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Abstract—In network tomography, we seek to infer link status
parameters (such as delay) inside a network through end-to-
end probe sending between (external) boundary nodes. The main
challenge here is to estimate link-level attributes from end-to-end
measurements. In this paper by using the idea of combinatorial
compressed sensing, we provide conditions on network routing
matrix under which it is possible to estimate links delay from
end-to-end delay measurements. We also provide an upper-bound
on the estimation error. Moreover, for a given network, we show
how to design its routing matrix to achieve the minimum number
of probes needed to be sent in order to estimate delay of the links
inside the network.

I. INTRODUCTION

Monitoring of link properties (delay, loss rates etc.) within
the Internet has been stimulated by the demand for network
management tasks such as fault and congestion detection or
traffic management. This would help network engineers and
Internet Service Providers (ISP) to keep track of network
utilization and performance. The need for accurate and fast
network monitoring method has increased further in recent
years due to the complexity of new services (such as video-
conferencing, Internet telephony, and on-line games) that re-
quire high-level quality-of-service (QoS) guarantees. In 1996,
the term network tomography was coined by Vardi [1] to
encompass these class of approaches that seek to infer internal
link parameters and identify link congestion status.

Current network tomography methods can be broadly cate-
gorized as follows:
• Node-oriented: These methods are based on cooperation

among network nodes on an end-to-end route using
control packets. For example, active probing tools such
as ping or traceroute, measure and report attributes of
the round-trip path (from sender to receiver and back)
based on separate probe packets[2]. The challenges of
such node-oriented methods arise from the fact that many
service providers do not own the entire network and hence
do not have access to the internal nodes[3].

• Edge-oriented: In networks with a defined boundary, it
is assumed that access is available to all nodes at the edge
(and not to any in the interior). A boundary node sends
probes to all (or a subset) of other boundary nodes to
measure packet attributes on the path between network
end-to-end points. Clearly, these edge-based methods do
not require exchanging special control messages between
interior nodes. The primary challenge of such end-to-end
probe data [4],[5] to estimate link level attribute is that
of identifiability, as will be discussed later.

As the Internet evolves towards decentralized, uncooper-
ative, heterogeneous administration and edge-based control,
node-oriented tools will be limited in their capability. Accord-
ingly, in this work we only focus on edge-oriented methods
which have recently attained more attention due to their ability
to deal with uncooperative and heterogeneous (sub)networks.

In edge-oriented network tomography, probes are sent be-
tween two boundary nodes on pre-determined routes; typically
these are the shortest paths between the nodes. For some
parameters like delay (which are the main concern in this
manuscript), an additive linear model adequately captures the
relation between end-to-end and individual link delays, and
can be written as [6], [7]

y = Rx (1)

where x is the n×1 vector of individual link delays. The r × n
binary matrix R denotes the routing matrix for the network
graph corresponding to the measurements and y ∈ Rr is
the measured r-vector of end-to-end path delays. Solution
approaches based on Eq. (1) can be largely categorized as
follows:

1) Deterministic models: Here the link attributes, such as
link delay, are considered as unknown but constant; the
goal of network tomography is to estimate the value of
those constants. Since the link delay is typically time
varying in any network, this approach is suitable for
periods of local ‘stationarity’ where such an assumption
is valid.

2) Stochastic model: Here, it is supposed that the link
vector x is specified by a suitable probability distri-
bution. The goal of network tomography is to identify
the unknown parameters of the probability model. For
example, many works assume the link attributes follow
a Gaussian distribution or an exponential distribution
[8], [6], [7]. Further, the observations are assumed to
occur in the presence of an independent additive noise
or interference term ε [9]; thus the observation equation
is modified to y = Ax + ε.

There exist challenges with both modeling approaches.
Our work falls within the class of deterministic approaches.
Stochastic approaches in the literature are Bayesian in nature,
requiring a prior distribution. If incorrectly chosen, this lead
to biases in the resulting estimates. Further, stochastic models
are usually more computationally intensive than deterministic
ones [10]. On the other hand, deterministic models suffer
from generic identifiability problems; this will be discussed
subsequently in more detail.



2

In Eq. (1), typically, the number of observations r ¿ n,
because the number of accessible boundary nodes is much
smaller than number of links inside the network. Thus the
number of variables in Eq. (1) to be estimated is much larger
than number of equations in the linear model (rank(R) <
n)[9], leading to generic non-uniqueness for any solution to
Eq. (1),i.e., inability to uniquely specify links delay [8].

