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Abstract. A simple technique for detecting adjustable contrast in a visual scene is presented. The circuit elements
can be used to detect contrast in any array of sensors or processing elements where spatial relationships among
neighboring elements define contrast or the presence of an edge. This technique eliminates the need for a
differential pair, thereby allowing more than two inputs to be compared for contrast in a single processing step. The
circuit elements first smooth erroncous edges in the array through the use of a resistive network, then, the mean
(scaled by an adjustable amount) of a pixel and its neighbors is compared to the harmonic mean of the same pixels
to detect the presence of contrast within the pixel neighborhood. Comparison between the mean and harmonic
mean allows the detection of contrast to be scale-invariant as long as the transistors remain in subthreshold
operation. This circuit offers the massively parallel processing inherent to focal plane processing within an 18% fil]
factor in a 2 um process, 6.8 uW typical power dissipation per clement, and 0.67 ms response time at low power
subthreshold operation. Results for a proof of concept, 8 x 8 array of pixels with light inputs, as well as a purely

electronic input, 4 x 4 array are presented.
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1. Introduction

The image segmentation process typically begins
with some form of pre-processing of image contrast
followed by an elementary edge detection operation.
In an array of raw photodetector input, the edge is
often defined as a certain change in intensity
between neighboring pixels. If this raw photode-
tector input is first pre-processed, edge detection
may correspond to contrast associated with motion,
velocity, texture, or similar second order features. If
an array gathers input from electronic signals or
other non-light based signal, edge detection is still a
valuable initial processing task. In auditory proces-
sing, edge detection can correspond to distinguishing
fundamental auditory components from their harmo-
nics, formant frequencies, or similar components of
a speech or sound signal. In this paper, we discuss a
method for edge detection using electronic input and
light input mode, however, the edge detection
method can be used in any application where
moderate to high contrast edges are of interest.
This edge detection method is scale invariant,
producing a constant edge profile even in the

presence of significant changes in  background
illumination.

Edge detection is a fundamental by-product of
image segmentation and is usually proceeded, in
hardware or in software, by some form of image
correction or enhancement. In preparation for
detecting edges, contrast of interest in the image is
often enhanced while contrast generated from noise,
photodetector defects, non-uniform illumination or
similar irregularity is downplayed. Neighborhood
averaging is the simplest form of image pre-
enhancement, where each pixel value is replaced
with the average of itself and a pre-specified set of
neighboring values. While averaging can remove
erroneous edges induced by noise over time or over
space, it can also blur areas that contain edges of
interest. A number of weighted averaging techniques,
such as the Savitsky and Golay fitting procedure,
resolve this issue by maintaining areas of sharp
contrast while blurring regions of medium to low
contrast. Similar filters, such as median and other
forms of rank filtering, can preserve contrasts
important to image interpretation while blurring or
climinating contrast generated by image noise [1].
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Once pre-enhanced or pre-processed, the image is
ready for segmentation, where edges arc determined
and the image is divided into unique regions of
interest and activity. As the first step in segmentation,
images may be eroded, dilated, or subject to a similar
window, compute, and replace policy for merging
related objects or separating spatially close objects
that are not related. Most image segmentation
schemes perform edge detection based on some
form of one-dimensional (black and white) or multi-
dimensional (color) thresholding process. Powerful
computer systems may take a more wholistic
approach lo image segmentation using techniques
such as split-and-merge and region growing to
segment the image as a whole rather than a sum of
parts. In the more conventional schemes, the image is
thresholded to a binary image and then an XOR
window used to determine the presence of edges [1].

In general, edge detection on the focal plane is
restricted to very simple edge detection algorithms so
that resolution is nor prohibitively sacrificed in the
imager itself. Focal plane processing allows part of the
signal processing electronics to be placed local to
each photodetector in an array of pixels. This type of
architecture enables massively parallel processing of
the image to be performed by the simultaneous
operation of all the focal plane processing elements.
Typically, focal plane processing elements have been
analog to reduce total power dissipated on the focal
plane and to minimize electronic noise introduced by
circuitry on the focal plane, Focal plane processing
has been successfully demonstrated for edge detection
(2-7], as well as other tasks such as image pre-
enhancement {8—11], motion detection [12-19], ori-
entation estimation [20], centroid detection [21], and
skeletonization [22,23]. [n order to preserve a useful
resolution in these arrays, effective focal plane
processing has traditionally been restricted to small
transistor count tasks.

