
FROSTY: A Fast Hierarchy Extractor for Industrial CMOS Circuits*
Lei Yang and C.-J. Richard Shi

Department of Electrical Engineering, University of Washington
Seattle, WA 98195

{yanglei, cjshi}@ee.washington.edu

Abstract: This paper presents FROSTY, a computer program
for automatically extracting the hierarchy of a large-scale digital
CMOS circuit from its transistor-level netlist description and a
library of subcircuits. To handle the complexity of industrial
circuits, FROSTY combines traditional structural recognition and
pattern matching methods into a two-step extraction process.
First, gate structures based on channel-connected-components are
recognized from a circuit netlist and library subcircuits. Then
annotated graphs representing the connectivity and properties of
gate structures are constructed. Comparing to transistor-level
netlists, these graphs are much smaller in size, more
distinguishable in structure, and are thus more suitable for
labeling based pattern matching. An efficient pattern matching
algorithm is applied to extract the circuit hierarchy from these
condensed circuit graphs. FROSTY has been demonstrated to be
orders of magnitude faster than the best known extraction
program SubGemini, capable of extracting the entire hierarchy of
industrial designs with several hundred thousand transistors in a
few minutes on a Sun workstation. Further FROSTY is scale with
the size of a circuit.

1. INTRODUCTION
 With the rapid development of IC industry, continuously
increasing CMOS circuit complexity poses a great challenge to
CAD tools, and makes hierarchical expression of circuits very
important. There are several levels of abstractions to represent
circuits. Transistor level describes circuits through a number of
transistors and their interconnections. Gate level represents logic
gates as building blocks to describe circuits. In digital CMOS
designs, there is another higher level of circuit, which includes
functional blocks consisting of a number of gates, for example:
latch, flip-flop, adder, etc. This block level provides a behavioral
description of digital integrated circuits.

 Automatic recognition of a high level structure from the
transistor level netlist of a circuit design is important for many
tasks in VLSI design. The early automatic extractors have been
developed mostly for functional verification of a circuit layout
with respect to its netlist [1][2]. Later, researchers have also
shown how to extract higher level structures to speed up the
simulation [3]. If the circuit is described at the transistor level, the
simulation time is long compared to a behavior block level
simulation. This is extremely useful for post-layout simulation
before the tapeout. Hierarchy extraction has also been used in
formal verification, as well as circuit diagnosis and test generation
[4].

 Existing extraction algorithms appeared in literature can be
classified to two categories: structural recognition and pattern

* This research was supported by DARPA NeoCAD Program under Grant No.
N66001-01-8920 and NSF CAREER Award under Grant No. 9985507.

matching. Structural recognition uses rule-based techniques to
identify logic gates from sets of channel-connected MOS
transistors [5][6]. This category of algorithms is fast but it can
only recognize structures with generic rules, for example, static
CMOS gates with complementary structures between p-part and
n-part. It cannot handle well irregular-structured blocks, for
example, DFF, latches, or high-level blocks with structures that
are hard to pre-defined as rules.

 Pattern matching based extraction algorithms map a flat circuit
to a graph, in which transistors are nodes and interconnection
wires are edges. Then a subgraph-isomorphism technique is
applied to find a one-to-one correspondence between nodes and
edges within the two graphs [7][8][9]. However, finding
subcircuits in a transistor level object circuit is a NP-complete
problem and is much slower compared to structural recognition.
The complexity of pattern matching is determined by two factors
[10]. The first factor is how to construct a discriminative graph
labeling algorithm. If the model graph vertices carry unique labels
that correspond to the labels of the vertex images in an object
graph, then subcircuit recognition is a relatively easy task (more
distinguishable in structure). Unfortunately, the graphs
representing directly the transistor-level netlist are hard to be
distinguishable, since both the connectivity and the types of
transistors a node connected to can be in-distinguishable for most
circuit nodes in digital CMOS circuits. As a result, the
construction of a discriminative labeling algorithm is a difficult
task. The second factor is how to efficiently find subcircuits in the
object circuit. The labeling procedure and the recognition strategy
are related and both affect the performance of the subcircuit
extraction program.

