
ABSTRACT

Results from digital and analog filter bank preprocessors
are compared in order to establish the validity of analog
processing for automatic speech recognition (ASR) sys-
tems. Three systems are evaluated using speaker and con-
text independent phoneme recognition tasks. The three
ASR systems are identical except for the preprocessing
techniques used to derive three signal representations:
extraction of 1)the digital mel-frequency spectrum, 2)the
mel-frequency spectrum from commercial discrete band-
pass filters and 3)the exponential spectrum from an analog
VLSI bandpass filter bank. The discrete analog system
exhibits a 38% increase in recognition accuracy over the
digital preprocessing technique. The digital and analog
VLSI-based techniques perform comparably (within 3% of
each other).

INTRODUCTION

Real-time, low power speech recognition has long been a
difficult problem for researchers who are driven by the
demand for low cost portable systems. Biology is fre-
quently inspiration for a model of an ideal recognition sys-
tem due to its parallel processing and high efficiency
(defined as energy required per basic operation). Current
neuromorphic analog systems have been shown to be four
orders of magnitude more efficient than digital techniques
but still five orders of magnitude less efficient than the
brain.[1]

It is clear that in order for artificial auditory systems to
approach the efficiency of the brain, traditional derivations
of speech features will have to undergo a paradigm shift.
One example of work directed at this sort of fundamental
shift in speech processing is a silicon auditory model using
periodicity-based spectral shape, pitch and temporal corre-

lation.[2] Much research in this area approaches the recog-
nition problem by adding features such as zero crossing
intervals[3] and derivatives[4] resulting in heterogeneous
feature vectors.

One successful application using computational models of
auditory processing is a speaker-independent 13-word rec-
ognition task with 30 features. These 30 features are sub-
sampled from an original 119 features that are derived by
the real-time pre-processor.[2] Their results showed a 4.1%
error rate. Another example of using a robust auditory sig-
nal representation for recognition is an analog VLSI chip
tested on the TI-DIGITS speech database. An analog
cochlear bandpass filterbank with constant bandwidth and
exponentially increasing center frequencies is implemented
on chip along with calculation of signal energies and zero
crossing time intervals.[3] The features extracted from the
chip result in a recognition accuracy of 98.3%.

The difficulty that most neuromorphic signal representa-
tions face is that current recognition engines have been
designed to accommodate low dimension feature sets. The
size of the training data set required for good generalization
and the computational complexity of the training algo-
rithms increase as a function of the number of features. The
nature of the relationship between computational complex-
ity and number of features is greater than O(N). Biological
systems are able to meet the memory and computational
demands of large numbers of features generated at high fre-
quencies. However, current computing resources typically
limit the number of features that can be processed in real-
time applications to under 128 features every 25ms. There-
fore, compression of the feature space to comply with com-
putational limitations can negate some of the benefits of
neuromorphic processing.

Meanwhile, digital signal processing (DSP) techniques
have been established as the benchmark for speech recog-
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nition tasks. An opportunity exists to shift the digital sys-
tems to low power highly parallel analog systems. This
paper presents an empirical argument for the replacement
of the preprocessing block in an otherwise digital ASR sys-
tem with analog counterparts. Our results conclude that
analog preprocessing techniques perform comparably or
improve upon digital techniques.

SYSTEM DESCRIPTION

The task chosen for the ASR in this paper is context and
speaker-independent isolated phoneme recognition. Usu-
ally considered the smallest unit of speech of interest for
speech recognition, phonemes are desirable for portable
applications because of their small dictionary size (39 to
60) that requires fewer models for effective recognition.
Isolated phoneme recognition is a difficult task even for the
auditory system. Other research has achieved a maximum
of 65% accuracy for context-independent phoneme recog-
nition.[5] Phoneme classification is useful for a first stage
in recognition to narrow down the likelihood of possible
phonemes. However, to date, speaker and context indepen-
dent recognition has not been evaluated for ASR systems
using analog preprocessing.