Focal plane processing methods for edge detection
have typically been restricted to pre-enhancement of
relevant edges in the image followed by the thresh-
olding of the image to a binary equivalent to facilitate
binary edge computation. Pre-enhancement of edges
has been accomplished using various smoothing
techniques [5] which have been successfully imple-
mented in hardware using a relatively small amount of
silicon real-estate. This stage of processing attenuates
edges of low magnitude and high spatial frequency
more than those of higher magnitude and lower spatial

frequency, the resistive network has the effect of
decreasing spatial noise in the image for subsequent
processing. Outputs of the smoothed pixel corres-
ponding to neighboring pixels are typically compared
and thresholded based on a constant value to
determine the presence of an edge. Smoothing using
these techniques has the unavoidable consequence of
decreasing signal strength and reducing signal to
noise ratio.

Once pre-enhanced, edges have been detected on
the focal plane by applying the difference operator
between two neighboring pixels and OR’ing these
results with other difference operations in the pixel
neighborhood. Other edge detection operations in-
volving the weighted evaluation of differences
between pixels and their neighbors, including two
dimensional Laplacian masks and compass gradient
masks, have been too complex to implement
explicitly on the focal plane.

We present a technique for edge detection that pre-
processes contrast and computes edges on the focal
plane with scale invariance to changing background
levels and fluctuations, While we use a resistive
network for initial smoothing, subsequent circuits
replenish the gain lost in initial smoothing with an
edge detection threshold that can be varied across a
wide range. The image is first smoothed using a
horizontal resistive network similar to thuse pre-
viously demonstrated by Mead [8]. Then, the
harmonic mean of a pre-defined window is computed
and compared to its mean value, shifted by an
adjustable amount, to detect an edge. The smoothing
requires six transistors per pixel, and the edge
detection 14 transistors per pixel. The comparison of
mean (offset by an adjustable amount) and harmonic
mean offers automatic gain control (scale invariance)
and adjustable edge detection thresholds.

2. Edge Detection Analysis

We compare our edge detection technique here to the
simple thresholding technique discussed in the
introduction for binary image processing. We choose
this simple technique for comparison, because it can
compete with our mean comparison technique in

terms of space and power consumed in a focal plane ;
implementation. The simplest, binary edge detection 8

technique is to threshold the difference between a
pixel and its neighbor (an analog to digital conversion
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operation) and to OR the result (a binary operation)
with ditferences between the same pixel and other
neighbors, The neighbors to a pixel are defined in a
predetermined window. For example, in a one
dimensional array, the neighbor may be defined as
the pixel to the right (B) of the central pixel (A). Each
pixel is compared to its rightmost neighbor (B),
thresholded, and the results indicates the presence of
an edge or lack thereof in binary form:

PixelA PixelB

0if (|A-B|>K)
Edge, =

Lif (J4 - B| <K)

In this example, the edge is active low. The definition
of an edge in onc dimension using the conventional
difference operator is then

A—B|>K (1)

where K is a constant. In binary processing of a two
dimensional array, the difference operator is applied
between the central pixel and all its neighbors. A
neighborhood can be defined as all of the nearest
neighbors or some subset of the nearest neighbors. For
example, a neighborhood and associated edges might
be defined as follows around the pixel A:

PixelB

PixelA PixelC
Edge, =0 if (J]A - B|>K)
OR
Edge, =0 if (]A — C|>K)

Where each pixel’s neighborhood is defined as the
ixel above and the pixel to the right of it and the edge
is active low.

The technique we propose here for edge detection
to the (scaled)
onic mean (AMHM) in a neighborhood of
Xels. Using the same neighborhoods as for the
ventional difference operator examples discussed

characteristics. The AMHM method is an alternative
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above, this mean comparison method is expressed in
one dimension as follows.

PixelA PixelB

Edge, =

where K is a constant and the edge is active low. An
edge is then present when

A+B K
— > (2)
2 iy

This definition can be extended to a two-dimensional
neighborhood in a straightforward manner

PixelB

PixelA PixelC

0if (A=8eC> £ )

Edge, = AtEre
=
e (asBiC K
it ( 3 < zﬁ!ﬁ)

where the pixel neighborheod is defined in the same
way as for the conventional binary edge detection
procedure discussed previously. The definition of an
edge in two dimensions is simply:

A+B+C K
3 > 1 1 | (3)
aTsTC

Both the difference and AMHM operators are pre-
processing steps in the segmentation of an image. We
demonstrate their operation on grayscale images
whose inputs are representative of light intensity,
however, cither method can be extended to color
images or to other preprocessed versions of the image
based on texture, hue, motion, saturation or similar

approach to the segmentation step, but produces the

same binary outputs as conventional difference
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operators, and, as a result, can be integrated with a

variety of digital image techniques.

