Table of Contents

21.
Introduction

21.1
Basic virtual network setup

42.
System requirements

42.1 Hardware requirements

42.2 Software Requirements

53.
Installation and setup instructions

64.
Description of the GUI

64.1 Initialization of the network

84.2 Data collection

104.3 Issuing Commands:

125.
Functions and Commands

146.
Implemented Algorithms

146.1 Centroid

146.2 Weighted Centroid

146.3 Grid Scoring

156.4 Gradient Descent

177.
Helpful Hints

188.
Java implementations details

219.
Future Work

22Appendix A

1. Introduction

Localization in wireless sensor networks is a well-studied problem. It refers to a set of nodes randomly deployed in a field for data collection, sensing or target tracking. The relevance of the information provided by these nodes is enhanced by the knowledge of the reporting node’s location. Due to the expenses involved in fitting each node with a GPS device, localization techniques are devised wherein the nodes can self-discover and report their locations. This is done using a set of anchor nodes (these are nodes whose location is fixed and known to the nodes themselves). These anchor nodes broadcast their locations and based on this information and the strength of the received signal, other nodes can calculate their locations.

Localization is also necessary in other domains such as mobile and wireless devices. Triangulation is a commonly known form of localization used in many wireless map services. Localization in sensor nodes is a challenging problem given the energy constraints and the limited computational power of sensor nodes. Also, it is important to note that localization is a small part of the function of the sensor node and hence, should use minimum energy and time.
The NSL Imote2 toolkit is an open-source package aimed at creating an intuitive and easy-to-use tool for visualizing the process of localization in wireless sensor networks. The actual deployed network can be monitored and modified from a central computer terminal using this toolkit. It is mainly aimed at studying various localization algorithms but can easily be extended to simulate attacks and other aspects of wireless sensor networks.
The toolkit consists of two main parts – the real, deployed network and the virtual image in the form of a GUI. The real network is based on Imote2 nodes running a C code in a Linux environment. One of the nodes, referred to as the base node, is connected to the computer and acts as the interface between the actual network and the user interface on the PC. The communication between the PC and the base node is over USB, while that between the other Imote2 nodes and the base node is over 802.15.4 Zigbee radio. The user interface, created in Java, is designed for monitoring the performance of various locationing algorithms and for issuing some basic commands to the network. The network has a complete representation in the software domain as well. This enables it to represent all the aspects of the real network.

1.1 Basic virtual network setup

A basic overview of the network object created in the GUI is important to understand the effect of the commands issued and to interpret the network information received from the Imote2 nodes.

The network is represented by a Java class with the following fields:

· numOfNodes: number of nodes in the network.
· numOfAnchors: number of anchors (for locationing).
· Nodes: an array of ‘node’ objects to represent the real nodes.
· algorithm: The algorithm used for locationing.
· isExisting: Boolean flag to indicate if the network has been instantiated.

· isLocationing: Boolean flag to indicate if the network is currently performing localization.

The main field of network object is the array of node objects. A node itself is represented by a Java class with the following fields:

· nodeId: The node ID of the node (has to be programmed into the Imote2).

· trueX, trueY: The true co-ordinates of the node.

· estX, estY: The estimated co-ordinates of the node.
· averageX, averageY: Average co-ordinates of the node – moving average over the last 5 times the node reported its estimated location.
· error: The difference between the true and estimated locations of the node.
· isActive: Boolean flag to indicate if the node is locationing.

· isLocalized: Indicates if the node has converged in its estimation of location.

· isAdversary: Indicates if the node is acting as an adversary.

2. System requirements
The system requirements for installing and running the GUI part of the toolkit are minimal. It has been created in Java and hence, most functions are platform-independent.