A potential solution to the above problem is to limit
ourselves to links with large delays and try to best estimate
their values. That is because network administrators are mainly
interested in locating deficient links or links with high traffic
inside the network. These sorts of links have significantly high
delays (or high packet lost rate) comparing to the other links
having negligible delay (or low packet lost rates). Another
reasonable assumption to make in order to solve the underde-
termined system in Eq. (1) is that number of links with large
delays (or high path lost rates) is relatively small compare
to total number of links inside the network. It means vector
x in that equation has a few large entries, up to k, which
we are interested to estimate. We refer to such a vector a k-
compressible vector.

In this manuscript, by using the concept of expander graphs
and binary compressed sensing, which is a new research
avenue, and k-compressible assumption, we provide condi-
tions on routing matrix of a network which gives the ”best”
estimation of links delay from end-to-end delay measurements.
The ”best” estimation here means that the difference between
actual links delay and the solution to Eq. (1) goes to zero when
the delay of ordinary links (links with negligible delay) tends
towards zero. In this case, we call the network k-identifiable
(an official definition of k-identifiability will be given later in
Definition 1). In addition, we shall show that if network is k-
identifiable, the underdetermined system of equations in Eq.
(1) can be solved using a LP optimizer.

End-to-end delay measurements using probe transmission
compels extra burden on the network which as a result affects
links delay and lost rate inside the network. This phenomena
not only affects the estimation accuracy but also decreases
network performance. For that reason, one should minimize
total number of probes used for network monitoring. One way
of decreasing number of probes injected to the network is to
minimize number of paths over which the monitoring probes
traverse. For the first time (up to authors knowledge), we
model this problem as a binary integer programming problem.
Although binary integer programming is an NP-hard problem,
it is a well-studied area and there are a number of heuristic
algorithms in the literature which have a good approximation
results to the main problem.

Our specific cintributions in this work are summerized next:
• We establish a connection between network tomography

and binary compressed sensing using expander graphs
which has received significant interest during the past few
years.

• We provides conditions on routing matrix of a network
under which the network is 1-identifiable. Moreover, we
provide an upper-bound on estimation error in links delay
when network in 1-identifiable.

• Based on our result for 1-identifiability, we show how

to design routing matrix for a given network such that
the network is 1-identifiable with minimum number of
end-to-end transmitted probes.

A. Model and definition

A communication network consisting of bidirectional links
connecting transmitters, switches, and receivers can be mod-
eled as an undirected graph N(V, E) where V is a set of
vertices and E is a set of edges. Let B ⊂ V be a set
of boundary nodes which we have access to. From these
boundary nodes a set of measurements is taken by using end-
to-end probe sending methods which is represented by y in this
paper. As mentioned before, there is a linear relation between
the measurements y and delays of the links given in Eq. (1).

As discussed before we assume that vector x in Eq. (1) is
k-compressible; i.e. it has up to k large values while the others
are close enough to zero (relatively). Having this assumption
we define a network N(V, E) to be k-identifiable as below:

Definition 1. Network N(V,E) with routing matrix R is
called k-identifiable (under end-to-end probe sending method)
if for any delay vector x∗ which is k-compressible the follow-
ing holds:

‖ x− x∗ ‖1→ 0 as ‖ x∗ − x∗S ‖1→ 0 (2)

where x∗ is actual links delay inside the network, x is a
solution to Eq. (1) and x∗S is k large values of vector x∗.

In Eq. (2), ‖ x∗ − x∗S ‖1→ 0 means that delay of ordinary
links (links with negligible delay) goes to zero. Note that if
‖ x∗ − x∗S ‖1= 0 it means delay vector x∗ contains only up
to k nonzero entries, or in other words x∗ is k-sparse. Almost
all works in the literature is based on this assumption. In other
words, They call a network k-identifiable if Eq. (1) is uniquely
solvable given that there are only up to k nonzero elements in
x. Clearly, our definition of identifiability is an extension to
the old definition and it is more realistic since delay of other
links are close to zero but not exactly zero.

In this paper for the sake of simplicity we only consider
the case of k = 1. This is the simplest possible class of
identifiability problems (compared to the general and more
difficult k > 1 case) and yet is sufficiently challenging as our
investigations will show.

