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Abstract: This paper presents FROSTY, a computer program 
for automatically extracting the hierarchy of a large-scale digital 
CMOS circuit from its transistor-level netlist description and a 
library of subcircuits. To handle the complexity of industrial 
circuits, FROSTY combines traditional structural recognition and 
pattern matching methods into a two-step extraction process. 
First, gate structures based on channel-connected-components are 
recognized from a circuit netlist and library subcircuits. Then 
annotated graphs representing the connectivity and properties of 
gate structures are constructed. Comparing to transistor-level 
netlists, these graphs are much smaller in size, more 
distinguishable in structure, and are thus more suitable for 
labeling based pattern matching. An efficient pattern matching 
algorithm is applied to extract the circuit hierarchy from these 
condensed circuit graphs. FROSTY has been demonstrated to be 
orders of magnitude faster than the best known extraction 
program SubGemini, capable of extracting the entire hierarchy of 
industrial designs with several hundred thousand transistors in a 
few minutes on a Sun workstation. Further FROSTY is scale with 
the size of a circuit. 

 
1. INTRODUCTION 
      With the rapid development of IC industry, continuously 
increasing CMOS circuit complexity poses a great challenge to 
CAD tools, and makes hierarchical expression of circuits very 
important. There are several levels of abstractions to represent 
circuits. Transistor level describes circuits through a number of 
transistors and their interconnections. Gate level represents logic 
gates as building blocks to describe circuits. In digital CMOS 
designs, there is another higher level of circuit, which includes 
functional blocks consisting of a number of gates, for example: 
latch, flip-flop, adder, etc. This block level provides a behavioral 
description of digital integrated circuits. 

      Automatic recognition of a high level structure from the 
transistor level netlist of a circuit design is important for many 
tasks in VLSI design. The early automatic extractors have been 
developed mostly for functional verification of a circuit layout 
with respect to its netlist [1][2]. Later, researchers have also 
shown how to extract higher level structures to speed up the 
simulation [3]. If the circuit is described at the transistor level, the 
simulation time is long compared to a behavior block level 
simulation. This is extremely useful for post-layout simulation 
before the tapeout.  Hierarchy extraction has also been used in 
formal verification, as well as circuit diagnosis and test generation 
[4].  

      Existing extraction algorithms appeared in literature can be 
classified to two categories: structural recognition and pattern 
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matching. Structural recognition uses rule-based techniques to 
identify logic gates from sets of channel-connected MOS 
transistors [5][6]. This category of algorithms is fast but it can 
only recognize structures with generic rules, for example, static 
CMOS gates with complementary structures between p-part and 
n-part. It cannot handle well irregular-structured blocks, for 
example, DFF, latches, or high-level blocks with structures that 
are hard to pre-defined as rules. 

     Pattern matching based extraction algorithms map a flat circuit 
to a graph, in which transistors are nodes and interconnection 
wires are edges. Then a subgraph-isomorphism technique is 
applied to find a one-to-one correspondence between nodes and 
edges within the two graphs [7][8][9]. However, finding 
subcircuits in a transistor level object circuit is a NP-complete 
problem and is much slower compared to structural recognition. 
The complexity of pattern matching is determined by two factors 
[10]. The first factor is how to construct a discriminative graph 
labeling algorithm. If the model graph vertices carry unique labels 
that correspond to the labels of the vertex images in an object 
graph, then subcircuit recognition is a relatively easy task (more 
distinguishable in structure). Unfortunately, the graphs 
representing directly the transistor-level netlist are hard to be 
distinguishable, since both the connectivity and the types of 
transistors a node connected to can be in-distinguishable for most 
circuit nodes in digital CMOS circuits. As a result, the 
construction of a discriminative labeling algorithm is a difficult 
task. The second factor is how to efficiently find subcircuits in the 
object circuit. The labeling procedure and the recognition strategy 
are related and both affect the performance of the subcircuit 
extraction program.  