The mean comparison (AMHM) method offers two
advantages over the conventional binary difference
operator for edge detection.

e scale invariance as the background illumination
scales up or down. The AMHM method detects the
same number of edges while the conventional
operator produces more edges as background
illumination increases (for a particular scaling
constant K).

e multiple edge sensitivity. The boolean OR opera-
tion in conventional edge detection gives equal
weight to an edge whether it is the only edge in the
pixel neighborhood or one of multiple edges. The
AMHM method combines information from both
edges, so that two low conirast edges in the pixel
neighborhood can produce an edge, as well as a
single high contrast edge. This weighted contrast
sensitivity is more similar to grayscale image
processing methods rather than binary image
processing techniques.

To demonstrate scale invariance for the one
dimensional case, we multiple all pixels by a scaling
constant X and calculate the resulting revised
threshold for edge detection in terms of the original
threshold (K). The binary edge detection operator,
after scaling. is simply

XA — XB|>K (4)

which results in a new detection threshold of % To
examine the impact of scaling on the AMHM method,
we first convert the one-dimensional edge operator of
(2) to an expression that contains the difference
operator (A-B)

A-B|
‘ >K' where K’ = V2K — 4 5
o ()

After scaling all pixels in the neighborhood by X, this
expression becomes:

XA -XB| ., . . |A —B|
—XAX— = > K" which is equivalent to JAB >K'
(6)

In the one dimensional case, it is clear that the first
difference operator, when scaled, reduces the
threshold for edge detection by the scaling factor X
while the AMHM method results in no difference in
the edge detection threshold (scale invariant). The two

dimensional case is more complex since, using the 3
binary edge detection method, an edge is detennined |
by a boolean (OR) combination of several ong §
dimensional cases while the two dimensional case 3
for the AMHM method evaluates the entire pixel }
neighborhood in a single operation, an approach that §
is more similar to grayscale digital image processing
and masking techniques. To compare the effect of
scaling by 2 constant (X) on each of the two cases, |
involves breaking down the possible scenarios for
edge detection as follows

e Case 1 single edge, edges occur at AB or at AC
border, A-B or A-C is negative. ir

e Case 2 single edge, edges occur at AB or at AC =~ ¢
border, A-B or A-C 15 positive.

e Case 3 multiple edges at AB and at AC border, 4-B
and A-C both positive or both negative.

o Case 4 multiple edges at AB and at AC border, A-B
negative and A-C positive or vice versa. ‘
For all four cases, the conventional binary edge

operator produces the same results. Scaling all three |
pixels in the neighborhood up by a constant X is |
equivalent to scaling the edge detection threshold
down by this same constant, the lack of scale °
invariance is identical to that of the one dimensional -
neighborhood. To examine the impact of scaling on
the AMHM method in two dimensions, we convert
cach edge scenario in cases 1 through 4 (with some
simplifications} to an equivalent change in the edge
detection threshold.

o Case 1 singleedge, A< <Band A=C

A+B+C K
>

3 itEté
reduces to
K A—B
b > — which is equivalent to | | >K’'
37 &+x A »
3K o
where K = 5 - 1 (8)
e Case 2 single edge, A » Band A =C ‘
A+4 K A-—B &2
;— > 5 which is equivalent to | | >K' §
2 ]
3K ;| SR
where K/ == — 1 GEF s
2 g whil

e Case 3 multiple edges. A€ B. A< C and B =4
(similar to case where A > B, A> C and B =
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B_K A—B
B~+— > — which is equivalent to |———l >K
3 Z} A
3K
where K':T— 1 (10)

e Case 4 multple edges, B €< A <€ C (similar to
C<A<B)

K B-C
% > which is equivalent to '-—! > K
2
where K/ = 3K — 1 1)

It is obvious that, in all four cases above, scale
invariance is achieved because multiplication by a
constant X results in X dropping out of the left side of
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the equation in the same way as in the one-
dimensional pixel neighborhood. This scale invari-
ance of AMHM method over the difference operator
for edge detection and image segmentation is shown
using software simulation in Fig. 1. The original
image (Trooper, the dog) is scaled to two different
levels of background illumination (Fig. 1(a) and Fig.
1(b)). Edges computed using AMHM are the same for
the two levels of background illumination (Fig. 1(c)
and Fig. 1(d)), using a difference operator in binary
image processing, however, the number of computed
edpes decreases significantly from a bright back-
ground Fig. 1(e) to a dim background Fig. i(f).

