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The family of 2D materials has been the topic of intense academic study due to the tight

out-of-plane electronic confinement that gives rise to pronounced electronic and optical ef-

fects. Many of the effects that have made them popular among the material science and

physics communities also makes them appealing in an integrated photonics settings where

their strong optical and opto-electronic effects may give rise to transformative devices. This

dissertation aims to outline the work I have conducted to illustrate the capacity of monolayer

transition metal dichalcogenides (TMDs) for nonlinear integrated photonic devices.

I will present work that explores the efficacy of TMDs for nonlinear photonics based on

the second-order susceptibility nonlinearity, specifically second-harmonic generation (SHG)

devices. A select few of the major contributions to the field of integrated SHG are outlined.

These works are then used to frame a theoretic study of TMD based SHG devices, where

we predict that patterning the materials will allow for SHG devices with relaxed fabrication

tolerances. This is followed by a review of experimental demonstration of cavity enhanced

SHG with a silicon micro-resonator and the current progress towards demonstrating the same

with silicon nitride micro-resonators.
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Chapter 1

INTRODUCTION

Integrated photonics started with humble beginnings in the late 1980’s with the pioneer-

ing work of Soref and Larenzo who first demonstrated on chip waveguiding using silicon

[104]. Since then the field has greatly expanded in order to address the rising needs in the

telecommunications and data communications sectors. Here, silicon photonics has already

established itself as a key technology with recent demonstrations of transcievers reaching the

100 GB/s mark [24]. The resulting increase in accessibility of silicon photonics has led to

new and exciting applications outside traditional telecommunications motivations, including

biomedical [40] LIDAR [86] applications, and is expected to extend into other application

domains. The needs of the current applications are well met by state-of-the-art passive com-

ponents, and key opto-electronic devices such as lasers, detectors, and modulators. However,

future applications may critically depend on another type of integrated photonic device, op-

tically nonlinear devices. While a host of functionality can arise from optical nonlinearities,

this dissertation focuses on the frequency conversion that arises from the second order sus-

ceptibility nonlinearity (χ(2)), specifically the frequency doubling of photons.

1.1 Motivation for Second-Order Integrated Nonlinear Optics

The frequency conversion capabilities of the χ(2) nonlinearity has been a subject of intense

academic research since the first experimental demonstration of frequency doubling in 1961

[28]. Interest in this phenomenon goes well beyond the desire to understand the physical

underpinnings of such frequency conversion, and is largely motivated by the ability to extend

light generation to frequencies where there are no suitable emitters. For instance, frequency

doubling, also know as second harmonic generation (SHG), is routinely used to generate
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532 nm light from frequency doubling the 1064 nm laser light emitted by neodymium-doped

yttrium aluminum garnet (Nd:YAG) lasers. χ(2) based frequency conversion is also the

underpinning of optical parametric amplifiers which are frequently used in scientific settings

where frequency tunability is of utmost importance.

In the context of integrated photonics there are two primary driving forces behind ex-

ploring the χ(2) based frequency conversion. The first is the exact analog of the classical

case mentioned previously, and thus generating new wavelengths might be of importance to

future biomedical applications, or other application areas. The other is for use in quantum

information science and technology. One of the key components of any quantum informa-

tion system is the quantum memory. There are several promising candidates such as the

negatively charged nitrogen-vacancy center in diamond [25] and the newly reported defects

in silicon carbide [67]. However, many of these emitters lay far from the telecommunication

bands (∼1550 nm) [33]. Being able to efficiently frequency convert these photons to the

telecommunications bands will greatly reduce the overall losses, and opens up the possibility

of exploiting existing telecommunication infrastructures.

1.2 Background of Second-Order Nonlinear Optics

In general the polarization field can be expressed as a power series of the electric field with

coefficients given by specific material properties. Specifically, the polarization field can be

written as P = ε0
∑∞

n=1 χ
(n)En [39], where ε0 is the permittivity of free space, χ(n) is the

nth order electric susceptibility, and En is the electric field taken to the nth power. The

first term in the series is the term most commonly referred to as the polarization field. The

higher order terms are frequently neglected, as their effects only become prominent at high

intensities. When the first-order term is no longer sufficient, one usually incorporates the

next nonzero term. This first order correction depends on the crystal symmetries of the

nonlinear material. If the material is non-centrosymmetric then the second order term (χ(2))

is the first nonzero term, otherwise it is the third (χ(3)) term [15]. All higher order terms are

typically referred to as higher order harmonics and only play a significant role under fields
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Figure 1.1: A simplistic view of second harmonic frequency (SHG), and difference frequency
generation (DFG). The colored wavy lines correspond to individual photons interacting with
a χ(2) material. The zero energy state corresponds to the valence band, while the dashed
lines correspond to the virtual states utilized in χ(2) processes. (a) The SFG process involves
two incoming photons (red and orange) that collectively excite an electron into a virtual
state from which a photon with the sum of their energies emits (blue). (b) Same as (a), but
with reversed roles for the photons.

far more intense than required to observe effects from the χ(2) or χ(3) nonlinearities. These

higher order terms are typically only explored for the purpose of generating high energy

photons.

Before proceeding it is important to have a clear physical and mathematical picture

of χ(2) processes. χ(2) processes are often referred to as “three wave mixing” as each χ(2)

process involves three photons and a number of virtual states as shown in Figure 1.1, which

illustrates the two generalized cases of three wave mixing. For instance, sum frequency

generation (SFG), as shown in Fig. 1.1a, shows two incident photons, each successively

exciting a photon from the ground state into virtual states. After a short delay the electron

decays back into the ground state. Subfigure b shows a similar process, difference frequency

generation (DFG), which is the same process in reverse.

We can understand the mathematical picture of χ(2) frequency generation by studying

Maxwell’s equations in matter. The portion of polarization field arising from the second
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order term can be written as [15]:

Pi(ω3) =
∑
j

∑
k

χ
(2)
ijk(ω3, ω2, ω1)Ej(ω2)Ek(ω1) (1.1)

Here we take the subscripts to indicate the component (e.g. x, y, or z) of each field. Pi is the

resulting polarization field, χ
(2)
ijk is the χ(2) tensor for the crystal of interest, and E represents

the electric field. The χ(2) tensor dictates which combination of polarizations are mediated

in a second-order process. A typical exercise in introductory electromagnetics courses is to

start with Maxwell’s equations, then derive the wave equation for the electric field:

∇2E =
1

c2

∂2E

∂t2
(1.2)

However, if one starts with Maxwell’s equations in matter we can arrive at another wave

equation:

∇2E =
1

ε0c2

∂2D

∂t2
(1.3)

where D = ε0E + P . If we split the polarization fields and displacement fields into their

linear and nonlinear components, P = P (1) + P (NL) and D = ε0E + P (1), we can write the

wave equation in matter as:

∇2E − 1

ε0c2

∂2D(1)

∂t2
=

1

ε0c2

∂2P (NL)

∂t2
(1.4)

Now we can clearly see that the nonlinear polarization terms serve as a source term in

the classic wave equation. This provides some insight on the new frequency generation via

the polarization nonlinearities.

1.2.1 Implications of Conservation Laws for Second-Order Nonlinear Optics

The crux of working with χ(2) processes is the need to satisfy both the frequency and phase

matching conditions. The first is readily understood as a consequence of the conservation of
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Figure 1.2: Characteristics of phase matching. (a) The percent of maximum efficiency for a
SFG process as a function of momentum mismatch and propagation length. Of note is the
case where phase matching (∆k = 0) occurs which corresponds to maximal conversion. (b)
Generation of SHG field as a function of propagation distance for the three general cases of
phase matching. Without phase matching (yellow trace) the power oscillates back between
the harmonic and fundamental wave every coherence length. With perfect phase matching
(blue trace) the harmonic field grows linearly with the propagation length. Finally, for quasi-
phase matching (red trace) the harmonic wave grows monotonically, albeit sub-linearly.
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energy. Explicitly, the frequency matching condition is ω1 +ω2 = ω3 for a SFG process. It is

easy to see how one can arrive at h̄ω1 + h̄ω2 = h̄ω3, which is the explicit equation of energy

conservation for this process.

The phase matching condition, a consequence of momentum matching, requires a more

lengthy derivation. Consider two propagating plane waves in a χ(2) medium with wave

vectors k1 and k2 that are participating in a sum frequency interaction to produce a plane

wave with wave vector k3. By applying Maxwell’s equations, we can derive an expression for

the intensity of the third wave:

I3 = Imax3

[sin(∆kL/2)

∆kL/2

]2

(1.5)

where ∆k = k1 + k2− k3, I3 is the intensity of the generated wave, and L is the propagation

length. The phase matching condition is given by ∆k = 0 and guarantees I3 remains at its

maximal value.

The phase-matching condition is one of the most difficult conditions of second-order

nonlinear optics to satisfy. To obtain phase-matching, one must take great care to make the

refractive index the precise values required for the process. For second harmonic generation

the problem simplifies to making the refractive index the same at the fundamental and

second harmonic frequencies. However, even this is difficult due to dispersion, which tends

to force the refractive index at the second harmonic frequency to be higher than that at the

fundamental frequency. In bulk crystals this is frequently compensated for by birefringent

effects [15, 124]. Even then, ovens are usually employed to carefully control the temperature

to ensure the phase matching condition not derailed by temperature fluctuations.

One problem that often arises is the inability for a crystal to satisfy the phase-matching

condition. This can happen if the dispersion within the spectral window of interest is too

large compared to the birefringent effects within the crystal. In such a case, the power will

simply be cyclically exchanged between the fundamental and harmonic modes. Half the

length scale over which this usually occurs is called the coherence length defined as:
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Lcoh =
π

∆k
(1.6)

It was realized that one could achieve grater second-order effects in crystals that lack

phase-matching if the crystal axis could be flipped after every coherence length [6]. In this

way as power from the generated wave began to cycle back into the pump waves the crystal

orientation would flip and power would again flow into the generated wave. This technique

has become known as quasi-phase-matching (QPM), and has been widely employed for highly

efficient second-order processes.

1.3 Integrated Photonics

Integrated photonics is a versatile platform to explore interesting electromagnetic devices

due to the wavelength scale confinement. Here we will cover some of the basic operating

principles of a few key photonic devices that will appear later in this thesis.

1.3.1 Waveguides

Waveguides were the first integrated photonic devices to be demonstrated [104] and remain

one of the central components in integrated photonics. These structures provide confinement

at the wavelength scale using total internal reflection (TIR) 1 (Fig. 1.3a), allowing light to be

efficiently guided across an entire chip. While there are a number of possible cross-sections

including slot and rib waveguides, in this thesis we will largely be concerned with the most

basic form, the strip waveguide (Fig. 1.3b). While the refractive indices (ncore, nclad, and

nsub) tend to be fixed by the choice of platform (e.g. silicon on insulator), the ability to

vary the waveguide width (w) and thickness (t) allow for great tunability of the propagation

properties of the electromagnetic wave, such as effective refractive index, modal shapes, and

dispersion.

1Note that TIR does not actually apply for wavelength scale geometries, and the actual confining mech-
anism is index guiding[49]. However, TIR is commonly used to describe this phenomenon as it is easily
accessible and so we will use it here as well.
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While the use of Fresnel equations and the picture of TIR allows for a detailed under-

standing of waveguiding from analytic expressions directly derived from boundary conditions

and Maxwell’s equations, it is often more practical to evaluate the propagating waves nu-

merically. These numeric methods are computationally cheap and can be easily applied to

arbitrary waveguide geometries. These methods separate the solutions to Maxwell’s equa-

tions into a cross-sectional and propagating component. For instance, the solution for the

electric field would take the form: E(x, y, z) = E0(x, y)e−i(ωt−βz). Here, ω is the angular

frequency of the light, β is the propagation constant, and E0(x, y) is the solution to an

eigenvalue problem of the form AE0 = βE0, where β is again the propagation constant, and

A is an operator. For instance, in the scalar wave approximation this eigenvalue problem

becomes [107]:

(∇2
T + k2)E0 = βE0 (1.7)

Where ∇T = ∂
∂x
x̂ + ∂

∂y
ŷ and k is the angular wavenumber. In this thesis we have used a

fully vectorial solution (whose formulation has been omitted for brevity) as outlined by [126]

and as implemented by Lumerical Inc. in their “Mode Solutions” software [2].

Solutions to these eigenvalue problems result in discrete sets of solutions known as eigen-

modes. Furthermore, these solutions can be broken into two categories, quasi-transverse-

electric and quasi-transverse-magnetic solutions. The quasi- prefix indicates that unlike the

solutions for microwave waveguides with metallic boundaries [39], these modes are not com-

pletely transverse (there are nonzero components along the propagation direction). We will

follow the convention of the field of integrated photonics and denote these modes TE, and

TM, respectively. For illustration, let us consider the case where w and t are restricted to

nearly half a wavelength. Under such conditions there are only two eigenmodes, one TE

and one TM mode. For a silicon nitride strip waveguide surrounded by silicon dioxide with

w = 750 nm and t = 400 nm at 1550 nm, the resulting intensity profiles for the TE and TM

are that shown in Figs. 1.3c, and d, respectively.
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Figure 1.3: Integrated photonic waveguides. (a) Waveguides provide confinement through
total internal reflection. This can be visualized by the arrows representing the ray tracing
of a beam propagating along the waveguide. By assuming these rays are incident on the
waveguide surfaces at an angle θ one can use Snell’s law to infer confinement by total internal
reflection. (b) Diagram of a strip waveguide. The waveguide core is made of a material with
refractive index ncore, and with dimensions w, and t. This waveguide sits on a substrate
with index nsub, and is encapsulated by a material with index nclad. Here we have shown a
single mode silicon nitride waveguide with w = 750nm, and t = 400nm with a silicon dioxide
substrate and cladding layer. Such a waveguide has a single TE mode, and TM mode whose
intensity profiles are shown in (c) and (d), respectively.
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1.3.2 Resonators

Resonators serve a central role in integrated photonics as they allow an enhancement of the

electric fields by spatially and temporally confining light. Such confinement allows for the

enhancement of otherwise weak optical effects such as the thermal-optical effect [5], photo-

refractive effect [82], and of central importance to this thesis, the χ(2) nonlinearity [41].

