Generative Model-driven Resource-efficient Monitoring of ECG

Sidharth Nabar*, Ayan Banerjee†, Sandeep K.S. Gupta† and Radha Poovendran*
*Network Security Lab (NSL), Electrical Engineering Department, University of Washington, Seattle
†IMPACT Lab, Arizona State University, Tempe.
Email: {snabar, rp3}@uw.edu, {abanerj3, Sandeep.Gupta}@asu.edu

Abstract—With recent advances in smartphones and wearable sensors, Body Sensor Networks (BSNs) have been proposed for use in continuous, remote electrocardiogram (ECG) monitoring. In such systems, sampling the ECG at clinically recommended rates (250 Hz) and wireless transmission of the collected data incurs high energy consumption at the energy-constrained body sensor. The large volume of collected data also makes data storage at the sensor infeasible. Thus, there is a need for developing a method to reduce the energy consumption and data size at the sensor, while maintaining the ECG quality required for diagnosis. In this report 1, we propose GeM-REM, a resource-efficient ECG monitoring method for BSNs. GeM-REM uses a generative ECG model at the base station and its lightweight version at the sensor. The sensor transmits data only when the sensed ECG deviates from model-based values, thus saving transmission energy. Further, the model parameters are continually updated based on the sensed ECG. The proposed approach enables storage of ECG data in terms of model parameters rather than data samples, which reduces the required storage space. Implementation on a sensor platform and evaluation using MIT-BIH dataset shows transmission energy and data storage reduction ratios of 42,086:1 and 37.3:1 respectively, which are better than state of the art ECG data compression schemes.

I. INTRODUCTION

Electrocardiogram (ECG) is a time-varying signal representing the electrical activity of the heart, and is an effective, non-invasive diagnostic tool for cardiac monitoring. Recently, several systems have been developed for continuous, remote ECG monitoring using Body Sensor Networks (BSNs) [1]. Such systems typically consist of a wireless, battery-operated, body-worn sensor that collects ECG data and transmits it to a gateway device such as a smartphone. The gateway reports this data over the internet to a remote base station, which is typically a hospital server or caregiver’s computer. Such remote monitoring allows collection of data during a person’s daily routine and enables early detection of conditions such as tachycardia or angina. Further, the availability of continuous long-term data can help identify gradual, long-term trends in the cardiac health of at risk patients.

A key challenge in BSN-based ECG monitoring is the large volume of data collected by the sensor in a short time interval. For example, with a sampling rate of 250 Hz and resolution of 12 bits/sample, more than 2 KB of data is collected within 6 seconds. Local storage of this data on the sensor or the gateway device is impractical due to storage limitations. Further, wireless transmission of this data consumes significant power at the energy-constrained sensor. At the same time, the quality and continuity of the reported ECG signal must be maintained at the base station to allow effective investigation and diagnosis by a physician.

In this paper, we focus on this problem of resource-efficient ECG monitoring for BSNs, and develop GeM-REM: a Generative Model-driven Resource Efficient ECG Monitoring method. Our key observation is that ECG is a fairly periodic signal, with a known morphology and well-understood temporal variations. A set of key features are collected from a patient’s ECG and incorporated into a generative ECG model that is stored on the sensor as well as the base station. The sensor transmits data to the base station only when the sensed ECG deviates from the assumed model. When no data is received from the sensor, the base station uses the generative model to generate synthetic ECG data closely resembling the patient’s ECG. This data can be used as the patient’s ECG for clinical investigations. Through experiments on real-life ECG data, we show that this approach significantly reduces sensor energy consumption, while preserving the diagnostic quality of the reported ECG. We report the following contributions:

- We develop a novel generative model based scheme for continuous ECG monitoring. In this scheme, the sensor and the base station store a common ECG model, and the sensor transmits data only when the sensed ECG deviates from this model.
- We design a base station module that can learn a model based on training data and generate synthetic ECG signals using the trained model. We also develop a lightweight sensor module that performs comparison of the sensed ECG data to the model.
- We implement the proposed system on a sensor platform and show the resultant savings in energy consumption and data storage memory requirement.

The rest of the paper is organized as follows. Section II presents background and related work. Section III discusses the overall architecture and operation of GeM-REM. Sections IV and V present the design and implementation of the base station and sensor modules respectively. We present our results in Section VI, and discuss some extensions in Section VII. Section VIII concludes the paper.

1This document is a technical report, and the associated conference paper is to appear in BSN 2011.
of the constituent waves are key features of an ECG, and are key features of an ECG, and are QRS complex. The shape, amplitude and relative locations of the constituent waves are key features of an ECG, and are referred to as morphology features in this paper. These features vary across individuals, but are expected to remain fairly stable for a given person, in the absence of pathological conditions.