      Some efforts have been dedicated to develop good pattern 
matching algorithms. SubGemini [9] is one of them. It labels part 
of the nodes with the node’s information as well as its neighbors’ 
information and then performs breadth-first-search in the object 
graph. SubGemini has been demonstrated to be faster than the 
previous pattern matching algorithms.  

      In this paper, we propose to combine structural recognition 
and pattern matching into a two-step extraction process. In the 
first step, a structural recognition algorithm is applied to transistor 
level circuits to extract gate level structures. The second step 
entails generating a directed graph based on the gate level 
strcutures. Every node in this graph corresponds to one gate, 
every edge represents one interconnection wire, and the edge 
direction stands for the signal flow in a circuit. Then the pattern 
matching process can be applied to recognize the user-defined 
behavior blocks.  

      The proposed two-step process has been implemented into a 
computer program called FROSTY. It is very fast, due to the 
following reasons. First, compared with the transistor level pattern 
matching algorithms, the gate level pattern matching algorithm 
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can significantly reduce the size of the graph because every graph 
node is a gate instead of a transistor. Secondly, pattern matching 
of directed graphs (gate level) is faster than undirected graphs 
(transistor level). Finally, every node in the graph can be labeled 
according to its gate property, including gate type, the gate logic 
function, fanout number of gate, number of inputs, etc; this can 
guarantee most of the nodes in the graph have discriminative 
labels. 

      Given a transistor level circuit and a used-defined library file, 
FROSTY recognizes all CMOS gates and user-defined blocks in 
the library file and outputs a block level netlist. The design of 
FROSTY is driven by the observation that for industrial CMOS 
designs, every design company introduces a considerable amount 
of its own custom behavioral blocks. If those blocks can be 
extracted from the transistor level circuit, it will be very helpful 
for design verification, test generation, and fast simulation. In this 
paper, we use a set of post layout designs from Boeing’s digital 
CMOS ASIC divisions.  

      The remainder of this paper is organized as follows. An 
overview of FROSTY is given in Section 2. Section 3 presents the 
detailed FROSTY algorithm and its time complexity analysis. 
Section 4 describes performance results on benchmarks from the 
Boeing Company. Concluding remarks are made in Section 5. 

2. PROGRAM OVERVIEW 
      FROSTY reads in a transistor level digital CMOS netlist 
(object circuit), and a library file in the SPICE format, as shown 
in Figure 1. The library file contains user specified subcircuit 
blocks that are to be recognized from the object circuit. After 
extraction, FROSTY outputs the object circuit description in 
terms of standard CMOS logic gates and user-defined blocks in 
the library using VHDL or Verilog formats. FROSTY also 
produces a header file that contains the functional definitions of 
all used standard CMOS gates. Together with VHDL or Verilog 
model descriptions of the library blocks, the extracted block level 
netlist and the header file can be used for the post-layout 
simulation of a transistor-level netlist at higher levels. 

                           
         Figure 1. FROSTY flow and architecture. 

3. THE TWO-STEP FROSTY ALGORITHM 
      FROSTY consists of two major steps. The first step is from 
the transistor level netlist to the gate level, and the second step is 
from the gate level to the user-defined behavior block level. They 
are described in 3.1 and 3.2,  respectively. 

3.1 GATE RECOGNITION 
3.1.1 CCC GROUPING 
      After a netlist is read, the structural recognition algorithm is 
used for CMOS gate recognition. First, the circuit is divided into 
Channel-Connected-Components (CCC), which are clusters of 
transistors connected at the sources and drains. The recognition 
process starts from every VDD or GND connected transistor, and 
ends at the connection node between the p-tree and n-tree. All the 
channel-connected transistors on this path will be grouped 
together as a p-tree or n-tree. A shared connection node between a 
p-tree and an n-tree are considered as one CCC. Figure 2 shows 
the grouping process. 

 
            Figure 2. Group the channel-connected blocks. 