It is interesting to note that the edge detection

B e Qe

B S2E
LR

Fig. [. Scale invariance in edge detection. Conventional edge detection produces more edges as the background illumination increases,
while the AMHM comparison scheme maintains the same edges. The original image in (b) is the image in (a) scaled (multiplied) by 0.3.
Images in (¢) and (d) are computing by comparing the scaled mean to the harmonic mean. Images in (e) and (f) are computing by
comparing the differences in neighboring pixels 1o a fixed threshold value. The naise in the image, as demonstrated by a large number of
edges in the grass and snow in the background, can be smoothed out using presmoothing techniques suitable for hardware implementation.
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threshold for Cases 1 through 3 where a single edge or
like edges are considered remains the same at ¥ -1
but the edge detection threshold (3K — 1) for Case 4,
where two unlike edges are present, is higher. Using
the difference operator, the threshold remains the
same, regardless of whether single edges, multiple
like edges, or multiple unlike edges affect a particular
pixel. In any of these cases, the difference between a
pixel and its neighbor has to exceed a constant
threshold K at least once in all possible relationships
between a pixel and its assigned neighborhood.
Multiple edges (corners) are not given additional
emphasis using the difference operator. However, in
the AMHM method, multiple unlike edges demon-
strate a lower detection threshold than multiple like
edges or single edges. This behavior is more akin to
grayscale, digital image processing techniques where
a weighting mask (e.g. Laplacian or compass

()
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180
190 - |
(c)
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AB (A=SO, C=25, B=variabiae)

gradient) is convolved with the onginal image
before thresholding.

This result is best observed visually in Fig. 2,
Fig. 2(a) and Fig. 2(c) demonstrate the invariance of
edge threshold location using the difference operator
to detect all types of edges; an edge is present when
a point on the solid lines exceeds that on the dotted
lines. Fig. 2(b) and Fig. 2(d) demonstrate the
varying threshold for multiple like or single edge
detection thresholds as compared to the lower
threshold for multiple unlike edges. An edge is
present when the solid line (scaled arithmetic mean)
exceeds that of the douted line (harmonic mean),
The edge detection threshold is the intersection of
the two curves. When the edge (A-C) is negative
and the edge (A-B) is positive (unlike edges), as
illustrated in point A on Fig. 2(d), the edge
detection threshold is significantly lower than
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Fig. 2. Edge detection thresholds for various scenarios. The difference operator is used in (a) and (c) 1o set a constant detection threshold
(intersection of solid and dotted curves), regardless of the nature of edges present in the pixel neighborhood. The AMHM method.
however, in (b) and (d) demonstrates that the detection threshold is lower for multiple unlike cdges than for single edges or mukiple edges

of the same type.
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when multiple, like edges or a single edge are
present (Point A in Fig. 2(b)).

The threshold variation demeonstrated in Fig. 2
provides better sensitivity to edges in situations where
multiple contrast levels are present in a pixel
neighborhood. This enhanced sensitivity is not
gained at the expense of decreasing the threshold for
single edge detection threshold which in turn, would
increase the noise in the segmented image. Fig. 3
provides an example of this enhanced sensitivity by
magnifying the edges detected around Trooper’s nose
(Fig. 1). The AMHM method detects the lower edges
around the interface between nose and mouth, where
contrast is low, but edges are multiple. The difference
operator method detects only the high contrast edges
toward the top of the nose.

3. Circuit Description

The edge detection scheme described here consists of
three major stages as described in the block diagram
of Fig. 4. Stuge | smoothes the image 1o reduce noise
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in the input array and the erroncous detection of
edges. Stage 2 calculates the harmonic mean and
mean of the smoothed inputs within the neighborhood
window, and Stage 3 compares the harmonic mean
with the mean offset by an adjustable amount to detect
edges. The edge detection threshold is set in Stage 3.

The first stage smoothes the image to eliminate
erroneous edges caused by spatial noise in the image.
Smoothing is performed using a resistive network
arranged in a grid pattern. The output voltage at each
pixel or processing element is spread to neighbors in
the x and y directions where the effect of a pixel on its
neighbors decreases exponentially with increasing
distance away from the pixel.

The second stage calculates the mean of the inputs
(smoothed phototransistor currents in the case of
image processing) in the selected neighborhood
window as follows

1 +]m,n—l+[m-l,u

] _imn

mean 3 ( 1..)