The spatial confinement of a cavity is denoted by the mode volume, Vm. There are many

definitions of Vm, however a commonly used definition defines it as:

Vm =

∫
ε|E|2dV

max(ε|E|2)
(1.8)

The temporal confinement is denoted by the cavity quality factor, Q [49]:

Q =
ωU

P
(1.9)

Where ω is the resonant frequency, U is the total energy stored in the resonator, and

P is the power dissipation rate. In steady state this power dissipation rate is the same as

the power coupled into the cavity. Power buildup is a central benefit of cavity enhancement

and equation 1.9 provides a clear picture of how this relates to the quality factor, but the

temporal aspect is not immediately clear although it is another important benefit relating

to the quality factor of a resonator. This can be made explicit, as one can also find that the

photon lifetime (τ) and the cavity quality factor are directly related to one another [49]:

Q =
τω

2
(1.10)

Finally, it is important to note that the ratio of Qn/V m for various positive integer values

of n and m is a reoccurring figure of merit in the field of integrated photonics. For instance,

the enhancement of an emitter’s spontaneous emission rate by a cavity, known as the Purcell

effect, is proportional to Q/V [87]. The thermo-optic and photo-refractive devices mentioned

previously also experience enhancement proportional to Q/V [82]. However, as we will see,
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Figure 1.4: Schematic of a racetrack resonator fed by a coupled waveguide. a denotes the
round trip loss, k is the coupling strength between the waveguide and racetrack, and r is the
coupling strength of the waveguide to itself.

the χ(2) nonlinearity scales as Q3/V or Q2/V 2, depending on the presence or absence of

double-resonance [32] [30] [69] [76].

Ring and Racetrack Resonators

Ring and racetrack resonators are some of the most prevalent resonators in use in integrated

photonics as they are simple to design and fabricate. This is largely because they are formed

by wrapping a waveguide back on itself to form a ring or racetrack like structure. One key

difference is that unlike waveguides, these resonators do not support a continuum of different

frequencies, but rather a set of discrete frequencies/wavelengths that satisfy the condition:

λres =
neffL

m
, m = 1, 2, ... (1.11)

Where λres are the resonance wavelengths corresponding to a specific mode, neff is the

effective index of that ring mode, and L is the circumference of the resonator. This condition
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implies that only wavelengths that constructively interfere over a round trip are supported as

all other wavelengths will destructively interfere, and thus are not supported. The wavelength

separation (∆λ), also known as free spectral range (FSR) of these modes are easily calculated:

∆λ =
λ2

ngL
(1.12)

A final detail to consider is the way in which ring resonators are excited. This is tra-

ditionally done by placing a “bus” waveguide in close proximity to the resonator. For our

purposes let us consider a racetrack resonator as pictued in Fig. 1.4. Of note are the cou-

pling strength between the ring and bus waveguide, k and r denotes the power transmitted

past the resonator. Here, a denotes the round trip loss which is related to the waveguide

propagation loss (α) by a2 = e−αL. It can be shown that the power transmitted through the

bus waveguide is equal to [14]:

T =
a2 − 2ra cos(φ) + r2

1− 2ar cos(φ) + (ra)2
(1.13)

Where φ = βL is the round trip phase accumulation. The power that is not transmitted

is coupled into the ring resonator, then dissipated by the round trip losses. By inspecting

equation 1.13 we can see that all the power from the waveguide is coupled into the ring when

k = a as φ will be some multiple of 2π on resonance. This condition is referred to as critical

coupling.

While a is usually determined by fabrication imperfections and ring circumference, k is

readily tunable. When two waveguides are brought close together the eigenmodes of the

waveguides are no longer independent, but rather are coupled into a set of “super-modes.”

Let us consider a set of waveguides with the same geometry as in Fig. 1.3 with a separation of

400 nm. We can find a set of TE polarized modes: one where the light in the two waveguides

are in phase and are pulled together (Fig. 1.5a), and another where they are out of phase

and repel each other (Fig.1.5b). The interference of these modes cause power to be cyclically

exchanged between the waveguides over a distance known as the cross-over length:
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Figure 1.5: TE polarized super-modes of a silicon nitride waveguide coupler. (a) The real
part of the Ex for the first and (b) second super-mode. The waveguides are 750 nm wide,
400 nm thick, separated by 400 nm with and encapsulated with silicon dioxide.

Lcross =
λ

2∆n
(1.14)

where ∆n is the difference in the effective indices for the two super-modes. This difference

can be made larger by bringing the waveguides closer together, and therefore by virtue

critical coupling in ring resonators tends to be found by varying the coupling gap until the

associated coupling strength matches the round trip losses.

Photonic Crystals

Another commonly used resonator design is that of a photonic crystal cavity (PhCC). Pho-

tonic crystals (PhCs) have captured the imagination of scientists for several decades. They

were first proposed by Lord Rayleigh in 1887 [90] but interest in the topic started in vigor

in 1987 by Yablonovitch [123] and John [50]. These authors realized that light can be selec-

tively guided by or reflected by periodic media depending on the relationship between the

periodicity and the wavelength of light.
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Figure 1.6: Basic photonic crystal operating principles. (a) Schematic of a photonic crystal,
in essence a dielectric slab with a periodic array of holes. (b) A photonic crystal cavity created
by removing three of the holes. (c) In plane confinement in photonic crystals is accomplished
through distributed Bragg reflection. (d) Out of plane confinement is accomplished with TIR.
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PhCs come in a variety of symmetries, but for brevity we will focus on “photonic crystal

slabs” as they will appear later in this text (Fig. 1.6a). As the name suggests these PhCs are

comprised of a thin dielectric slab, usually with a thickness on the order of half a wavelength

( λ
2n

), and are patterned with a periodic array of holes. The relationship between the size

and periodicity of these holes to the size of a wavelength in the slab determines of the light

can pass through or be reflected. The light confinement mechanism in the slab is known

as distributed Bragg reflection (DBR) (Fig. 1.6c). Using such a DBR structure provides

the in plane control needed to build more sophisticated structures such as photonic crystal

waveguides and cavities. Out of plane confinement is provided by TIR just as it is for

waveguides (Fig. 1.6d).

The exact frequencies that are guided in photonics crystals are found by solving for the

eigenmodes of the crystal. Every photonic crystal is comprised of a unit cell (Fig. 1.7a

purple outline) that is identical under translations of the unit vectors (Fig. 1.7a arrows

labeled a1 and a2). In momentum space, more widely referred to as reciprocal space, our

hexagonal lattice transforms into another hexagonal lattice (Fig. 1.7 b). If we were to find

the eigenmodes for the entire unit cell of the reciprocal lattice we would need a fully three

dimensional plot to see the results. The situation becomes much worse for the case where

one has a three dimensional reciprocal lattice (here we have ignored the third dimension as

there is only translational symmetry in two dimensions), one would require far more complex

plotting schemes. It was realized that the symmetries of these reciprocal lattices result in

redundant information, so one could retain all the repentant information by considering only

a subsection that contained unique information. This is known as the irreducible Brillouin

zone (IBZ) (Fig. 1.7b blue triangle). Furthermore, this simplifies plotting the solutions as

they can all be represented by a one dimensional plot, regardless of the crystal symmetry by

only plotting the solutions along the edges of the IBZ. For the case of a hexagonal lattice,

this means plotting the solutions from the Γ point, to the M point, to the K point, and then

back to the Γ point (Fig. 1.7b). The following eigenproblem is then solved at each point

along the edge of the IBZ [51]:
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(∇+ ik)× 1

ε
(∇+ ik)×H = (ω/c)2H (1.15)

For illustration let us consider a silicon photonic crystal with periodicity of 398 nm, and

a radius of 116 nm in a slab 220 nm thick. The resulting band diagram is shown in Fig.

1.7c. The red lines correspond to TE polarized modes and the blue lines correspond to TM

polarized modes (only the first nine of each are shown). The grey area is known as the light

cone and corresponds to momentum-frequency pairs that couple into free space. These bands

are the only pairs of momentum and frequencies that are able to pass through the photonic

crystal, all other frequencies are reflected. For instance, the field profile of the first TE band

at the K point is shown in Fig. 1.7d (Hz component).

Now that we understand which modes are allowed to propagate through the crystals and

those that are not, we can revisit the idea of forming cavities. Photonic crystal cavities

(PhCCs) can be formed by creating any sort of defect within the crystal, resulting in light

with frequencies that fall between the bands (in a region known as band-gaps) are trapped in

the defect region. A widely used defect is the L3 (Fig. 1.6b) where three holes are removed

in a line. This is largely due to years of work that have shown L3 cavities are able to

achieve incredible Q/V ratios [58] [78]. While we have only reviewed the design of hexagonal

photonic crystals, the same analysis applies to all photonic crystals.

1.4 Past Work in Integrated Nonlinear Optics

Integrated photonics provides an interesting platform to explore nonlinear optics due to the

wavelength scale geometries. For instance, as we saw in section 1.3.1 we can control the

dispersion in waveguides by varying their cross-sections. This extra dispersion allows for

a material independent method of phase-matching that is not present in traditional SHG

systems that utilize bulk crystals.
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Figure 1.7: Bandstructures of photonic crystals. (a) The hexagonal lattice we will be consid-
ering. Here we have labeled the lattice vectors a1 and a2. (b) The reciprocal lattice of that
shown in (a), which itself is a hexagonal lattice. The reciprocal lattice vectors are given by
b1 and b2. The symmetries of the lattice of the lattice result in symmetries in the bands. The
area without redundancies is known as the irreducible Brillouin zone (IBZ) and is highlighted
in light blue. The corners of the IBZ are labeled Γ, M , and K. (c) Band diagram of a silicon
photonic slab with a hexagonal hole structure. Only the first nine TE (red) and TM (blue)
modes. The light cone is shaded in grey. Slab thickness of 220 nm, periodicity of 398 nm,
and a radius of 116 nm. (d) Hz field profile of the first TE band at the K point. The holes
are outlined in black for clarity.
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1.4.1 Second Harmonic Generation in Aluminum Nitride Waveguides

This geometric dispersion is how phase matching has been achieved in an aluminum nitride

on silicon platform [85]. The authors designed the height of the waveguide to allow single

mode operation at 1550 nm. Next they varied the width of the waveguide and monitored the

effective refractive index of the fundamental mode at 1550 nm and the higher order modes

at 775 nm. At a waveguide with a width of just over 1 µm they found the effective indices

of the TE00 mode at 1550 nm matched the effective index of the TE20 at 775 nm. A power

series on the waveguides revealed the quadratic scaling of the SHG with respect to the input

pump power. This is exactly what we would expect from the linear increase in SHG electric

field amplitude associated with phase matching as we saw in Fig. 1.2b. A wavelength sweep

on these same waveguides revealed a narrow band of phase matching. This is consistent

with what we saw in Fig. 1.2a, with the understanding that a small change in wavelength

corresponds to small change in momentum matching. This is what we should expect as

changing the wavelength changes the ratio of light that travels in the waveguide core versus

in the cladding layer, changing the effective index of the mode.

Because of the strong scaling with the power at the fundamental wavelength, a natural

way to increase efficiency and output power is to use a ring resonator formed of a phase

matched waveguide. In this way power at both the fundamental and harmonic frequencies

will build up inside the ring. This simple method of designing a nonlinear resonator has

resulted in some of the highest reported conversion efficiencies in an integrated platform

[41]. Though the design is simple it is generally well understood that the mode matching

condition is heavily reliant on precise fabrication of the waveguide width.

While we have presented the work in aluminum nitride, it is worth noting that the

method of using geometric dispersion is a well established technique within the field that has

been extended to a number of material systems. For instance, these same principles have

been extended to the surface nonlinearities of silicon nitride [61], as well as more traditional

nonlinear media such as gallium arsenide [19].
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1.4.2 Theory of Second-Order Nonlinearity within Micro-Resonators

The use of phase matching has guided our understanding of efficient SHG configurations

for not only the bulk systems, but also for the case of waveguides and ring resonators. In

fact, it was nearly effortless to extend the notion into the integrated photonic setting, as we

were simply manipulating index in both cases. However, this idea does not extend as well to

standing wave resonators. In order to gain clarity for these cases, a generalized understanding

of χ(2) processes becomes important. The solution to this problem was presented by Burgess

et al. [17] with their idea of a nonlinear overlap. This was accomplished by abstracting

out the notion of specific electric field distributions, which allowed an expression for the

conversion rate between frequencies for any χ(2) process, which has the following form:

β =
1

4

∫∫∫
dV ε0

∑
ijk χ

(2)
ijkE

∗
1i(E

∗
2jE3k + E∗2kE3j)√∫∫∫

ε|E1|2dV
√∫∫∫

ε|E2|2dV
√∫∫∫

ε|E3|2dV
(1.16)

Here, the numeric subscripts indicate which of the three fields we are considering, while the

letter subscripts refer to the polarization. It is worth noting that β has units of J−1/2 and

|β|2 is proportional to the conversion efficiency obtained by the cavity in question at low

pump powers [16]. This nonlinear overlap is consistent with the notion of phase matching

and has become an indispensable tool for the design and analysis of ultra-compact frequency

conversion devices.

1.4.3 SHG in Nanobeam Cavities

The use of β is particularly attractive when compact frequency conversion devices are desired.

For instance, it has found use in designing photonic crystals for SHG enhancement [16] [94].

For instance the work by Buckley et al. explored designs of nanobeams in gallium arsenide

(GaAs) that have resonances separated by an octave [16]. Here, the matter of achieving

efficient frequency conversion requires additional consideration beyond what the previous

uses of phase matching provided, but which the nonlinear overlap readily provides.
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Another point where these ultra-compact frequency conversion devices differ from the

waveguide based approach is in the nontrivial task of ensuring resonances at the fundamen-

tal and harmonic wavelengths. In waveguide systems this requires minimal work, as the

fundamental wave simply needs to be above the frequency cutoff for the chosen geometry

(e.g. waveguide thickness), and the harmonic mode will naturally be supported. The same

is not true for photonic crystal structures, as one must also ensure there are bands near

both frequencies. Nanobeams are particularly well suited for this task, as they more read-

ily confine bands beneath the light cone compared to the traditional slab photonic crystals

[16]. In addition, the bands must be of a compatible symmetry such that β integrates out

to a nonzero number. The authors presented a suitable design that manages to satisfy the

frequency overlap momentum matching, and retain high quality factors. However, due to

the challenging nature of the device fabrication, the experimental demonstration of such a

device is anticipated but yet to be reported.