The distance between two consecutive R peaks is called the R-R interval, and its reciprocal gives the instantaneous heart rate. Even in a healthy person, the R-R interval varies across beats due to several physiological factors [2]. This variation is described using temporal features such as mean and standard deviation of heart rate, and spectral features such as Low Frequency/High Frequency (LF/HF) ratio [2]. In this paper, we refer to these features as inter-beat features.

ECG is inherently a low amplitude electrical signal and is often corrupted by noise from various sources such as electrical mains, muscle noise and patient movement or respiration. As a result, the measured signal must be filtered to extract the underlying ECG waveform. Among the constituent waves, the QRS complex can be extracted using computationally lightweight algorithms such as [3]. The extraction of P and T waves, however, requires advanced filtering techniques that are computationally expensive to implement on sensors. Further, several conditions such as bradycardia, tachycardia, myocardial infarction and bundle branch block can be diagnosed from the QRS complex alone. As a result, in the current version of GeM-REM, we focus only on the QRS complex. Future extensions to GeM-REM will include improved filtering methods that can extract P and T waves.

A key aspect of GeM-REM is the use of a generative ECG model. Such models can generate synthetic ECG signals, given a set of input parameters. In this paper, we use the widely accepted dynamical generative model ECGSYN, proposed in [2]. ECGSYN models the ECG signal as a point moving around a unit circle, and uses differential equations to describe its motion. The individual waves are modeled as Gaussian attractors/repellers placed at specific points on the circle. The inter-beat features of ECG are modeled using 3 parameters: hrmean, hrstd and lfhfratio, corresponding to mean heart rate, standard deviation of heart rate and LF/HF ratio respectively. For the morphology features, each wave is represented by 3 parameters: (a, b, θ), which determine its height, width and distance to R peak, respectively. For example, the Q wave is represented by the 3-tuple (aQ, bQ and θQ). The authors of ECGSYN provide a MATLAB implementation [4] to generate synthetic ECG, given a set of input parameters. To avoid duplication, we use this implementation in GeM-REM.

B. Related Work

Most current approaches to reduce energy consumption and data size in ECG monitoring are based on data compression, where the sensed ECG is compressed before transmission. Several techniques based on wavelets, Huffman coding and priority-based encoding have been proposed in literature [1]. These schemes, unlike GeM-REM, need to continuously transmit data, thus limiting their energy savings. In Section VII, we discuss how these schemes can be combined with GeM-REM to further improve energy savings.

An alternative approach is proposed in [5], where a set of features is extracted from the sensed ECG and used for classification. The preprocessing and pattern recognition workload is transferred to local nodes close to the ECG leads to reduce transmission energy consumption. This scheme, however, is designed for ECG classification and does not provide the complete ECG signal at the base station.

Recently, a compressive sensing approach has been proposed for ECG monitoring [6], which uses the sparsity of the ECG signal in specific wavelet transformations to reduce sampling rate. However, reconstruction of the received signal is complex and strongly depends on error-free transmission of all coefficients.

III. MODEL-BASED ARCHITECTURE OF GeM-REM

In this section, we describe the overall architecture and operation of GeM-REM. The generative ECG model used at the sensor and base station is denoted as G, and the assumed BSN system model is shown in Figure 2a.

Architecture: As shown in Figure 2b, GeM-REM consists of the following two modules:

1) Base Station Module (MBS): This module uses G to generate synthetic ECG data given a set of input parameter values. Additionally, it includes a model learning function, which is used to train G based on a specific patient’s ECG. This function derives suitable input parameter values for G from the given ECG data.

Note that the height of a wave is not exactly equal to the value of a. Similarly, the width of the wave is not directly equal to value of b.
2) Sensor Module (M_{LITE}): This module is intended for use in the ECG sensor and uses a lightweight implementation of the model G to generate an expected ECG signal. It also performs a comparison between this signal and the sensed ECG, to decide when to transmit data to base station.

Initialization: Prior to deploying the system for a patient, the learning functionality of M_{BS} is used to train the model G using the patient’s ECG data. This training process outputs a set of parameter values, which are then stored on the base station as well as the sensor. These values are intended to be used as inputs to G, for generating synthetic ECG data closely resembling the patient’s actual ECG.

Basic Operation: During regular operation of the system, the sensor compares the sensed ECG signal to that generated by G, and if these signals match within a pre-defined threshold, the sensor does not report any data to the base station.