 Some efforts have been dedicated to develop good pattern
matching algorithms. SubGemini [9] is one of them. It labels part
of the nodes with the node’s information as well as its neighbors’
information and then performs breadth-first-search in the object
graph. SubGemini has been demonstrated to be faster than the
previous pattern matching algorithms.

 In this paper, we propose to combine structural recognition
and pattern matching into a two-step extraction process. In the
first step, a structural recognition algorithm is applied to transistor
level circuits to extract gate level structures. The second step
entails generating a directed graph based on the gate level
strcutures. Every node in this graph corresponds to one gate,
every edge represents one interconnection wire, and the edge
direction stands for the signal flow in a circuit. Then the pattern
matching process can be applied to recognize the user-defined
behavior blocks.

 The proposed two-step process has been implemented into a
computer program called FROSTY. It is very fast, due to the
following reasons. First, compared with the transistor level pattern
matching algorithms, the gate level pattern matching algorithm

741

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

can significantly reduce the size of the graph because every graph
node is a gate instead of a transistor. Secondly, pattern matching
of directed graphs (gate level) is faster than undirected graphs
(transistor level). Finally, every node in the graph can be labeled
according to its gate property, including gate type, the gate logic
function, fanout number of gate, number of inputs, etc; this can
guarantee most of the nodes in the graph have discriminative
labels.

 Given a transistor level circuit and a used-defined library file,
FROSTY recognizes all CMOS gates and user-defined blocks in
the library file and outputs a block level netlist. The design of
FROSTY is driven by the observation that for industrial CMOS
designs, every design company introduces a considerable amount
of its own custom behavioral blocks. If those blocks can be
extracted from the transistor level circuit, it will be very helpful
for design verification, test generation, and fast simulation. In this
paper, we use a set of post layout designs from Boeing’s digital
CMOS ASIC divisions.

 The remainder of this paper is organized as follows. An
overview of FROSTY is given in Section 2. Section 3 presents the
detailed FROSTY algorithm and its time complexity analysis.
Section 4 describes performance results on benchmarks from the
Boeing Company. Concluding remarks are made in Section 5.

2. PROGRAM OVERVIEW
 FROSTY reads in a transistor level digital CMOS netlist
(object circuit), and a library file in the SPICE format, as shown
in Figure 1. The library file contains user specified subcircuit
blocks that are to be recognized from the object circuit. After
extraction, FROSTY outputs the object circuit description in
terms of standard CMOS logic gates and user-defined blocks in
the library using VHDL or Verilog formats. FROSTY also
produces a header file that contains the functional definitions of
all used standard CMOS gates. Together with VHDL or Verilog
model descriptions of the library blocks, the extracted block level
netlist and the header file can be used for the post-layout
simulation of a transistor-level netlist at higher levels.

 Figure 1. FROSTY flow and architecture.

3. THE TWO-STEP FROSTY ALGORITHM
 FROSTY consists of two major steps. The first step is from
the transistor level netlist to the gate level, and the second step is
from the gate level to the user-defined behavior block level. They
are described in 3.1 and 3.2, respectively.

3.1 GATE RECOGNITION
3.1.1 CCC GROUPING
 After a netlist is read, the structural recognition algorithm is
used for CMOS gate recognition. First, the circuit is divided into
Channel-Connected-Components (CCC), which are clusters of
transistors connected at the sources and drains. The recognition
process starts from every VDD or GND connected transistor, and
ends at the connection node between the p-tree and n-tree. All the
channel-connected transistors on this path will be grouped
together as a p-tree or n-tree. A shared connection node between a
p-tree and an n-tree are considered as one CCC. Figure 2 shows
the grouping process.

 Figure 2. Group the channel-connected blocks.

3.1.2 LOGIC FUNCTION RECOGNITION
 For each p-tree and n-tree in the circuit, FROSTY performs
the following steps to recognize its logic function. First, FROSTY
performs a parallel search inside the p-tree or n-tree. After finding
all the transistors that are in parallel, FROSTY replaces them with
a “super-transistor”, as shown in Figure 2. Then FROSTY
performs a serial search, finding all transistors connected in series
and replaces them with a “super-transistor”. The parallel and
series search continues until only one “super-transistor” is left in
the tree, at which time the logic function of the tree can be
recognized. For example, in Figure 2 the logic function (seen at
the P-N connection Node) of this p-tree and n-tree are:

 dcbaf treep ⋅+⋅=−)(dcbaf treen ++⋅=−)(

 Every CCC contains one p-tree and one n-tree. According to
the logic function relationships of the p-tree and the n-tree, the
CCC can be divided into two types of gates:

• Standard Gate
 If a CCC’s p-tree and n-tree logic functions have a
complementary relationship, the CCC is a standard CMOS gate.

