Concurrent Logic and Interconnect Delay Estimation of MOS Circuits by Mixed
Algebraic and Boolean Symbolic Analysis*

Sambuddha Bhattacharya and C-J. Richard Shi
Department of Electrical Engineering, University of Washington
Seattle, WA 98195-2500, USA
{sbb,cjshi} @ee.washington.edu

ABSTRACT: Accurate estimation of delay in logic-stages
and interconnects is of utmost importance in digital VLSI
design. Conventional delay estimation techniques are numeric
in terms of design parameters for both logic-stages and
interconnect trees driven by them. In this paper, we present a
symbolic method of computing delay in logic stages followed
by interconnect trees. For each stage, our method provides a
single analytic delay expression that is symbolic in terms of all
input logic assignments as well as transistor and interconnect
parameters. The method has been implemented and validated
on modern digital VLSI technologies. '

1. Introduction

Efficient and accurate delay estimation for logic stages
is fundamental to many VLSI automations like timing analysis
and transistor sizing. For MOS circuits, delay computation is
traditionally performed on the channel connected regions
(CCR) that consist of conducting transistors connected to each
other through their drains and sources. Varying input patterns
at the gates of the transistors result in changing CCRs causing
different signal delays in the logic stage.

Recently, delay estimation by symbolically representing
input logic patterns has gained attention. [4] presents a BDD
based method of estimating the signal delay in logic stages by
replacing the transistors with their equivalent on-resistances
and capacitances. A similar scheme of delay estimation based
on the more general MTBDDs is presented in [3].

However, these methods suffer several deficiencies.
First, these methods symbolically enumerate only the different
input logic patterns at the gates of transistors. Changes in the
transistors’ sizes cannot be handled in these schemes without
recreating the BDD/MTBDD structures as their delay
calculation is inherently numeric. Second, as these methods
are based on RC tree methods, loops of transistors cannot be
handled. Third, severe inaccuracies result due to the Elmore
model [2] and empirical handling of input rise/fall times.
Finally, these methods cannot model the delay due to the
interconnect parasitic networks driven by logic gates, which is
becoming more important in deep submicron digital MOS
design.

This paper introduces a novel approach that
symbolically represents the delay of a logic-stage not only for
all possible input logic patterns but also for all possible
transistor parameters (sizes). We use a technique called multi-
terminal determinant decision diagram (MTDDD), introduced
recently for symbolic circuit analysis [5]. We extend MTDDD

: Supported by DARPA under Grant No. 66001-01-1-8920.

0-7803-7761-3/03/$17.00 ©2003 IEEE

IV-660

for efficient handling of Boolean conditions along with regular
algebraic equations.

We use a delay estimate based on higher order circuit
moments [6] which renders greater accuracy. Our method
extends directly from the modified nodal analysis (MNA)
circuit equations and therefore can correctly handle any circuit
topology. We use a pre-computed lookup table for the
equivalent resistors of conducting transistors and incorporate
the slope of the input signal at the gate of the transistor into the
table.

We further extend our method to the integrated
estimation of signal delay in a logic-stage followed by the
interconnect tree driven by the stage. Thus, the interconnect
parameters are also symbolic variables along with transistor
parameters and input logic patterns.

The paper is organized as follows. The formulation of
delay estimation in terms of Boolean-ized moment equations is
introduced in Section 2. Section 3 illustrates the computation
of circuit moments using MTDDDs. Experimental results are
presented in Section 4.

2. Formulation with Boolean-ized Moments
2.1 Background

A MOS transistor is modeled by a voltage controlled on-
resistor between the drain and the source and three grounded
capacitors at the drain, source and gate nodes. Interconnects
are modeled as RC trees. The modified nodal analysis (MNA)
based formulation of circuit equations [8] can be written as

Cx=Gx+bu X |,.0= X,

1
where X(#) € R” is a vector composed of node voltages and
necessary branch currents, G is the modified conductance
matrix, C is the capacitance and inductance matrix, and u is
due to the system’s input. The transfer function of such a
linear network at any node can be expressed in terms of circuit
moments as

H(sy=m,+ms+m,s*+...+ms"+... (2
The circuit moments then can be derived from (1) in a

recursive form [6] where m; is a vector composed of the i
moments.

