated device performed relatively poorly in experiment. While there are focal

spots that are identifiable producing a helical pattern, many of the simulated focal spots

fail to appear, and also the contrast between the design focal spot and the other hot spots

is relatively low. We were not able to identify the correct locations of all the focal spots

in the experiment. We attribute this discrepancy to a degree of fabrication error, and the

contamination of the device by a noticeable dust particle visible in Figure 5.15e. In addition,

we note that the design of this device had higher backgrounds and lower performance as

shown by the simulated performance in Figure 5.13.
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Figure 5.14: Scanning electron micrograph of final device produced by the optimization

algorithm showing a top down view of the entire device, and a zoom in picture showing the

fabrication quality of individual spheres.
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Figure 5.15: 3 μm experimental device performance. Shows five focal spots ranging in

distances from 150 μm to 390 μm. Scale bar is 5 μm.
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5.6 Machine Specifications and Software

The forward simulation is a branch of the freely available CELES software [103]. The inverse

simulation is a custom written extension to CELES. The specification of the hardware and

software used in this paper are as follows:

• AMD Ryzen Threadripper 1920x

• NVIDIA Titan Xp 12 GB

• 64 GB DDR4

• CentOS 7

• Matlab 2017b

• CUDA 8.0

5.7 Conclusion

In conclusion, we experimentally demonstrated an electromagnetic inverse-design method

capable of handling large area arrays of discrete, dielectric, spherical scatterers. The design

method efficiently takes advantage of the large number of degrees of freedom available in these

large arrays of scatterers and is able to tune individual scatterer properties to optimize their

performance. We use the presented inverse-design method to create a new optical element

capable of focusing an incident beam of light into eight focal spots arranged on a discrete,

helical pattern. This demonstrated optical element has no analogue in traditional optics and

is impractical to design via intuition. While this method is restricted to spherical scatterers,

this method can be readily extended to scatterers with different geometries by extending

it using the T-matrix method. This work is a step towards enabling a flexible model of

‘designer’ optics where optical elements can be exquisitely tailored to specific, user-designed

functionalities.
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Chapter 6

INVERSE DESIGN BASED ON THE T-MATRIX METHOD

In this chapter, we introduce an extension of GLMT to particles of arbitrary sized el-

lipsoidal particles using the T-matrix method (TMM). The TMM is a natural extension to

GLMT using the same coordinate system and basis functions. We present a brief introduc-

tion to the idea of the TMM, and present the computation of the T-matrix for an ellipsoidal

particle. Then, we derive the expressions used to compute the derivative of the T-matrix of

the ellipsoid with respect to the principle axes, and the orientation in terms of four surface

integrals. Finally, we present numerical verification of the derivative.

6.1 Motivation

The previous two chapters have been focused on a gradient-based inverse-design method

using GLMT focused on optimizing arrays of spherical scatterers toward performing a specific

optical function defined by a figure of merit. While this method is capable of simulating and

then optimizing large arrays, its application is limited to spherical scatterers. The restriction

to spherical scatterers presents two major limitations on the applicability of the method.

First, spheres are very difficult to fabricate using conventional lithography processes, and in

chapter 4, we used two-photon lithography to circumvent this. Although this resulted in a

reasonably high-performance device, the low refractive index of the resist, and the low aspect

ratios limit further experiments. Second, while spheres are electromagnetically simple, this

also means that they offer fewer degrees of freedom to tune and optimize. In particular,

spheres are not ideal for use in polarization optics, as the spherical scatterer itself behaves

identically for different polarizations. The TMM is a straightforward extension of GMMT

to particles of arbitrary geometries such as ellipsoids and cylinders that extends the inverse-
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design method to a larger design space, and also better experimental demonstrations.

6.2 The T-Matrix Method

The T-matrix characterizes the scattering properties of a particle in spherical coordinates.