2.1 Hardware requirements
The required hardware (along with a PC/laptop) consists of a USB cable, an Imote2 node (to act as the base node) and a debug board of the Imote2. The node is connected to the PC using the USB connecting cable.
2.2 Software Requirements
The GUI has been created using the Swing packages in Java. Hence, a version of JRE would be required to be installed on the computer for running the simulation interface. Different versions of JRE specific to the operating system/platform can be downloaded from www.java.com/getjava/. It is recommended that a Java IDE such as Netbeans (www.netbeans.org) or Eclipse (www.eclipse.org) be used. The files to be downloaded and the installation instructions can be found on the NSL website. For ease of reference, the installation instructions are also given in the next section.

3. Installation and setup instructions

Please follow the following steps for a complete installation of the GUI (assuming the correct programs have been loaded onto the Imote2 nodes):

1. Install a Java runtime environment (JRE) and a Java development kit (JDK). These can be downloaded from www.java.com/getjava.

2. Install a Java IDE (such as Netbeans (www.netbeans.org) or Eclipse (www.eclipse.org))

(The JRE/JDK can be downloaded together in the Netbeans package)

3. Setting up the hardware for the base node:

Plug an Imote2 debug board into a USB port of the computer using the B-mini-USB connector of the Imote2. This serves as the communication channel as well as the power source for the base node.

4. Fix an Imote2 node (which has been programmed with the base node C code of this toolkit) onto the debug board. Hit the RESET button on the node.
5. If the setup is correct, the Imote2 will have the blue LED and the green LED blinking alternately.
4. Description of the GUI

The primary function of the GUI is to provide a visualization of the real network set up using Imote2 nodes. The GUI can be broadly divided into three parts – Initialization, Data collection and Issuing commands.

4.1 Initialization of the network
This is the first stage of the GUI. It introduces the real network to the Java classes and helps it create the corresponding virtual image. Run the Java file ‘Main.java’ to start the GUI. The GUI with a blank initial screen will show up on the screen. Note that all the menus other than ‘Initialize’ are disabled at this stage.
4.1.1. Initializing the port
The initialize menu has the options to choose whether the network is set up for indoor or outdoor (this changes the way RSSI is mapped to distance). The option ‘Set parameters…’ opens a new dialog box (see Figure 1: Initialize – Screen 1).
[image: image1.jpg]Initialize Command Options

Initiatise the network

127.0.04

Figure 1: Initialize – Screen 1
This dialog box shows the IP address of the host computer and the port number chosen for the socket. These can be modified by typing in a new IP address or socket number. Alternatively, to permanently change the default values, the fields DEFAULT_IP_ADDRESS and DEFAULT_PORT_NUMBER in GlbalData.java need to be modified. Click OK to confirm the choice of port. The text area below the button will then display the status of the serial port initialization process. Finally, the output should read:
The Base node has been set at the following default values:

(To change them, please refer to 'GlobalData.java' file.)

Base node (Server) IP address: 127.0.0.1

Base node (Server) port no.: 8081
Again, the values shown above are the default values of the base node and should be modified to the values programmed onto the base node. These can be re-assigned using the fields DEFAULT_SERVER_ADDRESS and DEFAULT_SERVER_PORT in GlobalData.java.

This step sets up a client socket at the GUI end and declares a server socket at the base node. The port is now open and ready to be used.
4.1.2 Initializing the network

The next stage prompts the user to enter the number of nodes, anchors and locating nodes in the network (See Figure 2: Network Initialization). The number of locating nodes is automatically calculated as (number of nodes – number of anchors). The user must also enter a ‘maximum co-ordinate’ of the network. This indicates the size of the field of interest and the final network display will be scaled accordingly. The X and Y co-ordinates of all the nodes must be lesser than the maximum co-ordinate. This value will be referred to as maxCoor in this manual.
[image: image2.jpg]‘The NSL Imote2 toolkit

Initialize Command Options

Initialise the network

Figure 2: Network Initialization
Clicking the next button brings up another screen, where the user can enter the node IDs and the co-ordinates of the nodes in the network. The user also has the option to load a file of co-ordinates (The file should be in .txt format with the format: <NodeID><SPACE><Xcoordinate><SPACE><Ycoordinate><SPACE> for each node, with the anchors listed first).
The co-ordinates of all the nodes must be lesser than the maxCoor declared earlier.