1.5 Present State of Compact SHG Devices

The field of developing ultra-compact SHG devices is still very active. This is primarily due

to the challenge of designing resonant structures that (1) have modes at the fundamental and

harmonic frequencies, (2) have large quality factors, and (3) have large values of β. There

have been a number of interesting proposed designs for these nanocavity enhanced SHG [63]

[12] [95] [16] [94], but a common factor is in the difficulty in both the design and fabrication of

these devices. For instance, a sensitivity analysis of a GaAs microdisk resonator presented by

Kuo et al. showed that an error of the radius on the order of 5 nm degrades the performance

of the device by over an order of magnitude [55]. The work presented in this thesis aims

to develop a platform to provide a χ(2) platform that is scalable and has relaxed fabrication

tolerances by utilizing the nonlinearity of 2D materials coupled to linear resonators.
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1.6 Transition Metal Dichalcogenides Monolayers

The discovery of graphene (Fig. 1.8b) in 2004 [80] marks one of the most important scientific

achievements of the last few decades. This discovery was the beginning of a vast search for

other atomically thin materials. Soon after the discovery of graphene came the discovery of

the transition metal dichalcogenides [71], a family of atomically thin semiconductors. Like

graphene, these materials have a hexagonal lattice, but rather than a single atom thick they

measure three atoms thick (Fig. 1.8a). These materials have the chemical form of MX2,

where M is either Mo or W , and X is either S, or Se. The atomically thin vertical electronic

confinement endues graphene with a number of remarkable traits, including excitons that

are stable at room temperature [42] [21]. However, there are two other properties of these

materials that are of utmost importance to this work.

The first of these is the van der Waals bonding of 2D materials. This feature has been

critical for the further exploration of all members of the 2D material family. Thanks to this

useful property 2D materials can be stacked onto one another to form hetero-structures [93]

[120] [37]. For instance, TMDs are frequently sandwhiched between flakes of hexagonal boron

nitride (hBN). Hexagonal boron nitride is an excellent insulator with a bandgap of nearly 6 eV

[119], and has been most useful as a gate dielectric in TMD based LED structures [120] [97],

and is also very effective as a passivation layer that significantly reduces the inhomogenous

broadening of TMD excitons [4]. However, in this work this property is most useful as it

allows these materials to be transferred onto arbitrary substrates. This ease of integration

provides a stark contrast to the usual methods required to bond media together, namely

wafer bonding or epitaxial growth, both of which are notoriously difficult and substrate

dependent.

Secondly, these materials have an appreciable χ(2) nonlinearity. Far from the exciton

resonances these materials have susceptibilities in the 10’s of pm/V [101], which is comparable

to common nonlinear media such as lithium niobate [98]. However, on and near the exciton

these values reach an extraordinary levels of several nm/V [54] [48]. Furthermore, the D3h
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Figure 1.8: (a) TMDs are atomically thin, measuring only three atoms thick. Multilayers
are bound by van der Waals forces, and thus can be pealed apart. (b) Graphene, the first 2D
material also shares a hexagonal lattice structure. (c) TMDs have two axes, the arm-chair
axis (red), and the zig-zag axis (blue). (d) Polarization resolved SHG of TMDs reveal a
hallmark six-fold pattern that reflects the underlying crystal symmetry.
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symmetry of these materials endow their SHG radiation with a characteristic 6-fold pattern

in polarization resolved SHG (Fig. 1.8d) [101].

These traits make TMDs very appealing for integration with cavities to enhance their

nonlinearities. However, there are relatively few studies showing SHG enhancement using

dielectric structures. There have been a few notable works including enhancement of a MoS2

monolayer by a DBR cavity [23], and enhancement of GaSe by a silicon PhCC [34]. For a

more complete review please refer to our paper [110].

1.7 Document Organization

The rest of the work is organized as follows: In chapter 2, I will cover the theoretic frame-

work used to analyze and improve the nonlinearity of TMD based integrated SHG devices.

Further analysis of the nonlinearity of highly nonlinear SHG devices, specifically prediction

of bistability, is covered in Chapter 3. Chapter 4 presents the experimental progress in in-

tegrated SHG devices that utilize TMDs, followed by Chapter 5 which presents our work

on a silicon nitride platform for hybrid photonics. Chapter 6 shows our latest attempts at

utilizing this platform for cavity enhanced SHG, with several suggestions for future work.

Finally, we will conclude with an outlook in Chapter 7.
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Chapter 2

THEORETIC MOTIVATION FOR PATTERNED LAYERED
NONLINEAR OPTICS

As illustrated by previous works in integrated nonlinear optics, the combination of mo-

mentum and frequency matching in addition to maximizing the nonlinear overlap integral

is a daunting task. Traditionally, the cavity is made of the nonlinear material itself. This

implies that the optimization process for all three optimization problems are tightly coupled

and in practice, optimizing one condition has negative effects on the other two. However,

the extreme thinness and the van der Waals bonding of TMDs provides a way to circumvent

such an unruly optimization problem. Specifically, we will use the assumption that when

placed on a photonic device, say a waveguide, the 2D material will minimally perturb the

optical mode. In fact, we will take this assumption to the limit of no perturbation at all. By

constructing the photonic circuitry out of materials that lack the second order nonlinearity,

we will be able to separate the problems of creating a doubly resonant cavity with high

quality factors and that of maximizing the overlap integral.

This scheme should work for any photonic platform with sufficiently high index of re-

fraction or thin enough nonlinear material, such that our assumptions hold true. As we are

interested in SHG with a fundamental wavelength of 1.55 µm we require a wide bandgap

material for our photonics, eliminating silicon as the substrate of choice. Instead we will opt

for silicon nitride as it is also a CMOS compatible material with excellent optical properties,

but has a wide bandgap. With a refractive index of nearly 2 for much of the NIR and vis-

ible, SiN can retain TIR even when surrounded by silicon dioxide, making for an excellent

photonic material platform. A schematic of our proposed platform is depicted in Fig. 2.1.

The work presented here provides evidence that the nonlinearity of evanescently coupled
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Figure 2.1: A schematic of our proposed hybrid integrated nonlinear optics platform. Our
platform utilizes the passivity and scalability of silicon nitride (shown in dark blue) on silicon
dioxide (in gray), and the nonlinearity of MX2s. [32].
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2D materials can provide a suitably large nonlinearity, and perhaps more importantly, that

patterning the 2D material can recover a non-zero nonlinear overlap in resonators that are

not phase-matched.

2.1 Patterned nonlinear optics in waveguides

We started our analysis in a simple waveguide system. As in the past [85] [41], we started

with a waveguide of fixed height and varied the width until a mode at the harmonic frequency

matched the effective index of the fundamental mode at the fundamental frequency. In our

case, we started with 330 nm silicon nitride on thermal oxide. By varying the width we

found that we can achieve the mode matching condition at a waveguide width of roughly

1.1 µm (Fig. 2.2a). At this width we found the TE00 mode at 1550 nm has the same effective

index as the TE20 mode at 775 nm (mode profiles shown in the insets of Fig. 2.2a). The

final points that need consideration are those regarding the 2D material. We will assume

that the zig-zag axis of the 2D material is along the y-direction, that is, perpendicular to

the propagation direction and to the normal of the wafer surface. In this way we can achieve

maximal alignment of the field polarizations with the susceptibility of the material. Since

the optimization of the nonlinear overlap only requires consideration of field and crystal

symmetries, we will save the consideration of the actual nonlinear values for later. From

these assumptions and mode profiles we can calculate the nonlinear overlap using equation

1.16. For illustration we have shown the nonlinear overlap as if the nonlinear material was

everywhere in Fig. 2.2b. We only need to consider the nonlinear overlap where the 2D

material will lie, which is illustrated with a red dashed line. The 1D plot of the nonlinear

overlap is shown in the inset. Here we can see that the simple phase-matched waveguide

already presents an opportunity to optimize the nonlinear overlap integral by patterning the

TMDs to only include the “positive”, or “negative” terms. If we choose to keep the “negative”

term (etch away the material on the sides of the resonator), we see an enhancement by a

factor of 3.2, while if we pattern it in the opposite manner we see an enhancement by a

factor of 1.8. Note, we have also assumed that the material does not extend past the edges
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of the waveguides, as the material would wrap and conform to the waveguide edges. This

would cause the material to be misaligned with the dominant electric fields (due to their 2D

nature these materials do not have χ(2) components normal to their surface).

2.2 Patterned nonlinear optics in large ring resonators

For a more complete understanding of our system, we will begin by deriving an expression

for β specific to our hybrid platform. Here we will start with the most general form of β [17]:

β =
1

4

∫
dV ε0

∑
ijk χ

(2)
ijkE

∗
1i(E

∗
2jE3k + E∗2kE3j)√∫

ε|E1|2dV
√∫

ε|E2|2dV
√∫

ε|E3|2dV
(2.1)

We can see that the three interacting waves are denoted by the numeric subscripts and

that the polarizations are given by the alphabetic subscripts. As we are considering a de-

generate case (specifically, SHG), we can combine some of the terms.

β =
1

2

∫
dV ε0

∑
ijk χ

(2)
ijkE

∗
fiE

∗
fjEhk∫

ε|Ef |2dV
√∫

ε|Eh|2dV
(2.2)

Where we have replaced the numeric subscripts with f and h, which denote the fundamen-

tal and harmonic wave, respectively. Since we are in a waveguide system we know that our

electric fields are those of a simple traveling wave and can be written as E = A(r, z)e−i(krθ−wt).

Here A(r, z) is the cross sectional mode profile. We also must take care to note that k = λ
2πneff

where neff is the effective index of the waveguide mode rather than n, the material refractive

index. Since the modulus square of this exponential term is always unity we can simplify

our denominator to:

∫
ε|Af |2dV

√∫
ε|Ah|2dV (2.3)

With the assumption that TMDS are our nonlinear media, we can make some simplifica-

tions to the numerator as well. Specifically, we know these materials belong to the P63/mmc
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Figure 2.2: Modal analysis and patterning schemes for a TMD-silicon nitride hybrid nonlinear
system. (a) By varying the width of the silicon nitride waveguide we were able to find that
the TE00 mode at 1550 nm (mode profile shown in the lower right inset) had the same
effective index as the TE20 mode at 775 nm (mode profile shown in the upper left inset). (b)
By momentarily assuming there is nonlinear media everywhere we can visualize the nonlinear
overlap to gain a better understanding of its structure. However, a horizontal slice where the
material is (shown in the inset), is a more realistic depiction of the nonlinear overlap. (c)
Optimal patterning in a QPM ring. The TMD is indicated by the hexagonal grid overlayed
on top of the nonlinear overlap, whose sixfold structure is indicative of the QPM nature
of this ring (as it reflects the TMD crystal structure). (b) The optimal patterning for an
arbitrary set of mode mismatching (∆m = 2). [32].
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crystal symmetry and thus the nonzero elements are dyyy = −dyxx = −dxxy = −dxyx [48].

The summand in the numerator can then be expand to:

∑
ijk

χ
(2)
ijk
~E∗fi ~E

∗
fj
~Ehk = χ(2)[−2E∗fxE

∗
fyEhx − E∗2fxEhy + E∗2fyEhy] (2.4)

Where χ(2) represents the magnitude of the four equivalent elements in the full suscep-

tibility tensor. This can be simplified with the understanding that the enclosing integral

is taken only over regions with nonlinear material. As these materials have sub-nanometer

thickness [125], we can approximate that the fields do not change significantly over their

vertical extent and that we can replace the volume integral with a surface integral multiplied

by the material thickness, d. To visually distinguish these fields at the surface from the full

mode profile, A(r, z), we will refer to them as L(r). Note the lack of time dependence. This

is because the time dependent terms cancel out with one another as ωh = 2ωf by definition

(of SHG) and energy conservation. This is particularly noteworthy as rings are, in general,

traveling wave resonators (of course you can always excite standing waves in rings with the

proper pump conditions), but the nonlinear overlap itself is not a function of time. Thus,

the numerator can be rewritten as:

dε0χ
(2)

∫∫
NL

rdrdθL∗2frLhr[− sin (3θ)]e−i∆mθ (2.5)

Here we have converted to cylindrical coordinates, and the NL subscript indicates that

the integral is to be only taken over the regions with nonlinear material (as we have taken

χ(2) out of the integral). This has allowed for the sum of different electric field components

to combine into the single sin(3θ) term. This term reflects the symmetry of the underlying

crystal structure. We know ring resonators only support modes with kRθ = m where m

is a nonzero, positive integer and R is the ring radius, and k is the angular wavenumber.