It depends only on the geometric and material properties of particle itself, the medium

surrounding the particle, and the wavelength of excitation. In the previous section, the

T-matrices of the spheres were diagonal matrices, and easily calculated using closed form

expressions. The T-matrix of the ellipsoid requires the computation of the Q and RgQ

matrices that represent the coupling between the scattered field and the incident field to the

surface fields respectively [110,111]. The T-matrix is then given by [110–112]:

T = RgQ(Q)−1 (6.1)

The Q matrix is composed of four square submatrices P̄ , R̄, S̄, and Ū , given by:

Q =

P̄ R̄

S̄ Ū

 , (6.2)

and these individual square matrices are given as in [113]:

P̄lml′m′ = −ikksJ (21)
lml′m′ − ik2J (12)

lml′m′ , (6.3)

R̄lml′m′ = −ikksJ (11)
lml′m′ − ik2J (22)

lml′m′ , (6.4)

S̄lml′m′ = −ikksJ (22)
lml′m′ − ik2J (11)

lml′m′ , (6.5)

Ūlml′m′ = −ikksJ (12)
lml′m′ − ik2J (21)

lml′m′ , (6.6)

where the J terms represent surface integrals over the surface of the particle, and the indi-

vidual terms are given by:

J
(11)
lml′m′ = (−1)m

∫
S

dSn̂(r) ·Ψ(1)
1,l′,m′(ksr, θ, φ)×Ψ

(3)
1,l,−m(kr, θ, φ), (6.7)

J
(12)
lml′m′ = (−1)m

∫
S

dSn̂(r) ·Ψ(1)
1,l′,m′(ksr, θ, φ)×Ψ

(3)
2,l,−m(kr, θ, φ), (6.8)
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J
(21)
lml′m′ = (−1)m

∫
S

dSn̂(r) ·Ψ(1)
2,l′,m′(ksr, θ, φ)×Ψ

(3)
1,l,−m(kr, θ, φ), (6.9)

J
(22)
lml′m′ = (−1)m

∫
S

dSn̂(r) ·Ψ(1)
2,l′,m′(ksr, θ, φ)×Ψ

(3)
2,l,−m(kr, θ, φ), (6.10)

where S is the surface bounding the particle, dS is some infinitesimal area on the surface

S, and n̂ is a outward pointing unit normal at dS. We are also using spherical vector wave

functions Ψ(1) and Ψ(3) which are again [111]:

Ψ
(ν)
1lm(r) =

eimφ√
2l(l + 1)

bl(kr)
[
imπlm(θ)θ̂ − τlm(θ)φ̂

]
, (6.11)

Ψ
(ν)
2lm(r) =

eimφ√
2l(l + 1)

{
l(l + 1)

bl(kr)

kr
P
|m|
l (cosθ)r̂

+
1

kr

∂(krbl(kr))

∂(kr)

[
τlm(θ)θ̂ + imπlm(θ)φ̂

]}
,

(6.12)

where we have defined:

πlm(θ) =
P
|m|
l (cosθ)

sinθ
, (6.13)

τlm(θ) =
∂P
|m|
l (cosθ)

∂θ
. (6.14)

Pm
l (x) is the associated Legendre polynomial. jl is the spherical Bessel function of order l,

and bl is either a spherical Bessel function (jl) for ν = 1 or spherical Hankel function of the

first kind (h
(1)
l ) of order l for ν = 3, depending on whether RgQ or Q is being computed,

respectively.

In spherical coordinates, the product of the unit normal and the infinitesmal area is:

dSn̂(r) = r2sin(θ)σ(r)dθdφ, (6.15)

and σ is given by:

σ(r) = r̂ − θ̂1

r

∂r

∂θ
− φ̂ 1

rsinθ

∂r

∂θ
. (6.16)

In this case, r is parameterizing the surface of a particle, and for an ellipsoid in spherical

coordinates, r is given by:

r(θ, φ) =

[
sin2θ

(
cos2φ

a2
+
sin2φ

b2

)
+
cos2θ

c2

]−1/2
(6.17)
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To compute RgQ rather than Q, we simply need to replace Ψ(3) in the J integrals with

Ψ(1).