Click the button ‘Create Network’ to complete the initialization of the network.

4.2 Data collection
As mentioned before, the base node and the serial port establish the link between the actual network and the GUI. The GUI has several components dedicated to conveying the node and network information to the user. The topology grid and the node info text area are two of these components located on the first tab of the main window (See Figure 3: Main screen - topology figure and display text area). The topology grid is a vis-à-vis representation of the actual network topology. The top-left corner of the display is co-ordinate (0, 0) and the bottom-right corner is (maxCoor, maxCoor). Initially, all the nodes are denoted by gray circles and are converted into blue circles when they establish their routing paths to the base node. After this initial stage, the actual locations of nodes are denoted by blue circles and the estimated locations are denoted by red squares. Note that these two coincide for anchors since the true location is known to them. If a node is inactive (powered off or runs out of battery), it will again show up as gray.

The node info area shows the latest information about the nodes of the network. It keeps getting refreshed with every message received from the network and hence shows the current values of node attributes. It also shows the command being sent by the user to the network.
[image: image3.jpg]B The NSL Imote2 toolkit

InitializeCommand Options

Netuwork Display | Serial Port Ot | Routin Table Display

Network Greated,

INade 0 Nogetd: 1
Istatus: Anchor

True 0 1) = (01,0
Est((Y)= 01,01)

INode 1 Nogeld: 2
Istatus: Anchor

True 0,0 = (0.4,0.4)
Est((Y)= (04,04)

INode 2 Nodeld: 3
Istatus: Locator

True 0 1) = (0.4,00)
Est((Y)= 00,00

INode 3 Nodeld: 4
Istatus: Locator

True 6, 0= (01,0.4)
Est((Y)= 00,00

Start Locationing ‘Show all nodes info

Stop Locationing Activate anchors

Send Command Change Update Interval

Change Beacon Interval

Figure 3: Main screen - topology figure and display text area
The third component of the GUI is for monitoring the data sent to or received from the base node. This is on the second tab of the main window titled ‘Port Output’ and is simply a string representation of all the data that the base node receives from the other nodes and passes on to the computer. The most common type of data coming in through the serial port is a location update from the nodes. This appears as a string starting with ‘DATA:’ and has information regarding the sending node ID and the estimated X and Y co-ordinates. It also differentiates between a location update received from an anchor node and that received from a locating node.
The output is shown in an easily readable format. A command being sent to the base node and being broadcasted by the base node to the network can also be seen in this output area. This is useful for debugging purposes.
4.3 Issuing Commands:

This is one of the key aspects of the GUI and helps the user control the network and try various locationing algorithms. There are several options for issuing commands, which makes the GUI easy and more intuitive to use. The command panel in the main display area is used for the main commands that can be issued to the network. In addition, there is a command options menu for commands which are relatively infrequently used. Furthermore, there is an option to right-click on a node on the topology display and issue a command specifically to that node. (See Figure 4: Options for issuing commands)
[image: image4.png]The IMote testbed
Initialize _Display Options.

Command Options.

Network Display | Serial Port Output

Network Created,

(100.0,500.0)

(100.0,500.0)

True (¢, = (500.0,100.0)

Est(4)= (00,00

Command Sent: Anchor - Nodeld 1activated
Command Sent: Anchor - Nodeld activated
Command Sent: Anchor - Nodeld 1activated
Command Sent: Anchor - Nodeld activated
Command Sent: Centraid Algo Locationing
Command Sent. All LEDS Off

Cormmand Sent: Stop Locationing
Command Sent: Stop Locationing

Set As Anchor
Set as Locator
Switch off

Switchon

Spoof location as...
Show node info
Send Command

Start Locationing

‘Show all nodes info

Stop Locationing

Activate anchors

Send Command

Figure 4: Options for issuing commands

A command issued by the user is generated by a Java class called ‘theCommandCenter’ and is sent to the node through the base node. Each command is assigned a number, and a list of currently supported commands can be found in the next section and in Appendix A. The destination address used for broadcasting a command is 65535.
The commands are sent in the form of a byte array, which is further wrapped in a datagram packet. The packet structure is as follows:

	Random Number
	CMD number
	Sending Node Address
	X co-or.
	Y co-or.