The paper is organized as follows: Section II relates links
delay estimation to binary compressed sensing and gives con-
dition on network routing matrix under which a given network
is 1-identifiable. In section III, we look at minimizing number
of probes sent to the network subject to 1-identifiability of the
network. The paper concludes with reflections on future work
in Section IV.

II. EXPANDER GRAPH AND NETWORK IDENTIFIABILITY

In this section we establish a connection between identifia-
bility in a network N(V, E) to the recently developed concept
of compressed sensing using expander graphs. This connection
makes it possible to use results in this new field , attracted lots
of attention these days, to network tomography.
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Fig. 1. A network with 4 boundary nodes, 2 intermediate nodes and 5 links

In Figure 1 a toy network with 4 boundary nodes and 2
intermediate node is depicted. Throughout this manuscript,
boundary nodes are depicted as solid circles while intermediate
nodes are presented using dashed circle. Network in Figure 1
is used to illustrate definitions and theorems in the following
sections.

A. Routing Matrix and Bipartite Graph

A bipartite graph is a graph whose vertices can be divided
into two disjoint sets X and Y such that every edge connects a
vertex in X to one in Y ; A bipartite graph is usually presented
as a triple G(X, Y, H) where H ⊂ X × Y is a set of edges
between two parts. Sets X and Y are called left side and right
side of the graph, respectively. A bipartite graph G(X, Y, H)
can also be represented with a matrix T = [tij ], known as bi-
adjacency matrix, where tij = 1 if node i in X is connected
to node j in Y , or equivalently if (i, j) ∈ H and it is zero
otherwise.

Suppose network N(V,E) is given. Let n be the number
of links in this network (n = |E|), R be the given collection
of paths between boundary nodes and r be the cardinality of
R, total number of paths between boundary nodes. Further, let
Rr×n be the given routing matrix which gives the accessible
path from one boundary node to another. Path collection R
and routing matrix R are equivalent, i.e. both have the same
information about existing paths between boundary nodes
inside the network.

For our example in Figure 1, suppose the following routing
matrix is given:

R =




1 0 1 1 0
0 1 1 0 1
1 1 0 0 0
0 0 0 1 1


 (3)

which is equivalent to paths collection R as follows:

R = {l1l3l5, l2l3l4, l1l2, l4l5} (4)

Note that the above routing matrix, or its equivalent paths
collection, is not a complete routing matrix of network in
Figure 1. For instant it doesn’t include the path from n1 to n6

which is l2l3l4. However, it is a fundamental assumption in
network tomography that the routing matrix is already given,
as part of the problem, and the goal is to use this given routing
matrix to estimate links parameters (delay is our case) inside
the network. In the next section we talk about cases where we
actually can design the routing matrix.

Rr×n can be thought of a bi-adjacency matrix of a bipartite
graph G(X,Y, H) where X = E, set of links in network
N(V,E), Y = R ,set of given paths in the network, and there

Fig. 2. bipartite graph corresponding to given routing matrix in Eq. (3)

is a connection between a node in X to a node in Y if the
corresponding path in Y goes through the corresponding link
in X . Figure 2 presents the corresponding bipartite graph of
network given in Figure 1 with routing matrix R in Eq. (3).

B. Expander Graphs

Over recent years a new approach for obtaining a succinct
approximate representation of n-dimensional vectors (or sig-
nals) has been discovered. For any signal x, the representation
is equal to Rx, where R is carefully chosen r × n matrix
which is often referred to as measurement matrix. The main
challenge in compressed sensing area is to design R with
desirable properties, such as maximum possible compression
or fast decoding time.

However the problem we are dealing with is the converse of
the problem acknowledged in the literature so far. We already
have the measurement matrix, which is the routing matrix of
the network, and the question is on the competency of that
routing matrix for compressed sensing? up to knowledge of
the authors there is no study in the literature regarding this
issue.

The measurement matrix in a tomography problem is a
binary matrix and as it is mentioned before it can be considered
as a bi-adjacency matrix of a bipartite graph. Berinde and
Indyk in [11] show that bi-adjacency matrix of special bipartite
graphs, called expander graphs, can be used as measurement
matrix.

Definition 2. A (s, d, ε)−expander is a bipartite simple graph
G(X,Y,H) with left degree d (i.e. deg(v) = d∀v ∈ X) if for
any S ⊂ X with |S| ≤ s the following condition holds:

|N(S)| ≥ (1− ε)d|S| (5)

where N(S) is set of neighbors of S.