3.1.2  LOGIC FUNCTION RECOGNITION 
      For each p-tree and n-tree in the circuit, FROSTY performs 
the following steps to recognize its logic function. First, FROSTY 
performs a parallel search inside the p-tree or n-tree. After finding 
all the transistors that are in parallel, FROSTY replaces them with 
a “super-transistor”, as shown in Figure 2. Then FROSTY 
performs a serial search, finding all transistors connected in series 
and replaces them with a “super-transistor”. The parallel and 
series search continues until only one “super-transistor” is left in 
the tree, at which time the logic function of the tree can be 
recognized. For example, in Figure 2 the logic function (seen at 
the P-N connection Node) of this p-tree and n-tree are: 

               dcbaf treep ⋅+⋅=− )(                    dcbaf treen ++⋅=− )(  

      Every CCC contains one p-tree and one n-tree. According to 
the logic function relationships of the p-tree and the n-tree, the 
CCC can be divided into two types of gates: 

• Standard Gate                    
      If a CCC’s p-tree and n-tree logic functions have a 
complementary relationship, the CCC is a standard CMOS gate.                         

• Pseudo Gate                    
      A CCC whose p-tree and n-tree logic functions are not 
complementary is called a pseudo gate. Figure 3 is an example of 
a pseudo gate, one tri-state inverter in a latch. Because the logic 
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functions of the tri-state inverter’s p-tree and n-tree do not form a 
complementary relationship, it is considered to be a pseudo gate. 

      The characteristics of the gates, such as gate type, logic 
function of the gate, number of inputs of the gate, gate fanout 
number, fanout gates properties, etc. are expressed as node 
properties in the graph. For example, the node that represents the 
tri-state inverter in Figure 3 has the node property in Table 1. 

      In static digital CMOS circuits, pseudo gates always exist as 
part of behavior models (flip-flop, latch…). When all the behavior 
models have been extracted, there should be no pseudo gates left 
in the circuit.   Table 1. Node property of the pseudo gate in Figure 3. 

Gate type Pseudo gate 

p-tree baf ⋅=  Logical 
function n-tree baf ⋅=  

Number of inputs 2 
Fanout number 2, transmission gate + inverter 

          

      Here, let us use the D-flip-flop shown in Figure 5 and 
transform it from a circuit to a graph. Using the partition and gate 
recognition algorithm in Step 1, the circuit can be divided into 10 
gates. Notice that gate 3 is a pseudo gate made up of two tri-state 
inverters controlled by the clock signal. Because the two tri-state 
inverters have the same p-n connection node (the two gates 
outputs are connected together), the program considers them as 
one CCC. Gate 10 is a transmission gate, so the edges connected 
to gate 10 (gate 5 - gate 10, gate 7 - gate 10, gate 8 - gate 10) are 
undirected edges. Other gates are standard gates. 

                         Figure 3. Pseudo CMOS Gate. 

      Even after structural grouping and logical recognition of the 
gates, there may be some transistors that cannot be grouped into 
any CCC. Examples are transistors from pass transistor logic, as 
shown in Figure 4, which are also recognized by FROSTY.  

 

• Pass Transistor Logic                    

                   
                          Figure 4.  Pass Transistor Logic. 

      Currently, FROSTY can recognize static digital circuits. After 
gate recognition is finished, the circuit can be classified into three 
categories: gates, pseudo gates and pass transistor logic. For 
dynamic logic circuits, more categories need to be created. 

Figure 5. D flip-flop (DFF) circuit after gate recognition. 

3.2 USER-DEFINED-BLOCK RECOGNITION       According to the connection relationships among the gates, a 
directed graph for this D-flip-flop can be constructed as shown in 
Figure 6.  

      In Step 1, the gate level structures are generated for the object 
circuit and all the blocks in the library. In Step 2, those structures 
are converted to directed graphs, then a pattern matching 
algorithm is applied to recognize all the behavior blocks from the 
object circuit. 

    

3.2.1 DIRECTED GRAPH GENERATION 
      After Step 1, the circuit has been transformed into a gate-
interconnected structure. With each such gate represented by a 
node, the circuit is then characterized as a graph with both 
directed edges and un-directed edges.  