Conversely, if the sensed data deviates from the model, the sensor transmits data updates to the base station. At the base station, if data is received from the sensor, it is directly recorded as the patient’s ECG. Otherwise, it assumes that the ECG of the patient is close to the model-based values. The model G is then used to generate a synthetic ECG signal, which is used to represent the patient’s ECG.

Model Updates: Several features of ECG data, such as mean heart rate and the LF/HF ratio, vary over time with activities such as sleeping, walking and exercise. As a result, a single, static model G cannot effectively represent a patient’s ECG over extended periods of time. For effective operation of GeM-REM, it is necessary to dynamically update G as the patient’s ECG changes. Since the deviation of sensed ECG from model-based values is first detected at the sensor, the modifications to G must be triggered by the sensor. This can be achieved by two possible approaches:

- **Feature Updates:** Features of the sensed ECG signal (e.g., mean heart rate) are calculated from sensed data, and when these values change significantly, the sensor updates the corresponding parameters of the model G in M_{LITE}. Further, the sensor reports these calculated feature values to the base station. Such reports are called feature updates, and are used by the base station to modify the model in M_{BS}.

- **Raw Signal Updates:** When the patient’s ECG deviates from the current model, the sensor sends raw sensed data to the base station. This transmission is referred to as a raw signal update. Based on this update, the base station derives new parameter values for G using its model learning functionality. These values are sent to the sensor, to update the model in M_{LITE}.

We use a combination of the above two approaches in GeM-REM. For features that can be calculated on the computationally-limited sensor, we use the feature update approach. For the remaining features, raw data is reported to the base station.

A. Advantages of Proposed Model-Based Architecture

The model-based architecture of GeM-REM provides two main advantages: flexible energy consumption-data accuracy tradeoff, and reduced data size for ECG storage.

By defining suitable thresholds for the comparison between the sensed and model-generated ECG, a large fraction of data transmission at the sensor can be suppressed, thus significantly reducing sensor energy consumption. These threshold values can be specified by the physician based on the application requirements as well as the patient’s age, lifestyle and health condition. Further, they can be adjusted over time to tradeoff data accuracy and communication energy.

The proposed approach also provides reduced ECG data size for storage, by representing ECG using model parameters instead of data samples. For a time interval denoted $[t_A, t_B]$, if the patient’s ECG follows model G with parameter values $[p_1, p_2, \cdots, p_N]$, the data can be stored as: $[t_A, t_B] : [p_1, p_2, \cdots, p_N]$. These values can be used at a later time as inputs to G to regenerate the corresponding ECG data. This representation significantly reduces data size, and can enable local storage of ECG data on the patient’s smartphone, which is not feasible with direct storage of sample values.

We note that the approach outlined in this section does not depend on specific characteristics of the generative model G, and can be applied to any given ECG data model. In this paper, we use the ECGSYN [2] model as an example.
IV. BASE STATION MODULE MBS

In this section, we describe the design and implementation of the base station module \(M_{BS} \). The ECGSYN model is used as the generative model \(G \).

The two main functions of the \(M_{BS} \) module are learning the input parameter values for \(G \) from given training data and generating a synthetic ECG when no data is received from the sensor. Given a set of parameter values, the ECGSYN function can be used to generate a synthetic ECG, as noted in Section II. However, for this synthetic ECG to closely match the actual, sensed ECG, a set of suitable input parameter values needs to be obtained. This key functionality is provided by the model learning function.

The model learning function takes a real ECG signal as input, and generates a set of suitable input parameters for ECGSYN. As discussed in Section II, the ECGSYN model uses two groups of parameters to characterize an ECG signal: inter-beat parameters and morphology parameters. The learning method for each of these groups is as follows:

Inter-beat parameters: This group includes the parameters \(hrmean, hrstd \) and \(hfhratio \), corresponding to the mean heart rate, standard deviation of heart rate and LF/HF ratio features of ECG respectively. To calculate the LF/HF ratio, a set of 256 R-R interval values is obtained from the given ECG data and the Power Spectral Density (PSD) of this set is computed. The Low Frequency (LF) and High Frequency (HF) components are then obtained by integrating the PSD over the ranges (0.04Hz - 0.15Hz) and (0.15Hz - 0.4Hz) respectively. The ratio between these components gives the value of the \(hfhratio \) parameter. The \(hrmean \) and \(hrstd \) values are obtained by performing averaging and standard deviation calculations on a set of 60 R-R interval values.