Roughly speaking, in an expander graph any collection of
nodes in the left hand side (X) expands to a sufficiently large
number of nodes in the right hand side (Y ). Expander graphs
are well-studied topic in computer science and mathematics.
There are a number of papers in the literature on how to
construct a (s, d, ε)− expander graph. Interested readers can
refer to [12], [13], [14].

Berinde and Indyk in [15], [11] show that bi-adjacency
matrix of a (2s, d, ε) − expander graph can be used as
measuring matrix for a s-sparse signal. Therefore, to show a
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given network N(V, E) with routing matrix R is 1-identifiable
it is enough to show that the bipartite graph with bi-adjacency
matrix R is a 2-expander graph.

Parameter ε in definition of an expander graph is a design
parameter which is related to recovering error after compres-
sion. Berinde and Indyk derive their results for ε < 1

16 .
However, since we use expander graphs as a test tool, to
examine whether a given routing matrix is a binary measure-
ment matrix, we need ε to be as large as possible to increase
the chance of finding identifiable networks. In other words,
raising ε would expand space of expander graphs which means
more bipartite graphs, or as a result more routing matrices,
would be considered as expander graphs. On the other hand,
as mentioned earlier, increasing ε increases error recovery and
consequently enhances ambiguity level.

Motivated by above argument, there is a tradeoff between
number of networks which are 1-identifiable and also their
routing matrix is bi-adjacency of an expander graph with
estimation error in links delay. In the following theorems we
show that, with reasonable recovering error, ε can be increase
to 1/4. As we shall show later the bipartite graph in Figure 2
is an expander graph when ε = 1/4. Which means our result
includes more 1-identifiable networks while it keeps estimation
error over an reasonable level.

Theorem 1. Let G(V1, V2, E) be a (2, ε) expander graph with
left degree d. Let Am×n be its bi-adjacency matrix. Further
assume w is in null space A (Aw = 0) and let S be any set
of k = 1 coordinates of w. Then

‖ wS ‖1≤ 2ε ‖ wSc ‖1 (6)

proof : See [16].
The following theorem puts an upper bound on error of

recovering x from its linear projection Ax when A is a bi-
adjacency matrix of an (2, d, ε)-expander graph.

Theorem 2. Consider any two vectors x, x′, such that they
have the same projection under measurement matrix A; i.e.
Ax = Ax′. Further, suppose ‖ x′ ‖1≤‖ x ‖1. Let S be the
set of k = 1 largest (in magnitude) coefficients of x. Then

‖ x′ − x ‖1≤ f(ε) ‖ xSc ‖1 (7)

where f(ε) = 1+2ε
2(1−2ε)

The following theorem relates delay estimation in a given
network N(V, E) to the results of expander graphs. In addi-
tion, it proves that end-to-end measurement equation in (1)
can be solved using a LP optimizer.

Theorem 3. Let N(V, E) be a network with paths collection
P and routing matrix R. Suppose G(E,P,H) is a bipartite
graph with biadjacency matrix R. Assume x∗ is delay vector
of N(V,E). Further assume x be a solution to the following
LP optimization:

min ‖ x ‖1 (8)
s.t.

Rx = Rx∗

(a) (b)
Fig. 3. An example of network which is 1-identifiable but its corresponding
bipartite graph is not an expander graph (a) Network topology (b) Its
corresponding bipartite graph

(a) (b)
Fig. 4. Two subgraphs of bipartite graph in Figure 3-b which are regular in
their left side

Then
‖ x− x∗ ‖1→ 0 as ‖ x∗ − x∗S ‖1→ 0

if G is a (2, d, ε)-expander where ε ≤ 1
4 .

In other words the network, N(V, E), is 1-identifiable if G
is a (2, d, ε)-expander for ε ≤ 1

4 .

proof : See [16].
For example, as mentioned before, The bipartite graph in

Figure 2 is proven to be (2, 2, 1
4 ) − expander which means

network in Figure 1 with routing matrix given in Eq. (3) is
1-identifiable.

