0-7803-7842-3/03/$17.00 © 2003 IEEE

MCAST: An Abstract-Syntax-Tree based Model Compiler for Circuit Simulation*

Bo Wan, Bo P. Hu, Lili Zhou, and C. -J. Richard Shi

Department of Electrical Engineering
University of Washington, Seattle, WA 98195

Abstract: This paper introduces MCAST: a Model Compiler---
based on Abstract Syntax Trees---that reads compact device
models described in high-level languages VHDL-AMS/Verilog-
AMS and automatically generates the simulator device code in
C that can be directly linked with existing circuit simulators
such as SPICE3. We repont, for the first time, the successful
implementation of industry-grade device models, including
EKV, BSBM, and BSIM-S0I, in VHDL-AMS/Verilog-AMS.
For a set of industry test circuits, MCAST yields exactly the
same simulation results as, and comparable speed to, that of
model code implemented manually, while existing model
compilers are either limited in scope, restricted to very simple
models, or orders of magnitude slower than manual
implementations.

1. Introduction

Circuit simulators such as SPICE [7] are the corner stone
of modem VLSI design methodologies. The use of such
simulators requires device models to be built in the
simulators. Unfortunately, the effort to implement a new
device model into a simulator is tedious, error prone, and
requires a deep understanding of underlying simulator
code. As the result, it takes on average one to two years
for a new device model to become available in a
commercial circuit simulator for circuit designers to use
after it is first developed by a modeling engineer. Due to
implementation considerations, a device model is only
considered completely defined after its implementation in
a simulator, which means it is either not, or hard to be,
accessible and maintainable by model developers.

A potential solution to this problem is a compact model
device compiler. A model compiler can read compact
device models - described using high-level design
languages such as VHDL-AMS or Verilog-AMS, and
generate automatically the device simulator code that can
be linked with a circuit simulator such as SPICE. Since
only behavior-related device equations need to be
described, such a model development and qualification
process takes only at most days to weeks. Furthermore,
models will be highly maintainable and reusable, A GUI

L

This research was supported by DARPA NeoCAD Program under
Grant No. N66001-01-8920 and NSF CAREER Award under Grant No.
9985507.

for generating VHDL-AMS code from equations can also
be used by model developer if needed [11].

Previous model compiler attempts include ADMIT [2],
iSMILE [3], MAST/Saber{9], ADMS [4], [5] and [6]. The
principal difficulty of wide acceptance of model
compilers is the performance of generated code. It is
known to be 10 to 1000 times slower than manual
implementation even for MOS Level 1 model and simple
circuits. The speed further deteriorates as the complexity
of a model and the size of a circuit increase [10]. In
MCAST, several optimization techniques are
implemented based on the construction of AST. This
leads to strong improvements on the efficiency of the
generated codes.

2. MCAST Foundation and Architecture

The MCAST foundation is to represent the device model
written in VHDL-AMS using AST. For example, below
is a MOS Level 1 device model written in VHDL-AMS.
Vgstmp := Vg - Vs;
Vdstmp := Vd - Vs;
Vgdemp := Vgstmp - Vdstmp;
IF Vdstmp >= 0 THEN
Forward := 1;
Vds Vdstmp;
Vgs Vgstmp;

-~ forward mode

ioH

ELSE
Forward := =~1; -- reverse mode
Vds - Vdstmp;
vgs Vgdtmp;

END IF;

IF Vgs <= Vth THEN
Idstmp = 0.0;
ELSE
IF Vgs-vth <= Vds THEN -- saturation
Idstmp := Beta * (({Vgs -Vth)=**2)/2);
ELSE -- triode
Idstmp := Beta*((Vgs-Vth)*Vds
-{{vds**2)/2));

-- cut off

END IF;
END IF;
Ids := Forward * Idstmp;

The AST representation is shown in Figure 1. The root of
the tree is the variable Ids, where leaf nodes can be
constants or terminal voltages. Different from traditional
AST used in computer science, we introduce a new type
of Switch (SW) node to represent the widely used if-else-
endif structure in YHDL-AMS.

11-4-1

IEEE 2003 CUSTOM INTEGRATED CIRCUITS CONFERENCE

249

250

Condition Tree

A (Vgs-Vth<=Vds)

A Condilip';n Tree
3 (Vdsjinp>=0)

Figure 1. An AST example for MOS Level 1 model.

The architecture of MCAST is depicted in Figure 2. It
starts from the VHDL-AMS description file of a device
model. MCAST first parses the input file, checks errors
and stores the device information in an intermediate
format structure. Then the AST tree representation of
device models and the needed derivatives are constructed,
and derivatives are generated by automatic differentiation.
Next, techniques are used to optimize the AST for both
device equations and their derivatives. Finally, device
codes that include device definiticn, device setup, device
loading, derivative calculation and matrix element
stamping, interfaces to the target simulator, truncation
error checking, and convergence limiting are generated
from the optimized AST.