6.3 Computing T-Matrix Derivatives

Now to take a derivative of the T-matrix of this particle with respect to some parameter p,

we find that:
∂T

∂p
=

(
∂RgQ

∂p
− T ∂Q

∂p

)
Q−1, (6.18)

where we must now find the derivatives of the submatrices P̄ , R̄, S̄, and Ū with respect to

p. These are given by:

∂P̄lml′m′

∂p
= −ikks

∂J
(21)
lml′m′

∂p
− ik2∂J

(12)
lml′m′

∂p
, (6.19)

∂R̄lml′m′

∂p
= −ikks

∂J
(11)
lml′m′

∂p
− ik2∂J

(22)
lml′m′

∂p
, (6.20)

∂S̄lml′m′

∂p
= −ikks

∂J
(22)
lml′m′

∂p
− ik2∂J

(11)
lml′m′

∂p
, (6.21)

∂Ūlml′m′

∂p
= −ikks

∂J
(12)
lml′m′

∂p
− ik2∂J

(21)
lml′m′

∂p
. (6.22)

This requires us to take the derivatives of the surface integrals J with respect to the parameter

p. In general, our parameter of interest p will be some geometric quantity that determines

the shape of the surface of integration S. In the specific case of ellipsoidal scatterers, they

will be the three independent axes a, b, and c along the x, y, and z axes respectively.

The expressions for the derivatives with respect to a spatial variable (a, b, c) are as follows

where p represents any of the ellipsoid axes:

∂J
(11)
lml′m′

∂p
=− i

∫∫
αlml′m′ (m′πl′m′τlm +mπlmτl′m′)[

r

(
k
∂bl
∂p
jl′ + ksbl

∂jl′

∂p

)
+ 2bljl′

]
rsinθdθdφ,

(6.23)

∂J
(12)
lml′m′

∂p
=

∫∫
αlml′m′

{[
∂R

(12)
lml′m′

∂r
+ (Θ

(12)
lml′m′Eθ + Φ

(12)
lml′m′Eφ)

∂ρl,l′

∂r

]
∂r

∂p

+

(
Θ

(12)
lml′m′

∂Eθ
∂p

+ Φ
(12)
lml′m′

∂Eφ
∂p

)
ρl,l′

}
dθdφ,

(6.24)
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∂J
(21)
lml′m′

∂p
=

∫∫
αlml′m′

{[
∂R

(21)
lml′m′

∂r
+ (Θ

(21)
lml′m′Eθ + Φ

(21)
lml′m′Eφ)

∂ρl,l′

∂r

]
∂r

∂p

+

(
Θ

(21)
lml′m′

∂Eθ
∂p

+ Φ
(21)
lml′m′

∂Eφ
∂p

)
ρl,l′

}
dθdφ,

(6.25)

∂J
(22)
lml′m′

∂p
=

∫∫
αlml′m′

{[
∂R

(22)
lml′m′

∂r
+
∂Θ

(22)
lml′m′

∂r
Eθ +

∂Φ
(22)
lml′m′

∂r
Eφ

]
∂r

∂p

+ Θ
(22)
lml′m′

∂Eθ
∂p

+ Φ
(22)
lml′m′

∂Eφ
∂p

}
dθdφ,

(6.26)

where we have defined:

αlml′m′ =
(−1)m(1 + (−1)m

′−m)(1 + (−1)l
′+l+1

2
√
l(l + 1)l′(l′ + 1)

ei(m
′−m)φ (6.27)

k and ks are the k vectors of light in the medium surrounding the particle, and in the particle

itself. Then we define:

Eθ =
cos2φ

a2
+
sin2φ

b2
− 1

c2
, s (6.28)

Eφ =
1

b2
− 1

a2
, (6.29)

ρl,l′ = r3jl′bl, (6.30)

Now, we can define the specific terms used to construct each J surface integral. For J (12),

we define:
∂R

(12)
lml′m′

∂r
=
sinθ

k
(mm′πl′m′πlm + τl′m′τlm)

(
jl′
∂(krbl)

∂(kr)

+r

(
ks
∂jl′

∂r

∂(krbl)