3

The transfer function (2) is then matched to a lower order
function, such as the one in (4), using Pade approximation [6].

4

m, = x,(0) Gm,,,=Cm,

H(s)=thy + s+ s’
The propagation delay for the transfer function (4) can be

estimated in terms of the 1% and 2™ moments. The delay
metric we use in this work is adopted from [1] and is given as

m})

ms
2.2 Moment Equations and MTDDDs

Consider the pull-up circuit of an OAI2!1 and its
equivalent RC network of Fig.1. Transistor M; with Boolean X
at its gate in the original circuit is replaced by a resistor Ry
and a Boolean switch X (as the transistor is a PMOS). Node
2 in the equivalent circuit has capacitance contribution due to
the transistors M, and M; of the original circuit. Similarly, the
capacitance at node 3 is due to the load capacitance C;, and the
contribution of the transistors M; and M;.

1, = In(2)

Figure 1: Plllll_lp section of OAI21 and equi;alent circuit,

The equation set (6) represents the recursive moment
equations (3) for the equivalent RC network of Fig.1 when all
the switches are closed. The & moment at the i* node is
represented as my(i), whereas the K moment for current I is
represented as my(Ip). I, represents the current in the voltage
source, and any other Ip represents the current in Ryp. The 3
equations on top represent KCL-type moment equations. The
last 4 rows represent the branch equations.

000 1 1 0 1m® 0
000 0 -1 1 oflm®@| |Cm,@| (©
000 -1 0 -1 oflm®| |Cm,0

-1 0 1R, 0 0 oOflmd|=| o

-1 1.0 0 R, 0 O0fmW) 0

0 -1 1 0 0 R, Om) 0

1 00 0 0 0 ofmy 0

Solving the equation set (6) is the same as repeatedly
solving a set of linear equations in the following matrix form:
Tx=b @)

Similar to symbolic circuit analysis, our procedure for
symbolic computation of moments is based on Cramer’s rule
for solving sets of linear equations. Then, the i element of x
is obtained as

x, =Y bjdet(TU.)/det(T) ®)
7

where det(T) is the determinant of the matrix T, and det(T;) is

the determinant of the matrix T after removing row i and

column j, or the cofactor of the matrix T with respect to the

element at (i,j). Therefore, the key task is the representation of

the determinants and the cofactors of a semi-symbolic matrix.

For this purpose, we utilize an efficient technique called
Multi-Terminal Determinant Decision Diagram (MTDDD),
introduced recently in the context of symbolic circuit analysis
[5]. An MTDDD is an ordered, rooted, directed acyclic graph.
As illustrated in Fig.2, it consists of some symbolic vertices
and a set of terminal vertices, which can be the O-terminal
vertex, the [-terminal vertex and some numeric terminal

IV-661

vertices with non-zero values. A symbolic vertex V, is
characterized by a label (V.label), and two edges, namely /-
edge (solid line) and 0-edge (dotted line) pointing,
respectively, to its I-child (V.1-child) and 0-child (V.0-child).
Thus, a vertex V represents a semi-symbolic expression V.expr
defined recursively as follows:

If (V is 0-terminal), then V.expr=0

if (Vis I-terminal), then V.expr=1

if (Vis numeric terminal), then V.expr=V.value

if (V is a symbolic vertex), then
V.expr=V.label*(V.1-child).expr + (V.0-child).expr

Figure 2: An MTDDD representing 4AC + AD -3A -3BE + 2.