	(1 byte)
	(1 byte)
	(2 bytes)
	(4 bytes)
	(4 bytes)

Total: 12 bytes
The individual fields of the packet are:

1. Random number: Used to prevent duplicate transmissions of a packet. Currently unused and set to 0.

2. CMD number: The command number associated with the issued command. Refer to appendix A for the list of available commands.

3. Sending Node Addr: Set to 0 for a command issued by the GUI. This field is used by the base node while issuing commands.

4. X co-ordinates and Y co-ordinates: Used in commands for initializing the node location or modifying it. Else set to 0.

With each command packet structured as described above, multiple commands are sent as concatenated byte arrays as follows:

	No. of CMDs
	Destination Address 1
	Command Packet 1
	Destination Address 2
	Command Packet 2

	(1 byte)
	(2 bytes)
	(12 bytes)
	(2 bytes)
	(12 bytes)

For some special commands such as Change Location Update Interval and Change Beacon Interval, the command packet is structured differently. The format is as follows:

	Random Number
	CMD number
	Sending Node Address
	New value

	(1 byte)
	(1 byte)
	(2 bytes)
	(4 bytes)

The location update data packet sent by the Imote2 nodes to the base node is structured similar to the general command format. The command number is 113 for data packets sent by locators and 118 for those sent by anchor nodes.

A description of the commands and functions available is given in the next section.

5. Functions and Commands

The main function of this toolkit is to study different localization algorithms and to enable users to visualize the network. Apart from this, users can also modify the network and individual nodes. Elementary notions of adversarial behavior have also been built in, but are in a primitive stage in the current version. In case of commands, each command is denoted by a number and is sent to the node through the serial port in the form of a byte array inside a datagram packet.
Destination address is used as 65535 for broadcast and the node ID of the node for unicast.
The available functions/commands and their action is as follows:

	Command/Function
	Issued from
	Action

	Initialization functions:

	Initializing the GUI socket
	Initialization dialog box
	Specifies the IP address and socket number to be used by the GUI socket.

	Creating the network
	Initialization dialog box
	Declares the number of nodes, their node IDs and locations

	Loading network from a file
	Initialization dialog box
	Loads the node IDs and locations from a file (see Section 4.1 Initialization of the network for file format)Introduction

	Network-wide Functions for localization:

	Activate anchors
	Command button panel
	Sends a command to the anchors, with their co-ordinates specified.

	Start Locationing
	Command button panel
	Broadcasts a command to start locationing using the selected algorithm (has activate anchors built-in)

	Choosing locationing algorithm
	Popup when locationing command sent
	Enables the user to choose from the available locationing algorithms.

	Stop Locationing
	Command button panel
	Broadcasts a command to stop locationing

	Show all nodes info
	Command button panel
	Refreshes the display area and shows the most recent values of the attributes of all the nodes.

	Send Command
	Command button panel
	Opens a new window and allows the user to send specific commands to specific nodes (use destination address 65535 to broadcast)

	Change Update Interval
	Command button panel
	Changes the time period between location updates from locating nodes.

	Change beacon interval
	Command button panel
	Changes the time period between location broadcasts by anchors.

	Node-specific commands: (Right-click on node in the topology display)

	Set as Anchor
	Popup menu in topology display
	Sends the node its true location and sets it as an anchor for locationing purposes.

	Set as Locator
	Popup menu in topology display
	Erases the current location knowledge of an anchor and converts it into a locating node.