∂(kr)
+ kjl′

∂

∂r

(
∂(krbl)

∂(kr)

)))
,

(6.31)

Θ
(12)
lml′m′ = −sinθ

k
l(l + 1)P

|m|
l τl′m′ , (6.32)

Φ
(12)
lml′m′ = −isinθ

k
l(l + 1)m′P

|m|
l πl′m′ . (6.33)

For J (21), we define:

∂R
(21)
lml′m′

∂r
= −sinθ

ks
(mm′πl′m′πlm + τl′m′τlm)

(
∂(ksrjl′)

∂(ksr)
bl

+r

(
ks
∂

∂r

(
∂(ksrjl′)

∂(ksr)

)
bl + k

∂bl
∂r

∂(ksrjl′)

∂(ksr)

))
,

(6.34)
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Θ
(21)
lml′m′ =

sinθ

ks
l′(l′ + 1)P

|m′|
l′ τlm, (6.35)

Φ
(21)
lml′m′ = −isinθ

ks
l′(l′ + 1)mP

|m′|
l′ πlm. (6.36)

Finally, for J (22) we define:

Θ
(22)
lml′m′ =i

r2sinθ

kks

(
m′l(l + 1)

∂(ksrjl′)

∂(ksr)
blP

|m|
l πl′m′

+ml′(l′ + 1)jl′
∂(krbl)

∂(kr)
P
|m′|
l′ πlm

) (6.37)

Φ
(22)
lml′m′ =

r2sinθ

kks

(
l′(l′ + 1)jl′P

|m′|
l′

∂(krbl)

∂(kr)
τlm

− l(l + 1)
∂(ksrjl′)

∂(ksr)
τl′m′blPlm

) (6.38)

and the three derivative terms:

∂R
(22)
lml′m′

∂r
=− isinθ

kks
(m′πl′m′τlm +mπlmτl′m′)(

k
∂

∂r

(
∂(krbl)

∂(kr)

)
∂(ksrjl′)

∂(ksr)

+ ks
∂

∂r

(
∂(ksrjl′)

∂(ksr)

)
∂(krbl)

∂(kr)

) (6.39)

∂Θ
(22)
lml′m′

∂r
=i
sinθ

kks

(
ml′(l′ + 1)P

|m′|
l′ πlm

(
2r
∂(krbl)

∂(kr)
jl′

+ r2
(
k
∂

∂r

(
∂(krbl)

∂(kr)

)
jl′ + ks

∂jl′

∂r

∂(krbl)

∂(kr)

))
+m′l(l + 1)P

|m|
l τ l′m′

(
2rbl

∂(ksrjl′)

∂(ksr)

+ r2
(
k
∂bl
∂r

∂(ksrjl′)

∂(ksr)
+ ksbl

∂

∂r

(
∂(ksrjl′)

∂(ksr)

))))
(6.40)



108

∂Φ
(22)
lml′m′

∂r
=
sinθ

kks

(
l′(l′ + 1)P

|m′|
l′ τlm

(
2r
∂(krbl)

∂(kr)
jl′

+ r2
(
∂

∂r

(
∂(krbl)

∂(kr)

)
jl′ + ks

∂jl′

∂r

∂(krbl)

∂(kr)

))
− l(l + 1)P

|m|
l τl′m′

(
2rbl

∂(ksrjl′)

∂(ksr)

+ r2
(
k
∂bl
∂r

∂(ksrjl′)

∂(ksr)

∂

∂r

(
∂(ksrjl′)

∂(ksr)

))))
.

(6.41)

Now with these J integrals, we can compute the quantity ∂T
∂p

for a given axis of an ellipsoid

in its own particle frame where a, b, and c are aligned along the xpart, ypart, and zpart axes.