3. AST-Driven Code Optimization

The success of a model compiler depends critically on the
efficiency and robustness of the generated device code, in
particular, the portion of code responsible for filling in
the Jacobian matrices and the right-hand-side vectors.
This so-called efement stamping consists of device model
evaluation, equivalent conductance and equivalent current
source evaluation (derivative derivations). High fidelity
device models such as BSIM can involve potentially

hundreds of parameters, variables and intermediate
variables, and thousands of lines of equations. Qur effort
has been focused primarily on how to generate element
stamping code that uses minimum amount of
computations over the entire simulation run.

VHDL-AMS device
solrce code

VHOL-AMS parser

| S S ——
l Inlermedicate
Format

| Auto-Differentiaton, Auto-Element I

Stamping, AST consiruction

Optirnizaticns Green Node
Opurmzauon
Cnnstam Noda
Nodel @ Reduction
koo Optimization
Come
@ Nnds
Other
tachniques

CIC++ II
davice filas.

Figure 2, MCAST model compiler architecture,

A. Green Node Optimization: A straightforward
implementation of element stamping, as done in most
existing model compilers, is to use automatic
differentiation to generate the code for element stamping
and incorporate the code directly for solving systems of
linear equations at every nonlinear iteration of each time
point. This is equivalent to evaluating the AST at every
iteration. In contrast, MCAST colors the AST into three
colors: green (the node needed to be evaluated only once
over the entire simulation), purple (the code needed to
evaluated once at each time point, and red (the code
needed to be evaluated at every nonlinear iteration of
each time point). Special cases of green nodes include
modelinstance parameter calculation and range checking.
This can be substantial for models like BSIM that have
hundreds of parameters. Examples of purple nodes
include those calculating performances such as power
consumption {multiplying currents and voltages at every
time point). Red nodes include examples such as those
device equations whose terminal voltages changed at each
iteration. With AST, MCAST identifies automatically

11-4-2

green nodes by a bottom up traversal of the AST to check
on how each node depends on leaf nodes (constants,
parameters, or variables), and purple nodes by a top down
traversal of the AST to check if a node is required at
every iteration or only once at each time point.

We note that exploring this computational latency
manually was instrumental to the success of SPICE over
general-purpose numerical simulators. MAST/Saber from
Analogy [9] uses specific language constructs or compiler
derivatives for a model developer to indicate parameter
checking or performance calculation. This still is a huge
burden on model developers, and makes the model
description less readable. Further, only a limited amount
of optimization can be achieved. As the result,
MAST/Saber has achieved a limited success for
semiconductor circuits.

B. Bypass: MCAST employs automatic node bypass and
device bypass. MCAST uses Automatic Differentiation in
the generation of the Jacobian Matrix elements associated
with the device. Automatic differentiation may generate
large amount of intermediate dummy nodes that are just
associated with the dumb coperations with +0, -0, *0, *1,*-
1. These nodes can be bypassed or compressed in code
generation. Device bypass is a well-known method first
implemented in SPICE2 [7]. It offers a reduction by
allowing previously calculated results to be used again for
current iteraticn, when the terminal voltages/currents of the
device of current iteration have not changed over a limit
from its previous value (often, this limit is set empirically).
Otherwise, this device would have to be re-evaluated.
MCAST incorporated device bypass automatically.

C. Constant Propagation: Model designers often define
some frequently used constants for the new device in
VHDL-AMS file, such as kTg, CONSTv10, etc in BSIM3,
to make the VHDL-AMS source file easier to understand
and maintain, they also may define some new constants
based on those already defined constants. These constants
are necessary for the readability of the source VHDL-AMS
code. MCAST-can detect those constants and replace them
by values during code generation.

D. Node Reduction: If some nodes do not affect the
element stamping, they are redundant, and can be removed
from the AST. This case often occurs at the early stage of
model evaluation.

E. Node Sharing: MCAST uses pattern matching to find
the duplicate sub-expression trees inside an AST.
Different from classical ASTs where such duplicates are
always shared, MCAST AST has conditional Switch
(SW) nodes, and such duplicates can be shared only if
their parent nodes have the same or similar conditions.

MCAST categories these duplicates based on their
conditions and computational costs, and determines if
they are to be shared or not.

We note that green node optimization and bypass are
specific to model compilers and are for the first time
automated in MCAST. The other three techniques are
well known in compiler theory. However, with automatic
differentiation for derivative calculation used in model
compilers, these features as in VHDL-AMS/Verilog-
AMS will not be able to be recognized by the C compilers
from the generated C code from model compilers.

4. Experimental Results

Several device models, including MOSFET level 1, level
3, BSIM3, BSIMSOI, EKV, Thermal-Electrical (heating
resistor) and Opto-Electrical (laser diode) device models
have been implemented with MCAST, and linked with
Berkeley SPICE3, and tested on thirteen benchmark
circuits. For all the circuits, the simulation using the
compiled models generated by MCAST from VHDL-
AMS vyields the same results as that implemented
manually in Berkeley SPICE3. As an example, the
simulation results of a voltage-controlled oscillator are
shown in Figure 3: the two curves match perfectly.