	Switch off
	Popup menu in topology display
	Turns locationing off for that node and turns all its LEDs off

	Switch on
	Popup menu in topology display
	Starts the locationing process on the node. Depending on the last known status of the node, it becomes an anchor or a locating node.

	Spoof location as…
	Popup menu in topology display
	Opens a new window and lets the user set a new location which the node broadcasts as its own. (primitive version of adversarial behavior)

	Show node info
	Popup menu in topology display
	Shows the current values of the node’s attributes in the display area

	Send Command
	Popup menu in topology display
	Opens a new window and allows user to send specific commands to the node.

	Additional Commands:

	Location propagation ON/OFF
	Command options menu
	Turns ON/OFF the propagation option. Switching propagation ON means that the locating nodes broadcast their locations to other locating nodes.

A complete list of commands and the corresponding command numbers can be found in Appendix A.
6. Implemented Algorithms

In the current version of the toolkit, 4 different localization algorithms have been implemented. These are:

1. Centroid.

2. Weighted Centroid.

3. Grid Scoring.

4. Weighted Grid Scoring.

5. Gradient Descent.

6. Weighted Gradient Descent.

The user can choose to run any of these algorithms by choosing it from the list in the popup while issuing the ‘Start locationing’ command. A description about each of these algorithms follows:

6.1 Centroid (Command number 201)

This is the most basic algorithm. Each locating node merely calculates the centroid of all the nodes that it hears from and declares that as its estimated location. This implies that its relative distance from each of the anchors does not influence its estimation, leading to inaccurate location estimation. Also, all the nodes who hear from the same set of anchors will place themselves at the same point, namely, the centroid of those anchors. Any location estimated using the centroid algorithm will always lie in the convex hull of the anchor locations. In spite of these shortcomings, the centroid algorithms is very robust and gives a good estimate of the overall region in which the node is located, especially with a high density of anchors.

6.2 Weighted Centroid (Command number 202)

This is an extension to the basic centroid algorithm. In this version, the location of each anchor is weighted by the inverse of its estimated distance from the locating node. For example, if the locating node hears from 3 anchors: anchor 1 (X1, Y1), anchor 2 (X2, Y2), anchor 3 (X3, Y3) at estimated distances of D1, D2 and D3, respectively, it estimates its own location (X,Y) as:

X = (D1-1 X1 + D2-1 X2 + D3-1 X3) / (D1-1 + D2-1 + D3-1),

Y = (D1-1 Y1 + D2-1 Y2 + D3-1 Y3) / (D1-1 + D2-1 + D3-1).

This method, though more accurate than centroid, still restricts the estimated location to the convex hull of the anchors. The simplicity and ease of computation of this method make it a good starting point/initial estimate for better, more computation-intensive methods.
6.3 Grid Scoring (Command Number 203)

This is a more accurate method than both centroid and weighted centroid. However, it also requires much more computation and at least 3 anchors to guarantee correct functioning. In this algorithm, the locating node basically calculates its distance from each of the anchors that it hears from. Then, it draws a ring of that radius around each anchor and the intersection point of these rings is declared as the estimated location. (See Figure 5: Grid scoring algorithm representation) This basic idea is extended by adding a noise margin to the rings which leads to their intersection being a region rather than a point. The centroid of this region is then declared as the estimated location.

[image: image5.jpg]

Figure 5: Grid scoring algorithm representation

The computation involved in this algorithm, especially for a large field area, is prohibitive for a sensor node processor. Hence, the algorithm has been optimized to estimate its location in 3 stages. In the first stage, it performs a weighted centroid algorithm to find an approximate region in which the lies. In the next stage, it performs a very coarse grained sampling of the field area around this initial estimate and computes a grid score for each of those points. The point with the maximum score is considered as the second estimate of its location. The final iteration is then performed with a fine-grained grid defined around this point. By restricting the area being considered in the fine grid, the computational load is significantly reduced.
The weighted centroid algorithm is a further extension of grid scoring. In this algorithm, the distance estimates and the co-ordinates of nearer anchors have a higher contribution to the location computation than the anchors that are farther away.
6.4 Gradient Descent (Command number 204)

