
TUTORIAL FOR UW NETWORK CODING USING OPNET AND
MATLAB

CHRIS LYDICK

1. Walkthrough

The user should have downloaded the .zip or .tar.gz file from the UWEE FUNLAB web-
site (http://www.ee.washington.edu/research/funlab), unzip, and follow the README.txt
file’s instructions for where to place which files. Then execute OPNET, and follow along...

Within the OPNET environment, open the networkcoding project and select the test scenario one
scenario. Figure 1 demonstrates what that window should look like. What we see is a con-
figuration of network-coding enabled routers, and work station end nodes with a single
UDP traffic demand. The network coding enabled routers function as regular routers, and
intercept and do special processing to specific packets (identified by the bulk-size, which
we can specify in the traffic demand).

To demonstrate what these network coding-enabled routers do and how to configure
them, one must first double click one of the router icons, which displays the following
window:

From here, we see the four interfaces (named eth rx ... and eth tx ...), which submit
packets to a queue (named mac x x ), and then to their specific ARP processor (named
ARPx ). From there, packets identified as UDP packets from the network coding traffic
demand (ie, the packets we are processing for network coding) follow the dark blue arrow
to either a sink processor or to a nc-proc processor.

Because of the inherent necessity of network coding to operate on unidirectional links,
each interface is designated as a SEND or RECEIVE interface (for the purposes of this
tutorial). For interfaces which will only SEND network coded packets (remember, links are
unidirectional only in terms of the network coded packets), received network-coded packets
will be assumed in error, and should be discarded. They are done so by forwarding the
packet to the sink processor. Conversely, the RECEIVE interfaces forward the network-
coded packets to the nc-proc processor.

The nc-proc processor then simply copies the packet to all of its output streams (again,
the dark blue arrows going from the nc-proc processor to other processors). The nc-proc
processor has been hard-coded (see future work) to require a constant number of output
interfaces (for other topologies we can make that number change, but it has to remain
constant for all routers in the network), thus the need to send some of the streams to the
sink.

The steps for configuring a network-coding aware router are:
(1) First begin by removing all dark blue arrows from the router model (See Figure 2).

1



2 CHRIS LYDICK

Figure 1. OPNET Project Window: networkcoding project.

(2) Identify which interfaces are SEND or RECEIVE interfaces (briefly described
above).

(3) For SEND interfaces:
(a) Make a single dark blue stream path from the ARP processor of that interface

to the sink processor. This is to make sure that all received packets on that
interface are immediately dropped.

(b) Make another dark blue stream path from the nc-proc processor to the ARP
processor of that interface. This guarantees that copied packets from other
interfaces make it to this interface.

(4) For RECEIVE interfaces:
(a) Make a single dark blue stream path from the ARP processor of that inter-

face to the nc-proc processor. This guarantees that packets received on this
interface get copied to the other interfaces.

(b) Make a single dark blue stream from the nc-proc processor to the sink proces-
sor. This will have to be done once for each RECEIVE interface.

To continue configuring the router, one must now setup the timeouts (or delays) for the
routers to obtain and combine network coded packets. But first, let us dig into the actual
methodology for these timeouts...



TUTORIAL FOR UW NETWORK CODING USING OPNET AND MATLAB 3

Figure 2. OPNET Network Coding Router Node Model Window. Inter-
face 0, 2, and 3 are SEND interfaces, while Interface 1 is a RECEIVE
interface.

At the ARP level, a set of functions was needed to obtain the network-coded packets,
enqueue them and at some time later, combine them and send them along the SEND inter-
face(s). In some routers, a timeout is unnecessary, as the network-coded packet sometimes
only needs to be copied and is not dependent on other packets within the network; in other
words, the packet can be immediately forwarded from a RECEIVE interface, combined
with the SEND ’s nc value, and forwarded to the next router.

There are also two other adjustable parameters at the SEND ’s ARP process. These two
parameters are quite critical, but only need to be adjusted if necessary. Their defaults will
enalbe correct function. The first parameter which is the Bitsize of NC Value referrs to just
that – the size of the code that we can use within the finite fields calculation. By default
these reside within a byte boundary (ie, 8 bits), but it can be changed to anything smaller
or larger. The second adjustable parameter adjusts how the SEND ’s output nc value is
calculated. By default (which is a value of 0), the value is calculated randomly, but the
user can specify specific values to load the network at if desired. That is done through this
parameter.

Figure 3 shows the path of the network-coded packets traversing through the network
for the scenario in Figure 1. Using the same naming conventions from Figure 1, we see
R1 (outputting with the three red arrows) does not need to wait to send packets to its
neighbors. This is because it only receives packets from a single interface. A value of zero



4 CHRIS LYDICK

Figure 3. Demonstration of Timing and Packet Flow for the networkcod-
ing Project

can be assigned to the timeout value for R1. With R2 and R5, we see similarly, that these
routers do not need to wait to forward the packets from the RECEIVE interface(s) to the
SEND interface(s). It only has one input, therefore it can promptly send the packets, being
also given a value of zero to the timeout value.