]
[32

J) — SPICEIFE-BSAS i

gel Loz BMAC.-BSIMG

I i

A4

Figure 3. The simulation results of YCO using the MCAST-compiled
BSIM3 model and the manually implemented BSIM3 maodel.

MCAST generated device codes are linked to SPICE3
source code to compare with human optimized codes
(existing built-in device model codes in SPICE3). Figure
4 shows the speed comparison on benchmark circuits for
MOSFET level 3 and BSIM. MCAST Level 3 model
code is 10%-100% faster than the hand codes (except for
one circuit), MCAST BSIM code is less than 70% slower
than human optimized BSIM code.

11-4-3

251

—
—_ Lh N

=4
(=20 1

MCAST runtime

1234567 891011121314
benclmark circuits

—4— MOSFET Level 3 ~{ii— MOSFET BSIM3

Figure 4. The speed ratios of MCAST-compiled vs manually
optimized device codes.

We compare SPICE3 integrated with MCAST generated
BSIM3 model with the best commercially’ available
VHDL-AMS/Verilog-AMS simulator” on adders with
in¢reasing number of bits. The results are shown in Figure
5. Our model compiler with AST-driven optimization is
two to three orders of magnitude faster than the
commercial behavioral simulator. Furthermore, MCAST
technology scales linearly with the size of a circuit, where
the cost of the commercial simulator increases
exponentially. This demonstrates that the MCAST
technology is especially suitable for handling large
circuits.

Speed Comparison

100000
£ 10000 f]
£ Pl
F 1000 S,
§ 100 ._EM
i ;
£
£ 10

1bit 2bit 3bit 4bit ©Sbit 6bit 8bit
Addcer Circults

emipimimte BMAC-BSIMG L= Commertid Sohavicr Model Simulator

Figure 5. Speed comparison of MCAST-BSIM3 and a commercial
behavior model simulator.

Figure 6 shows the speedup breakdowns of different
optimization techniques over thirteen benchmark circuits,
in terms of device evaluation time per iteration. The
overall speed up is about 4 to 5 times, where green node
optimization achieves a speed up of about 3.5, and an
average 50% for other techuiques.

" We attempted all the existing commercial behavioral simulators, and
the one used here is from a leading vendor and has the best performance
comparing to other simulators.

5. Conclusions

We presented MCAST---a model compiler that can
automatically compile compact device models in high-
level modeling language VHDL-AMS into the simulator
code such as SPICE. Several industry-grade device
models including EKV, BSIM, and BSIM-S0I have been
implemented using MCAST. Simulation of a set of
industry circuits has shown that MCAST has the same
accuracy and comparable performance as human
optimized device code. Further, MCAST scales linearly
with the size of circuits. In addition, two mixed-
technology device models (thermo-electrical and opto-
electrical) were successfully implemented.

SN N
3.5 \/ d AN

01 2 3 4 5 6 7 8 8 10 11 12 13 14
Circult

—— green-node-reduction
- node-reduction
~e— node-gharing

——overall

—&— const-node-propagation
—— bypass

—a— no-aptimization

Figure 6. The speedup breakdown of various optimization
techniques.

References

[1] Ken Kundert, “Automatic Model Compilation — An Idea Whose
Time Has Come”, The Designer 's Guide, May 2002.

[2] s.Lin, K.C.Hsu, P.Subramaniam, “ADMIT-ADVICE Modeling
Interface Tool”, JEEE Custom Integrated Circuits Conference,
1988

[3] AT.Yang, and $.M Kang, “iSMILE: A Novel Circuit Simulation
Program with emphasis on New Device Model Development ™, 26"
Design Antomation Conference, 1989

[4] Laurant Lemaitre, Colin McAndrew, and Steve Hamm, “ADMS-
Automatic Device Model Synthesizer”, [EEE Custom Integrated
Circuits Conference, May 2002

[5] R.V.H.Booth, “An Extensible Compact Model Description
Language and Compiler”, Proc. IEEE BMAS, pp. 39-44, Oct. 2001,

[6] M. Zomzi, N. Speciale, G. Masetti, “Automatic Embedding of a
Ferro-electric Capacitor Model in Elde”, Proc. [EEE BMAS, Oct.
2001

[7] L. W.Nagel, “SPICE2 - A computer program to simulatc
semiconductor circuits, “ Univ, of California, Berkeley, ERL
Memo ERL-M 520, May 1975,

[8] Y.Chengand C. Hu, MOSFET Modeiing & BSIM3 User’s Guide,
Kluwer Academic Publisher, 1999

[9] MAST/Saber User Manual, Analogy Inc.

[10] Hal Carter, “Modeling and Simulating Serniconductor Devices
Using VHDL-AMS”, BMAS 2000

[11] H. A. Mantooth, http://mixcdsignal.clcg.uark.edu/paragen.hml

11-4-4

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