In addition to computing the response of the T-matrix of the ellipsoid to the contraction

or extension of one of its axes, we are also interested in its response to rotations about the

zpart axis. To do this we will first define the transformation of the T-matrix or a derivative

matrix from the particle frame to some rotated lab frame that has new axes xlab and ylab,

but shares zlab = zpart. Given some rotation angle φrot, we can then define our new axes:

xlab =xpartcos(φrot) + ypartsin(φrot) (6.42a)

ylab =− xpartsin(φrot) + ypartcos(φrot) (6.42b)

zlab =zpart (6.42c)

The general form of this orthogonal transformation in three dimensions can be represented

by the Euler angles α, β, and γ. The general transformation of an element of an operator O

from the particle frame to the lab frame can be written as [111]:

Olab
plmp′l′m′(α, β, γ) =

l∑
m1=−l

l′∑
m2=−l′

Dl
mm1

(α, β, γ)Oparticle
plm1p′l′m2

Dl′

m2m′(−γ,−β,−α), (6.43)

where the D operator is a Wigner D-function. It can be represented as:

Dl
m′m(α, β, γ) = e−im

′αdlm′m(β)e−imγ, (6.44)

where dlm′m(β) is Wigner’s (small) d-matrix given by:

dlm′m(β) = 〈l,m′| e−iβJy |l,m〉 . (6.45)
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However, as we are only concerned with rotations about the z axis, we can simplify our

expressions knowing that α is our only nonzero angle, and equation (6.43) becomes:

Olab
plmp′l′m′(α, 0, 0) =

l∑
m1=−l

l′∑
m2=−l′

Dl
mm1

(α, 0, 0)Oparticle
plm1,p′l′m2

Dl′

m2m′(0, 0,−α). (6.46)

In this case, our D operator has a much simplified form:

Dl
m′m(α, 0, 0) =e−im

′αδm′m (6.47a)

Dl
m′m(0, 0, γ) =e−imγδm′m. (6.47b)

Combining equations (6.46), (6.47a), and (6.47b), we obtain a simple expression transforming

O from the particle frame to the lab frame:

Olab
plmp′l′m′(α) = ei(m

′−m)αOparticle
plmp′l′m′ . (6.48)

Equation (6.48) allows us to transform both T-matrices and the derivative matrices com-

puted in the particle frame into the lab frame. It also gives us a prescription for computing

the derivative matrix with respect to the particle’s angular orientation. We already have

derivatives characterizing the response of the particle to contractions and extensions of its

principal axes, and can now rotate these to a lab frame where the particle has an arbitrary

angular orientation relative to the z axis. We can now compute the derivative with respect

to the particle’s angular orientation α as:

∂T labplmp′l′m′(α)

∂α
= i(m′ −m)ei(m

′−m)αT particleplmp′l′m′ . (6.49)

With Equations (6.18) and (6.49), we have characterized the derivatives of the T-matrix

representing an ellipsoid with respect to its axes and orientation.

6.4 Results

These integrals are implemented in MATLAB, and performed using Gaussian quadrature.

The integrals are numerically verified by comparing the numerical derivative with the com-

puted analytical derivative for different step sizes. For the axes a, b, and c, we find that the
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error decreases as expected as the step size is decreased as shown in Figures 6.1. In addition,

we find similar behavior for the angular derivative with respect to the angle α in Figure 6.2.

6.5 Conclusion

In this final section, we have shown the derivation of an expression for the computation for

the derivatives of the T-matrix of an ellipsoidal scatterer. The T-matrix method is capable

of handling the scattering properties of particles with arbitrary geometry, provided a surface

can be parameterized in spherical coordinates. By implementing the derivatives of the T-

matrix, we can extend the optimization method based on GLMT shown in Chapters 4 and

5 previously to arrays of particles with arbitrary geometry. This step can further increase

the functionality of the optimization method to allow scatterer geometries that can utilize

different materials and fabrication methods.
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Figure 6.1: Maximum error of an element of the analytical derivative with respect to the

axes a, b, and c plotted against the step size. The error in a, b, c are shown in blue, red, and

yellow respectively. This is computed for an ellipsoid with a = 400 nm, b = 300 nm, c = 500

nm with refractive index n = 3, and background index ni = 1 and incident wavelength