The block diagram of the ASR system is shown in Figure 1.
Speech is the input to one of three possible spectrum blocks
as described in more detail in the next section. The output
of the spectrum block is then sampled and cepstral coeffi-
cients are calculated using log operations and discrete
cosine transforms. Thirteen cepstral coefficients are used to

train and test the hidden markov model (HMM) used as the
pattern recognition model in this effort.

CIRCUIT DESCRIPTION

Digital Filtering

The frequency spectrum is obtained with three filtering
methods. The first is a digital filter bank. The input is
passed through a pre-emphasis high pass filter with a coef-
ficient of 0.95; the resulting signal is windowed and its dis-
crete fourier transform calculated. This result is mapped
into 45 values by a series of mel-frequency spaced triangu-
lar-shaped weighting functions in the frequency domain1.
Cepstral coefficients are then calculated from these 45 val-
ues in the same way as for the remaining 2 preprocessing
techniques.

Discrete Analog Filtering

The second preprocessing technique is a filterbank of 45
discrete 2nd order (two-pole) bandpass filters (Texas Instru-

Figure 1: Block Diagram of the ASR System with Spectrum Preprocessing and Hidden Markov Model

The incoming auditory signal is first preprocessed to normalize it according to the total energy in the signal over a
sliding window whose time constant is much less than the sampling rate. The normalized signal is then transferred to
a highly parallel, distributed filter bank which extracts frequency information from the single input signal in a manner
similar to the basilar membrane and hair cells in the ear. The preprocessing performed by this filter bank is done with
one of three different methods and the results from the left-right HMM that performs the phoneme recognition from
these preprocessed signals are compared.

1. The combination of the triangular weighting functions with a
fourier transform is not, strictly speaking, an implementation
of digital filtering but the result is analogous. Due to the serial
nature of digital filters, digital filter banks are not used when
processing time is limited; the time required is prohibitive. In
this paper, the term ‘digital filtering’ refers to the mapping of a
fourier transform into the magnitude of energy contained in
each of 45 frequency bands.



ments UAF42AP Universal Active Filter[6]) tuned to a
mel-frequency scale. Each UAF42AP consists of four op-
amps and integrated capacitors and resistors. Three of the
four op-amps can be wired in one of two similar configura-
tions to implement biquad or state variable bandpass filters.
The biquad configuration is used in the low frequency
range (below 500 Hz) because the center frequency can be
adjusted easily while keeping the bandwidth constant. The
state variable filter (shown in Figure 2a) is used for the
higher frequencies as its center frequency can be tuned
while keeping the Q factor constant thereby enabling expo-
nentially spaced filters. These two bandpass filter configu-
rations are robust to component variation[7].

Analog VLSI Filtering

The third preprocessing technique consists of 32 filters
exponentially spaced across the spectrum. The filters are
fourth order (4-pole) bandpass filters consisting of capaci-
tors and transistors. Figure 2b shows the filter structure.
The frequencies are tuned by varying six gate voltages: two
for a gain stage and the other four to tune the four poles. In
this implementation, the gate of each filter is connected to
its adjacent filter by a resistance. The voltage drop across
the resistor results in an exponential shift in the frequencies
of the poles. Thus, by adjusting the 12 gate voltages, (six at
each end of the filter array) the top and bottom frequencies
are set and the other 30 frequencies are spaced at regular
intervals in log space, within the specified frequency range.

RESULTS AND DISCUSSION

The data set for these experiments is taken from the
DARPA TIMIT continuous speech corpus.[8] Six voiced
phonemes are used: ‘aa’ (as in wash), ‘ae’ (ask), ‘aw’
(how), ‘er’ (term), ‘ow’ (go) and ‘oy’ (oil). A random
selection of 60 recordings of each phoneme is assembled
containing males and females and a representation of the
eight major dialects within the United States delineated in
the Timit speech corpus.