Morphology parameters: This group includes the \((a, b, \theta)\) parameters for each of the P, Q, R, S and T waves, as described in Section II. Since we focus on the QRS complex in this paper, only 9 parameters \((a_Q, a_R, a_S, b_Q, b_R, b_S, \theta_Q, \theta_R, \theta_S)\) are used to represent the beat morphology. Given an ECG signal, the first step is to detect QRS complex. The signal is then divided into windows each containing 10 QRS complexes. These QRS complexes are then averaged to form a mean QRS complex (MeanBeat).

The ECGSYN model, expresses the Q, R, and S waves as Gaussian functions as:

\[
 m(t) = a_m \exp\left(\frac{-(t - \theta_m)^2}{2b_m^2}\right) \quad m \in \{Q, R, S\}
\]

The learning function determines the values of the coefficients \(a_m, b_m, \theta_m\) for each of the waves Q, R and S using the MeanBeat as the sample ECG wave.

The \(\theta_m \) values are obtained in radians as \(2\pi \) times the ratio between the distance of the individual peaks from the R peak and the R-R interval (\(\theta_R \) is zero, by definition). For learning the remaining parameters \((a_Q, a_R, a_S, b_Q, b_R, b_S)\), we use a curve fitting approach based on a least square minimization technique. This starts with an initialization step, where two different theta values are selected close to each of Q, R, and S peaks, which directly correspond to positions on the time axis. Let the ECG signal value at the two theta positions be denoted by \(M_1 \) and \(M_2 \). The two resultant instances of the equation 1 for each peak, are then solved simultaneously to obtain the initial values of the coefficients using the following equations:

\[
 b_m = \sqrt{\frac{2\pi^2}{\log M_{1/2} \times RRMean^2 \times f_{ECG}}} \quad (2)
\]

\[
 a_m = \frac{M_1}{b_m^2} \quad (3)
\]

where \(RRMean \) is the mean R-R interval in the ECG signal and \(f_{ECG} \) is the sampling rate of the signal. The mean square error between the MeanBeat and the generated signal for a given coefficient estimation is then set as the objective function of the nonlinear optimization. The solution of these optimization problems results in coefficient values, which can accurately resemble the MeanBeat.

Thus, a total of 12 input parameters \((hrstd, hrmean, hfhratio, a_Q, a_R, a_S, b_Q, b_R, b_S, \theta_Q, \theta_R, \theta_S)\) are learned from the patient’s true ECG and used to generate a matching synthetic ECG. We note that the morphology of ECG depends on the lead configuration and may vary across patients. Hence, the data used for learning the model should be obtained from the intended user of the system, and using the same lead configuration as the final system.

V. SENSOR MODULE M\text{LITE}

In this section, we describe the operation of the sensor module \(M_{LITE} \). The model \(G \) used in \(M_{LITE} \) is a lightweight TinyOS implementation of ECGSYN, developed by us as a part of GeM-REM.

The energy savings provided by GeM-REM are mainly from suppressing data transmission from the sensor when the sensed ECG matches the assumed model. These savings can be maximized through efficient implementation of the set of components in \(M_{LITE} \) shown in Figure 2. In this paper, as a proof of concept, we implement these components in software, on a commercially available TelosB sensor board. In future versions, some of these components will be converted to hardware implementations for reduced energy consumption.

The first task performed by \(M_{LITE} \) is preprocessing the sensed ECG to convert it into a format suitable for comparison with the stored model. This involves operations such as scaling, filtering and peak detection. The implementation details for each of these operations are as follows:

1) Scaling: The amplitude of the sensed ECG signal is highly dependent on the sensor hardware and the ECG lead configuration. To ensure an accurate comparison between the sensed data and the model data, they must both be converted to a common, device-independent scale. This is achieved by linearly scaling each signal to a maximum of 1.2 mV and minimum of -0.4 mV.

2) Filtering: As discussed in Section II, the sensed ECG is typically noisy, and must be filtered to extract the
underlying signal. For extracting the QRS complex, a passband of 5-12 Hz is required, which is achieved by cascading lowpass and highpass filters with cutoff frequencies 5 Hz and 12 Hz respectively. For low computational overhead, a Finite Impulse Response (FIR) filter design of 6 taps and order 32 is used. A similar filter design was used in [3] and was shown to achieve good performance.