λ = 1000 nm.
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Figure 6.2: Maximum error of an element of the analytical derivative with respect to the

angle α plotted against the step size in radians. This is computed for an ellipsoid with

a = 400 nm, b = 300 nm, c = 500 nm with refractive index n = 3, and background index

ni = 1 and incident wavelength λ = 1000 nm.
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Chapter 7

CONCLUSION AND OUTLOOK

Metasurface optics provides a powerful platform for wavefront manipulation by allowing

high efficiency operation while exerting control over the propagation of incident light. Over

the course of the timeline of this thesis (2014 to 2019), there has been an explosion of re-

search in the development and study of optical metasurfaces due to their ability to mimic

and miniaturize existing optical elements and systems, in addition to providing functional-

ities that do not exist in conventional optics. This breadth of capabilities lies in the large

numbers of modifiable degrees of freedom that characterizes these large, coupled systems of

discrete scatterers. In this thesis, I described and utilized both forward and inverse methods

to aid in the design and optimization of metasurfaces. Rapidly accelerating research in both

forward and inverse-design methods have resulted in a great deal of theoretical designs and

experimental demonstrations of metasurfaces with improved performance or new function-

alities relative to conventional optics. However, despite these advancements there are still

many challenging problems to address in both device design, and method implementation.

There are a few outstanding challenges in device design relating specifically to high per-

formance lenses that include efficient, high-numerical-aperture operation [114], chromatic

aberration correction [52,53,55,61], and geometric aberration correction [62]. A wide variety

of approaches have been demonstrated including both forward and inverse-design meth-

ods [75, 80, 100] to attempt to solve these problems. These approaches have yielded some

success in solving these problems independently, but to date it has been difficult to design

a lens or lens system that is able to incorporate all of these desirable qualities akin to a

miniaturized microscope objective. In particular, it could be even more difficult to solve

these problems using a material that is transparent to visible wavelengths [115], as the lower



114

refractive index materials tend to have comparably poor parameter sets relative to the higher

index materials available for infrared operation. Solving these problems would likely require

a better understanding and usage of the available degrees of freedom in these complicated

optical systems, and a combination of both forward and inverse design methods.

Another exciting challenge is the realization of volume optics [78] where a three-dimensional

volume of scatterers is designed to implement new functions. At this point it is well known

that a two-dimensional surface is unable to generate any arbitrary pattern, and is limited

in its potential input and output fields [77]. Preliminary results based on very low con-

trast volumes have demonstrated angular and spectral multiplexing [78], and some inverse

design methods have shown compatibility with optimizing fully three dimensional struc-

tures [75]. In addition to this computational advancement, there has been rapid development

in fabrication technologies capable of realizing three-dimensional nanostructures such as the

Nanoscribe GT, which has been shown to be capable of fabricating high quality optical com-

ponents [108, 109]. The wealth of computational electromagnetics techniques developed in

the metasurface community would be applicable to those of metamaterials as well. Volume

optical elements are truly exciting because they break with the common dogma of conven-

tional optical element design (of which metasurfaces are currently constrained by). With the

addition of a third spatial dimension, fully non-paraxial optics will be required to accurately

characterize the system, and with this opens new possibilities of optical design that are not

constrained to merely two-dimensional planes for the input, operation, and output.

On the method development side, the use of inverse design methods in computational

electromagnetics is still in relative infancy, and has great potential for the design of two-

dimensional surfaces, and three-dimensional volumes. Currently, the dominant techniques

involve solving Maxwell’s equations directly [80, 98, 100, 116], though there have been other

methods, including methods that use periodic cell approximations [81,116]. However, while

these methods have shown some success, one major hurdle for inverse design demonstrations

is the balancing of numerical accuracy with large area/volume designs. Methods which solve

Maxwell’s equations directly have extremely high numerical accuracy, but scale poorly with
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higher simulation volumes. Conversely, recently developed methods which use the local

phase approximation are able to handle larger volumes, but can have considerable numerical

error. The method presented in this thesis has potential to be numerically accurate while

still able to simulate relatively large areas and volumes. However, it is limited in its ability

to simulate arbitrary structures as it requires a parameterization of continuous or piecewise

continuous surfaces. In this manner it cannot nucleate new structures, or handle the splitting

of individual scatterers that is possible in the other methods. Given the large degrees of

complexity of volume optics systems, it is likely that inverse design techniques will be critical

for their design, and this may be one topic that motivates further advancement in inverse

methods. In addition, inverse methods may prove to be beneficial for exploring solutions

to produce high performance metalenses with aberration corrections and large numerical

aperture.