Therefore, we have used ∆m = |2∆mf − ∆mh| to indicated the mode mismatch. As we

will be considering rings whose radius is much larger than the waveguide width, we will

approximate that the value of r remains constant over the radial integral. Thus, we can find
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Figure 2.3: The flexibility of a patterned TMD SHG platform. (a) The nonlinear overlap
integral for the two material platforms: the patterend 2D material platform and the AlN
platform. The AlN is highly nonlinear for phase matched devices, but has very low non-
linearity for any mode mode mismatch. The 2D material platform on the other hand has
a low nonlinearity, but consistently so regardless of mode mismatch. (b) We retain large
percentages of the maximal nonlinear overlap for large over or under etching.

our final expression for β:

β =
χ(2)dε0

2
√
R (2π)2

∫ ∫
L∗2frLhrdre

i∆mθ sin(3θ)dθ∫∫
ε |Af |2 da

√∫∫
ε |Ah|2 da

(2.6)

The geometries we have found for phase-matched rings in our hybrid platform are compa-

rable to those reported for aluminum nitride [121], providing an interesting point of compar-

ison between the two platforms. Specifically, we compared the valulohyly,ewqaes of β that

were achievable in each platform, for a ring of radius 100 µm. The work by the Hong-Tang

group uses polycrystaline AlN that only has the out of plane crystal axis aligned with each

other [122]. This means that the χ(2) tensor only has a single non-zero element, which is

taken to be χ
(2)
zzz = 5 pm/V in accordance with previously measured values [85]. Likewise,

the values of the χ(2) tensor of TMDs are well tabulated and we have taken χ
(2)
yyy = 60 pm/V ,

which matches values measured for WSe2 at 1550 nm [101]. In doing so we found that
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βAlN = 0.09 J−1/2 and β2D = 0.009 J−1/2. This order of magnitude difference is due to

the small overall nonlinearity provided by the TMDs, originating from its incredibly small

volume. Another issue is that unlike the AlN platform our platform suffers from the addi-

tional disadvantage of having to evanescently couple to the nonlinear material, unlike the

AlN platform where the resonator is composed of the nonlinear material itself. However,

our platform was not designed to achieve the most nonlinear cavities, but rather the non-

linear cavities that are more flexible and forgiving to fabrication errors. For example, in the

case of mode mismatch, β for the AlN ring identically falls to zero, while the patterned 2D

rings β remains at 0.008 J−1/2 or higher, depending on the amount of momentum mismatch

(Fig. 2.3a). Beyond being a flexible platform that can account for fabrication errors in the

construction of the resonators, it is also forgiving in the patterning of the TMDs. This is

illustrated in Fig. 2.3 b which shows the overlap decrease as a function of over or under-

etching of the material. Here we considered patterning for the central overlap lobe, shown

in the inset of Fig. 2.2b. Our analysis shows that our patterning scheme allows for the 2D

material to be over-etched by as much as 60 nm and suffer only an additional 10% loss in

nonlinear overlap, attesting to the flexibility of our platform.

2.3 Patterned nonlinear optics in small disk resonators

This hybrid system becomes particularly appealing for small mode volume devices where

it becomes more difficult to design cavities with large overlap. To analyze this case, we

designed small mode volume disk resonators. Specifically, we analyzed a disk resonator made

of gallium phosphide (GaP) 200 nm thick and roughly 3 micrometers in diameter. With these

dimensions we found that the disk resonator was QPM. We then calculated the nonlinear

overlaps for the GaP disk itself and for a patterned monolayer placed on top, while ignoring

the contributions of the GaP. We found that βGaP = 4.734 J−1/2 and β2D = 0.570 J−1/2,

which is consistent with our comparison of large ring resonators of SiN and AlN. We then

considered the nonlinear overlap between non-quasi-phase-matched modes. Here, we again

found that the patterned 2D platform was able to retain significant overlap whereas the
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Figure 2.4: Nonlinear 2D material clad disk resonators: The nonlinear overlap integrand for
a microdisk resonator integrated with 2D materials on top. The patterned hexagonal regions
correspond the optimal patterns for the 2D material for (a) harmonic and fundamental modes
with radial mode index ρ = 1, and mh = 2×mf = 30, and (b) ρf = 1, ρh = 4 with mf = 15,
and mh = 40.
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overlap for the GaP disk tended to zero. To further demonstrate the flexibility of this

system, we extended our analysis to arbitrary silicon nitride disk resonators (Figure 2.4a,b).

We chose a SiN thickness of 350 nm and a radius of approximately 3 µm. Here we can find

that there are modes near 1550 nm with mf = 15 and 775 nm with mh = 40 (Fig. 2.4a).

By properly patterning this disk we can find that β can be as large as 0.1626 J−1/2. In fact

by varying the radius of the disk it can be shown that more complicated modes can be put

into a frequency overlap, and that proper material patterning can readily recover β there as

well (Fig. 2.4b). Also, we note that the nonlinearity of these disks is much larger than that

of the rings due to the smaller mode volumes of these disks.

2.4 Conclusion

By analyzing several cases, we were able to show that our proposed hybrid nonlinear plat-

form poses significant merit. Although we found that our system has about an order of

magnitude smaller nonlinear overlap compared to well optimized cavities made entirely of

nonlinear material, we found that our hybrid system was far more robust when subjected to

suboptimal mode symmetries. While we only analyzed whispering gallery mode resonators

our approach applies equally well to standing wave resonators such as photonic crystal cav-

ities. Furthermore, while we have thus far only considered patterning evanescently coupled

TMDs, we can envision this technique being extended to other thin evanescently coupled

nonlinear materials. This would be particularly well suited for emergent materials such as

barium titanate which has an incredible susceptibility of r42 = 923 pm/V [3].
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Chapter 3

BISTABILITY IN HIGHLY NONLINEAR CAVITY SYSTEMS

While frequency conversion is a useful technology in of itself, it is well known that it

can also give rise to optical bistability. In fact, bistable photonic devices have been a long

standing goal of the NLO community, as they would allow photonics to serve as a computing

platform and not just a communications platform. To this end, we analyzed the performance

metrics needed for an ideal SHG device to demonstrate bistability at the tens of photons level.

As we are working with the assumption that we will be using an ideal cavity, our mental

picture should be something similar to that in Fig. 3.1a. Specifically, we will forget the

notion of exact mode profiles and simply assume a resonance at the fundamental frequency

labeled mode a, and one at the second harmonic frequency, which we will label mode b. For

illustration, we imagine that such a cavity would be a micro-cavity, perhaps a standard L3

cavity made of a nonlinear material such as GaAs as depicted in Fig. 3.1c. Another option

is where the cavity is made of a linear material where a nonlinear medium, such as a TMD,

could be latter added on top as depicted in Fig. 3.1d.

3.1 Modeling of Bistability

A system consisting of two optical resonances mediated by a SHG interaction can be described

by the Hamiltonian [70]:

Ĥs = h̄ωaa
†a+ h̄ωbb

†b+ h̄gnl[b(a
†)2 + b†a2]. (3.1)

Where gnl is the coupling strength between the fundamental mode (at frequency ωa), and

the harmonic mode (at frequency ωb). Here a and b represent the annihilation operators,

and h̄ is Planck’s constant. The coupling coefficient can be expressed as [70]:
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Figure 3.1: Schematics of a bistable nonlinear cavity system. (a) Our cavity system can be
abstracted to a simple resonator with modes a and b that correspond to the fundamental
and harmonic frequencies. We will assume such a cavity in our model so that we can forget
the exact mode profiles and focus on the abstractions such as quality factor, input power,
etc. (b) Bistable behavior of the cavity. The parameters for the simulation are: gnl/2π = 20
GHz; κta/2π = κra/2π = 3 GHz and ∆a/κa = 8. Absorptive losses are ignored. (c) A
potential cavity system where the cavity is made from the nonlinear matieral and (d) where
the nonlinear material covers a linear cavity.

gnl = Dε0

( ωa
2ε0

)√ h̄ωb
2ε0

∫
dr

χ(2)(r)

[ε(r)]3/2
α2
a(r)αb(r). (3.2)

Where D is a degeneracy term that describes the number of terms in the χ(2) tensor that

participate in the interaction. αa and αb are the normalized electric field distributions (i.e.∫
|αa,b|2dr = 1). Finally, ε and ε0 refer to the permittivity and permittivity of free space,

respectively. If we assume D = 2, and ωb = 2ωa, and there is a perfect overlap between the

fundamental and harmonic modes we can find that:

h̄gnl = ε0

( h̄ωa
ε0εr

)3/2 χ(2)

√
Vm

(3.3)

Where Vm refers to the effective mode volume of the device and is related to the normalized

field distributions by: 1/
√
Vm =

∫
NL

α3(r)dr. The subscripts on the integral indicate that

it is to be taken over the volume occupied by the nonlinear material. Thus, the choice to

construct the cavity out of a nonlinear material (as in Fig. 3.1c) or evanescently couple to

the nonlinear material (as in Fig. 3.1d) has direct implications for the interaction strength.
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While equation 3.1 provides a complete description of a closed system of a doubly resonant

SHG cavity system, it does not provide a way to understand a lossy or externally driven

system. To add the ability to externally drive our system with a laser we need to add an

extra term:
√

2κraE(e−iωlta+ eiωlta†). The laser frequency is taken to be ωl and pumped at

a rate κra with an electric field amplitude E. This is somewhat simplified by realizing the

laser frequency is much larger than the dynamics of our system, and so we can rewrite this

as [35]:

Hrot = h̄∆aa
†a+ h̄∆bb

†b+ h̄gnl[b(a
†)2 + b†a2] + E(a† + a). (3.4)

In this formulation ∆a,b are the detuning of the cavity modes from the driving laser

frequency. To model the losses in the system, we need to use Linblad formalism. This

requires us to now use density matrices, ρ, and to rewrite our master equation as:

dρ

dt
= −i[Hrot, ρ] +

∑
i=a,b

κi[2AiρA
†
i − A

†
iAiρ− ρA

†
iAi]. (3.5)

Here Ai is the annihilation operator for the selected mode (either a or b). In this model

we will assume three different loss channels: reflection, transmission, and absorption. We

have modeled each of these channels with an associated decay rate, namely, κr, κt and κa,

respectively. The total loss of the system can then be written as κ = κr + κt + κa. We can

arrive at the system’s mean-field equations by using equations 3.4 and 3.5 along with the

relation: d〈Ai〉
dt

= Tr[Ai
dρ
dt

].

d〈a〉
dt

= i∆a〈a〉 − (κra + κta + κla)〈a〉 − 2ignl〈ba†〉+ i
√

2κraE, (3.6)

d〈b〉
dt

= i∆b〈b〉 − (κrb + κtb + κlb)〈b〉 − ignl〈a2〉. (3.7)

We have simplified the expressions by representing the expectation value of Ai by 〈Ai〉. At

steady state we find:

〈b〉 =
ignl〈a〉2

i∆b − (κrb + κtb + κlb)
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Using this we can write the equation for 〈a〉 as:

i∆a〈a〉 − (κra + κta + κla)〈a〉+
2g2

nl

i∆b − (κrb + κtb + κlb)
〈a〉†〈a〉2 + i

√
2κraE = 0

Now if we take note that the intra-cavity photon number is given by Nc = 〈a†a〉, we can see

that Ptrans = 2κta〈a†a〉. Thus, our expression can be rewritten as:

i∆a〈a〉 − κa〈a〉+
2g2

nl

i∆b − κb
Ptrans
2κta

〈a〉+ i
√

2κraE = 0

We also note that Pin = E2. Once we substitute this in we can finally arrive at an expression

relating the transmitted power to the input power. To simplify our expression we will also

define a parameter η as η = g2
nl/2κta. We will also assume that the quality factors of the

two resonances are equal which means that 2κa = κb. Finally, as long as ωb = 2ωa it can be

shown that in the rotating frame ∆b = 2∆a [70]. This means that 2(i∆a − κa) = i∆b − κb,

therefore:

η2P 3
trans + 2η(κ2

a −∆2
a)P

2
trans + (∆2

a + κ2
a)

2Ptrans = 4κtaκra(∆
2
a + κ2

a)Pin,

The critical points are given by:

dPin
dPtrans

= 3η2P 2
trans + 4η(κ2

a −∆2
a)Ptrans + (κ2

a + ∆2
a)

2 = 0

The system is bistable as long as 16η2(κ2
a−∆2

a)
2−12η2(κ2

a+∆2
a)

2 = 4η2(κ4
a+∆4

a−14κ2
a∆

2
a) > 0.

This condition can be simplified to the criteria: |∆a| < (2 +
√

3)κa. The critical points are

given by:

P cr
trans =

2(∆2
a − κ2

a)±
√
κ4
a + ∆4

a − 14κ2
a∆

2
a

3η
(3.8)

These critical points are involved and provide little intuition. To qualitatively understand

the system behavior, we assume lossless cavity with κta = κra = κa/2 and ∆a >> κa and

simplify the equation as:

η2P 3
trans − 2η∆2

aP
2
trans + ∆4

aPtrans = κ2
a∆

2
aPin (3.9)
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Here the critical points are the roots of:

3η2P 2
trans − 4η∆2

aPtrans + ∆4
a = 0

One thing that is interesting to observe is that the existence of bistability does not depend

on the nonlinear coupling gnl. This can be seen by inspecting equation 3.8 which indicates

that gnl only impacts the critical biasing point and the output power swing. It is also worth

noting that these steady state equations give solutions with accurate values for the bias point

and the output power swing, but fail to predict the hysteresis one sees in bistable systems.

Fig. 3.1b shows how the solutions to the steady state equations compare to those of the

numerically evaluated differential equations. Optical bistability is usually observed under

large laser detuning such that ∆a >> κa. Under such detuning we can find that the critical

points are at Ptrans = ∆2
a/η and ∆2

a/3η corresponding to the input powers Pin = 0 and

4∆4
a/27ηκ2

a. The non-trivial solution gives an output power swing that scales with ∼ κ2
a/∆

2
a.

One can also notice that the biasing point of the bistable system scales with ∼ κ3
a/g

2
nl which

in turn scales with ∼ Vm/Q
3. This scaling places favor on high quality factor cavities over

the usual Vm/Q scaling as seen in other bistable architectures such as those based on carrier

injection or the thermo-optic effect [83]. It is also worth noting that this same scaling with Q

has been reported for quantum limited frequency conversion efficiencies in triply (or doubly

for degenerate cases like SHG) cavity systems [17].