3) **Peak Detection:** Measuring ECG features such as R-R intervals or QRS complex width requires the identification of Q, R and S peaks. In order to perform this peak detection at low computational overhead, we developed a lightweight QRS peak detection algorithm shown in Table I. This algorithm detects all the positive and negative peaks in a signal, and then imposes a relative threshold on the amplitude to qualify peaks as Q, R and S. The threshold values \(\text{threshold}_Q \), \(\text{threshold}_R \) and \(\text{threshold}_S \) were empirically derived by studying several ECG signals from the MIT-BIH database [4]. A baseline is derived by calculating the mean of the signal, and then the upward and downward dynamic ranges are calculated as \(\text{dynamicRangeUp} = \text{max(signal)} - \text{baseline} \) and \(\text{dynamicRangeDown} = \text{baseline} - \text{min(signal)} \) respectively. The thresholds are then initialized to specific fractions of the dynamic range. Such dynamic range-based thresholds allow adaptability to ECG signals with different morphologies. The threshold values used in this paper are: \(\text{threshold}_R = 0.3 \times \text{dynamicRangeUp}, \text{threshold}_Q = \text{threshold}_R \), and \(\text{threshold}_S = 0.1 \times \text{dynamicRangeDown} \). These values are low enough to minimize false negatives. False positives are reduced by imposing conditions based on the previous peak detected. For example, for a negative peak to be declared as ‘S’, the previous peak must be an R peak. Further, the relative amplitudes are compared and a threshold is imposed on this value. For example, for a peak to be declared as an ‘R’ peak, it must satisfy:

\[
\frac{\text{peak} - \text{previousPeak}}{\text{previousPeak}} > 1.5
\]

This relative amplitude comparison captures the expected generic shape of the ECG waveform.

Once preprocessing is complete, the sensed ECG is compared to the signal generated by the model. Such a comparison can be performed in two ways: (i) the preprocessed ECG can be directly compared to the model-generated signal; or (ii) a set of representative features can be extracted from each signal and these feature values can be compared. The feature comparison approach is more robust to noisy measurements but incurs computational overhead for calculation of features from sensed data. It was observed that the inter-beat features (mean and standard deviation of heart rate, and the LF/HF ratio) can be calculated from the sensed ECG at low computational cost. As a result, we use the feature comparison approach for these features. On the other hand, as discussed in Section IV, calculating the morphology features requires a curve fitting approach. Since this is not feasible for sensor class devices with limited computational capability, we use the direct signal comparison approach for the ECG morphology. The algorithms for performing these comparisons are as follows:

Inter-beat features comparison: For the sensed data, the mean and standard deviation of the heart rate are obtained by calculating the mean and standard deviation of a set of 30 consecutive R-R intervals. The calculation of LF/HF ratio is similar to that described in Section IV for \(M_{BS} \). However, to optimize computation speed and power consumption, we developed an efficient TinyOS implementation for Fast Fourier Transform (FFT). Once these calculations are complete, the feature values are compared to model parameter values \(\text{hrmean}, \text{hrstd} \) and \(\text{lfhratio} \) respectively.

Morphology comparison: A sample, representative beat, referred to as MeanBeat, is obtained by averaging 10 consecutive beats of the sensed ECG. On the other hand, we use our lightweight ECGSYN implementation to generate a sample ECG beat, referred to as ModelBeat. The ModelBeat and MeanBeat are aligned by superimposing the respective R peaks, and the fit is compared using a mean square error approach. The mean square metric is chosen since it captures shape as well as amplitude of the Q, R and S waves. Since the generation of ModelBeat was found to be computationally expensive, it is performed only once, when new morphology parameter values are assigned. The generated ModelBeat is then stored in memory for future use.

Based on these comparisons, if the sensed data is found to deviate from the model, the sensor triggers a model update, as discussed in Section III. For inter-beat features, if the mismatch between true feature values and corresponding model parameter values exceed a pre-defined threshold, the sensor updates the model parameters in \(M_{LITE} \). It also reports this feature update to the base station. In the morphology comparison, if the error between MeanBeat and ModelBeat is above a specified threshold, the entire ECG data for the corresponding