This is an algorithm based on the well-known gradient descent technique for error minimization. In this algorithm, the node uses its present estimated location to find its distance from each anchor. The error between this distance and the actual distance (measured using RSSI) is used as the error function that it seeks to minimize. The minimization is achieved by moving in the direction of the negative gradient of the error function. The initial estimate of the location of the nearest neighboring anchor (offset by some noise to prevent zero distance from that neighbor).
Similar to the weighted grid scoring method, the weighted gradient descent extends the basic gradient descent method by assigning unequal weights to the measurements or estimates pertaining to the various anchors. The anchors nearer to the locating node have a larger contribution to the gradient than those that are farther away. This is based on the finding that the noise in RSSI measurements (used for estimating distance) increases with increasing distance. Hence, distance estimates of distant anchors are noisier than those of the nearer ones.
7. Helpful Hints

Due to the level of interaction between the Java GUI, the base node and the remaining Imote2 nodes, the system needs several different parameters to be set right for a smooth functioning. Here are a few helpful hints for users:
· Check the power supply of the Imote2 nodes. You can do this by hitting the RESET button and checking if all three LEDs light up momentarily.

· Whenever an Imote2 is reprogrammed, while reinstating it into the network, plug in the USB cable for power and hit the RESET button.

· For the base node, when connected to the computer, the green and blue LEDs blink alternately. For the other nodes, the blue LED is ON as long as the node is powered and the green LED blinks to indicate localization as an anchor and the red LED blinks to indicate localization as a locator.

· Before starting the Java GUI, ensure that no other program is using the same port number as the GUI client or the base node.

· While initializing a network from a file, ensure that the file is in the appropriate format. (Node ID, X co-ordinate and Y-coordinate – all separated by spaces, and the anchors listed first). The anchors being listed first is a preference. If that is not possible or an error is made, it can easily be corrected using the ‘Set as anchor’ and ‘Set as locator’ commands.

· While using the GUI to issue commands, please DO NOT send several commands at once. The existing routing and task scheduling systems might lead to one of the tasks not getting executed.

· While closing the GUI, it is a good practice to first send a command to stop locationing (although a default stop locationing command has been built into the closing operation).
· If there is a need to re-initialize the network at any stage, please close the GUI completely before re-initializing. This prevents errors due to multiple instances of networks being defined inside the GUI code.

8. Java implementations details

The basic setup of the GUI is straightforward and is designed for a smooth flow of commands as well as data. (See Figure 6: Schematic of data and command flow) The user interacts with the GUI, which in turn controls the base node through the serial port. The GUI also has access to a ‘Command Center’ which generates commands and sends it to the network through the base node. The base node is the component responsible for interaction between the GUI and the real network. It relays information from the network to the user and commands from the user to the individual nodes.
[image: image6.png]%

GUI

Command flow

USER I

Data flow

Command
Center

o

Base
Node

Actual Network

Figure 6: Schematic of data and command flow
The implementation in Java consists of several classes which interact with each other through various functions and fields. For ease of description, the classes can be divided into the following broad categories:
1. Display-related classes: mainDisplayFrame.java, initializePane.java, tabbedPane.java
 networkDisplayPane.java, topology.java, topologyDisplay.java.
2. Communication Port-related classes: myPort.java, PortOutputPane.java

3. Network-related classes: network.java, node.java

4. Command-related classes: theCommandCenter.java, nodePopupMenu.java,

adversaryWindowFrame.java, windowForSendingCommands.java.
The following table briefly describes the classes and the important methods included therein:
	Class
	Main function
	Methods and functionalities included

	Display-related classes:

	mainDisplayFrame.java
	Top-most level container. Contains all the other display components.
	· Menubar (initialize and command menus)

· tabbed pane

· updateNetworkInfo() : updates the node attributes based on incoming data packets
· displayNetworkInfo(): displays node attributes in the display text area.
· windowClosing(): handles the closing of the GUI. Sends a stop locationing command and closes the socket.

	initializePane.java
	Helps the user initialize the network.
	· Contains three stages of initialization: port, number of nodes and node info

· takeFileInput(): enables the user to load node co-ordinates through a saved file.

	tabbedPane.java
	Container for three tabs – network display, port output display and routing table display
	None

	networkDisplayPane.java
	Container for the display text area, command button panel and the topology display panel
	· displayUpdatedNetworkInfo(): displays node attributes in the text area and updates the topology display.