• Directed edge and undirected edge 
Figure 6. Graph representation of the DFF.       A directed edge represents a wire from the output of one gate 

to the input of another gate, which describes the signal flow in the 
circuit. For pass transistor logics, it is hard to detect the signal 
flow. So the wires connected to pass transistor logics can be 
considered as undirected edges.  

3.2.2 PATTERN MATCHING 
      After the equivalent graphs are constructed for the object 
circuit and the library subcircuits, a pattern matching algorithm is 
employed to locate all of the defined subcircuits in the object 
circuit. • Node property 
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      The basic pattern matching process is illustrated with the 
following example. Consider the DFF in Figure 5 as a subcircuit 
block defined in the library file. The object circuit, shown in 
Figure 7, contains the DFF. The corresponding graph of this 
circuit is shown in Figure 8. The final pattern matching result is 
shown in Figure 9.      

       In order to find the block DFF in the object circuit, we should 
apply pattern matching to the subgraph (shown in Figure 6) in 
object graph (shown in Figure 8). This means that for every node 
in the subgraph, we should find its corresponding node in the 
object graph. In FROSTY, two node-stacks are set up to hold all 
the matched nodes, shown in Table 2.       

 
Figure 7. The object circuit after the gate recognition. 

 
Figure 8. Graph representation of the object circuit. 

 
Figure 9. The extracted block-level structure. 

      The pattern matching process employed in FROSTY is called 
gradual matching [7]. It begins with a starting node in a block 
graph, any object graph node with the same “Node Property” as 
the starting node is identified as a possible location of the 
subcircuit. Then FROSTY verifies whether there is an actual 
subcircuit at each possible location. 

      The first step of the gradual matching process is to locate the 
starting node in a block graph. From this starting node, all other 
nodes can be reached through directed or undirected edges. This 
node is also called “source node”. In order to locate this source 
node in the block graph, we pick up a random node first, and then 

backtrack to its parent nodes. This backtracking is done 
recursively until a node that has no parent nodes is reached. This 
node is a “source node”. In the DFF block graph in Figure 6, the 
source node is node 1. However, sometimes we cannot find the 
source node because the graph may be a ring, as shown in Figure 
10. In this case, we can pick any node to be the source node. 

                         
Figure 10. Ring structure of a graph. 

      After the source node in the block graph is found, all the 
nodes in the object graph will be searched to locate nodes with 
similar “Node Properties” as the source node. Any one of these 
nodes is a possible location of the subcircuit. For every such node 
(for example, node 3 in Figure 8), the source node and this 
possible node will be pushed into the block graph node-stack and 
object graph node-stack, respectively, to begin the gradual 
matching process; this is Loop 1 in Table 2.  

      Table 2. Pattern matching process for the example. 

Matching process Block Graph 
Node-Stack 

Object Graph 
Node-Stack 

Loop 1 (source node) 1 3 
2 4 
3 5 Loop 2 
5 7 
4 6 
6 8 Loop 3 
10 13 
9 12 
7 9 Loop 4 
8 10 

      Then in Loop 2, the matching process starts from this pair of 
matched nodes in the stacks (node1block graph-node3object graph). In the 
block graph, node1 connects with nodes 2, 3, and 5, while in 
object graph node3 connects with nodes 4, 5, and 7. After 
comparing the “Node Properties” of the two series of nodes, we 
find the following node pairs, node2block graph-node4object graph, 
node3block graph-node5object graph, node5block graph-node7object graph, have 
the same “Node Property”, respectively. Those pairs are identified 
to be matched node pairs and pushed into the stacks.  

      In Loop 3, the matching process starts from all of the newly 
matched node pairs in the previous loop. For example, from 
matched node pair node3block graph-node5object graph in the stacks, we 
can match node4block graph-node6object graph; from matched node pair 
node5block graph-node7object graph, we can match node6block graph-
node8object graph, node10block graph-node13object graph; from node pair 
node2block graph-node4object graph, we can match node5block graph-
node7object graph. All these newly found node pairs are also pushed 
into the stacks.  