Table I

<table>
<thead>
<tr>
<th>QRS DETECTION ALGORITHM USED IN THE SENSOR MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each incoming data sample (x[i]), if (-0.4 \leq x[i] \leq 1.2)</td>
</tr>
<tr>
<td>if (x[i] > \text{MAX}) then Set (\text{MAX} = x[i]) (Initially, (\text{MAX} = -100))</td>
</tr>
<tr>
<td>if (x[i] < \text{MIN}) then Set (\text{MIN} = x[i]) (Initially, (\text{MIN} = 100))</td>
</tr>
<tr>
<td>if (Looking for upward peak) then</td>
</tr>
<tr>
<td>if (x[i] < \text{MAX}) then Mark x[i] as PossiblePeak</td>
</tr>
<tr>
<td>if (x[i] < (\text{MAX} \cdot \text{thresholdUp})) then</td>
</tr>
<tr>
<td>Mark latest PossiblePeak as RealPeak</td>
</tr>
<tr>
<td>if (magnitude(RealPeak) > thresholdR) then</td>
</tr>
<tr>
<td>Mark peak as R peak</td>
</tr>
<tr>
<td>Start Looking for downward peak</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>if (x[i] < \text{MIN}) then Mark x[i] as PossiblePeak</td>
</tr>
<tr>
<td>if (x[i] > (\text{MIN} \cdot \text{thresholdDown})) then</td>
</tr>
<tr>
<td>Mark latest PossiblePeak as RealPeak</td>
</tr>
<tr>
<td>if (magnitude(RealPeak) > thresholdQ) AND (PreviousPeak is S) then</td>
</tr>
<tr>
<td>Mark peak as Q peak</td>
</tr>
<tr>
<td>if (magnitude(RealPeak) > thresholdS) AND (PreviousPeak is R) then</td>
</tr>
<tr>
<td>Mark peak as S peak</td>
</tr>
<tr>
<td>Start Looking for upward peak</td>
</tr>
</tbody>
</table>
time interval (10 beats) is sent to the base station. If the base station receives multiple such raw signal updates, it retains the morphology parameters of the ECGSYN model, and communicates the new values to the sensor. Although such raw signal updates incur significant data transmission at the sensor, its impact on overall energy consumption is minimal, since the ECG morphology of a person is not expected to vary much over time, as discussed in Section II.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results for the evaluation of GeM-REM. Specifically, we evaluate the following aspects: (i) Accuracy of model learning functionality of \(M_{BS}\), (ii) Energy consumption of \(M_{LITE}\), (iii) Reduction in energy consumption and data storage provided by GeM-REM, and (iv) Accuracy of GeM-REM.

The data used for evaluation is a set of real life 3-lead ECG traces sampled at 250 Hz, obtained from the MIT-BIH database [4]. This ECG is further scaled and filtered, as described in Section V. This filtered version of ECG is referred to as ECG\textsubscript{raw} for the remainder of this section. Similarly, the ECG reported by GeM-REM at the base station is referred to as ECG\textsubscript{GR}. The \(M_{BS}\) module is implemented in MATLAB, while the \(M_{LITE}\) module is implemented in TinyOS 2.x, and run on the TelosB platform. In \(M_{LITE}\), all numerical values (ECG samples and feature values) are implemented as 16-bit integers to optimize performance.

A. Learning Function in \(M_{BS}\)

The model learning function of \(M_{BS}\) was tested over 20 ECG traces of two different types: (i) 10 Normal ECG, (ii) 10 Congestive Heart Failure (CHF) ECG. For each ECG\textsubscript{raw}, a sample beat was obtained by averaging 10 consecutive beats. An ECGSYN model was trained on this beat, and then used to generate a synthetic ECG, which was compared to ECG\textsubscript{raw}. As shown in Figure 3, the trained model achieves very good fit for different morphologies of ECG\textsubscript{raw}. An average mean square error of 2.13% was observed over 20 ECG traces.

B. Energy Consumption of \(M_{LITE}\)

We evaluate the energy consumption of \(M_{LITE}\) since it can be an important factor in the battery life of the ECG sensor. Some tasks in \(M_{LITE}\), such as filtering, are executed continuously, while others, such as \(hr\text{mean}\) calculation, occur once for a set of several beats. To jointly consider these tasks, a per beat energy consumption is calculated for each task, and their sum is considered as the total energy consumption per beat. Table II shows that the highest contribution is from simple tasks such as scaling and filtering, since they are executed continuously. Using hardware implementations of these tasks in future versions is expected to drive down the energy consumption of \(M_{LITE}\).

C. Transmission Energy and Storage Memory Savings of GeM-REM

We now discuss the reduction in transmission energy consumption and data storage provided by GeM-REM, and compare our results to state of the art compression schemes proposed for ECG monitoring.

Transmission Energy Reduction: Since data transmission is the main factor in energy consumption on energy-constrained ECG sensors [5], transmission energy is an important performance metric for ECG monitoring schemes. Since transmission energy consumption is directly proportional to the size of data being transmitted, compression-based methods use the compression ratio (CR) as an indication of transmission energy reduction [7]. To enable a comparison of GeM-REM to state of the art compression schemes, we define a similar ratio for GeM-REM as:

\[
CR_{GR} = \frac{\text{Total ECG data}}{\text{Data transmitted by GeM-REM}}
\]

Table III lists the compression ratios of various compression schemes compared to GeM-REM.