• Pseudo Gate
 A CCC whose p-tree and n-tree logic functions are not
complementary is called a pseudo gate. Figure 3 is an example of
a pseudo gate, one tri-state inverter in a latch. Because the logic

742

functions of the tri-state inverter’s p-tree and n-tree do not form a
complementary relationship, it is considered to be a pseudo gate.

 The characteristics of the gates, such as gate type, logic
function of the gate, number of inputs of the gate, gate fanout
number, fanout gates properties, etc. are expressed as node
properties in the graph. For example, the node that represents the
tri-state inverter in Figure 3 has the node property in Table 1.

 In static digital CMOS circuits, pseudo gates always exist as
part of behavior models (flip-flop, latch…). When all the behavior
models have been extracted, there should be no pseudo gates left
in the circuit. Table 1. Node property of the pseudo gate in Figure 3.

Gate type Pseudo gate

p-tree baf ⋅= Logical
function n-tree baf ⋅=

Number of inputs 2
Fanout number 2, transmission gate + inverter

 Here, let us use the D-flip-flop shown in Figure 5 and
transform it from a circuit to a graph. Using the partition and gate
recognition algorithm in Step 1, the circuit can be divided into 10
gates. Notice that gate 3 is a pseudo gate made up of two tri-state
inverters controlled by the clock signal. Because the two tri-state
inverters have the same p-n connection node (the two gates
outputs are connected together), the program considers them as
one CCC. Gate 10 is a transmission gate, so the edges connected
to gate 10 (gate 5 - gate 10, gate 7 - gate 10, gate 8 - gate 10) are
undirected edges. Other gates are standard gates.

 Figure 3. Pseudo CMOS Gate.

 Even after structural grouping and logical recognition of the
gates, there may be some transistors that cannot be grouped into
any CCC. Examples are transistors from pass transistor logic, as
shown in Figure 4, which are also recognized by FROSTY.

• Pass Transistor Logic

 Figure 4. Pass Transistor Logic.

 Currently, FROSTY can recognize static digital circuits. After
gate recognition is finished, the circuit can be classified into three
categories: gates, pseudo gates and pass transistor logic. For
dynamic logic circuits, more categories need to be created.

Figure 5. D flip-flop (DFF) circuit after gate recognition.

3.2 USER-DEFINED-BLOCK RECOGNITION According to the connection relationships among the gates, a
directed graph for this D-flip-flop can be constructed as shown in
Figure 6.

 In Step 1, the gate level structures are generated for the object
circuit and all the blocks in the library. In Step 2, those structures
are converted to directed graphs, then a pattern matching
algorithm is applied to recognize all the behavior blocks from the
object circuit.

3.2.1 DIRECTED GRAPH GENERATION
 After Step 1, the circuit has been transformed into a gate-
interconnected structure. With each such gate represented by a
node, the circuit is then characterized as a graph with both
directed edges and un-directed edges.

• Directed edge and undirected edge
Figure 6. Graph representation of the DFF. A directed edge represents a wire from the output of one gate

to the input of another gate, which describes the signal flow in the
circuit. For pass transistor logics, it is hard to detect the signal
flow. So the wires connected to pass transistor logics can be
considered as undirected edges.

3.2.2 PATTERN MATCHING
 After the equivalent graphs are constructed for the object
circuit and the library subcircuits, a pattern matching algorithm is
employed to locate all of the defined subcircuits in the object
circuit. • Node property

743

 The basic pattern matching process is illustrated with the
following example. Consider the DFF in Figure 5 as a subcircuit
block defined in the library file. The object circuit, shown in
Figure 7, contains the DFF. The corresponding graph of this
circuit is shown in Figure 8. The final pattern matching result is
shown in Figure 9.