      The process in Loop 3 is iteratively performed until every 
block graph node matches its corresponding node in object graph. 
The whole process is shown in Table 2. If any conflict occurs 
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during the gradual matching process, the process fails, and the 
node-stacks are emptied for next matching process. 

4. EXPERIMENTAL RESULTS 
      FROSTY was written in C++ and executed on SUN Fire 
V480 server with 900MHz UltraSparc-III processors and 16GB 
RAM.  Results from applying FROSTY to several industrial 
circuits from Boeing are presented in this section. 

      In some cases, there may be more than one “source node” in 
the graph, as shown in Figure 11. In this example, either node 1 or 
node 2 can be a “source node”. For this case, the program picks 
the starting node randomly. Suppose that node 1 is chosen here, 
the searching process will be 1-3-5-6-7-8. Since node 2 and 4 
cannot be searched, backtracking will be applied. After checking 
the stack, unmatched node 4 is connected with matched node 6. 
So backtracking from node 6-4-2 is performed until all the nodes 
are matched. 

      Table 4 shows the statistics of a set of test circuits and the 
FROSTY CPU time for recognizing all the gates and blocks. Test 
circuits PSM, PSM-7, PSM-17, PSM-43 are a set of digital 
CMOS designs in Boeing’s “Power Supply Monitor ASIC” on 
F22 airplanes. Test circuits CEGRP, CEGRP-3, CEGRP-5, 
CEGRP-7, DFGRP, DFGRP-2, DFGRP-4, DFGRP-6 are a set of 
digital designs in Being’s “Pressure Belt Chip”. This chip is used 
in Boeing’s airplanes to determine the structural load on aircraft 
wings by measuring the pressure distributed on the top and 
bottom of the wing. These test circuits contain a lot of Boeing 
defined behavior blocks, such as DFFs, latches, MUXs, adders, 
etc. Table 5 shows in detail how many blocks are contained in the 
circuits. For example, in PSM, there are 3 different structures of 
DFFs and the total number of DFFs is 122. Using the library file 
provided by Boeing, FROSTY extracts all of the blocks in the 
library file and outputs a behavioral Verilog/VHDL netlist 
containing the recognized blocks and the standard CMOS gates 
that do not belong to any block. 

              
Figure 11. An illustration of the backtracking process.               

         Table 5. Blocks types and numbers in test circuits. 
3.3 OVERALL ALGORITHM AND COMPLEXITY  PSM CEGRP DFGRP 

Types 3 10 5 
DFF 

Number 122 1304 1436 
Types 1 - - 

Latch 
Number 15 - - 
Types - 3 5 

Adder 
Number - 118 646 
Types 1 3 4 

MUX 
Number 27 1049 508 
Types - 2 2 

XNOR 
Number - 290 74 

      The entire algorithm of FROSTY is shown in Table 3. In 
FROSTY, hash tables are used wherever possible due to its linear 
search time. The complexity of the program is O(k*n + g1*g2), 
here k*n represents the complexity of Step 1, n is the number of 
transistors in the circuit, k is an integer number, one can see that 
the CPU time for Step 1 is linear to n; g1*g2 represents the 
complexity of Step 2, where g1 and g2 are the number of gates in 
library file and number of gates in the object circuit after Step 1. 

                          Table 3. Algorithm FROSTY. 