To see how an MTDDD can be used to represent the
determinant and cofactors of a circuit matrix, we consider the
Laplace expansion of a matrix determinant with respect to a
particular element, ;;, at row i and column j. Then, the matrix
determinant dez(T) can be represented as follows:

det(T) = (=1)*)1, ; det(T,) + det(T;) ©)
where, del(T;) is the cofactor of the matrix T with respect to
the element #;; and dCt(Ti—j) is the remainder of the matrix

T with respect to the element #;;, which is defined as the
determinant of the matrix T after setting #; to 0. Clearly,
if we can represent this expansion by a vertex with label

(-1 ¢ i the cofactor as the 1-child and the remainder as the

0-child, and then recursively expand the cofactor and the
remainder, we can obtain an MTDDD. During this process, all
the subgraphs can be shared.

2.3 Boolean-ized Moment Equations

Equation (6) is valid for one input logic pattern. For an
n-input logic cell, the 2” different input pattern sets result in 2"
sets of moment equations like (6). Naturally, creating
MTDDDs for each such moment equation set is inefficient.
This motivates the need for a single set of moment equations
valid for all input patterns. This is accomplished by
incorporating the Boolean input variables into the moment
equations.

For the circuit of Fig.1, we recognize that the current in
a branch is zero when the switch in the branch is open. That
leads to the Boolean-ized branch I-V equation shown in Fig.3.

_ I
Vl—l_%._,—Vz —_— V| _{)Lkmyz
X /Y_(Vl_Vz)=1RM| .

Figure 3. Boolean-ized MOSFET branch equation.

An isolated node results in a zero column in the G
matrix of (6) rendering it singular. A node is isolated if there
are no sensitizing paths from the voltage source to that node.
In other words, the presence of currents in branches connected
to a node and isolation of that node are mutually exclusive

events. The current /, in branch Ry, of Fig.1 exists if B is
“1”. Similarly, the condition for existence of current /; is

F,=4C +BC (10)
The condition that node 2 is isolated is then given by
F, ={(4C + B) an

If node 2 is isolated, it does not affect any other node or
branch that forms the CCR. So replacing the element (2,2) in
the matrix by F, in (11) prevents the singularity in the matrix,
and we forcibly set node 2 to Ov if it is isolated. Also, all the
elements in the matrix G corresponding to the currents are
replaced by respective Boolean functions. The complete set of
changes to be incorporated into the G matrix of equation (6)
is shown in Table 1.
Table 1. Complete set of changes in matrix G of (6).

Loc Old New Loc | Old New
14 | 1 i 3.6) | -1 | -(3C+50)
a5y 1 1 B_ @ni - - 4
22| 0 | ac+m | @3 [1 T
25 | -1 - F GD 1 -1 5
(2,6) 1 (AC+BC) | (5,2) 1 5
(3,3) 0 (4 +BC) (6,2) -1 -C
34) | 1 -7 63) | 1 c

3. MTDDDs for Boolean-ized Moments

The Boolean-ized moment equations thus obtained are
now converted to MTDDD structures according to the
algorithm presented in Fig. 4. The MTDDD operations
cofactor, union, multiply and getvertex described in [5][7], are
modified to incorporate the simplification due to the presence
of Boolean and numeric elements. The algebraic and Boolean
symbols occupy places closer to the root while the numeric
elements are pushed down to the leaf terminals. The procedure
getvertex(top,D;,D,) generates an MTDDD vertex for the
element rop with the sub-graphs rooted at D; and D, as its
1-child and O-child respectively. The procedure cofactor(G-
{j,k}) returns an MTDDD vertex representing the cofactor of
the matrix with respect to the element at {j,k}. The
multiply(top,P) operation returns an MTDDD vertex
corresponding to the multiplication of the MTDDD P with the
numeric element fop. The MTDDD obtained is similar to the
MTDDD P except that the terminal vertices are the product of
the terminal values of P with the value of fop.

Create_mtddd
List_boolean_conditions
Sfor (i=110 MAX_MOMENT_ORDER)
momentfi,j] = NULL
for (j: capacitive node)
for (k: capacitive node)
P = cofactor(G - {j,k})
if (C(k)is SYMBOLIC)
Q = getvertex(C(k),P,0-terminal)
else
Q ='multiply(C(k),P)
momentfij] =union(momentfi,j],Q)

Figure 4: Algorithm for setting up MTDDD for moments.