In addition to research on the appropriate theoretical basis for inverse design (finite differ-

ence methods, Mie scattering/T-matrix theory, local phase approximation etc) there is also a

considerable amount of research on the method used to optimize the structure. These meth-

ods include stochastic, global-optimization methods such as particle swarm optimization,

and genetic algorithms in addition to local gradient-based optimizations such as the method

presented in this thesis. In addition to these methods, there has been interest in the use of

neural networks in inverse design [117–119]. It is unclear if the neural network methods will

be able to generalize to large area structures, though they seem to be numerically accurate

and relatively fast when successfully trained. It is very possible that an amalgamation of

these techniques would be required to realize a truly scalable formalism for inverse design.

Last, but certainly not least, is the field of dynamically tunable metasurfaces analogous in

function to deformable micromirrors and spatial light modulators. These devices could find

applications in a wide variety of applications including biological imaging, beam steering for

LIDAR, and augmented or virtual reality systems. This is currently an active and exciting

area of research, though there have been few experimental demonstrations. Proposed designs

generally seek to modulate the refractive index at a single pixel level using mechanisms such



116

as the thermo-optic effect [120], electro-optic effect [121], phase change materials [122], and

plasmonic resonances [123]. Here the key goal is to fabricate a device that achieves a small

pixel size and high modulation (MHz, GHz) frequency for phase values between 0 and 2π.

This is an extremely difficult task that likely requires combined expertise from materials

scientists, optical and electrical engineers, and optical and condensed matter physicists.
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Lončar. Topology-optimized multilayered metaoptics. Phys. Rev. Applied, 9:044030,
Apr 2018.

[101] Daniel W. Mackowski and Michael I. Mishchenko. Calculation of the t matrix and the
scattering matrix for ensembles of spheres. Journal of the Optical Society of America
A, 13(11):2266–2278, 1996.

[102] Yu-lin Xu. Electromagnetic scattering by an aggregate of spheres. Applied Optics,
34(21):4573–4588, 1995.

[103] Amos Egel, Lorenzo Pattelli, Giacomo Mazzamuto, Diederik S. Wiersma, and Uli
Lemmer. Celes: Cuda-accelerated simulation of electromagnetic scattering by large
ensembles of spheres. Journal of Quantitative Spectroscopy and Radiative Transfer,
199:103–110, 2017.

[104] Seymour Stein. Addition theorems for spherical wave functions. Quarterly of Applied
Mathematics, 19:15–24, 1961.

[105] Orval Cruzan. Translational addition theorems for spherical vector wave functions.
Quarterly of Applied Mathematics, 20:33–40, 1962.

[106] Roy G. Grainger, Jonathan Lucas, Gareth E. Thomas, and Graham B. L. Ewen. Cal-
culation of mie derivatives. Applied Optics, 43(28):5386–5393, 2004.

[107] Yang Li and Nicola Bowler. Computation of mie derivatives. Applied Optics,
52(20):4997–5006, 2013.

[108] Timo Gissibl, Simon Thiele, Alois Herkommer, and Harald Giessen. Two-photon direct
laser writing of ultracompact multi-lens objectives. Nature Photonics, 10:554 EP –,
Jun 2016. Article.

[109] Timo Gissibl, Simon Thiele, Alois Herkommer, and Harald Giessen. Sub-micrometre
accurate free-form optics by three-dimensional printing on single-mode fibres. Nature
Communications, 7:11763 EP –, Jun 2016. Article.

[110] P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering.
Phys. Rev. D, 3:825–839, Feb 1971.