It should be mentioned that in general the reverse of
Theorem 3 is not true; i.e. there exists some networks N(V,E)
which are 1-identifiable but their corresponding bipartite graph
is not an expander graph. An example of such a graph is
depicted in Figure 3-a. The bipartite graph of its routing matrix
is presented in Figure 3-b. As you can see this bipartite graph
is not regular in its left side which means it cannot be an
expander graph (note that regularity is part of definition of an
expander graph). The degree of a node in left set is either one
or two. Figure 4-(a) and (b), respectively, present subgraph
of G with regular left degree one and two. Each of these
subgraphs are expander.

Above observation clears necessity of extending result in
Theorem 3 for networks whose corresponding bipartite graph
is not regular (and therefore is not expander) but it consists of
bunch of expander graphs.

Theorem 4. Let N(V, E) be a network with routing matrix
R. Let G(X, Y, H) be a bipartite graph with bi-adjacency
matrix R. Suppose Gi(Xi, Y,Hi), i = 1, 2, ...M be di-regular
bipartite subgraphs of G such that:
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• X = ∪Xi

• H = ∪Hi

• di 6= dj for i 6= j

Then, N(V,E) is 1-identifiable, if each of Gi is an (2, di, ε)-
expander graph for ε ≤ 1

4 . Further, links delay is the solution
to LP optimization in Eq. (9)

proof :see the [16].
Basically above theorem says that a network N(V,E) with

routing matrix R is 1-identifiable if every two links li and
lj in N either have different degrees in bipartite graph G,
which means they belong to different expander graphs, or they
satisfy expansion property in Eq. (5). We state this observation
in more formal way in the following corollary for our future
reference.

Corollary 5. Let N(V,E) be a network with routing matrix R
and paths collection P . Let G(E,P,H) be its corresponding
bipartite graph with bi-adjacency matrix R. Then one and
only one of the following statement is true for every two links
l1 and l2 in E:
• deg(l1) > deg(l2)
• deg(l1) < deg(l2)
• deg(l1) + deg(l2)− 4deg(l1, l2) ≥ 0

Up to this point, our goal was to figure out if a given
network with a given routing matrix is identifiable or not. But
sending probes in network may have some cost for network
manager. So besides identifiability problem minimizing the
cost of identifiability is an important problem. In the next
section we shall talk about minimizing number of paths which
are sufficient for network identifiability. Minimizing number
of paths used for network identifiability reduces number of
probes injected to the network which would decrease the cost.

III. MINIMUM PATHS SELECTION

A. Network Covering

In network depicted in Figure 1 there are actually 6 paths
between boundary nodes:

P = {l1l3l4, l1l3l5, l2l3l4, l2l3l5, l1l2, l5l6} (9)

Obviously only 4 of them are sufficient to figure out delay of
every link inside the network. In general, not all of possible
paths between boundary nodes are necessary for network
tomography. The goal of this subsection is to show how to
select paths from P such that a desirable goal achieves.

First let make the problem simple. Consider a network
N(V,E) with collection of end-to-end paths P . We are look-
ing for the minimum number of paths between boundary nodes
such that each link inside the network belongs to at least one
of them. In other words, we are looking for minimum number
of paths that make a link failure inside the network detectable.
Network link failure monitoring is a good application of this
problem. Here the goal is to send end-to-end probes to see if
there exists a failure link inside the network. Surely, we need
to minimize number of probes need to be sent in order to not
put burden in the network.

Suppose ci is the cost corresponding to use path Pi in the
network(in the case all the path is equal ci = 1 ∀i).

To solve this problem let first define an indicator variable
IPi

indicating whether path Pi ∈ P is used or not as follows:

IPi
=

{
1 Pi is used
0 o.w.

(10)

In other words, if we use path Pi in our tomography method
IPi

gets the value 1 and otherwise it is zero. Therefore each
path is engaged in a yes-no or so-called go-no-go decision
[17].

The problem is minimizing number of paths which is:
min

∑r
i=1 IPi

over all binary variables IPi
subject to the fact

that each link belongs to at least one of paths. Let It
P = [IPi ]

r
1

be the vector of path indicators. Then the i-th entry of RtIP is
number of paths go through i-th link. That means each entry of
RtIP should be equal or greater than 1. Therefor our problem
is the answer to the following minimization problem:

min
r∑

i=1

IPi (11)

s.t.
RtIP ≥ 1
IPi ∈ {0, 1}

The above minimization is called binary integer programming
which is a well-studied area in mathematics. Although this
problem is NP-hard, there are a number of algorithms which
approximate the problem very well specially when the con-
straints are of a network nature[18], [17].