Procedure List_boolean_conditions in Create_mtddd
lists the Boolean functions in the modified G matrix. This is

IV-662

different from identification of sensitization conditions for cell
level networks as loops of sensitized paths can be obtained for
such transistor level networks. An efficient tree-link based
implementation for identifying the Boolean conditions is
presented in Fig. 5. First, the Boolean conditions along a
spanning tree of the switched-resistor network are enumerated.
Sensitization through the link branches are considered next
and the corresponding Boolean function at each node and
branch of the switched-resistor network are updated. For each
switch-resistor link branch, an update in the sensitization
function at either of its two incident nodes i,j triggers further
enumeration. In case of an update in the function at node i, the
branches in the tree connected to the node j are updated with
the new function at node i. The Boolean functions are
compactly stored as MTDDD trees.

List_boolean_conditions
create_spanning_tree
create_list_of links
List_boolean_along_tree
Sfor (; ;)
foreach branch in list_of links
L branch . get_nodel _function()
R branch . get_node2_function()
update_tree (nodel, R, branch)
update_tree (node2, L, branch)
if (no_update_in_one_pass)
break

update_tree (node N, function F, branch B)
if (loop_formed_by_node N) -
return
G update_branch_function (B , F)
foreach (tree branch X at node N)
nextnode = X. get_2nd_node()
if (!X . updated())
update_tree (nextnode, G, X)

return

Figure 5: Algorithm for enumerating Boolean sensitization.

The progression of the Boolean enumeration algorithm
for the example circuit graph of Fig. 6 is presented in Table 2.
In Fig. 6, the solid and the dashed lines represent the tree and
link branches, respectively. Each branch has a Boolean
variable associated with it. Node 1 is the start node and node 3
the sink. First, a traversal through the spanning tree from the
source to the sink sets up the Boolean conditions at every node
(Table 2, column 2). The remaining columns represent the
additional Boolean functions at the nodes due to each link
branch.

Figure 6: Equivalent graph of a switch-resistor circuit.

Table 2. Progr of Boolean enumeration algorithm.

Node# | Tree Setup | DuetoC | DuetoE | Dueto C
2 A DCB DCE -
3 AB DC AE -
4 D ABC - AEC

Once the MTDDDs for moments are set up, the
evaluation of moments involves simple traversals through the

MTDDD tree. The sharing of sub-graphs in the MTDDD trees
enables efficient calculation of moments, as sub-graphs
evaluated once need not be traversed again during the entire
moment calculation process. The generation of expression for
the moment at any node in the circuit requires a traversal
through the MTDDD tree.

Figure 7 shows a nand2 cell, its equivalent circuit and a
part of the corresponding MTDDD for the first moment at
node 1.

(1] Co)

Fiéure 7: A nand2 gate, its equivalent circuit and MTDDD.
4. Experimental Results

The proposed symbolic procedure has been implemented
in the program SAMBA (Symbolic Analysis Mixing Boolean
and Algebra). SAMBA generates a single completely
symbolic expression for delay under any input pattern. For the
nand?2 cell of Fig. 7, the 1* moment at the output node under
any input logic pattern is given as

m(1)=n/d
d=(-4)BR,,R,,+ AQ~B)R, R, ,+ ABR, R, , +

(I-A4)1-B)R, R, ;R .+ R, ,R, R

M)

n=(1-A)BR, R, R, ,C +(1-4)(1-B)R, R, R, R, .C +
A(l - B)(RMIRMzRM4C1 + RMIRMZRM4C2)+

AB(RMIRMZRMACI + RMIRMZRM4C2 + RMIRM2RMJC1)

Semi-symbolic expressions with most transistor parameters as
numeric and only a few as symbolic can also be obtained.

The computation of moments involves library lookup for
the equivalent resistance of transistors. Our library generation
scheme [9] uses a novel technique that incorporates effects of
circuit topology, input signal slope and events at the input in
addition to transistor sizes and loads for the resistance
computation and results in excellent accuracy.