 In order to find the block DFF in the object circuit, we should
apply pattern matching to the subgraph (shown in Figure 6) in
object graph (shown in Figure 8). This means that for every node
in the subgraph, we should find its corresponding node in the
object graph. In FROSTY, two node-stacks are set up to hold all
the matched nodes, shown in Table 2.

Figure 7. The object circuit after the gate recognition.

Figure 8. Graph representation of the object circuit.

Figure 9. The extracted block-level structure.

 The pattern matching process employed in FROSTY is called
gradual matching [7]. It begins with a starting node in a block
graph, any object graph node with the same “Node Property” as
the starting node is identified as a possible location of the
subcircuit. Then FROSTY verifies whether there is an actual
subcircuit at each possible location.

 The first step of the gradual matching process is to locate the
starting node in a block graph. From this starting node, all other
nodes can be reached through directed or undirected edges. This
node is also called “source node”. In order to locate this source
node in the block graph, we pick up a random node first, and then

backtrack to its parent nodes. This backtracking is done
recursively until a node that has no parent nodes is reached. This
node is a “source node”. In the DFF block graph in Figure 6, the
source node is node 1. However, sometimes we cannot find the
source node because the graph may be a ring, as shown in Figure
10. In this case, we can pick any node to be the source node.

Figure 10. Ring structure of a graph.

 After the source node in the block graph is found, all the
nodes in the object graph will be searched to locate nodes with
similar “Node Properties” as the source node. Any one of these
nodes is a possible location of the subcircuit. For every such node
(for example, node 3 in Figure 8), the source node and this
possible node will be pushed into the block graph node-stack and
object graph node-stack, respectively, to begin the gradual
matching process; this is Loop 1 in Table 2.

 Table 2. Pattern matching process for the example.

Matching process Block Graph
Node-Stack

Object Graph
Node-Stack

Loop 1 (source node) 1 3
2 4
3 5 Loop 2
5 7
4 6
6 8 Loop 3
10 13
9 12
7 9 Loop 4
8 10

 Then in Loop 2, the matching process starts from this pair of
matched nodes in the stacks (node1block graph-node3object graph). In the
block graph, node1 connects with nodes 2, 3, and 5, while in
object graph node3 connects with nodes 4, 5, and 7. After
comparing the “Node Properties” of the two series of nodes, we
find the following node pairs, node2block graph-node4object graph,
node3block graph-node5object graph, node5block graph-node7object graph, have
the same “Node Property”, respectively. Those pairs are identified
to be matched node pairs and pushed into the stacks.

 In Loop 3, the matching process starts from all of the newly
matched node pairs in the previous loop. For example, from
matched node pair node3block graph-node5object graph in the stacks, we
can match node4block graph-node6object graph; from matched node pair
node5block graph-node7object graph, we can match node6block graph-
node8object graph, node10block graph-node13object graph; from node pair
node2block graph-node4object graph, we can match node5block graph-
node7object graph. All these newly found node pairs are also pushed
into the stacks.

 The process in Loop 3 is iteratively performed until every
block graph node matches its corresponding node in object graph.
The whole process is shown in Table 2. If any conflict occurs

744

during the gradual matching process, the process fails, and the
node-stacks are emptied for next matching process.

4. EXPERIMENTAL RESULTS
 FROSTY was written in C++ and executed on SUN Fire
V480 server with 900MHz UltraSparc-III processors and 16GB
RAM. Results from applying FROSTY to several industrial
circuits from Boeing are presented in this section.

 In some cases, there may be more than one “source node” in
the graph, as shown in Figure 11. In this example, either node 1 or
node 2 can be a “source node”. For this case, the program picks
the starting node randomly. Suppose that node 1 is chosen here,
the searching process will be 1-3-5-6-7-8. Since node 2 and 4
cannot be searched, backtracking will be applied. After checking
the stack, unmatched node 4 is connected with matched node 6.
So backtracking from node 6-4-2 is performed until all the nodes
are matched.

