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Abstract— This paper discusses a problem of modeling dis-
tributed physics effects described by partial differential equations
{PDE’s) in VHDL-AMS, a powerful modeling language for
mixed-signal systems. First, we summarize the requirements
for PDE support. Second, we demonsirate with the example
of a distributed transmission line how to model PDE’s in an
existing VHDL-AMS by applying spatial discretization to system
equations. Third, we propose a language exiension needed to
support PDE’s, Our work should be perceived as a first step
towards an accurate description and modeling of coupled multi-
physics systems in VADL-AMS. !

I. INTRODUCTION

An IEEE standard, VHDL-AMS is a powertul hardware
description language that allows one to model the behav-
ior of mixed-signal (analog and digital) and multi-physics
(mixed electrical, electromagnetic, thermal, mechanical, etc.)
systems [1], [2], [3]. VHDL-AMS specifies what system of
equations is to be used at each simulation time but the choice
of a solution technigue is left to an implementor. Continuous
parts of the system can currently be described in VHDL-AMS
using differential and algebraic equations (DAE’s). Due to
the complexirty, the support for partial differential equations
(PDE’s) was intentionally left out in VHDL-AMS [4]. This
limits the accurate modeling of system blocks that include
disiributed physics effects. )

Such blocks are currently modeled in VHDEL-AMS exclu-
sively via equivalent circuit approach [5] or reduced order
models [6] imported from an accurate solution obtained by
an external domain-specific simulator [7].

A proposition to extend the capability of VHDL-AMS to
support full-wave modeling of distributed RF and microwave
components has recently appeared in the literature [8]. This
is a challenging task and to the best of our knowledge no
other publications have followed yet. The only other published
work in this direction was an earlier paper by Zhou et al. [9]
who solved a steady-state PDE in VHDL-AMS with a neural
network algorithm.

The purpose of this paper is to define the first step towards
modeling distributed physics effects in VHDL-AMS -~ to in-
troduce a langunage support for PDE’s. The importance of such
support in a universal hardware description language cannot
be overestimated and has been discussed earlier during the
development of a microwave hardware description language
(MHDL) [10], [11].
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We present an example of a distributed transmission line
connected to a circuit and show how o model such system
in an existing language. We also demonstrate how it can be
modeled using a language extension proposed by us.

The remainder of the paper is organized as follows. Sec-
tion II summarizes the requirements for PDE support. Im-
plementation of PDE’s in an existing VHDL-AMS standard
for the transmission line example is shown in Section III.
Section IV discusses a VHDL-AMS extension needed for PDE
support. Conclusions are given in Section V.,

1. REQUIREMENTS FOR PDE SUPPORT

To include a block described by PDE’s into a VHDL-AMS
system simulation, one needs to define:

1) PDE's that describe the physics of a problem

2) Parameters of the PDE’s

3) Boundary conditions

4) Contact interface with the rest of the sysiem

For example, a one-dimensional PDE can have a form:
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%4-0{(2:,4‘,)5 = f(z,%), (1)

where A(z.?) is the quantity of interest, a{z,t) is the param-
eter, f(x,t) is the excitation, = is a spatial variable, and ¢ is
time. To solve (1), we need to know a(x, ¢}, which contains
the information about material properties and geomeltry of the
system, and the boundary conditions for A(z,t), which also
include the initial conditions.

If the system described by (1) is connected to a circuit, we
need to define how the quantity A(x,#) interacts with circuit
quantities, Exact definition of the contact interface depends
on the physics of the problem and may involve a translation,
e.g., between electric and magnetic fields and voltages and
currents [12], {13]. In VHDL-AMS, such interaction can be
implemented using port and terminal definitions.

II1. PDE’s IN EXISTING VHDL-AMS

Since current VHDL-AMS does not support partial deriva-
tives, the only way to implement PDE’s in existing language
is to discretize the equations with respect 1o spatial variables
and leave the time derivatives to be handled by VHDL-
AMS. The idea of a stand-alone spatial discretization has
been used by several researchers before for solving PDE
problems by creating and then solving equivalent circuits with
SPICE and its likes [14], [15]. Using VHDL-AMS approach
allows one to bypass the equivalent circuit step. It also makes
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possible a concurrent simulation of mixed-technology multi-
physics problems, where PDE'’s and lumped circuits are mixed
together. Below, we present an example that demonstrates this
concept.

A. Transmission Line Example

Consider a system that consists of a distributed transmission
line connected to a circuit as shown in Fig. 1.

| 12

Zs Vipl . et | Vour
— — \ - ——
bin | Zy o S20
| |2
= | [ i
Circuit | Transmission line | Circuit

Fig. 1. Transmission line connected to a circuit.

The transmission line can represent an integrated circuit
interconnect. The signal propagation on a transmission line
can be described with the wave equation, which is a second-
order PDE. The circuit is described by Kirchoff’s current and
voltage law equations.