We apply our method of delay computation on a
standard cell library in TSMC 0.18 micron technology.
Experiments are conducted with different p-transistor and n-
transistor sizes, loads, input patterns and input signal slopes.
The maximum error is less than 5% when the estimated delays
are compared to HSPICE. We present the results for a 6-input
AOI321 cell and an RC interconnect tree driven by it in Fig. 8.
The estimated delay in SAMBA is compared with HSPICE
under parameter variation. The results show excellent match
with HSPICE values.

5. Conclusion

A symbolic approach for the accurate estimation of
delay in a logic stage followed by interconnect tree is
presented. Our approach leverages MTDDDs to enable the

IV-663

Variations in propagation delay for AOI321 followed by an RC Tree

§
n?jg’
B H
' 5 2470 g ﬁg’ o :
i . &%&%}(E
00 S ,{3 .
b ﬁ;”r tapus Sloy
0, :‘%".4‘&4% -lapat Slupe =
wi T

Stope = -

!

o
(b)W,=6.6u,Total Tree Load=40fF
for AOI321 followed by an RC Tree

wg tnpos §
L S

14w e

(R
Watton n Load (1F)

8 ks

(©) W,=22u, W,=6.6u (d)W,=2.2u,W,=6.6u, Load=40{F

Figure 8: Rise delay variation in SAMBA and HSPICE in AOI321
cell followed by an RC Tree. The sensitized CCR consists of 3
PMOS in series and 3 NMOS. (a) Wp variation (b) Wn variation,
(c) Load variation at interconnect sink (d) interconnect Resistance
variation. Test results shown for 3 different input signal slopes.

efficient and compact symbolic representation of delay. Under
this scheme, the equivalent resistor and capacitor of
transistors, resistors and capacitors of interconnect tree and
input logic assignments are all symbolic. For each stage, we
provide a single delay expression that holds for all possible
input assignments as well as all possible sizes of the
transistors. This technique has potential application in
behavioral simulation, timing analysis, variational analysis and
concurrent transistor and interconnect sizing.

6. References

[1]. C. J. Alpert, A. Devgan and C. V. Kashyap, “RC delay metrics for
performance optimization”, JEEE Trans. Computer-Aided Design, vol.
20, pp. 571-582, May, 2001.

[2]. W. C. Elmore, “The transient response of damped linear networks”, J.
Appl. Phys., vol. 19, pp. 55-63, Jan. 1948,

3] C. B. McDonald and R. E. Bryant, “Computing logic-stage delays using
circuit simulation and symbolic elmore analysis”, Proc. 38" IEEE/ACM
Design Automation Conf., Las Vegas, NV, June 2001, pp. 283-288.

[4]. M. P. Desai and Y. T. Yen, “A systematic technique for verifying
critical path delays in a 300MHz alpha CPU design using circuit
simulation”, Proc. 33" IEEE/ACM Design Automation Conf, Las
Vegas, NV, June 1993, pp. 125-130.

5). T. Pi and C-J. R. Shi, “Multi-terminal determinant decision diagrams: A
new approach to semi-symbolic analysis of analog integrated circuits”,
Proc. 37" IEEE/ACM Design Automation Conf., Los Angeles, CA, June
2000, pp. 19-22.

(6] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis”, JEEE Trans. Computer-Aided Design, vol. 9, pp. 352-
366, Apr. 1990

7. C-J. R. Shi and X-D. Tan, “Canonical symbolic analysis of large analog
circuits with determinant decision diagrams”, JEEE Trans. Computer-
Aided Design, vol. 19, pp. 1-18, Jan. 2000.

8] J. Vlach and K. Singhal, Computer methods for circuit analysis &
design, New York: Van Nostrand Reinhold, 1983.

9] S. Bhattacharya and C-J. R. Shi, “A Table Lookup Method for
Effective Resistance Estimation for Digital VLSI Delay Calculation”,
Department of Electrical Engineering, University of Washington,
Technical Report TR-12, Oct. 2002.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