 PREPROCESS FOR LIBRARY: 
 LOOP: for i = Block 1  :  Block n  (in library file) { 
   Divide the Blocki into channel-connected-components (CCC) 
   Recognize pass transistor logic 
   Recognize the logic function of every CCC in the Blocki  
                  } 
  INITIALIZATION: 
  Construct hash tables to store transistors and nodes of the circuit  
  Divide the circuit into channel-connected-components(CCC) 
  Recognize transmission gates in the left transistors   
  Recognize the logic function of every CCC 
  LOOP: for i = Block 1  :  Block k  (in library file) 
 {  
  OuterLoop: 
        Find “source node” in the Blocki and push it into node-stack 
        InnerLoop: 
        for j = Node1  :  Node n (in object graph) { 
              if (Node Property (Node i ) = Node Property (Source Node))  { 
                    Push  Source Node and  Node i  into the node-stack. 
                    do{  Searching from matched nodes in node-stack to find new 
matched nodes, and push them into node-stack.  } 
  while {conflict happens or all nodes in Blocki has been matched} 
              } 
         } 
   } 
   Output the blocks and gates to a Verilog or VHDL block-level netlist 
        

      In Table 4, we compare our results with SubGemini [9]. For 
each test circuit in Table 4, we try to use SubGemini to extract all 
of the behavior blocks in Boeing’s library. However, SubGemini 
fails to recognize some blocks. The recognized block numbers 
and CPU time of SubGemini are listed in columns 8 and 9 in 
Table 4. The CPU time comparison between FROSTY and 
SubGemini is shown in Figure 12.  

      Table 4 also shows the speed of FROSTY. For test circuit 
CEGRP-7 (729652 transistors), recognizing 74998 gates and 
19327 behavior blocks only takes 305.32 seconds. FROSTY is 
faster than SubGemini for larger circuits and libraries because it 
performs pattern matching at the gate level. For example, it is 20 
times faster than SubGemini for the CEGRP-7 circuit. 

      The CPU time of FROSTY depends on two factors: 1) the size 
of a circuit and 2) the number of behavior blocks in the library 
file. To observe the relationship between circuit sizes and CPU 
times, we use a set of PSM circuits and perform extraction with 
the same library file. In Figure 13 the relationship between CPU 
time and circuit sizes is displayed. We can see that FROSTY CPU 
time is linear to the size of a circuit with the same library file. 
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    Table 4. Results of FROSTY and SubGemini. 

FROSTY CPU Time (s) SubGemini Results 
Circuits #Transistors # CMOS gates # Behavior 

blocks 
Setup and Step-1  Step 2 Total # Extracted Behavior 

blocks CPU Time (s) 

PSM 4520 1516 164 1.17 0.58 1.75 156 1.4 
PSM - 7 31640 10612 1148 7.83 3.97 11.8 1091 13.6 

PSM - 17 76840 25772 2788 18.98 9.88 28.86 2651 48.4 
PSM  - 43 194360 65188 7052 49.9 25.2 75.1 6714 277.1 
CEGRP 104236 10714 2761 26.45 15.03 41.48 1419 94.1 

CEGRP - 3 312708 32142 8283 81.57 46.83 128.4 4568 1113.5 
CEGRP - 5 521180 53570 13805 135.0 78.31 213.35 7093 3178.1 
CEGRP - 7 729652 74998 19327 191.63 113.67 305.32 9926 5856.2 

DFGRP 119257 10048 2664 30.1 45.8 75.9 2001 108.0 
DFGRP - 2 238514 20096 5328 60.1 91.5 151.6 3074 1113.9 
DFGRP - 4 477028 40192 10656 121.2 169.96 219.2 5652 2456.9 
DFGRP - 6 715542 60288 15984 182.45 233.7 416.2 8802 4317.2 

 

               

 

 
    Figure 12. FROSTY and SubGemini CPU time comparison. 

         
                      Figure 13. CPU time vs. circuit scale. 

5. CONCLUSIONS       
      This paper presented FROSTY, a computer program for the 
automatic extraction of circuit hierarchy targeted for the post-
layout simulation and verification of library-based large-scale 
CMOS circuit design. By condensing both the object circuit and 
library circuits into graphs of blocks and then applying the pattern 
matching algorithm at the gate level, FROSTY has demonstrated 
that it can extract an industrial design with seven hundred 
thousand transistors in less than five minutes on a modern Sun 
workstation. By representing the extracted hierarchy using high-
level descriptions such as VHDL and Verilog, the output netlist 
can be simulated by any high-level behavioral simulator. 
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