	Topology.java
	Contains the command button panel and the topology display panel.
	· Contains the action listener for the command button panel.
· Is the parent of the topology display panel.

	topologyDisplay.java
	The actual display area. Shows the true and estimated locations of nodes.
	· Contains classes to generate the symbols to denote the nodes (circle.java, shape.java)
· storeNodeData(): Creates a hash table of the co-ordinates of all the nodes

· makeNodes(), paintComponent(): Display the nodes as circles and their estimated locations on the screen.
· nodePopupMenu: The menu that enables users to right-click on a node to modify it and issue commands.

	Base node communication-related classes:

	myPort.java
	This is the socket that communicates with the base node using datagram packets.
	· run(): The main serial port I/O function. Enters an infinite loop where it keeps polling the socket for incoming data. Loop ends only when GUI is closed.
· Send(): sends a byte array as a datagram packet to the base node.
· sendCommand(): Converts the user command into a byte array and sends it to the base node.

	PortOutputPane.java
	Displays the commands being sent or data being received at the port
	· showOutput(): displays the port data onto the display area.

	Network-related classes:

	Network.java
	Represents the real network
	· Has Boolean flags to indicate if the network has been defined, is performing locationing, etc.

	Node.java
	Represents each node
	· Has Boolean fields to indicate if active, if adversary, if locationing, etc.

	Command- related classes:

	commandCenter.java
	Generates and sends the command to serial port
	· generateAndSendCommand(): Used to send commands in the appropriate byte array format.
· sendAnchorInitializeCommand(): Used to send the command to set the anchors location.

· Contains a list of supported commands and corresponding command numbers.

	nodePopupMenu.java
	Sends node-specific commands
	· Is shown on right-clicking on a node.
· Contains options to turn a node ON or OFF, convert it into an anchor/locator, to change its location and to send any other command.

	adversaryWindowFrame.java
	Allows user to enter a false location for a node
	· Accessed via the ‘spoof location as’ option in popup menu.

	windowForSendingCommands.java
	Allows user to send commands in unicast/broadcast mode.
	· Used for re-initializing a node’s location.

9. Future Work

The subsequent versions of this toolkit will include additional features to enable it to handle a larger diversity of tasks. These are:

· Ability to run a saved simulation.

· Perform more sophisticated attacks.

· Support negative co-ordinates.
Lastly, it is fit to mention that this is research-grade work and hence the software or documentation does not have any guarantees. Please report any suggestions or bugs to snabar@u.washington.edu.

Appendix A

List of supported commands:

	Command
	Description

	11
	Blue led toggle

	12
	Blue led ON

	13
	Blue led OFF

	21
	Red led toggle

	22
	Red led ON

	23
	Red led OFF

	31
	Green led toggle

	32
	Green led ON

	33
	Green led OFF

	41
	All leds toggle

	42
	All leds ON

	43
	All leds OFF

	52
	Set Radio Power

	101
	Change Update Interval

	102
	Change Beacon Interval

	110
	Initialize Anchor

	145
	Propagation ON

	146
	Propagation OFF

	201
	Localization ON, run centroid

	202
	Localization ON, run weighted centroid

	203
	Localization ON, run grid-score

	204
	Localization ON, run gradient descent

	205
	Localization ON, run weighted grid scoring

	206
	Localization ON, run weighted gradient descent

Command popup menu

Command button panel

Command menu