3.2 Performance Analysis

With adequate models in hand and a general understanding of the device scaling we now look

to understand the performance of the bistable device. Here we will consider the device under

a constant photonic bias, Pbias. Our input signal is a small sinusoid at frequency Ω and with

amplitude Pamp, atop the input bias, which in turn results in a periodic output as depicted

in Fig. 3.2a. We first analyzed the gain, G, of our switch, which we define as the ratio of the

amplitude of the output signal to the amplitude of the input signal. To this end, we have

taken ∆a/κa = 8 and Ω/2π = 500 MHz. The results of studying G as a function of Pbias



39

Modulation Frequency (GHz)
0.2 0.6 1 1.4 1.8

Sw
itc

hi
ng

 R
at

io

0.4

0.8

1.2

1.6

Amplitude=15
Amplitude=10

Amplitude (nW)
5 10 15 20

Bi
as

(n
W

)

100

150

200

250

0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

(a) (b)

(c)

G
ai

n

1

2

3

BW
 (G

H
z)

0

1

2

P
5 15 25

amp

(d)

(e)

(nW)
Input power

O
ut

pu
t p

ow
er

In
pu

t
Sw

in
g

Output
Swing

P
5 15 25

amp(nW)

Figure 3.2: Performance of the bistable devices. (a) The steady state solution to our system
showing its bistable nature. (b) The ratio of the input to output power as a function of
amplitude and bias. (c) The frequency response demonstrating the bandwidth of system for
two selected amplitudes. (d) Gain, defined as the switching ratio at a low frequency, (e)
Bandwidth, defined at the 3 dB point, is plotted as a function of the Pamp. The parameters
for the simulation are: gnl/2π = 20 GHz; κta/2π = κra/2π = 3 GHz and ∆a/κa = 8.
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Figure 3.3: (a) The bias point Pbias as a function of the total linewidth 2κa and nonlinear
interaction strength gnl. (b) log10(N), N being the intra-cavity photon number plotted as
a function of κa and gnl. (c) Gain as a function of κa for different gnl. (d) Bandwidth as a
function of κ for different gnl.

and Pamp are shown in Fig. 3.3b. There is a clear trend where G increases with decreasing

Pamp. This is a consequence of the bistable nature of the device, as its output can only go

between its two stable states. Thus, once the input signal has the amplitude needed to fully

switch between the two states, further increasing the input signal results in decreasing gain.

While it may be tempting to find the minimum Pamp required to fully switch between the

two states in order to maximize gain, it is essential to avoid critical biasing [77]. That is,

a good design will have a Pamp such that there is a range of Pbias that results in acceptable

gain. If this is not the case then a small variation in Pbias will lead to the switch not fully

switching between its two states, this in turn will reduce gain and distort the output signal.

This need for a larger Pamp is also shown in Fig. 3.2b as the region of Pbias with appreciable

gain decreases with decreasing Pamp.
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Another important aspect of the bistable device is its frequency dependence. Of note

is the modulation bandwidth of our device. We found that Pamp also plays a role in the

bandwidth of the system. We have plotted the gain of the system for two different values of

Pamp in Fig. 3.2c. For both cases, we find a bandwidth of near 1 GHz. Again, we notice that

a larger Pamp results in reduced gain. Fig. 3.2d provides a more quantitive description of this

behavior, showing that beyond a Pamp of approximately 20 nW the gain of the system drops

below unity. Similarly the trend of increasing bandwidth as a function of Pamp is shown

in Fig. 3.2e. The trends in the gain and the bandwidth of the system can be explained

qualitatively by the gain-bandwidth product.

Until now, we have focused primarily on how external parameters influence the bistable

system. A more complete understanding of the system entails exploring the effects of cavity

loss and nonlinear coupling strength. First we explored the Pbias required to observe bista-

bility as a function of the cavity loss rate and the nonlinear coupling strength as depicted in

Fig. 3.3a. We then calculated what the intracavity photon number was for the same set of

parameters as shown in Fig. 3.3b. The results here are as expected: having a high quality

factor (low κa) and high nonlinearity (gnl) is required to push the intra-cavity photon num-

ber to the single photon limit (below the dashed white line). We then explored how these

parameters affect the gain and bandwidth of our bistable system. We find a clear trend

of increasing gain with increasing κa (Fig. 3.3c). This can be explained by our previous

expressions that show the gain increases proportionally to κ2
a. As previously described, we

should, and do, observe (Fig. 3.3d) a marked decrease of the bandwidth with increasing κa

due to the gain-bandwidth product. This last portion is slightly surprising, as most bistable

systems show significant bandwidth limitations due to the intra-cavity photon lifetime, and

thus would show the opposite trend. The dependences for both the bandwidth and the gain

on gnl are indicated by the different colored line plots within each figure, along with an

associated arrow indicating the dependence on increasing gnl. Unsurprisingly, higher values

of gnl will cause higher gain and thus, lower bandwidth. This is typical of any system with

a fixed gain-bandwidth product.
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Since we are interested in the 10’s of photons regime, we have plotted an extra dashed

line in Fig. 3.3a to indicate what parameter sets grant us bistability in the few photon

regime. We found that having a nonlinear interaction strength of gnl/2π = 20 GHz, and loss

rate κa/2π = 10 GHz is sufficient. For a wavelength of λ = 1.55 µm this entails a quality

factor around 20,000, which is practical for dielectric cavities. In order to satisfy such a

large coupling strength would require a mode volume on the order of a cubic wavelength

(Vm ≈ (λ/n)3 where n is the refractive index of the cavity). It would also necessitate a

χ(2) ≈ 5 nm/V , which is far larger than the susceptibilities available in traditional nonlinear

materials such as GaAs. There is some hope that new materials such as topilogical insulators

[116], or perovskites [114] might be able to provide such a nonlinearity. A more approachable

solution would be to utilize a much higher quality cavity in order to loosen the requirements

on the material nonlinearity. For instance, if we assume a cavity with a quality factor of

nearly 200,000 we can then utilize a nonlinear coupling strength of only gnl/2π = 1 GHz to

reach the tens of photons level. Such a high quality factor is very difficult to achieve in a

III-V platform but is well below the state of the art in silicon and other CMOS materials

[100] [111].

3.3 Conclusion

We have presented a semiclassical derivation describing the bistability of χ(2) cavity systems

starting from the governing Hamiltonian. We were then able to show that such a nonlinear

cavity can serve as an all-optical switch with bandwidths near 1 GHz with gain above unity.

Our derivations also showed that bistability in these systems scale very strongly with the

cavity quality factor, especially in comparison to other all-optical bistable cavity systems.

Furthermore, we were able to show that with state of the art quality factors coupled with

the ultra-high nonlinearities present in emergent material systems, we can achieve bistability

in the few photon regime.
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Chapter 4

SILICON CAVITY ENHANCED SHG FROM A TMD
MONOLAYER

The previous chapters have laid out formalisms to understand and motivate experimen-

tal demonstrations of TMD based SHG devices. In this chapter we will cover the first

experimental demonstration of SHG enhancement from the interaction of a wavelength scale

dielectric cavity with a monolayer TMD flake. From previous chapters, we know that in

doubly resonant systems the threshold of bistability and critical power for quantum limited

frequency conversion scale as Vm/(Q
2
fQh) where Qf and Qh are the quality factors at the

fundamental and harmonic frequencies, respectively. This scaling is based off the interplay

between photons at the two resonances that are mediated by a nonlinear coupling term. For

the case of a singly resonant system, the output power instead scales as (Q/Vm)2 [76]. For

this reason we chose to use a silicon photonic crystal cavity of the L3 variety, as they have

been shown to have exceptional Q/Vm factors [100] [7]. In addition, there were plenty of high

quality designs and well established etching recipes that allowed for expedient exploration

of cavity enhanced SHG in a silicon photonic platform. Another advantage to using such

a small mode volume is that a single exfoliated monolayer would cover the whole cavity.

Exfoliated monolayers have edge lengths of only a few µm, and thus small mode volume

devices are preferable.

4.1 Design of a wavelength scale dielectric cavity in silicon

The prominence of the silicon on insulator (SOI) photonics has lead to an abundance of

high quality designs for large Q/Vm resonators. Here we used 220 nm silicon on oxide (SOI)

wafer. Our L3 photonic crystal cavity had a periodicity (a) of 398 nm and a radius (r) of
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116 nm. As previously reported by other authors, we adjusted the position by a value da

and the radius of the holes by a value of dr nearest and in-line with the defect in order

to maximize the quality factor of the resonator. Optimization was carried out by a particle

swarm algorithm and resulted in dx = 0.15a and dr = 0.01a. Modifying the holes at the ends

of the linear defect is known to increase the quality factor as this can help reduce coupling

to radiation modes [113].

4.2 Cavity Fabrication

The fabrication of the cavity followed standard microfabrication techniques. We started

with a chip of 220 nm SOI (obtained from Soitec), which was prepped for lithography by

baking on a hotplate at 300◦ C for 3 minutes in order to drive off excess wafer. We then

spun 250 nm of ZEP 520A from Zeon Corp. Excess solvent in the ZEP was evaporated

by another bake at 300◦ C for another 3 minutes. The resist was then exposed by a 100

kV JEOL JBX6300FS electron beam lithography system with a base dose of 125 µC/cm2.

The resist was then developed in Amyl Acetate for 2 minutes, along with gentle agitation to

ensure the exposed resist was developed. The pattern was then transfered onto the silicon

photonic layer by etching in an Oxford inductively coupled plasma (ICP) dry etcher with

Chlorine based chemistry. The resist that was left over was then removed with sonication in

dichloromethane (DCM). Finally, the silicon membrane was released by use of 1:10 buffered

oxide etchant (BOE).

4.3 2D material preparation and transfer processes

In this thesis we have exclusively used exfoliated samples due to their high quality compared

to the CVD grown materials. The primary advantage of the latter is the large area, up to the

wafer scale [60]. Aside from the aforementioned quality difference, the polycrystaline nature

of these monolayers make their use in SHG devices difficult, as differing crystal orientations

can diminish the resulting SHG signal.

Samples are prepared by mechanical exfoliation, also known as the “Scotch Tape Method.”
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Figure 4.1: TMD transfer process. (a) Optical micrograph of exfoliated flakes. The arrow
and “monolayer” label point to a monolayer of WSe2 which appears light pink. Multilayer
pieces are darker and are more blue in hue. In the limit of “bulk” samples the flakes begin
to brighten and turn white as is the portion in the upper left corner. (b) Example transfer
stamp. Here you can see the small square of PDMS on a glass slide with a thin layer of
PC draped over it and held in place by a piece of Scotch tape with a hole in it. (c) Our
2D material transfer station. On the left is the five-axis stage that controls the position of
the stamp. The stamp is held below a microscope to aid in alignment. Attached to the
microscope stage is a temperature controlled vacuum stage that holds the sample in place
and is used to vary the sample temperature.
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A small piece of bulk crystal is placed on a piece of Scotch tape which is repeatedly pressed

together in order to thin and redistribute the bulk material throughout the tape [81]. Un-

fortunately, there is a wide variety of available tapes, each providing a different level of

exfoliation quality and degree of residue, which can only be determined through extensive

experimentation. The tape is then pressed against a silicon wafer with either 95 nm or 285

nm thermal oxide layer. These two oxide thicknesses are optimal for searching for exfoliated

2D materials under a microscope, as they produce the largest contrast due to interference

effects [13]. Individual monolayers can then be identified by their color and contrast with

the substrate with the aid of a microscope (Fig. 4.1a). Verification of the monolayer nature

can be confirmed with either photoluminescence (PL) [105] [60] [125] or atomic force mi-

croscopy (AFM) [81]. The latter also has the benefit of more reliably identifying how clean

the material is, which is important for electron transport in heterostructures and coupling

to photonic structures.

Once an appropriate flake is identified it can be moved onto an arbitrary substrate via

a “dry transfer” method [117]. This name has historic origins. Namely, previous methods

involved coating the monolayer with a thin film of PMMA and then removing a sacrificial

layer of polyvinyl alcohol (PVA) or silicon dioxide with hydroflouric acid (HF), leaving a

floating membrane with the flake that can be transfered onto any substrate using a “perfect

loop” secured from Ted Pella. The main issue with these techniques is that the film is free

standing and thus is hard to place with the micron, or better, accuracy required to make

sophisticated structures consistently. In contrast, the dry transfer technique does not require

a sacrificial layer and the polymer used to transfer materials , polycarbonate (PC), remains

affixed to a PDMS stamp (Fig. 4.3b). The rigidity of the PDMS backing and the adhesion

of the PC allows for heterostructures to be built up on a single stamp, then collectively

deposited on any substrate, greatly enhancing the capability of researchers to build complex

devices [37]. Alignment to 2D material samples and to the final device is accomplished by a

combination of a multi-axis stage and a micromanipulator positioned with the sample and the

stamp underneath a microscope (Fig. 4.3c). The stage in the microscope has been retrofitted
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with a thermally isolated heating stage that is fitted with a resistive heating element and

a thermocouple that are fed into a temperature controller. By raising the temperature of

the stage, one can improve the adhesion of the PC to the monolayers. In addition, when

releasing the samples onto the final device the stage is simply heated by the glass transition

temperature of the PC film, which melts and releases it from the stamp. The layer of PC

left on the chip is removed by placing the sample in chloroform overnight. Care must be

taken with this last step as agitation can lead to material fly-off where the 2D material is

also removed and the whole process must start again.

For our study of cavity enhancement, we decided to use WSe2. This was primarily moti-

vated by our desire to use a cavity with a resonance near the center of the telecommunications

band at 1550 nm. This naturally implied the harmonic light would be centered near 775 nm.

The χ(2) value at any given wavelength is dependent on the proximity of the fundamental and

harmonic frequencies to electronic resonances within the material [15]. In fact, resonances

near the second harmonic frequency are known to greatly increase the SHG efficiency [101].

As WSe2 has a room temperature band-gap close to 775 nm, it was an obvious choice. A

scanning electron microscope (SEM) of our final device is displayed in Fig. 4.2a.

4.4 Linear Characterization of the Bare and 2D Material Clad PhC

In order to select a promising cavity, we measured our chip just after fabrication. Specifically,

we used a cross polarization reflectivity setup (Fig. 4.3a) as previously reported [26]. As the

name suggests, the light incident on the cavity is horizontally polarized and the vertically

polarized light is collected. By placing the cavity at a 45◦ angle we are able to observe clear

cavity reflection. This measurement is in essence using the L3 cavity as another intermediate

polarizer, as the cavity modes are highly polarized, allowing for a reduced background and

thus a high signal to noise ratios in reflectivity.