[111] Michael I. Mishchenko, Larry D. Davis, and Andrew A. Lacis. Scattering, Absoprtion,
and Emission of Light by Small Particles. NASA Goddard Institute for Space Studies,
2002.



127

[112] Adrian Doicu, Thomas Wriedt, and Jurij A. Eremin. Light Scattering by Systems of
Particles: Null-Field Method with Discrete Sources. Springer, 2006.

[113] J. B. Schneider and I. C. Peden. Differential cross section of a dielectric ellipsoid by
the t-matrix extended boundary condition method. IEEE Transactions on Antennas
and Propagation, 36(9):1317–1321, Sep. 1988.

[114] Steven J. Byrnes, Alan Lenef, Francesco Aieta, and Federico Capasso. Designing large,
high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Op-
tics Express, 24(5):5110–5124, 2016.

[115] Elyas Bayati, Alan Zhan, Shane Colburn, Maksym Viktorovich Zhelyeznyakov, and
Arka Majumdar. Role of refractive index in metalens performance. Appl. Opt.,
58(6):1460–1466, Feb 2019.

[116] Thaibao Phan, David Sell, Evan W. Wang, Sage Doshay, Kofi Edee, Jianji Yang, and
Jonathan A. Fan. High-efficiency, large-area, topology-optimized metasurfaces. Light:
Science & Applications, 8(1):48, 2019.

[117] Dianjing Liu, Yixuan Tan, Erfan Khoram, and Zongfu Yu. Training deep neural
networks for the inverse design of nanophotonic structures. ACS Photonics, 5(4):1365–
1369, 2018.

[118] Mohammad H. Tahersima, Keisuke Kojima, Toshiaki Koike-Akino, Devesh Jha, Bing-
nan Wang, Chungwei Lin, and Kieran Parsons. Deep neural network inverse design of
integrated photonic power splitters. Scientific Reports, 9(1):1368, 2019.

[119] John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G.
DeLacy, John D. Joannopoulos, Max Tegmark, and Marin Soljačić. Nanophotonic
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Appendix A

FABRICATION RECIPES

Below are the fabrication procedures used for the fabrication of the thesis.

A.1 Silicon Nitride Metasurface Fabrication

We begin with a double-side polished 0.5 mm fused quartz or silica wafer.

1. Deposit 633 nm silicon nitride using PECVD2-SPTS recipe AM SiN LDR 350C.

2. Evaporate 50 nm aluminum at 0.1 nm/s using EVAP1. This layer serves as both a

hard mask for inductively-coupled plasma (ICP) etching and charge dissapation layer

for EBL.

3. Clean with acetone and isopropyl alcohol.

4. Spin a 160 nm layer of ZEP 520A 1:1 diluted in anisole.

5. Bake for two minutes at 180 C.

6. Pattern using EBL (JEOL JBX-6300 FS 100 kV).

7. Develop resist for two minutes using amyl acetate. Lightly agitate.

8. Etch for 50 seconds using ICP-Chlorine recipe RJB - Al v2. Expect dull green plasma

color

9. Etch for 160 seconds using ICP-Fluorine recipe AMLAB-SiN-Etch-10C. Expect a deep

pink or purple color
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10. Remove aluminum hard mask using AD-10 photoresist developer

A.2 Nanoscribe Fabrication

We begin with a high resolution glass slide provided by Nanoscribe. First, any device layout

that is to be used should be compiled into an .stl file. In my , this is done using Blender, a

free 3D modeling software.

1. Convert .stl file into Nanoscribe .gwl files using the proprietary DeScribe software.

2. Load converted files into Nanoscribe computer.

3. Place a small bead of IP-Dip resist (a 3 mm x 3 mm bead should suffice) onto a high

resolution glass slide provided by Nanoscribe.

4. Load slide into the holder.

5. Begin exposure (should take around 20-30 minutes for a 200 μm × 200 μm device.

6. Unload sample.

7. Develop in Microchem SU-8 Developer for 20 minutes.

8. Rinse with water, and dry. Be very careful when blow drying as structures can be

prone to blowing off or being deformed.
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