and the harmonic mean as tollows.
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. Fig. 3. Edge detection in low contrast, multiple edge pixels. The original image in (a) is a magnification of Trooper’s nose from Fig, 1.
‘ Results of edge detection using the mean comparison (AMHM) method are shown in (b) and the results of standard edge detection using

he difference operator are shown in (c). Since the AMHM method looks at both neighboring pixels simultaneously, it is better able 1o
ompute an edge in pixels that have low contrast with their neighbors but have multiple edges with their neighbors. The ditference operator
looks only at one difference between the pixel and its neighbors at a time and is not able to combine effects of these differances.
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Fig. 4. Block diagram of image segmentation process. Stage 1 contains the array of sensory input and the resistive smoothing network. In
stage 2 of the processing, the harmonic mean and mean of each pixel and its neighbor on top and to the left is calculated. In the last stage,
the mean is offset by an adjustable, controllable amount and compared to the harmonic mean to establish the presence of an edge. Inth
for t
metr
! = L + 1 + ! (13) edge 1o be defined in real time and adjusted to suit the mea
limean Ton dmney Toia current image or application. meai
The neighborhood window used here consists of each
pixel (1,,,), its neighbor above (/,_;,), and its
‘ \ '
ngghbor 1o the left ,(['"J'—U' Th? nel'ghborhc?od J.1. Stage I: Minimization of Erroneous Edges
window, although set in this configuration during
fabrication, can be altered in fabrication to another Most sensory images are prone to noise across the
geomeuy or through the use of fuses, can be spatial dimensions of a sensor array. Phototransistor
programmed after fabnc;atlon to a variety .of desue@ and photodiode arrays are no exception. Images, as
geom'emcs. The expression for the ]l.al"l’I:IOHIC mean in well, contain spatial noise that is often and easily
equation (13) does fndlf:ate.th'e pOSSlblllIy. of lelSlqn misinterpreted as edges during image segmentation.
by zero, however, in circuit implementations of this The resistive network has been used in several i
re.lat}ons.hnp, the dark'currents. arc always non-zero, implementations of analog VLSI retinas and focal
elm';;lnam;g the potential for division by zero. plane processing to reduce the impact of spatial noise
¢ last stage of processing compares the in subsequent image processing steps. The resistive
hd@OﬂlC mean to the mean, wher'e the mean can be network 1s implemented here in a grid network using
shifted ftz a(,ij ust the edge detection threshold to a transistors as resistors to smooth each input down the
range of desired values. horizontal and vertical dimensions of the array
o . (Fig. 5). The smoothing effect of each input across
PirelOut. = 0 i Jppen < 2% (14) the resistive network from its point of origin has been
m'n Vit lypun = ’4";(& well documented in the literature [8]. Used as a pre-
processing tool here, the resistive network attenuates
Comparison between the harmonic mean and the edges of high spatial frequency while maintaining the (a)
mean current within a neighborhood allows the edge amplitude of edges of low spatial frequency. In this Fie s
threshold to remain constant across a range of input way, erroneous or localized edges are minimized $0 a::fi'i@
currents, background illuminations and local con- that they remain unrecognized in subsequent proces: detectic
trasts. The parameter K allows the magnitude of an sing, and are effectively disregarded as noise. b 2nd ind
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Fig. 5. Resistive network for smoothing sensory inpur array. Transconductance amplifiers and transistors implemented as nonlinear Tesistors
are used to smooth the effect of each inpui away from the point of origin for that input.

is found by taking KCL at the summing node

3.2. Stage 2: Calculation of Mean Metrics Lpoan:
as foilows:

1%

mean

In the next stage of processing, the inputs are prepared
for the thresholding process that follows. Two mean Lwan + Tmean T Tmean = Tmn + lon1 = Inin (15)
metrics are calculated the mean and the harmonic

mean. Circuits for finding the mean and harmonic which leads to the result in equation (12).
mean are shown in Fig. 6. The mean outpul current, The harmonic mean circuit Fig. 6(b) is a harmonic
e e e
incan Iymean
b—b L. L
, i [ _l i
Vmcan the:m
v
Vimean | M
ﬂ ___ Voul (m,m)
| Vm-l,n |
I ]
1 Vm,n-l 1 vV
F I medn __{
v,
(a) Mean Calculation (b) Harmonic Mean Calculation {c) Comparator

Fig. 6. Mean and harmonic mean circuits. Shown are circuits to generate the (2) mean current and (b) harmonic mearn current of each pixel
and its neighbor above and to the left. In order to compare the mean and harmonic mean of the three inputs and to obtain o non-zero edge

detection threshold. the mean is offset (shified downward) by a fixed amount in (¢} the comparator stage. The output V,, ., ,, 18 active low
and indicates an edge that exceeds a preset threshold controlied by V..
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Table | Characteristics of the edge detection circuits.

Parameter Description
Technoiogy 2 pum n-well, Orbit
Chip Size 2.3x23mm?
Package 40 pin DIP

Number of Pixels 4 x 4 (electronic input), 8 x 8

(light input)

Photoreceptor Size 2,500 um?

Cell Size 14,000 pem?