 Table 4 shows the statistics of a set of test circuits and the
FROSTY CPU time for recognizing all the gates and blocks. Test
circuits PSM, PSM-7, PSM-17, PSM-43 are a set of digital
CMOS designs in Boeing’s “Power Supply Monitor ASIC” on
F22 airplanes. Test circuits CEGRP, CEGRP-3, CEGRP-5,
CEGRP-7, DFGRP, DFGRP-2, DFGRP-4, DFGRP-6 are a set of
digital designs in Being’s “Pressure Belt Chip”. This chip is used
in Boeing’s airplanes to determine the structural load on aircraft
wings by measuring the pressure distributed on the top and
bottom of the wing. These test circuits contain a lot of Boeing
defined behavior blocks, such as DFFs, latches, MUXs, adders,
etc. Table 5 shows in detail how many blocks are contained in the
circuits. For example, in PSM, there are 3 different structures of
DFFs and the total number of DFFs is 122. Using the library file
provided by Boeing, FROSTY extracts all of the blocks in the
library file and outputs a behavioral Verilog/VHDL netlist
containing the recognized blocks and the standard CMOS gates
that do not belong to any block.

Figure 11. An illustration of the backtracking process.

 Table 5. Blocks types and numbers in test circuits.
3.3 OVERALL ALGORITHM AND COMPLEXITY PSM CEGRP DFGRP

Types 3 10 5
DFF

Number 122 1304 1436
Types 1 - -

Latch
Number 15 - -
Types - 3 5

Adder
Number - 118 646
Types 1 3 4

MUX
Number 27 1049 508
Types - 2 2

XNOR
Number - 290 74

 The entire algorithm of FROSTY is shown in Table 3. In
FROSTY, hash tables are used wherever possible due to its linear
search time. The complexity of the program is O(k*n + g1*g2),
here k*n represents the complexity of Step 1, n is the number of
transistors in the circuit, k is an integer number, one can see that
the CPU time for Step 1 is linear to n; g1*g2 represents the
complexity of Step 2, where g1 and g2 are the number of gates in
library file and number of gates in the object circuit after Step 1.

 Table 3. Algorithm FROSTY.

 PREPROCESS FOR LIBRARY:
 LOOP: for i = Block 1 : Block n (in library file) {
 Divide the Blocki into channel-connected-components (CCC)
 Recognize pass transistor logic
 Recognize the logic function of every CCC in the Blocki
 }
 INITIALIZATION:
 Construct hash tables to store transistors and nodes of the circuit
 Divide the circuit into channel-connected-components(CCC)
 Recognize transmission gates in the left transistors
 Recognize the logic function of every CCC
 LOOP: for i = Block 1 : Block k (in library file)
 {
 OuterLoop:
 Find “source node” in the Blocki and push it into node-stack
 InnerLoop:
 for j = Node1 : Node n (in object graph) {
 if (Node Property (Node i) = Node Property (Source Node)) {
 Push Source Node and Node i into the node-stack.
 do{ Searching from matched nodes in node-stack to find new
matched nodes, and push them into node-stack. }
 while {conflict happens or all nodes in Blocki has been matched}
 }
 }
 }
 Output the blocks and gates to a Verilog or VHDL block-level netlist

 In Table 4, we compare our results with SubGemini [9]. For
each test circuit in Table 4, we try to use SubGemini to extract all
of the behavior blocks in Boeing’s library. However, SubGemini
fails to recognize some blocks. The recognized block numbers
and CPU time of SubGemini are listed in columns 8 and 9 in
Table 4. The CPU time comparison between FROSTY and
SubGemini is shown in Figure 12.

 Table 4 also shows the speed of FROSTY. For test circuit
CEGRP-7 (729652 transistors), recognizing 74998 gates and
19327 behavior blocks only takes 305.32 seconds. FROSTY is
faster than SubGemini for larger circuits and libraries because it
performs pattern matching at the gate level. For example, it is 20
times faster than SubGemini for the CEGRP-7 circuit.

 The CPU time of FROSTY depends on two factors: 1) the size
of a circuit and 2) the number of behavior blocks in the library
file. To observe the relationship between circuit sizes and CPU
times, we use a set of PSM circuits and perform extraction with
the same library file. In Figure 13 the relationship between CPU
time and circuit sizes is displayed. We can see that FROSTY CPU
time is linear to the size of a circuit with the same library file.

745

 Table 4. Results of FROSTY and SubGemini.