Coupled problems similar to this one are usually treated
by extracting an equivalent port model network for the trans-
mission line and then using SPICE-like circuit simulator to
solve for the whole system as a circuit [16] or by interfacing
electromagnetic solver and circuit simulator [17].

The interaction between the transmission line and the circuit
happens through the terminal voltages and currents: [y, Vin,
Lout, and Viye. In this example, the internal gquantities of the
distributed physics part (voltages and currents) are the same
as circuit variables; thus no translation is needed, Boundary
conditions that describe an interface to the circuit are:

v;'ﬂ‘ = VS hd IinZS (2)
V:Jut = InutZL . (3)
If the line is lossless, the wave equation has the form:
9%V 2 8%V
"o e =l @

where V is the voltage on the transmission line and 3 = Vie
is the propagation constant (/ and ¢ are the inductance and the
capacitance per vnit length), The same problem can be equiva-
lently formulated in terms of two Telegrapher’s equations [18}:
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To discretize these equations with respect to z, one can
use a classical central difference formula used in many finite
difference techniques [19]. If the length of the transmission
line is d, a spatial step of Az results in N + 1 points where

N = d/Az and the voltage and the current need to be
determined at each point. A set of two PDE’s given by (5)
can be converted into the following set of 2NV ODE’s:

—V”—;l:l":l =1, n=1.N
(6)
In+l _In i
AT S c¢V,, n=1..N

where V,, and I,, are currents and voltages at spatial points as
shown in Fig. 2 and prime (") denotes a derivative with respect
to time. Two additional equations are given by (3) and (3).
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Fig. 2. Spatial finite difference grid.

Note that in this discretization scheme voltages and currents
are not defined at the same points in space. This causes match-
ing errors and may give rise to reflections on the transmission
line even when all impedances are perfectly matched. The
magnitude of the error depends on the discretization step. This
effect is known [16] and usually requires an introduction of
correction elements to eliminate the errors.

One can see that discretized equations for V and I on the
transmission line are equivalent to circuit equations describing
the equivalent V-section LC-ladder network shown in Fig. 3,
where L = [Az and C = ¢Az are the inductance and the
capacitance of each segment of the transmission line. N-
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Fig. 3. Equivalent LC-ladder network.

section ladder network is usuvally valid only for a certain
frequency range. The number of sections in the network
depends on the transmission line length with respect 1o the
minimum wavelength of interest. As the frequency increases,
more stages need to be added. For digital circuits with sharp
signal transitions, N needs (o be large to accurately reproduce
a wide-band response of the transmission line.

B. VHDL-AMS Implementation

For the transmission line system of equations shown above,
we have used two different VHDL-AMS implementations
with two different VHDL-AMS simulators: frecly available
Hamster® and our own in-house MCAST [20].

2Hamster is now part of Simplorer, trademark of Ansoft Corp.
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Current VHDL-AMS standard includes a language construct
called "GENERATE” that in theory allows one to create a
large set of simultaneous equations whose terms are array
elements and their time derivatives. Boundary conditions and
PDE parameter dependence on variables can be defined using
array initialization. This is critical for effictent VHDL-AMS
implementation of spatial discretization algorithms, which
involve a transformation of a small set of PDE’s into a large
set of ODE’s. Unfortunately, to the best of our knowledge the
support for the simultaneous statements loop ("GENERATE”
construct) is currently missing in many existing VHDL-AMS
simulators.

Below we show the VHDL-AMS implementation of the
transmission line model, which consists of an entity and an
architecture. The entity and the first part of the architecture
contain the description of line ports and parameters and
are the same for both Hamster and MCAST. The part of
the architecture that describes discretized transmission line
equations is different for Hamster and MCAST.

In our example, PDE parameters / and ¢ are constant,
which corresponds to a homogeneous medium. The boundary
conditions are given by (2) and (3), and no quantity conversion
is needed because quantities of interest (voltages and currenis)
are the same for both circuit and transmission line.

Transmission line begins
LIBRARY DISCIPLINES; LIBRARY IEEE;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH REAL.ALL;
ENTITY transmission_line IS
PORT {(TERMINAL a, b, g : BLECTRICAL);
END;
ARCHITECTURE behav OF transmission line IS

CONSTANT Lz REAL := 1.0;

CONSTANT Cz REAL := 1.0;

CONSTANT Length: REAL := 0.1;

CONSTANT N : REAL := 5.0;

CONSTANT dz : REAL := Length / N;
CONSTANT C REAL := Lz * dz;
CONSTANT 1 + REAL := Cz *dz;

QUANTITY Vin ACROSS Iin THROUGH a TO g;
QUANTITY Vout ACROSS Iout THROUGH b TO g;

One can see¢ that the transmission line has three terminals:
@, b, and g, which correspond to input, output, and ground.
The terminal across and through quantities are voltages and
currents: Vi, = Vo, L, = I, Vour = Viy, and Iy = Inyg,
where N = 5. For simplicity, the source and the lead resistors
were assumed to be Zg = 1 Ohm and Zp = 1 Ohm. The
transmission line was laken to be 0.1 m long and have the
parameter values [ = 1.0 H/m and ¢ = 1 F/m, which resulted
in a characteristic impedance of Zy = 1 Ohm.