Fill Factor 18%

Circuit Response Time 0.67 ms at 0.65 V nominal input
(5V supply)

Circuit Power Dissipation 6.8 uW per processing element
(5Y supply)

correlator previously used for a variety of applications
from detecting bumps for image processing applica-
tions [24] to neural oscillators for robust motor control
{25]. Assuming the transistors operate in the
subthreshold region, we apply the following expo-
nential voltage-current relationship [3]:

KV

) fexp((=V,) —exp(=V.))]  (16)

t

1 :laexp(

where /, is a lumped fabrication constant, Kk is the
back gate effect, and ¢, 1s the thermal voltage.
Assuming the exponential terms for the drain voltages
in each transistor are negligible, some algebra yields
the harmonic mean relationship described in (13).
Realistically, the subthreshold parameter x varies
among transistors and with the source voltage of these
transistors, so that this equation can only approximate
the behavior of the harmonic mean circuit.

3.3. Stage 3: Thresholding

Afier the mean metrics are calculated, scale invariant
thresholding is now performed as shown in Fig. 6(c).
The mean is first scaled by a fixed amount according
to the following relationship:

I

I _ mearn
mean(scaled) — v
I,exp (&1)

(17)

The mean current is scaled by an adjustable amount so
that it intersects the harmonic mean curve and
establishes a non-zero edge detection threshold
(refer to Fig. 2). The output of the processing element

is active low and is scanned out using a standard
decoding, random access arrangement.

4. Experimental Results

A prototype, 4 x4 array of edge detection elements
with electronic inputs and an 8 x 8 array of tocal plane
processing elements with phototransistor inputs has
been fabricated in a 2.0 um, CMOS n-well process.
Characteristics of the chip are summarized in Table |
and components of the chip are shown in Fig. 7. The
fill factor for the prototyped active pixels is 18%, but
can be increased to a 40% fill factor (including a 10%
reduction in pixel size with optimized layout of guard
rings) using a 0.5 um feature size or smaller for
resolutions up to 200 % 200 on a lem? die. In this
section, we describe experimental results for the edge
detection circuits in response to both electronic and
light inputs.

Detailed response characteristics are obtained
through tests of the 4 x4 array containing only
circuits and no photodetectors. Important to contrast
or edge detection applications are effects on detection
threshold of smoothing (spreading resistance in the
resistive network), the mean offset factor (controlled
by V,), the power supply (V,,), and the location of the
edge in the neighborhood window. The 8 x 8 array of
elements with photodetector inputs is also tested to
confirm the functionality of the edge selection and the
fundamental behavior characterized in the electronic
input array.

The electronic input array has been tested using an
automated data acquisition set-up based on Labview
software and National instruments data acquisition
hardware. Test transistors from each array have been
used to experimentally characterize MOSFET .para-
meters for cach chip tested. The imaging array has
been tested by projecting images of interest onto the
focal plane using a 12 mm, manual focus, manual iris
lens.

4.1. Effect of Contrast Enhancement (Smoothing
Vees)

Linear averaging of neighboring pixels tends to bluf &

all edges in an image, reducing contrast 2mong
adjacent pixels uniformly. The resistive network useg
here allows the image to be smoothed in such 2
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that more distant pixels have less of an impact on a
#panicular pixel than pixels in the immediate or local
neighborhood. This type of smoothing enables sharp,
long edges and high spatial contrast to be preserved
while image and texture noise are smoothed or blurred
out of the image. As the degree of smoothing is
increased, the edge detection threshold should
increase, because the number of edges smoothed to
a value beneath the detection threshold increases with
the degree of smoothing. Experimental results are
evaluated for both the array with efectronic inputs and
the array with photodetector inputs. Nominal values
for the threshold adjustment parameter V; and V4 are
chosen at SV and 0.1V respectively. The impact of
smoothing for an edge located at all three possible
locations in the neighborhood element is shown in
Fig. 8.

As expected, as smoothing (V) increases, the
edge detection threshold increases. The same edge or
contrast appears smaller after smoothing, causing the
edge detection threshold to appear as if it has
increased. Differences in results due to the position
of the **dark”’ pixel in the neighborhood window are
due to the degree of smoothing in horizontal and
vertical directions. All pixels at column m or greater
are low, while all pixels at column m-1 or smaller are
high. As a result, when X1 is the low pixel i the
neighborhood window, smoothing occurs in both
vertical and horizontal directions, significantly redu-
cing the edge sharpness and lowering the detection
threshold. Similarly, when X3 is the low pixel in the
| neighborhood window, smoothing takes place only in
 one  horizontal direction, maintaining the edge
 sharpness and increasing the detection threshold. A

]
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Fig. 7. Layout of edge detection elements. Shown above is (a) the 8 x 8 array of edge detcction elements with phototransisior inputs and
{b) a pair of pixels with focal plane processing and a column decoder clement. The size of the active pixel can be significantly decreased

similar argument may be made for X2, whose edge
detection threshold lies between that for X1 and X3.

