

Electric Vehicles Aggregator/System Operator Coordination for Optimal Charging Scheduling and Services Procurement

Miguel Ortega-Vazquez (UW)

Francois Bouffard (McGill)
Vera Silva (EDF)

 $\overline{ ext{UNIVERSITY}}$ of WASHINGTON Seattle, USA

Introduction

- Decarbonisation of the transportation sector:
 - Electricity as energy carrier
 - Ideally, energy from RES
 - Large fleets of EVs will constitute a significant share of the wide system demand
- Advent of the Smart Grid
 - Demand will feature higher degrees of communication and control

Electric vehicles (EVs)

- Unlike most existing loads, EVs are equipped with a battery:
 - Waive their energy requirements in time
 - Energy storage
 - Provide ancillary services, e.g. reserve

Impacts

- The pliant nature of the EVs as demand makes them good candidates to impact the system:
 - Technically: provide *flexibility* to the system
 - Economically: trading that *flexibility*

EVs operating modes

EV operating mode

- Vehicle charging
- Vehicle discharging (V2G)
- Vehicle plugged-in
- Vehicle unused
- Vehicle circulating

Power system + EVs

Energy

Co-ordination

Aggregator

Bridge between EVs and power system players:

Interaction Aggregator & SO

Generation scheduling

- Minimize total operating costs
 - Power balance constraint (including EVs' charge and discharge)
 - Security: system reserve requirements (unforeseen events)
 - Units technical operating constraints:
 - Minimum up- and down-times
 - Up and down ramp rate limits

EVs scheduling

- Sell flexibility services to the system
 - EVs' energy requirements
 - EVs operating constraints:
 - State of charge
 - Charging and discharging rates

From day-ahead to real-time

- Schedules are performed a day-ahead on the basis of:
 - Wind power generation forecast
 - Demand forecast
 - Forecasted EVs availabilities
- Deviations between forecasts and actual values materialize in real-time
 - Conventional generation deployment to meet net demand deviations
 - Deployment of EVs' flexibility services as a function of the agreed prices the day before

Test system

• IEEE-RTS omitting hydro generation

nuclear

- 26 Units, 3105 MW installed

Group	# Units	Capacity (MW)	Fuel
Α	5	12	oil/steam
В	4	20	oil/CT
С	4	76	coal/steam
D	3	100	oil/steam
Е	4	155	coal/steam
F	3	197	oil/steam
G	1	350	oil/steam

400

Н

2

Cost functions

Demand and wind profiles

Forecasted and actual values...

EVs' characteristics

EV parameter	EV type			
	BEV	City-BEV	PHEV	Value
EV fleet composition (%)	37	10	53	100
Battery capacity (kWh)	35	16	18	24.1
Energy consumption (kWh/km)	0.2	0.12	0.2	0.192
EV range (km)	175	133	90	125.5
Average distance (km/day)				40.0
Daily consumption (kWh/day)				7.68
Charge/discharge rate (kW/h)				3.70
Total number of vehicles				689,475

System with no EVs

Uncontrolled EVs – 30% penetration

Uncontrolled EVs – 30% penetration

Effect of the EVs' penetration

Effect of the V2G markup

Effect of the pricing of the reserve from EVs

Reducing the exercise price for reserve deployment

Summary

- Presented the necessary adaptations to a typical USstyle short-term forward electricity markets including EVs fleet aggregators
- The operating constraints of the EVs are explicitly modeled
- Represents adequately the collective operation of the EVs to attain benefits while reducing operating costs
- Several ancillary services and their deployment are represented: V2G, Reserve capacity as additional charge and interruption of scheduled charging/discharging

Conclusions

- If no coordination is implemented, only a limited amount of EVs can be successfully integrated in the system
- Implementing an approach such as the proposed, allows the integration of large volumes of EVs without needing to invest in generation assets
- The participation of the aggregator(s) as service providers determined by the services bids

Conclusions

- Charging process is scheduled at the cheapest periods
- Services from EVs are scheduled only if these are competitive with those from conventional sources
- V2G is attractive to avoid synchronization of expensive generation
- Reserve is in the form of interruption of charging is attractive, but it can only be offered when EVs are charging → light loads...
- Reserve as additional charge are attractive, but only when their supply equivalent is expensive