In order to remove any bias due to the small size of the data
set, the training data is divided into four sets of 270 out of
360 total phonemes. For each training set, a testing set is
used consisting of the 90 remaining phonemes. The four
resulting data sets {training, testing} are: {1:270,271:360},
{91:360,1:90}, {181:90,91:180} and {271:180,181:270}.
Four hidden markov models are trained and tested for each
phoneme using each of the four data sets. The resulting
confusion matrix is the average of the results from the four
models thereby minimizing bias due to selection of the
training and testing data.

The results of digital filtering are shown in Table 3 as a
confusion matrix. Each row represents the recognition of
the phoneme (designated in the row heading) by the model
(designated in the column heading). It is not surprising that
few phonemes are falsely recognized as ‘er’ while it is
more likely that ‘ow’ and ‘oy’ will be mistaken for one
another. The upper left corner shows the average accuracy
for the digital filtering benchmark. Accuracy of 42.22% is
not a state of the art recognition rate, a discrepancy that is

Figure 2: Bandpass Filter Configurations

The configuration shown in (a) is the state variable discrete analog configuration of the UAF42AP. The two RF resis-
tors and the RG and RQ are external components. All other resistors and capacitors are integrated having values of 50
kOhm % and 1000 % pF respectively. The analog VLSI bandpass filter is shown in (b).0.5± 0.5±
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due to minimizing the number of triangular filters in order
to match the number of discrete analog filters. The digital
set serves as a benchmark with which to compare the
impact of replacing digital calculations with analog equiva-
lent circuits.

The results from the discrete analog filtering in Table 4
show a marked improvement in recognition accuracy at
58.33% with an uncharacteristically low 28.33% accuracy
for ‘aa’. The analog VLSI-based filtering results in Table 5
at 39.72% are less consistent. Lower accuracy is most
likely attributable to the use of 32 filters rather than the 45
used with the other two preprocessing techniques. Despite
the reduced size of the filter bank, analog VLSI filtering
produces comparable results to the digital spectrum deriva-
tion. The number of filters is easily scalable and we expect
to see improvements in these results as we approach the
architecture of the digital and discrete analog preprocessing
used in this work.
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CONCLUSIONS

We have successfully demonstrated the ability of biologi-
cally inspired analog preprocessing to supplement digital
processing efforts and traditional auditory recognition algo-
rithms in a mixed signal implementation. Both analog pre-
processing techniques demonstrate recognition comparable
to digital techniques with the discrete analog technique
producing a marked 38% improvement over digital. Our
future work will focus on modifying the analog VLSI-
based filtering to more accurately match the architecture of
digital and discrete analog techniques.
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Table 3: Digital Mel-Frequency Confusion Matrix

42.22 aa ae aw er ow oy

aa 40 10 18.33 1.67 20 10

ae 10 55 11.67 1.67 15 6.66

aw 8.33 21.67 33.33 1.67 16.67 18.33

er 10 13.33 6.67 50 13.33 6.67

ow 13.33 5 15 11.67 31.67 23.33

oy 10 1.67 10 1.67 33.33 43.33

Table 4: Discrete Filter Bank Confusion Matrix

58.33 aa ae aw er ow oy

aa 28.33 6.67 38.33 5 18.33 3.33

ae 3.33 56.67 18.33 6.67 10 5

aw 11.67 5 61.67 1.66 11.67 8.33

er 3.33 11.67 5 68.33 10 1.67

ow 1.67 5 10 1.67 75 6.66

oy 5 6.67 0 10 18.33 60

Table 5: VLSI Filter Bank Confusion Matrix

39.72 aa ae aw er ow oy

aa 51.67 36.67 1.66 10 0 0

ae 41.67 36.67 6.67 13.33 0 1.66

aw 45 31.67 10 13.33 0 0

er 16.67 21.67 3.33 30 5 23.33

ow 0 0 0 20 21.67 58.33

oy 0 0 0 5 6.67 88.33