The selection criteria for the cavity were that the fundamental mode should have a high

quality factor, and be resonant near 1550 nm. The cavity we chose had a fundamental

mode with a quality factor just below 10,000 and a central wavelength of 1557 nm. After
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Figure 4.2: WSe2 on a silicon photonic crystal cavity. (a) An SEM of the final device. Here
we have outlined the monolayer WSe2 in orange for clarity. The left portion of the crystal
is bare and thus looks clear, while the mono- (center), and bi-layer (right) WSe2 make the
crystal look fuzzy. (b) A schematic of our experiment.

we transfered the monolayer WSe2, we remeasured the cavity and found that we could no

longer see the fundamental mode. In fact, prior to our transfer we were able to see several

higher order modes with quality factors in the thousands (∼2,000 - 3,000), but after transfer

we were only able to find two modes with quality factors in the hundreds (∼700 - 800) (Fig.

4.4). The large change in quality factor, and the apparent large wavelength shift of the

cavity modes made it impossible to determine which modes were left and which were no

longer visible. One issue is that we have found that PhC are much harder to probe once

they have been capped with TMDs. A potential work around is to use the silicon defect PL

to probe the cavity modes [102] [66], but this typically requires large powers due to the weak

PL of silicon defects – far larger than would be required to destroy the WSe2. To estimate

the effect of integrating WSe2 onto the PhCC we modeled the system with a finite-difference

time-domain (FDTD) solver as implemented by Lumerical [1]. We simulated a 0.7 nm thick

WSe2 monolayer on top of the cavity. We used a non-uniform mesh, with the mesh size

being 0.2 nm in the 2D material region and 40 nm in the photonic crystal. To improve the



49

Figure 4.3: Optical measurement setups. (a) A schematic of the cross-polarized reflectivity
setup used to measure the PhCC resonances. Note the polarizer in front of the polarizing
beam splitter (PBS) which improves the degree of polarization incident on the sample. The
light is focused down onto the sample which placed at a 45◦ angle with respect to the incident
polarization. (b) The schematic for our SHG measurements. The light from the OPA was
converted into circularly polarized light using a half-wave Fresnel rhomb. The light was then
linearly polarized using a polarizer on a computer controlled rotation stage. The light was
then focused onto the sample with an objective and redirected to the spectrometer by a
dichroic.

simulation accuracy we used dielectric volume averaging for mesh refinement. The refractive

index of the WSe2 monolayer was taken to be n=4+0.1i near 1550 nm in accordance with

previous measurements [65]. The quality factors were simulated to be 150,000 for the pristine

cavity and 7,000 when clad with WSe2. The additional degradation was likely due to strain

induced on the floating membrane during the transfer and excess residue left on the cavity

after the transfer.

4.5 Silicon PhC Enhanced SHG

To generate the SHG, we pumped the photonic crystal cavity with an optical parametric

amplifier (OPA, Coherent OPA 9800) tuned to generate light near 1500 nm. The OPA was

fed by a pump laser with a pulse width near 200 fs and with a repetition rate of 250 kHz.

The light incident on the cavity was linearly polarized by a computer controlled polarizer

(Fig. 4.3b). The light going into the polarizer was circularly polarized by a quarter-wave
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Figure 4.4: Analysis of cavity modes. (a) The cavity quality factors observed through cross
reflectivity measurements showed significant degredation after the monolayer WSe2 was
transfered. (b) We were then able to observe each of the modes observed in reflectivity in
the SHG signal. Due to the coincidence of the SHG energy with the band-gap of the material
we performed additional studies to ensure that the effect we were seeing was not two-photon
absorption induced PL.



51

Fresnel rhomb to ensure the rotation of the polarization did not induce a change in the

incident power.

Bright light was observed near 750 nm when the sample was pumped. We took several

steps to ensure that this radiation was SHG originating from our WSe2 flake. First we

ensured that the signal only appears when exciting the monolayer, which was used to check

that the WSe2 was the origin of the observed light. It is well known that material interfaces

give rise to surface nonlinearities [15] that have previously been used in SHG devices [61].

We found no appreciable light near 750 nm coming from the silicon-air interface when we

pumped away from the monolayer. While it is possible that the interfaces on either side

of the monolayer could be contributing to the observed light, we did not investigate this

as a possibility as other authors have found those effects to be negligible [48]. Polarization

resolved SHG of TMDs result in a signature six-fold pattern that is often used to prove

the origins of the SHG [101]. We were unable to use such techniques here due to the linear

polarization of the cavity modes.Finally, we had to check that the observed signal was indeed

SHG and not two-photon absorption (TPA) induced PL. To this end we tuned the OPA and

noticed that the frequency of light shifted in response, eliminating TPA PL as a potential

source. This is illustrated in Fig. 4.4b where we can see a clear shift in central wavelength

between the background SHG (top and middle plot) compared to the central wavelength of

the PL spectrum where the WSe2 was excited with a HeNe laser.

With a certain confidence that we were observing SHG, we moved on to investigate the

two Lorentzian peaks in the SHG spectra in Fig. 4.4b. By fitting the curves (Fig. 4.5a),

we were able to find that the central wavelengths of these two peaks were at ∼745 nm and

∼758 nm, which is exactly half of the wavelengths of the two peaks found in the reflection

measurements, which were at ∼1490 nm and ∼1515 nm, respectively. Here we will take to

calling the mode at ∼1515 nm as mode “α” and the mode at ∼1490 nm as mode “β”. We

also observed that the linewidth of the cavities α and β in SHG were half of those found in

reflection, as expected for cavity enhanced SHG. To confirm that these features were coming

from cavity enhancement we studied the polarization dependence (Fig. 4.5b). We found
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Figure 4.5: Investigation of cavity enhanced SHG. (a) Cavity contributions were separated by
fitting a linear combination of Lorentzian and Guassian terms. (b) The cavity enhanced SHG
is heavily linearly polarized along the cavity polarization axis. (c) We conducted a power
series and confirmed that the (d) cavity enhancements scaled quadratically as expected of
SHG.

the Lorentzian shaped SHG signal to be very polarization sensitive, disappearing when the

incident polarization was orthogonal to the cavity polarization.

Finally, we performed a power series on the the cavity modes shown. The results for

cavity β are shown in Figs. 4.5c and d. Similar results were found for cavity α, so we will

not discuss them here to avoid redundancy. We then extracted the cavity enhancements

as outline previously, and showed that the cavity enhanced SHG scaled quadratically, as

expected (Fig. 4.5d).

We further analyzed this data to extract the cavity enhancement factor. We first esti-

mated what percentage of the incident light coupled to the cavity mode. We took the spot

size of the incident beam to be approximately 5 µm on radius. Using the simulated intensity

profile of cavity mode β, we were able to find the total modal overlap and thus, the coupling
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Figure 4.6: Calculating the total cavity enhancement. (a) Calculation of the coupling effi-
ciency of the input beam to the PhC. We found that our beam spot was approximately 5
µm on the radius giving a coupling efficiency of 1%. The inset shows a plot of the cavity
intensity profile for mode β with the red circle indicating the size of the input beam. (b) In
order to calculate the total cavity enhancement we also calculated the ratio of light inside
the Lorentzian compared to the Gaussian background over the cavity spectral window as
indicated by the blue highlight.

efficiency (Fig. 4.6a). As the background SHG is much broader than the cavity linewidth,

we also had to select out the cavity contribution compared to the background. To quantify

the cavity enhancement we took the power under the the Lorentzian curve within our cav-

ity spectral window, taken to be the cavity full width half maximum. By combining these

factors and comparing them to the Gaussian background within the same spectral window,

we found that our cavity had an enhancement factor of nearly 400. This is over an order of

magnitude larger than the previous report of cavity enhanced SHG in a distributed Bragg

reflector (DBR) cavity [23], which we attribute to our lower mode volumes and higher quality

factors.
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Figure 4.7: Effects of TPA generated free carriers on cavity mode β’s (a) linewidth, and (b)
central wavelength.

4.6 Free Carrier Effects in the Silicon PhC

Cursory inspection of the power dependence in Fig. 4.5c will reveal an trend of increasing

linewidth and blue shifting with higher incident power. By fitting this data we have extracted

the change in linewidth and resonance wavelength and plotted the results in Fig. 4.7a and

b, respectively. We attribute these effects to TPA of our excitation beam in the silicon slab.

To qualitatively explain these behaviors, we will look at the phenomenological equations for

the change in refractive index (n) and absorption (α) for silicon at 1550 nm as a function of

a change in electron (∆N) and hole (∆P ) density [91]:

∆n1550 nm = −8.8× 10−22∆N − 8.5× 10−18∆P 0.8

∆α1550 nm = 6× 1018∆N + 4× 10−18∆P [cm−1]
(4.1)

We can see that as the free carrier concentrations are increased, we would expect a

decrease in refractive index, which would lead to a blue-shift in cavity resonance and an
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increase in absorption, which would lead to cavity broadening. As TPA scales quadratically

with power, we would expect a quadratic increase in free carrier density. Since there is a

linear (or very close to) relationship between the change in refractive index/absorption with

change in free carrier density we would expect there to be an overall quadratic relationship

between input power and cavity shift as well as cavity broadening. From Fig. 4.7a we can

see the latter holds well. However, the former (depicted in Fig. 4.7b) shows a decrease

in resonance wavelength, as expected, but the trend is linear rather than quadratic. We

expect that the TPA was creating excess heat, which caused a red-shift that counteracted

the blue-shift caused by the free carrier effect.

4.7 Conclusion

We demonstrated the enhancement of SHG from a monolayer flake of WSe2 coupled to a

wavelength scale resonator. Due to the moderate quality factors and low mode volumes,

we were able to demonstrate a 400-fold enhancement of the SHG. More importantly this

study shows that WSe2 is an interesting material for future studies of SHG enhancement

via dielectric resonators.
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Chapter 5

DEVELOPMENT OF A SILICON NITRIDE PLATFORM

While our experiment on cavity enhanced SHG from a silicon photonic crystal cavity

demonstrated the efficacy of our hybrid photonic platform, the experiment had a number of

flaws. The most obvious of these is that our photonic platform was in silicon, which strongly

absorbs the SHG light. Fortunately, we have another alternative, even within the CMOS

compatible materials: silicon nitride. Unlike silicon, silicon nitride is an insulator with a

wide bandgap of nearly 5 eV [47], making it transparent in both the near infrared (NIR).

Furthermore, silicon nitride has a refractive index of ∼2 across the visible and NIR regions

[68], compared to silicon dioxide with a refractive index of ∼1.5 across the same range [73].

This allows silicon nitride to serve as a photonic layer even when on or encapsulated by

silicon dioxide.

Another pitfall of our system was that the PhC was on a suspended membrane. Floating

membranes present a serious challenge for hybrid integrated photonics. The foremost is

the mechanical instability they cause. These membranes are easily destroyed by external

pressures, such as those used when transferring material onto a cavity. Fig. 5.1a shows a

micrograph of gallium phosphide (GaP) cavities that were used to explore cavity coupling

to the excitons and single defects in WSe2. There are readily visible broken membranes

in devices such as device R5C1 (the device in the upper left corner), which have a dark

discoloration. Such devices have cracked membranes, resulting in portions of the cavity

which sag, and thus appear darkened. In fact, this frailty was used in our cavity enhanced

LED paper [64] as we were able to break the cavity off of the substrate and transfer it onto

a WSe2 LED by the same transfer process used to transfer the materials themselves. Other

issues with floating membranes include cavity detuning via strain induced from termperature
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Figure 5.1: Two common photonic crystal designs. (a) Floating L3 cavities in GaP. The
lighter shade of orange is where the cavities

shifts or transfer processes, which can make spectral alignment with the defects or excitons

difficult.

An underlying problem with moving to a silicon nitride platform is that while we can solve

the first problem, there were no good solutions to the second. The available demonstrations

of 2D PhC cavities were both floating and of relatively high mode volume and low quality

factor (∼100s to ∼1,000s) [10] [74] [9]. The underlying problem is with the low refractive

index of silicon nitride, which is common to other photonic platforms such as silicon dioxide

or polymer PhCs [10] [53] [75]. The common solution to achieve higher quality factors is

to instead use nanobeam cavities, which allow one to achieve much higher quality factors

in both simulation and experiments [52] [22]. However, these nanobeams are also floating

and usually look like the nanobeam shown in Fig. 5.1b. With such cavities, not only do we

have the aforementioned problems of mechanical stability, but we also have potential issues

with monolayers wrapping around the beam and onto themselves or floating off during PC

removal. Our solution was to design a nanobeam cavity that worked when surrounded by

silicon dioxide [29].
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5.1 Design

In order to form a cavity, we first needed to design a unit cell with bands below the light

cone. This was accomplished with the use of MIT Photonic Bands [51] software suite, which

was used to simulate the bandstructures of our unit cell. The main goal, and the primary

difficulty, was to find such a design that used a silicon nitride (n∼2) nanobeam on a silicon

dioxide (n∼1.5) substrate. From a design perspective, this meant we could have the silicon

nitride on silicon dioxide or silicon nitride surrounded by silicon dioxide. As asymmetry

imposes extra difficulty with confining bands, we opted for the latter. Most nanobeam

designs revolve around circular holes, but here we used elliptical holes. This was primarily

due to the inability to push bands below the light cone with circular holes. The extra degree

of freedom allowed for confining bands below the light cone and is in-line with previous

reports that have simulated designs for silicon nitride on silicon dioxide nanobeam [84]. By

optimizing the period, major and minor radii, and the beam width, we were able to confine

two bands (Fig. 5.2a). The lower energy band is a dielectric band and the higher energy

band is an air mode band. In our final design we had a beam thickness of 330 nm, a beam

width of 450 nm, and a period of 233 nm. The major and minor diameters of the elliptical

holes were 300 nm and 100 nm, respectively.

With a suitable band structure in hand, we turned to creating the defect to form a cavity.