Table II

<table>
<thead>
<tr>
<th>Task</th>
<th>Occurrence</th>
<th>Energy (mJ)</th>
<th>Energy/Beat (mJ/beat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling, Filtering and Peak detection</td>
<td>Every beat</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>Generate ModelBeat using ECGSYN*</td>
<td>-</td>
<td>22.176</td>
<td>-</td>
</tr>
<tr>
<td>Cross-correlation between MeanBeat and ModelBeat</td>
<td>10 beats</td>
<td>1.008</td>
<td>0.1</td>
</tr>
<tr>
<td>Calculate heart rate mean, std. deviation</td>
<td>60 beats</td>
<td>3.434</td>
<td>0.056</td>
</tr>
<tr>
<td>Calculate LF/HF ratio</td>
<td>256 beats</td>
<td>3.072</td>
<td>0.012</td>
</tr>
<tr>
<td>Total Computational energy/beat</td>
<td></td>
<td>0.79</td>
<td></td>
</tr>
</tbody>
</table>

*Since this is a one-time task, it is not considered in per beat energy.

Table III

<table>
<thead>
<tr>
<th>Scheme/Algorithm</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZTEC [1]</td>
<td>10 : 1</td>
</tr>
<tr>
<td>CORTES [1]</td>
<td>4.3 : 1</td>
</tr>
<tr>
<td>Wavelet and Huffman [1]</td>
<td>9.4 : 1</td>
</tr>
<tr>
<td>DCT & arithmetic [1]</td>
<td>14.73 : 1</td>
</tr>
<tr>
<td>DCT & LZW [1]</td>
<td>9 : 1</td>
</tr>
<tr>
<td>SPITH [7]</td>
<td>21.4 : 1</td>
</tr>
<tr>
<td>DWLT & MSVQ [7]</td>
<td>29.3 : 1</td>
</tr>
<tr>
<td>GeM-REM (ours)</td>
<td>42.08 : 1</td>
</tr>
</tbody>
</table>
To calculate CR_{GR}, we ran GeM-REM for a set of ECG$_{raw}$ signals from 5 different subjects. Each ECG signal is 5.4×10^6 samples long (approx. 6 hours). Since we use 16 bits/sample, the total data is 10.8 MB. The thresholds for $hrmean$, $hrstd$ and $lfhfratio$ parameter comparison were 3 beats per min (bpm), 2 bpm and 4, respectively. For morphology comparison, the threshold for mean squared error between ModelBeat and MeanBeat was set as 0.07. These values were obtained by consulting with clinical practitioners experienced in ECG analysis and diagnosis. As shown later, these values preserve the diagnostic content of ECG.

With these threshold values, the average data transmission per ECG$_{raw}$ was found to be 4420 bytes in feature updates (2210 updates) and 252.2 KB in raw signal updates (65 updates). Thus, total data transmitted is 256.62 KB, giving: $CR_{GR} = 10.8$ MB/256.62 KB = 42.086 : 1. Table III shows the comparison between GeM-REM and state of the art compression schemes [1], [7]. The variation in CR_{GR} based on the chosen threshold values is shown in Table IV. We observe that a larger threshold for morphology mean square error (MSE) gives very high gain in CR_{GR} since it almost eliminates data-intensive raw signal updates.

Storage Space Reduction: To measure the effectiveness of the data representation described in Section III-A, we used it to store ECG$_{GR}$ in memory. For each feature value update, a new time interval is started, and the set of model parameters is appended to the file. The data samples received through raw signal updates are stored directly. On an average, for a new time interval is started, and the set of model parameters is appended to the file. The data samples received through raw signal updates are stored directly. On an average, for an ECG$_{raw}$ file size of 32.9 MB, we obtained a size of 903 KB for ECG$_{GR}$ (Compression Ratio of 37.3), which is significantly higher than existing compression schemes. We note that this ratio relates to the storage requirements and is different from CR_{GR} which is related to data transmission.

D. Accuracy of GeM-REM

To evaluate the accuracy of GeM-REM, we consider the following two aspects: diagnostic quality of the ECG$_{GR}$ signal and the ability of GeM-REM to detect occurrence of unexpected events in the sensed ECG.