Smoothing effects are limited in this small array,
because even in the center of the array, an input can
spread no more than two pixels before it reaches the
perimeter of the array. As the array size increases, this
effect will be more pronounced, allowing the degree
of smoothing to more substantially affect the effective
edge detection threshold when other parameters
remain constant.

The same fundamental etfects of smoothing are
observed in the phototransistor array as in the
electronic input array. For the same nominal para-
meters as illustrated in Fig. 8, image results are shown
for varying degrees of smoothing in Fig. 9. The inpwt
image Fig. 9(a) consists of two point sources of light
on a dark background, where one light source is larger
and brighter than the second. With no smoothing
(V,,, = 0), edges associated with both light sources
are detected Fig. 9(b), with smoothing (V,.; = 0.5),
however, ¢dges on only the brighter light source are
detected, as the dimmer light sources is smoothed into
the dark background and fails to meet the edge
detection threshold Fig. 9(c).

4.2. Effect of Adjustable Mean Scaling (V)

Recall that the source voltage V, controls where the
intersection between mean and harmonic mean of the
three currents in the neighborhood window occurs.
Decreasing the voltage V, shifts the mean curve (line)
upward, thereby decreasing the intersection point of
mean and harmonic mean and the edge detection




222 D. M. Wilson

0.88 P 7.00E-08 ?

' _~ b A—A—A—h—h—A—h
S 087 < B.O00E-08 F |
5 - .
% 0.86 E 5.00E-08 — X1
5 0857 % 4.00E-08 + | @
Sosap et £ 300808 ¢ - N
= o83l = 200E08 ¥ {—A—X3
3 082 S 1.00E08 }
w w

0.8 } et ; 0.060E+00 -t +—t —+

o &4 % © © - o o ¢ @ « -
o (] o (@] < < < <
V(resistance) Vresistance
X1 = “Dark” pixel placed as shown X2 = "Dark” pixel placed us shown X3 = "Dark” pixel placed as shown

Fig. 8. Effcct of smoothing on edge detection threshold (electrical input array). Shown above is the impact of smoothing (V,,,) on the edge
detection threshold of the array. The edge detection threshold is defined as the difference between *'dark’” and “light” pixels required to
indicate an edge. For this test, all pixels to the right of the windewing clement are a nominal high value (equal to an order of magnitude
less than the two stationary inputs) and all pixels at and to the left of the element V,, , are at a nominal low value (equal to an order of
magnitude lower current than the two stationary inputs). The change in threshold characteristics is dependent on the location of the ““dark”
pixel in the neighborhood window, due to variations in smoothing caused by the proximity of each location to the other two pixels in the
windowing element and to the “‘high’’ left and *‘low" right sides of the array.

threshold for each windowing element. The mean while the edge detection voltage increases linearly as
scaling factor is an exponential function of the voltage a result of the exponential relationship betweer
V., because this factor scales the mean current rather voltage and current in subthreshold operation. Thxé
than the mean voltage. behavior is verified in Fig. 10 for nominal values of

After the harmonic mean saturates, it can be Vs and V.., (3 V and 0.5 respectively) where the edge
considered relatively insensitive to changes in the detection threshold becomes a linear function of the
inputs as compared to the mean. After the intersection source voltage V, after the intersection of mean and
point of harmonic mean and offset mean surpasses the harmonic mean surpasses the knee of the harmonic
knee of the harmonic mean curve, the edge threshold mean curve. Likewise, the edge threshold current is an
current increases exporentially with increasing V,, exponential function of the control voltage V, beyond

(a) Original Image (b) Output, Vs =0 (c) Output, Vpes =0.5

. - eid
Fig. 9. Effect of smoothing on edge detection threshold (phototransistor input array). Shown above is the thresholded response of the focal
plane processing array for varying values of the spreading resistance V,,,. As expected, as the smoothing increases with V., the numbel"ff'f
edges detected decreases due to the increased edge detection threshold as described in Fig. 8. The (a) input image consists simply of tw0
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i order for this configuration to be useful in edge
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is in the inputs. Mathematically, the intersection
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Effect of mean offset on edge detection threshold (electrical input array). Shown above is the impact of mean offset (V) on the
ection threshold of the array. The edge detection threshold is defined as the difference between *“dark’® and “light’" pixels required
icate an edge. For this test, all pixels at column m or greater outside the windowing ¢lement are light while all pixels at column m-1