We elected to use a linear tapering of both the major radius and the period (Fig. 5.2 b)

in the central portion of the nanobeam. Using a particle swarm optimization scheme, we

found that a cavity length of 115 nm, an inner period of 222 nm, and an inner major radius

of 140 nm gave the highest quality factor. With 40 Bragg periods on each side, we found a

maximal quality factor of Q ≈ 100, 000 and a mode volume of Vm ≈ 2.5(λ
n
)3, which could

not be improved by adding further Bragg sections. A plot of the confined mode is depicted

in the lower portion of Fig. 5.2 b. This large number of Bragg periods was reduced to 20

per side in order to reduce the footprint of the cavity, allowing the entire structure to fall

within the field of view of our microscope. This limited the quality factor to ∼15,000.
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Figure 5.2: Design of the encapsulated silicon nitride nanobeam. (a) By using elliptical
holes two band, and air-mode and dieletric-mode as shown in the insets, were confined. (b)
We then used a linear tapering scheme on the major radius and the periodicity to form our
cavity.

5.2 Fabrication

We started with a wafer with 330 nm of stoichiometric silicon nitride on 4 µm of BOX on a

silicon handle obtained through Rogue Valley Microdevices. The silicon nitride was grown

via low pressure chemical vapor deposition (LPCVD). The thickness and refractive index of

the silicon nitride were measured by ellipsometry to ensure they conformed to our design.

The chips were initially cleaned in a barrel asher with oxygen plasma excited with an RF

power of 150 W for a duration of 5 minutes. We found this step to be critical for resist

adhesion to the substrate. 400 nm of ZEP 520A from Zeon Corp was then spun on the

chips. This was done within 30 minutes of ashing to prevent the SiN surface from absorbing

too much water vapor, which in turn reduces ZEP adhesion. The ZEP was then coated

with a thin Pt/Au film with a SEM sputtering system in order to avoid charging effects

while writing. The resist was then exposed by a 100 kV JEOL JBX6300FS electron beam

lithography system with a base dose of 125 µC/cm2. The charging layer was removed by

submerging the gold etchant for one minute. The resist was then developed in amyl acetate
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Figure 5.3: Measurement of fabricated cavities. (a) SEM of the fabricated cavity with a pair
of grating couplers on either side. (b) An example transmission spectra as measured through
the grating couplers. (c) We observed linear scaling of the cavity wavelength as a function
of the periodicity.

for three minutes with gentle agitation. The pattern was transfered onto the SiN by a RIE

etch in CHF3/O2 chemistry. Finally, the excess resist was removed with sonication in a

DCM bath.

5.3 Characterization

After fabrication, we were able to confirm cavity resonances through a number of means. We

first ensured that the fabricated devices were of similar dimensions to the design parameters

through the use of a SEM (Fig. 5.3a). Next we looked for a transmission spectrum that

resembled the expected spectrum: a narrow peak in the center of a low transmission region.
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We spun a thick layer of PMMA on the chip for the cladding layer. This is preferable to using

a silicon dioxide cladding, as PMMA has a refractive index similar to silicon dioxide [11], but

can easily be removed without risk to the nanobeam. This allows for several cycles of ma-

terial transfer and measurements with a single chip. The nanobeam was addressed through

the attached grating couplers, one of which was pumped with a supercontinuum source (Fi-

anium WhiteLase Micro) in the same setup we used to measure the photonic crystals (Fig.

4.3a). Light from the other grating was collected and sent to a spectrometer ((Princeton

Instruments PIXIS CCD with an IsoPlane SCT-320 Imaging Spectrograph), which showed

narrow linewidth features in the middle of a low transmission region, as expected (Fig. 5.3b).

The finest grating used in our experiment is 1200 mm1 blazed for 750 nm with an estimated

resolution of ∼0.06 nm. We did not have a tunable laser to measure the transmission of

the nanobeams. Instead, we normalized the transmission of the cavity spectra to that of a

bare waveguide.Finally, by comparing several spectra from nanobeams with increasing peri-

odicity we were able to observe the linear scaling expected of resonances (Fig. 5.3c). The

quality factor of these resonances were between 1,500-7,000. We attribute the one order of

magnitude decrease in quality factor due to fabrication imperfections.

We then studied the effects of transferring a monolayer of WSe2 onto our cavities. Having

measured our cavities, we picked two for further study, one with a resonance in the spectral

range of the defects found in WSe2, named device 1, and another within the excitonic

wavelength range, named device 2. We first stripped the encapsulating PMMA from atop

our cavities using DCM. We then used the dry transfer techniques outlined in section 4.3

to transfer monolayer WSe2 onto each cavity. To avoid the perils of the 2D material from

lifting off, we kept the PC layer that was transfered with the monolayers. To ensure proper

encapsulation we then spun an additional layer of PMMA. Comparison of the transmission

spectra for device 1 and 2 before (Fig. 5.4c,d) and after (Fig. 5.4e,f) revealed that an

additional mode appeared for both devices. We were able to replicate this appearance in

FDTD simulations by encapsulating the cavities with a material with refractive index of 1.57,

the refractive index of PC [108]. This was further confirmed with a study done with another
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Figure 5.4: Effects of transferring monolayer WSe2 onto the silicon nitride nanobeams. (a)
SEM of a nanobeam before and (b) after transfer. We have colorized the SEM for clarity.
The light blue is the silicon dioxide substrate, dark blue the nanobeam, and the monolayer
is gold colored. Transmission spectrum of the first nanobeam, named device 1 before (c) and
after (d) the transfer, and similarly for device 2 (e), and (f), respectively.

set of identical nanobeams. These nanobeams were coated and measured with PMMA, then

stripped, coated with PC, and remeasured. Several cycles of this showed this new mode was

solely the result of the higher refractive index of PC (Fig. 5.8). Our simulations also showed

that the original mode is the lower energy mode and is TE polarized, while the new mode is

of higher energy and is TM polarized (Figs. 5.5, 5.6, and 5.7).

5.4 Cavity Enhanced PL

Finally, we demonstrated the ability to use these photonic structures to couple to the pho-

toluminescence of the monolayer WSe2. We directly excited the monolayers from the top

using a 532 nm continuous-wave laser while the samples were cooled to 80 K. By using a
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Figure 5.5: The field profile of the fundamental, and only mode when the encapsulated
nanobeam has PMMA cladding.

confocal microscope setup, we were able to isolate the light coupled out by the grating cou-

plers. We were able to observe Lorentzian lineshapes in both devices 1 and 2 (Fig. 5.9 a,b)

with linewidths and central wavlengths matching the modes found in transmission (Fig. 5.4

d,f). As expected, the PL from device 2 only coupled to the TE mode, as the exciton has

an in-plane dipole moment [99]. However, the PL coupled mode in device 2 was the TM

polarized mode. The defects in WSe2 are also known to have an in-plane dipole moment

[43]. Here the wrapping of the monolayer onto the sides of the nanobeam likely allowed the

defect dipole to align itself with the cavity mode, facilitating the coupling between them. By

fitting a Lorentzian curve to the cavity peaks in the PL spectrum, we find Q-factors of 830

and 320 for device 1 and 2 respectively. These linewidths agree with the linewidths observed

in transmission.



64

Figure 5.6: The field profile of the higher energy mode when the encapsulated nanobeam
has PC cladding.

Figure 5.7: The field profile of the fundamental mode when the encapsulated nanobeam has
PC cladding.
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Figure 5.8: Investigation of the effects of cladding material on the spectra of fabricated
devices. (a) and (c) show two separate devices similar to the ones shown in Fig. 5.4.
The spectra are with PMMA cladding. (b) and (d) show the same cavities as (a) and (c),
respectively, but with PC cladding.
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Figure 5.9: Photoluminescence of devices (a) 1 and (b) 2.

5.5 Nanobeams in the Telecommunications Band

Another important wavelength for 2D materials and photonics is the telecommunication

band (near 1550 nm). By scaling our design for 750 nm to telecommunication wavelengths

we found a suitable design for SiN encapsulated nanobeam resonator. Our devices show

excellent rejection of light within the band-gap of the photonic crystal with the exception of

a lone cavity peak (Figure 5.10). By fitting a Lorentzian function to the cavity peak we find

that a typical device has a quality factor around 10,000.

5.6 Conclusion

This was the first demonstration of an encapsulated silicon nitride nanobeam to the best

of our knowledge and represents an important step towards a 2D material hybrid platform.

We have demonstrated that these nanobeams are capable of coupling to and enhancing the

emission from TMDs.
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Figure 5.10: IR nanobeam cavity. (a) Transmission spectra across the entire tunable laser
range. (b) Close up of the cavity mode.
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Chapter 6

TOWARDS SIN RESONATOR ENHANCED SHG

6.1 SiN Nanobeam SHG Platform

With silicon nitride nanobeams in hand we began to explore SHG enhancement by coupling

them to TMDs. To date we have yet to demonstrate SHG from this system, but we will

describe our previous attempts and indicate key places for improvement.

6.1.1 Initial Experiments

The aforementioned design and demonstrations (Chapter 5) led to a publication in ACS Pho-

tonics [29]. However, after many attempts at coupling WSe2 to the encapsulated nanobeams,

it became apparent that the material perturbed the cavity mode too much, resulting in de-

graded quality factors and frequently destroying the resonance altogether. This is primarily

due to the monolayers covering several holes as is seen in Fig. 5.4b. The holes that are

covered can no longer be filled with PMMA, causing significant deviations from the design,

as verified by FDTD simulations. To solve this we designed an on-substrate nanobeam –

one that does not need to be underetched, but does not require a cladding layer either. The

design largely follows as previously outlined in Section 5.1. The final result used a beam

that was 220 nm thick and 838 nm wide. The Bragg region had 30 periods of ellipsoids at a

period of 251 nm. These ellipsoids had a major radius of 130 nm and a minor radius of 43

nm. The cavity was formed by quadratically tapering the major radius up to 191 nm and

the period to 231 nm over a course of 10 periods. This led to a cavity with a quality factor

of 250,000, and a mode volume of ≈ 1 (λ
n
)3.

TMDs were then transfered onto the nanobeams. Coupling was confirmed through cavity

coupled PL. These nanobeams were designed to have resonances near 800 nm to allow for



69

cavity coupled PL experiments. We have found that these materials do not always couple

to PhCCs they are placed on, including PhCCs in other material systems such as GaP.

The reason for this is still a topic of current research. However, cavity coupled PL gives a

definitive indication of cavity coupling. As these nanobeams had resonances around near

800 nm, we were unable to use the same femto-second laser as we used in the work presented

in Chapter 4. Instead we used a pico-second ti:sapphire laser with a 80 MHz repetition

rate, resulting in lower peak powers for the same average pump power. We carried out our

experiment in two parts: the first where we pumped the grating couplers and collected from

the top of the nanobeam, and the second where we pumped and collected from the top of

the nanobeams. Neither resulted in appreciable cavity enhanced SHG.

6.1.2 Mitigating Material Damage

One of the prominent difficulties was the relatively low damage threshold of these materials.

We found that this threshold was approximately 40 mW/µm2. At these powers the SHG

generated by the monolayer was barely above the noise floor of our spectrometer. To further

understand this we estimated the amount of power at the harmonic wavelength. At these low

pump powers the resulting SHG wave with a maximum intensity of a few nW1. While such

powers enable collection of spectra from the bare monolayer, the additional losses associated

with cavity coupling to free space (e.g. grating coupler efficiency and nanobeam to waveguide

coupling efficiency) caused the output power from the nanobeam to be undetectably small.

Moving forward this low damage threshold will have to be addressed. The easiest solution is

to go back to using a femto-second laser with a pulse-picker (to achieve sub-MHz repetition

rates). However, our goal is to push towards continuous-wave SHG, in which case the material

damage threshold will have to be addressed more directly. For instance, it may be beneficial

to cap these TMDs with a thin alumina film in order to help with thermal conductivity and

to prevent oxidation.

1See Appendix A for details on this calculation.
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6.1.3 Improving Pump and Collection Efficiency

Our SiN platform to date has entirely been reliant on grating couplers to couple light into

and out of our resonators. These grating couplers tended to be limited in maximal efficiency

due to the normal incidence and the low refractive index of silicon nitride. Improving the

collection and pump efficiency will also be important moving forward. Here I propose the use

of edge coupling as it has been shown to be extremely efficient and broadband [96] [46]. We

have made significant progress towards this end, having developed a fully functioning edge

coupling setup (Fig. 6.1a). Using this setup we have been able to successfully measure a

variety of SiN devices (Fig. 6.1b). To date we have needed to use a silicon dioxide hard mask

to protect our photonic layer during the deep reactive ion etching (DRIE) of the silicon handle

to make room for the lensed fibers. This hard mask must be removed before transferring

monolayer TMDs onto the resonators. Removing this mask has proven to be difficult as

the SiN and the underlying oxide are also susceptible to etching during its removal. The

silicon dioxide hard mask was deposited using plasma enhanced chemical vapor deposition

(PECVD). The recipe we used was chosen because it produces low density silicon dioxide

that has a much faster etch rate in hydroflouric acid than the silicon nitride and thermal

silicon dioxide on our chips. However, during its removal we still observed waveguide liftoff

due to the undercutting of the waveguides. This can be avoided by switching to a DRIE that

allows for non-silicon based hardmasks, which can be etched without risk to the underlying

photonic platform.

6.1.4 Further Improvements to SiN Nanobeam Design

A final improvement will be to the design of the resonator itself. Specifically, improving the

coupling between the feeding waveguide and the nanobeam. The design in this thesis has

largely followed the convention of the field in that the focus of designing a resonator is in

achieving large Q and small V for achieving large cavity enhancement [49]. Unfortunately,

this typically results in resonators that are poorly coupled to the feeding waveguide. This
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Figure 6.1: Edge coupling chip under test. (a) The edge coupling setup. Alignment is carried
out with the aid of the overhead stereo microscope. The setup has two lensed fibers whose
positions are controlled using individual three axes stages that have open-loop piezos for fine
alignment. Between the two fiber stages there is a chip stage with a single axis stage and a
custom chip holder. (b) A chip under test as seen by the stereo microscope. The two lensed
fibers are visibly addressing a waveguide.