Signal Quality: The Percent Root-mean-square Distortion (PRD) metric typically used by compression schemes to measure distortion is not applicable to GeM-REM since the output signal ECG$_{GR}$ is not intended to match the input ECG$_{raw}$ sample-to-sample. Instead, the goal is to preserve the diagnostic information. As a result, we measure signal quality by evaluating a set of 6 diagnostically relevant features of ECG$_{raw}$ for ECG$_{raw}$ and the corresponding ECG$_{GR}$ signal. A percent error is then obtained for each feature. As shown in Table V, the average error over 5 different ECG traces is below 7% for the same set of threshold values used for calculating CR_{GR}. This indicates that the diagnostic quality of ECG is retained by GeM-REM. Like CR_{GR}, the signal quality also varies with chosen threshold values, as shown in Table IV. It was observed that lower threshold values for inter-beat features improve accuracy, with minimal effect on CR_{GR}.

Detection of unexpected events: To evaluate the response of GeM-REM to occurrence of critical, unexpected events such as acute cardiac failure, we used a trace consisting of a CHF appended to a normal ECG waveform. This was used as ECG$_{raw}$, to simulate the occurrence of a heart failure. As expected, the change in ECG was detected in the morphology comparison, and was reported to the base station within 5 beats (approximately 5 s).

VII. Extensions and Future Work

In this section, we discuss possible extensions to GeM-REM, and proposed future work.

A. Extensions to GeM-REM

Data Compression in M_{LITE}: As discussed in Section II, several data compression schemes have been proposed in literature for ECG. These schemes can be added on to GeM-REM to further improve the energy and data size savings. Based on our experimental validation of GeM-REM, it was observed that a very high percentage (approximately 95%) of the sensor transmission in GeM-REM occurs in the form of raw signal samples when ECG morphology differs from the reference model. In these cases, existing compression schemes can be used to reduce the data to be transmitted. This will further reduce sensor energy consumption in GeM-REM.

Hardware implementation of M_{LITE}: The scaling and filtering tasks of M_{LITE} can easily be implemented in hardware using existing techniques. This is expected to significantly reduce the computation energy consumption at the sensor, and will be included in the next version of GeM-REM.

Incorporating P, T waves: Diagnosis of conditions such as atrial hypertrophy and cardiac ischemia require P and T waves to be reconstructed in the ECG at the base station. To enable this reconstruction, the filtering and peak detection algorithms

TABLE IV

<table>
<thead>
<tr>
<th>Threshold Values</th>
<th>CR$_{GR}$</th>
<th>Feature Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hrmean, hrstd, lfhfratio)</td>
<td>Morphology MSE</td>
<td>Max</td>
</tr>
<tr>
<td>(3,2,4)</td>
<td>0.07</td>
<td>42.08:1</td>
</tr>
<tr>
<td>(2,1,3)</td>
<td>0.07</td>
<td>40.19:1</td>
</tr>
<tr>
<td>(10,5,6)</td>
<td>0.2</td>
<td>7892:1</td>
</tr>
<tr>
<td>(10,5,6)</td>
<td>0.01</td>
<td>1.16:1</td>
</tr>
</tbody>
</table>

† This case does not send any raw signal updates

‡ This case transmits almost entire ECG$_{raw}$

TABLE V

<table>
<thead>
<tr>
<th>Feature</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-R interval</td>
<td>6.47</td>
</tr>
<tr>
<td>QRS complex width</td>
<td>6.92</td>
</tr>
<tr>
<td>Polarity of QRS</td>
<td>0.6</td>
</tr>
<tr>
<td>Number of peaks in QRS</td>
<td>1.1</td>
</tr>
<tr>
<td>QRS: Max amplitude</td>
<td>4.8</td>
</tr>
<tr>
<td>QRS: Min amplitude</td>
<td>4.13</td>
</tr>
</tbody>
</table>

4We only consider features related to the QRS complex and the R-R process.
at the sensor need to be modified and the set of morphology parameters must be extended to incorporate P and T waves. This extension will be presented in our future work.

Other physiological parameters: Along with ECG, BSNs are used for measuring several other physiological parameters, such as SpO2, blood pressure and glucose. Like ECG, these parameters are also highly regular and have well understood variation patterns. Thus, the proposed generative model-based approach can be used for these parameters as well.

B. Future Work

Since GeM-REM is intended for use in long-term, remote ECG monitoring scenarios, it is important to evaluate its robustness to communication packet loss and measurement noise due to patient movement, that commonly occur in BSN-based ECG monitoring. In order to investigate these issues, we intend to build a complete system implementation of GeM-REM and perform sample trials.

VIII. Conclusion

In this paper, we proposed GeM-REM, a generative model-based method for ECG monitoring using BSNs. Based on validation with real ECG data, GeM-REM is observed to significantly reduce sensor energy consumption and ECG data storage space, while maintaining the diagnostic quality of the reported ECG signal.

REFERENCES