FROSTY CPU Time (s) SubGemini Results
Circuits #Transistors # CMOS gates # Behavior

blocks
Setup and Step-1 Step 2 Total # Extracted Behavior

blocks CPU Time (s)

PSM 4520 1516 164 1.17 0.58 1.75 156 1.4
PSM - 7 31640 10612 1148 7.83 3.97 11.8 1091 13.6

PSM - 17 76840 25772 2788 18.98 9.88 28.86 2651 48.4
PSM - 43 194360 65188 7052 49.9 25.2 75.1 6714 277.1
CEGRP 104236 10714 2761 26.45 15.03 41.48 1419 94.1

CEGRP - 3 312708 32142 8283 81.57 46.83 128.4 4568 1113.5
CEGRP - 5 521180 53570 13805 135.0 78.31 213.35 7093 3178.1
CEGRP - 7 729652 74998 19327 191.63 113.67 305.32 9926 5856.2

DFGRP 119257 10048 2664 30.1 45.8 75.9 2001 108.0
DFGRP - 2 238514 20096 5328 60.1 91.5 151.6 3074 1113.9
DFGRP - 4 477028 40192 10656 121.2 169.96 219.2 5652 2456.9
DFGRP - 6 715542 60288 15984 182.45 233.7 416.2 8802 4317.2

 Figure 12. FROSTY and SubGemini CPU time comparison.

 Figure 13. CPU time vs. circuit scale.

5. CONCLUSIONS
 This paper presented FROSTY, a computer program for the
automatic extraction of circuit hierarchy targeted for the post-
layout simulation and verification of library-based large-scale
CMOS circuit design. By condensing both the object circuit and
library circuits into graphs of blocks and then applying the pattern
matching algorithm at the gate level, FROSTY has demonstrated
that it can extract an industrial design with seven hundred
thousand transistors in less than five minutes on a modern Sun
workstation. By representing the extracted hierarchy using high-
level descriptions such as VHDL and Verilog, the output netlist
can be simulated by any high-level behavioral simulator.

6. REFERENCES

[1] T. Watanabe, M. Endo, and N. Miyahara, “A new automatic
logic interconnection verification system for VLSI design”,
IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, vol. CAD-2, no. 2, pp. 70-76, 1982.

[2] M. S. Abadir and J. Ferguson, “An improved layout
verification algorithm (LAVA)”, Proc. European Design
Automation Conference, pp. 391-395, 1990.

[3] T. J. Thatcher and R. A. Saleh, “Automatic partitioning and
dynamic mixed-mode simulation”, Proc. IEEE Custom
Integrated Circuits Conference, pp. 12.7.1-12.7.4, 1992.

[4] S. Kundu, “GateMaker: A transistor to gate level model
extractor for simulation, automatic test pattern generation
and verification”, Proc. of International Test Conference, pp.
372-381, 1998.

[5] M. Boehner, “LOGEX – an automatic logic extractor from
transistor to gate level for CMOS technology”, Proc.
IEEE/ACM Design Automation Conference, pp. 517-522,
1988.

[6] A. Lester, P. Bazargan-Sabet and A. Greiner, “YAGLE, a
second generation functional abstractor for CMOS VLSI
circuits”, Proc. of the Tenth International Conference on
Microelectronics, pp. 265-268, 1998.

[7] F. Luellau, T. Hoepken and E. Barke, “A technology
independent block extraction algorithm”, Proc. IEEE/ACM
Design Automation Conference, pp. 610-615, 1984.

[8] G. Pelz and U. Roettcher, “Pattern matching and
refinement hybrid approach to circuit comparison”,
IEEE Transactions on Computer-Aided Design, pp. 264-275,
vol. 13, no. 2, Feb. 1994.

[9] M. Ohlrich, C. Ebeling and E. Ginting, “SubGemini:
Identifying subcircuits using a fast subgraph isomorphism
algorithm”, Proc. IEEE/ACM Design Automation
Conference, pp. 31-37, 1993.

[10] N. Rubanov, “SubIslands: The probabilistic match
assignment algorithm for subcircuit recognition”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, pp. 26-38, Jan. 2003.

746

	INTRODUCTION
	PROGRAM OVERVIEW
	THE TWO-STEP FROSTY ALGORITHM
	Gate Recognition
	CCC Grouping
	Logic Function Recognition

	User-Defined-Block Recognition
	Directed Graph Generation
	Pattern Matching

	Overall Algorithm and Complexity

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