Figure 6.2: Nanobeam with improved coupling to the feeding waveguide. (a) A top-down
view of the cavity mode. (b) Cross-section of the center of the cavity.
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issue has been addressed by Quan et al. who presented a generic formalism for designing

nanobeam resonators that are strongly coupled to the feeding waveguide [89] [88]. Using this

formalism, we have begun designing such a nanobeam for use in cavity enhanced SHG from

monolayer TMDs (Fig. 6.2). Thus far our design has reached a transmission of 55% which is

a large improvement over the <1% for our previous designs. Furthermore, we have opted for

an air-mode nanobeam to increase the intensity of light at the top surface where the TMDs

will lay. The current design utilizes 220 nm thick SiN. The nanobeam has holes with 75 nm

radii, at a periodicity of 275 nm throughout. The cavity is formed by quadratically varying

the nanobeam width from 700 nm to 1000 nm. This is an intermediate design that requires

more work to improve the quality factor and coupling to the waveguide.

6.2 SiN Ring Resonator SHG Platform

The ability to pattern the nonlinear material to achieve phase matching is appealing for

small mode volume devices where phase matching is particularly challenging. However, ring

resonators are also an interesting system to consider for patterning based phase-matching.

6.2.1 Demonstrating Doubly Resonant Ring Resonators

We followed the designs for phase matched ring resonators as presented in Chapter 2. Namely,

we used waveguides that were 1.1 µm wide and 330 nm tall, resulting in the modes shown

in the insets of Fig. 2.2a. While there are many viable sets of fundamental and harmonic

modes that are suitable for ring-based SHG devices, this set does not require patterning

to observe SHG, yet presents the opportunity for a 9-fold increase in SHG efficiency once

patterned. This reduces the experimental difficulty by allowing the fabricated devices to be

immediately tested rather than forced to pattern the TMDs prior to measurement, which

may damage or otherwise negatively affect the device. Finally, one must consider the surface

nonlinearities which have been utilized for resonator enhanced SHG in silicon nitride [61].

While these nonlinearities have been estimated to be very small, where the effective χ(2)

values are on the order of tens of fm/V [61], the amount of surface area that partakes makes
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the effect non-negligible. To address this issue, one can slightly change the waveguide width

such that the ring is still doubly resonant, but not phase-matched. Care must be taken to

ensure the mode mismatch is not so large as to cause the nonlinear overlap to change signs

over the extent of the monolayer. This will allow for maximally efficient unpatterned SHG

while suppressing the surface nonlinearities.

We have began preliminary doubly resonant ring resonator fabrication and characteriza-

tion. Our ring resonators are addressed by two bus waveguides (Fig. 6.3a): one to address

the ring with 1550 nm light, and the other for 775 nm light. Each bus waveguide is attached

to a pair of grating couplers to couple light onto and off the chip. We have demonstrated

high quality factor resonances at both the fundamental (Fig. 6.3c) and harmonic (Fig. 6.3d)

wavelengths. The 775 nm modes were measured in the same setup as the nanobeams. The

1550 nm modes were measured in a similar setup with 1550 nm optics and spectrometer

(Princeton Instruments SpectraPro SP2750i with a PyLon-IR:1024). The profile of the spec-

tra correspond to the wavelength-dependent efficiencies of the grating couplers, while the

dips correspond to the cavity modes. The 1550 nm cavity modes have reached quality fac-

tors up to ∼105 (high Qs were measured with a Santec TSL-510 and Newport 843-R power

meter, for higher resolution), and the 775 nm resonances have reached a spectrometer-limited

quality factors of ∼104. Obtaining these high quality resonances was not only dependent on

a high quality dry etching recipe, but also required an annealing step to repair defects in the

SiN that cause excess absorption [44] [106]. We have found that annealing for four hours

in an oxygen rich atmosphere at 1000 ◦C, then another four hours at the same temperature

in a nitrogen rich atmosphere can improve the quality factor of the 1550 nm resonances by

almost an order of magnitude. The most recent challenge has been transferring TMD flakes

onto the resonators without also transferring unwanted bulk onto the photonic structures

(Fig. 6.3b). These pieces of bulk material are excellent scatters and almost completely block

the optical throughput in the waveguides they cover.
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Figure 6.3: Preliminary bi-resonant ring resonator results. (a) Optical micrograph of a bi-
resonant ring resonator with a 30 mum radius. The upper bus waveguide couples in 775 nm
light, and the lower couples in 1550 nm light. (b) Optical micrograph of a bi-resonant ring
resonator after material transfer using the transfer process outline in Section 4.3. The white
material flakes are pieces of bulk WSe2 that strongly scatter light out of the waveguides if
placed on top of the waveguides. The thick black line was a strain of PC that was not fully
dissolved after a chloroform bath. Transmission spectra of a bi-resonant ring of 30 µm radius
near (c) 1550 nm and (d) 775 nm.
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6.2.2 Improving Material Transfer

The creating of bulk is an avoidable consequence of mechanical exfoliation onto silicon sub-

strates. Monolayers are almost always found within sections of the chip that have high

densities of bulk pieces. As the dry transfer section outlined in Section 4.3 utilizes a rela-

tively flat section of PC to transfer the materials, large sections of exfoliated materials tend

to be transferred, rather than select monolayer flakes. Due to the compact nature of PhCCs

this does not prove to be an issue for L3 cavities or nanobeams. However, our ring resonators

need to have radii above 20 µm in order to avoid excessively low quality factors (Q ∼100s)

caused by bending and scattering losses. This results in devices that are much larger than

the PhCCs, and more importantly, larger than the typical distance between pieces of bulk

on an exfoliated chip.

To remedy this issue, we have improved upon the aforementioned dry transfer process

to allow for selective transfer of single monolayers, even when located close to bulk samples.

First, we form a dome shaped PDMS stamp by pipetting liquid PDMS onto a small piece of

cured PMDS. The surface tension of the uncured PDMS causes the formation of a meniscus.

The PDMS is then cured upside down to avoid breaking of the meniscus during curing. Once

cured, a PC film is draped over the curved PDMS stamp and secured to a glass slide with

office tape. Next, the tip of the PC film is drawn into a point. This is accomplished with the

aid of the transfer stage shown in Fig. 4.1c. The stamp is affixed to the stage and positioned

just above a clean silicon chip (Fig. 6.4i). The chip stage is then heated to 160 ◦C, which

is above the glass-transition temperature of PC [79]. Next, the stamp is then lowered into

contact with the stage and allowed to come to thermal equilibrium (Fig. 6.4ii). By lowering

the stage temperature to 140 ◦C the stamp and chip contract drawing the PC into a tip (Fig.

6.4iii). Finally, the stamp is drawn away from the chip and is ready for use (Fig. 6.4iv).

The modified stamps have enabled a much more selective material transfer process. This

is illustrated by our studies of material transfer onto an Archimedean spiral (Fig. 6.5a). As

the structure is composed of tightly spaced waveguides, it is very sensitive to the transfer of
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Figure 6.4: Creating the PC needle for the new dry transfer process. (i) The process starts
with a dome-shaped PDMS stamp (light gray) attached to a glass slide (dark gray). A PC
film is draped over the PDMS stamp (black outline) and held above a clean silicon chip
(purple). (ii) The chip is heated to 160 ◦C and the stamp is lowered into contact. (iii) The
chip is then cooled to 140 ◦C causing the stamp and chip to contract, pulling out a needle
of PC (black). (iv) The final stamp is drawn away from the silicon surface and is ready for
use.
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peripheral bulk. We were able to successfully transfer a lone monolayer of WSe2 onto the

center of the spiral. The presence of the monolayer was confirmed through PL (Fig. 6.5b).

Aside from visual inspection, we observed high transmission through the spiral after transfer

(Fig. 6.5d), which resembled the pre-transfer transmission (Fig. 6.5c) indicating a bulk free

transfer.

6.3 Conclusion

While we have yet to demonstrate silicon nitride nanobeam enhanced SHG from monolayer

TMDs, we have identified the major hurdles and demonstrated significant progress towards

overcoming them. Specifically we have shown promising results for an improved nanobeam

design, and an edge coupling setup that will improve the overall pump and collection ef-

ficiency of our system. Furthermore, we have motivated, fabricated, and done preliminary

testing of bi-resonant ring resonators for use in cavity enhanced SHG from monolayer TMDs.

Bulk TMD material poses a major obstacle to these large resonators, as the scattering losses

can completely destroy the guiding properties of waveguides. We have also presented a new

transfer method that allows for the selective transfer of monolayers without the accompany-

ing bulk, paving the way for future cavity enhancement of TMDs by ring resonators.
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Figure 6.5: Demonstration of the improved transfer technique. (a) An Archimedean spiral we
tested the transfer process on. (b) The PL spectra of the monolayer WSe2 we transfered onto
the center, confirming its presence. Transmission spectra (c) before and (d) after transferring
the monolayer.
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Chapter 7

OUTLOOK

In this thesis I presented a number of works varying from modeling χ(2) enabled bistability,

to cavity design. In this chapter I will outline where I see these contributions can be impactful

to fields outside of 2D material nanophotonics.

7.1 Patterned Nonlinear Optics Arbitrary Nonlinear Media

In Chapter 2 I presented a formalism for maximizing the nonliearity of doubly resonant linear

cavities clad with TMDs. The analysis of waveguides, large ring resonators, and microdisk

resonators showed that TMD clad resonators provided a smaller nonlinearity than AlN or

GaP platforms, but still had appreciable nonlinearities. More importantly, we were able to

predict that such a platform can compensate for fabrication errors in the underlying passive

platform that results in a momentum mismatch between the fundamental and harmonic

modes. Furthermore, we predicted that the etching of the nonlinear cladding does not have

stringent tolerances; there are large tolerances for both under- and over-etching the nonlinear

cladding (Fig. 2.3b). This same set of attractive features applies to any sort of nonlinear

cladding, not just TMDs. We envision that this patterning will be extended to other materials

such as barium titanate which has an incredibly high susceptibility of r42 = 923 pm/V [3].

Furthermore, thin films of this material can be grown on silicon substrates[3], making it

particularly appealing. In order to extend our formalism to new materials such a barium

titanate, one simply has to account for the crystal symmetries at hand when choosing the

desired modes and etching patterns as dictated by said modes and crystal symmetries.
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7.2 SiN Nanobeams for Enhancing Emission from Solution Processed Mate-
rials

The encapsulated SiN nanobeams presented in Chapter 5 were designed for integration with

TMDs, but are a valuable tool for enhancing the properties of other materials. One area

where these nanobeams have already made an impact is in the Purcell enhancement of

colloidal quantum dots (QDs) [20]. The encapsulated nature of these nanobeams lend them-

selves to this application as the QDs are deposited by spin-coating. By encapsulating the

nanobeams with PMMA and selectively exposing holes over the cavity center, one can se-

lect where and how many QDs are coupled to the underlying photonic structure (Fig. 7.1).

Figure 7.2a shows a SEM of one of the nanobeams with a red region exemplifying one of

the PMMA window sizes. When we excited the QDs with 532 nm laser light, we were able

to observe strong emission from the QDs (Fig. 7.2b). Finally, we compared the spectra of

the QDs that were coupled to the cavities to those that were not coupled (Fig. 7.2c). We

found that only the nanobeams with PMMA windows showed cavity coupling. For the QDs

coupled to the nanobeams, we were able to show a Purcell enhancement by a factor of 1.26

[20]. This study shows the efficacy of these nanobeams for Purcell enhancement of colloidal

QDs. We envision that these nanobeams will find further use in enhancing the light emission

from other emergent materials such as perovskites, and enable the study of nonlinear effects

beyond SHG such as saturable absorption.
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Figure 7.1: Schematic of the nanobeams (purple rectangles) coupled to QD (red circles).
The QDs are deterministically coupled to selected nanobeams by lithographically opening
holes in the cladding PMMA layer (orange), before the QDs are spun onto the sample. By
varying the hole size one can control the number of QDs coupled to the nanobeam.
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Figure 7.2: QD coupled to SiN nanobeams. (a) A SEM of one of the SiN nanobeams
overlayed with a red square showing the exposure window for the cladding PMMA. (b)
Optical micrograph of the SiN nanobeams with QDs in a PMMA window (top), and during
a PL measurement (bottom). (c) Spectra of nanobeams with a PMMA window allowing
for QDs to couple to the nanobeam (blue), and a nanobeam without a window preventing
QD-nanobeam coupling.
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Appendix A

ESTIMATION OF SHG POWER FROM A MONOLAYER

The power generated by a TMD monolayer can be approximated by [48]:

Pav2 =
32(NA)2t2P

2
av1φ(χ(2))2

ε0cλ4
2Rt

2
1(n2 + 1)2(n1 + 1)4

(A.1)

where:

φ = 8π

∫ 1

0

|cos−1(ρ)− ρ
√

1− ρ2|2ρdρ (A.2)

Equation A.1 relates the average power at the second harmonic frequency (Pav2) to the

average pump power at the fundamental frequency (Pav1). The pump beam is further pa-

rameterized by the repetition rate of the pump (R) and the pulse duration (t1). The free

space wavelength of the harmonic light (λ2) also appears in the equation along with the

permittivity of free space (ε0) and the speed of light (c). The effects of the substrate are

taken into account by the refractive index of the substrate (n2) and the index of the material

above the monolayer (n1), which was air in our case. The numeric aperture (NA) of the

objective also plays a role, as well as the sheet susceptibility of the monolayer (χ(2)).

Our experiments were conducted away from the excitonic wavelength range of WSe2 due

to the difficulty of coupling resonances to the emission in those wavelength ranges. The

underlying principles for this effect is still a subject of investigation. Here we will discuss the

experiments conducted on bare WSe2 with a pump beam centered at 805 nm. From previous

literature we know that the material has an ultra-high bulk susceptibility of 5 nm/V in this

wavelength range [92]. This translates to a sheet susceptibility of 3.5 × 10−15 m2/V . The

monolayer was placed on a SiN substrate (n2 ≈ 2) without a cladding layer (n1 = 1). The

laser had a repetition rate of 80 MHz and a pulse duration of 2 ps. The pump beam was
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focused down by a 40X Olympus Plan Achromat Objective with a numeric aperature of 0.65.

This results in Pav2 = 16 nW .