point of harmonic mean and mean should remain
constant over changes in the input range, since the
mean is offset by a percentage of its original value.
These results are confirmed in the electronic input
array of edge detection elements as shown in Fig. 11.
Simulated  results are calculated, assuming a
smoothing effect of 70% (each input in the windowing
element loses 30% of its value to smoothing in the
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‘;'11. Effect of chunges in common mode input range on edge detection threshold, Shown above are (a) voltage threshald and ()
went threshold results for simulated and actual comparisens of the offset mean and harmonic mean. The average input voltage across the

e array is shown on the x-axis. The X2 and X3 voltages (refer to Fig. 10} inside the windowing elements for sach test are 100mY
N the average array voltage, the center voltage in the windowing element (X

less
1) is swept upward from the X2/X3 value until the detection
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surrounding pixels) for nominal values of V,,, = 0.5V
and a bias of 2.0 V on the transconductance amplifier
connecting each input to the resistive network. Inputs
on the lefthand (LHS) and righthand (RHS) side of the
array are held at 100mYV below and 100mYV above the
average input voltage respectively. Inputs in the
windowing element (X1, X2, and X3 as indicated in
Fig. 10) are held at the lower value, comresponding to
the LHS of the array; the input located at position X1
is increased untii an edge 1s detected at X1. As the
RHS (“*high"’ side) of the array and subsequently the
array average moves into above threshold, the
simulated and actual results diverge due to the
breakdown of the exponential current-voltage rela-
tionship upon which simulated results are based. The
detection threshold is defined as the current or voltage
present at X1 that is required to cause the output ar X1
go low (active), indicating the presence of an edge.
Nominal values of parameters for this series of tests
are V.. = 0.1 and V4, = 5.0V, Across the sub-
threshold range of operation tested, the detection
threshold varies only 7% until inputs begin the
transition between subthreshold and above threshold
operation.

Similar behavior 1s observed as a function of the
mean offset and background levels in the performance
of the 8 x 8 phototransistor input array as shown in
Fig. 12. The original image Fig. 12(a) consists of two
point sources of light, identical to the image used to
evaluate the effect of smoothing (Fig. 9). At high
values of V; Fig. 12(b), all edges in both objects are
detected, and at low values of V Fig. 12(d), only the
highest contrast edges in the brightest object are
detected. In a higher resolution array, partial edges of
objects are less likely to appear as the sensitivity of

the edge detection threshold to the source voltage v,
decreases with higher array sizes.

4.3.  Effect of Power Supply Variations (V)

For the portable applications targeted in this research,
it is important for the edge detection circuits described
here to maintain similar behavior as the supply
voliage varies across its effective operating range.
As shown in Fig. 13, the edge detection threshold
varies only about 0.5% per volt of power supply
variation, a difference that is insignificant in the
detection of edges in the phototransistor input array
(Fig. 14). The small dependence of circuit perform-
ance on power supply is a dircct result of the second-
order impact of V, on the subthreshold current-
voltage equations for PFETs. Resilience to power
supply Huctuations 1s well suited to battery powered
applications where the supply voltage typically varies
a volt or more from the fully charged to low charge
modes.

5. Conclusions

We have designed, fabricated, and tested an 8 x 8 light
input and a 4 x4 electronic input array of scale
invariant, analog VLSI elements for detecting edges
in an L-shaped pixel neighborhood. The threshold for
edge detection can be effectively controlled by
varying the degree of smoothing across the array or
through a constant offset parameter. The elements
demonstrate fast responsc time for subthreshold
operation and low power dissipation. Size and fill

() Original Image  (b) V, =0.1462

(c) V,=0.1427

(d)V,=01414 () Vy=0.136Z8

TS Y

Fig. 2. Effect of mean offset on edge threshold (phototransistor input array). Shown above is the thresholded responso*Oﬁ“\ g
processing array for varying values of the mean offset, source voltage V. As this control voltage increases, the edge d¢
decreases from infinity allowing more edges 1o be detected. As the conirol voltage decreases, only the highest o
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Fig. 14 Effect of V, on edge detection thresheld { phototransistor input array).

factors for the prototype elements are less than
optimal and can be improved ecasily by using 2
smaller feature size process to enable a 200 x 200
array of these pixels to be fabricated on a cm? die.
The elements presented here are compact, low
power (6.8 uW per element) and fast (0.67 msec
systemn response time). Applications for these focal
plane processing arrays are as a preprocessing tool for
more complex image processing systems zand as
simple segmentation schemes for less complex
image processing tasks such as single feature tracking
and basic manufacturing inspection tasks. The
obvious next steps of this work is to evaluate the
AMHM elements on a larger imager, up to 200 x 200
for projection of complex images and evaluation of

subsequent edge detection.
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