Below we present two implementations of the equations
part of the transmission line problem. For Hamster, each
equation had to be explicitly written out. MCAST supports
simultaneous loops, which is advantageous for large N. Note
that in both implementations [, has a negative sign in front
of it because of the VHDL-AMS definition of current flowing
into a terminal.

Hamster implementation:

QUANTITY V1, V2, V3, V4: REAL;
QUANTITY IZ, I3, I4, I5: REAL;
BEGIN
-(V1-vin) == L * Tin’dot;
~(I2-Iin) == C * Vifdot;
~(V2-Vv1) == L * I2'dot;
—-{I3-1I2) == C * V2'dot;
~(V3-v2) == L * I3’dot;
-(I4-I3} == C * v3'dot;
-(V4-v3) == L * I4'dot;
-{I5-1I4) == C * V4'dot;
—{Vout-v4) == L *I5"dot;
—(—Iout-I5) == C * Vout’dot;
END;

Transmission line ends

MCAST implementation:

QUANTITY V:real vector{0 to N-1};
QUANTITY I:real_vector{2 to N};

BEGIN
-{V{1l}-vin) == L * Iin‘dot;
-(I(2)-Iin} == C * V(1)'dot;

FOR i IN 2 TO N GENERATE
~(V(1i)-V({i-1)} == L * I(i)"dot;
=(I(i+1l)-I(i)) == C * v{(i)"det;

END GENERATE;

—{Vout-V(N-1}) == L * I(N)’dot;
- {(-Iout-I(N)) == C * Vout’dot;
END;

Transmission line ends

Fig. 4 shows the input voltage V;,, and the output voltage
Vour for the transmission lines with ¥ = 5 and N = 20
(other parameters are the same as described before) simulated
both in Hamster and MCAST. The differences are due to
truncation errors and the fact that two simulators use different
integration methods. One can also see that the average delay
of the response is approximately the same for both N =5 and
N = 20, but more high frequencies are present in the transient
for N = 20, as one would expect.

IV. EXTENSION FOR PDE SUPPORT

Based on the example considered above, an extension for
PDE support in VHDL-AMS can be considered. The extension
would include a language operator ‘dot{x), where z is a
spatial variable. Such operator is currently non-existent in
VHDL-AMS language standard. Choice of spatial discretiza-
tion technique will be left to an implementor of the VHDL-
AMS simulator, as it is now the case with time discretization.
Equations for the transmissicn line example using such lan-
guage extension would look as follows:

-Vidot {z) ==
-I'dot(z) ==

Lz * I'dot
Cz * Vrdet

In perspective, one can also consider including in VHDL -
AMS some generic operators, such as nabla operator (V).

Together with vector and scalar multiplication operations and a
coordinate system specification, this would enable one to cast
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Fig. 4. Input and output voltages for the transmission line shown in Fig. 1

with V =5 and N = 20 excited by a rectangular pulse.

many physical equations in VHDL-AMS in a very intuitive
form.

Boundary conditions and PDE parameter dependence on
variables can be defined using functional description. The
contact interface 1o circuit in VHDL-AMS part can be defined
via ports and terminals. Depending on the physics of the
problem, the internal quantities of distributed physics blocks
may need to be converted into voltages and currents.
 The challenge in VHDL-AMS PDE modeling is going to
be a realization of a simulator with built-in discretization
schemes and solution techniques for different PDE’s. Many
numerical PDE solvers have already been developed for PDE’s
of different types and in different physical domains such
as FEMLAB®. The results of PDE solvers research should
definitely be used in development of the simulator. In order to
be useful to the CAD industry, such simulator must be accurate
and fast when applied to large scale multi-physics problems
with many unknowns.

V. CONCLUSION

In this paper, we discussed the problem of modeling and
simulation of distributed physics systems described by PDE’s
in VHDL-AMS. We summarized the requirements for PDE
support, demonstrated with the example how 1o model PDE’s
in the existing language, and proposed a language extension
to support simple PDE’s.

This work should be perceived as a first step towards
further extension of VHDL-AMS, which would allow one to
model and simulate mixed-technology multi-physics systems,
consisting of both distributed-physics and lumped-circuit parts.
Such capability would facilitate portability, distribution, and
exchange of various models between different designers even

Trademark of The COMSOL. group

if a designer is not an expert in, e.g., electromagnetic or
thermal modeling. This should greatly speed up an automated
synthesis of complex systems-on-chips and can hopefully lead
to a new language standard in the CAD industry.
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