We see a different scenario for the case of R4, as it should receive the packet from the
blue paths at the same time, but will receive the packet from the red path at an earlier
time. Because of this, we must institute some kind of delay to enqueue the packets so that
they all will be combined and sent to R3.

R3 is in the same boat, it receives packets at different intervals, so a nonzero timeout
value must also be assigned. Another way to think is to observe that the red arrows occur
at time step 1, blue at time step 2, black at time step 3, and yellow at time step 4

This timeout can be adjusted by right clicking the ARP processor for each interface and
navigating to find the Timeout Value. The default is set to zero.

The user may also adjust this value to institute an infinite delay – which is necessary
to evaluate how the network coding would respond to link failures. This can be done by



TUTORIAL FOR UW NETWORK CODING USING OPNET AND MATLAB 5

adjusting the delay parameter to be something very high, such as 100 seconds. Basically
that amounts to having some particular interface enqueueing the network-coded packets for
100 seconds. Alternatively, one can just direct the dark blue output stream that normally
goes from the nc-proc to the ARP interface to go from the nc-proc to the sink.

Delving deeper into the ARP processor, the code has been adapted to identify the
network coded packets, and immediately direct the packets to a static stream (identified
as stream 2) to the nc-proc processor. The ARP processor also receives network coded
packets from the nc-proc.

Upon receipt of a network-coded packet from the nc-proc processor, the SEND ARP
processor enqueues the packet and makes sure a timeout has been established (using the
timeout value described above). Once said timeout occurs, the ARP processor dequeues all
packets, and combines them using a Matlab interface to the gf() function for finite fields. It
also uses a randomly (though it can also be statically set) value to multiply the combined
packets value with that of the interfaces value. This value is referred to as the nc-valueThe
packet is then set out of the interface.

For debugging and evaluation purposes, the programmer needs only to then identify the
module ID of the ARP module (printed to the console at the beginning of the simulation)
and that of the interfaces random value to manually verify the results. Figure 4 shows the
entire network, all output interface nc-values, and the values of the network coded-packets
as they traverse through the network. The rectangular boxes with the numbers are the
nc-values that are multiplied by each combined outgoing packet.

In Figure 5, we see the console output that shows when a user executes the simulation
(given the above nc-values at each output interface). The output may seem cryptic at first,
which is why understanding the output is important. It takes the form:

(Current simulation time | Process ID) At <NC Value at the output interface> = Value of

packet after combination and multiplication of nc value at output.

So, here we see at time 163.5 (seconds), the value at processor ID 4980, which refers to
node 5 (see Figure 4), with output nc-value of 102, gives a correct final product nc-value
of 62. By causing failures on individual (or multiple) links, we see this value change, as
the combination of nc-values differs.

2. Future Work

(1) Global function to hand out nc values for each node, as opposed to relying on the
random number generator to issue unique values. New seeds must currently be
used if a simulation ends up generating multiple outputs for the same nc value.

(2) Make the nc-proc Processor capable of sensing the number of flows it has going to
other processors within the router model, reducing the need for hard-coding a set
number of links to the sink processor.

(3) The memory management utilized within this work, may not be well suited for
large simulations.



6 CHRIS LYDICK

Figure 4. NC-Values and Packet Values for a Simulation without Failures

(4) While the implementation of Matlab was essential, if one could generate some
functions to calculate Finite Fields without the use of Matlab, that may reduce
some complexity and wait-time during execution of the simulation.

There are also some limitations to cover in terms of the implementation of this code,
and they are as follows:

(1) Network sizes are definitely an issue, as this implementation was initially created
to work on smaller networks and handle small loads of UDP data between source
and destionation.

(2) Currently, this implementation only codes a value within the UDP header, and not
the data itself. This was done primarily because it was very simple to add ”hidden”
data within the UDP frame, which is invisible to the end-user and to the simulation
statistics (ie, the addition of this data does not make the packet appear to be any
larger to the rest of the simulation environment.



TUTORIAL FOR UW NETWORK CODING USING OPNET AND MATLAB 7

Figure 5. Simulation Console showing Successful Network-Coded Packets.

(3) While a UDP traffic demand used within this simulation environment, it would be
simple to switch to TCP traffic demands. Because the ACKs are of different size
than the data packets, routers would only intercept and process the one-way data
flows while letting the ACK flows return in the reverse direction.

(4) It could be helpful to ”identify” network-coded packets in another way than by
data size. If chosen correctly, the issue of accidentally processing a non-network
coded packet as such can be mitigated. If the size to identify these packets is chosen
poorly, it will definitely increase the problem.

(5) As the simulation environment stands, once the network-coding topology (ie, the
unidirectional topology that the network-coded packets run along) must remain
static through the simulation.

(6) The discovery algorithm that would normally occur is not currently implemented.