B. Minimum paths for 1-identifiability

Now let look at the identifiability problem. The question
is: among all available paths in the network, P , what is the
subset of P with minimum cardinality which guarantees 1-
identifiability of the network. Clearly, the goal is to minimize∑r

i=1 IPi over set of paths P in N(V, E) subject to the fact
that network remains identifiable. To keep network identifi-
able, first condition is that our minimum set should cover
the network which means, as discussed before, RtIp ≥ 1.
For identifiability we use the result of Corollary 5 specifying
conditions for each two links li, lj ∈ E under which the
network is guaranteed to be identifiable. Using our definition
of path indicator in Eq. (10) those conditions can be rewritten
as below:

∑

Pk:li∈Pk

IPk
−

∑

Pk:lj∈Pk

IPk
≥ 1 (12)

∑

Pk:lj∈Pk

IPk
−

∑

Pk:li∈Pk

IPk
≥ 1

∑

Pk:li∈Pkorlj∈Pk

IPk
− 4

∑

Pk:li∈Pk,lj∈Pk

IPk
≥ 0

As mentioned before, for each two links li and lj one and
only one of the above inequalities must be satisfied. To write
this statement mathematically we use alternative constraints
which a well-known trick in linear binary programming [17].
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For that we introduce three binary variables y1, y2, y3 with the
following interpretation:

yi =

{
1 if the i-th constraint is satisfied
0 otherwise

(13)

Then we rewrite the constraints in Eq. (13) in the following
format:

n(1− y1) +
∑

Pk:li∈Pk

IPk
−

∑

Pk:lj∈Pk

IPk
≥ 1 (14)

n(1− y2) +
∑

Pk:lj∈Pk

IPk
−

∑

Pk:li∈Pk

IPk
≥ 1

n(1− y3) +
∑

Pk:li∈Pkorlj∈Pk

IPk
− 4

∑

Pk:li∈Pk,lj∈Pk

IPk
≥ 0

y1 + y2 + y3 = 1

The last equality guarantees that one and only one of yi’s
is one and the others are zero. Note that if yi = 0 the i-th
constraint become a trivial inequality. Therefore constraints in
Eq. (15) is equivalent to the statement that one and only one
of constraints in Eq. (13) holds.

Above argument results in the fact that if a subset of P
satisfies equality and inequalities given in Eq. (15) then the
network is 1-identifiable using those paths.

The following theorem summarized all of above findings for
minimum number of paths which quarantines 1-identifiability
of a given network N(V, E).

Theorem 6. Suppose network N(V, E) with routing matrix
R and path collection P is given. Then the following opti-
mization finds minimum number of paths which guarantees
1-identifiability of the network.

min
r∑

i=1

IPi (15)

s.t.

RtIP ≥ 0
∀li, lj ∈ E(li 6= lj)

n(1− y1ij) +
∑

Pk:li∈Pk

IPk
−

∑

Pk:lj∈Pk

IPk
≥ 1

n(1− y2ij) +
∑

Pk:lj∈Pk

IPk
−

∑

Pk:li∈Pk

IPk
≥ 1

n(1− y3ij) +
∑

Pk:li∈Pkorlj∈Pk

IPk
− 4

∑

Pk:li∈Pk,lj∈Pk

IPk
≥ 0

y1ij + y2ij + y3ij = 1

where n is number of links inside the network (n = |E|).
An important point about binary optimization in Eq.15 is

that the number of constraints is a polynomial function of n
and it is of order O(n2).

A feasible solution to binary integer programming in Eq.
(15) means that graph N(V,E) is identifiable and by solving
the optimization problem, we can find the optimum paths
which can be used to find delay of each link inside the
network.

IV. CONCLUSION

This work presented a novel approach to estimate links
delay in a network. Using the idea of binary compressed
sensing, which has received significant attention in the past
few years, we provided upper bound on delay recovery of the
links inside the network using an end-to-end probe sending
method. Sending probes between nodes on the boundary of a
network comes with the cost of increasing traffic inside the
network. Thus, we showed how to design routing matrix of a
given network to minimize number of injected probes while
the network remains 1-identifiable.

Our work here is limited to networks which are 1-
identifiable. Although it is the simplest identifiability problem
as we showed here it is challenging enough to be worth
studying. A possible future research avenue is to extend the
work here for networks which are k > 1 identifiable.
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