Excel PowerWorld Interface
Mission
	The process of solving the Optimal Power Flow (OPF) of a power system is mathematically intensive, requiring the solution of a nonlinear system. Thus an algorithmic approach is called for, and is included in PowerWorld, a software package that allows the user to model large power systems (up to 100,000 busses) and perform analyses of these systems such as OPFs. The user can, within PowerWorld, solve the OPF for a specific case, then change the parameters of certain elements within the system and solve the OPF again. One example of this would be to solve the OPF for a system multiple times given a variety of cost parameters for generators in the system. However, it may be desirable for the user to be able to perform this task using only Microsoft Excel and a connection to PowerWorld. This connection may be established via the Simulator Automation Server (SimAuto) addon, and can be used without running an instance of PowerWorld. Using the Excel PowerWorld Interface, the user can establish a connection to PowerWorld, specify a PowerWorld case, extract object parameters from the case to a new spreadsheet, make changes directly to these parameters in the spreadsheet, load the changed parameters back into PowerWorld, and solve the OPF. This process is explained below.

Using the Excel PowerWorld Interface
This section will highlight the abilities of the Excel PowerWorld Interface and provide steps to run a series of OPFs with different object parameters.
[image:]The Interface Window

a. Open Connection button. This button will establish a connection to PowerWorld.
b. Close Connection button. This button will close the connection to PowerWorld.
c. Quit button. This button will close the window, returning the user to the initial one-button screen.
d. Open Case button. This button will attempt to open whichever case is specified in the “Case name” text field, as long as it resides in the folder shown in the “Directory” text field.
e. Close Case button. This button will close the open case.
f. Get Gen Parameters button. This button will print the MW output of each generator in the case to the text box in the bottom right of the window.
g. Send Info to Excel button. This button will open a new spreadsheet with a tab each for generators, loads, and branches, each tab showing a list of each instance of its object type and the parameters of that instance. Alternatively, if such a spreadsheet is already open, a new one will not be created. Instead these tabs will be added to the excel file that is already open. NOTE: The parameters displayed may be changed by manipulating the VBA code that describes this program. However, this process is not entirely straight forward, and will be explained in a later section.
h. Send Info to PowerWorld button. This button will take the object parameters stored in the spreadsheet specified in the “Output file name” text box and change the open case accordingly.
i. OPF button. This button will solve the OPF of the open case. When this button is clicked three things will happen: a call to “Send Info to PowerWorld” will be made (values from the “Output file name” spreadsheet will be sent to the case), the OPF for the case will be solved, and a call to “Send Info to Excel” will be made. The values shown in the new spreadsheet will reflect the new parameters determined by the OPF.
j. Directory text field. This should show the complete file path of the folder in which necessary case files and excel spreadsheets are stored. Such files should be kept in the same folder for simplicity.
k. Case name text field. This should contain the name of the PowerWorld case to be examined (including .pwb).
l. Output file name text field. This should contain the name of the spreadsheet with object parameters intended to be used to manipulate the open case (including .xlsx). It is important that the spreadsheet listed here is in the appropriate format (the format used in the creation of a spreadsheet via the “Send Info to Excel” button). The easiest way to avoid issues here is to not attempt to create this spreadsheet from scratch, and to instead use the “Send Info to Excel” button to create it, change the parameters in question, and then save.
Solving an OPF
1. Open the Excel PowerWorld Interface. You should see one button reading “Launch PowerWorld Interface” over a white background.
2. Click the Launch Button. A new window will appear with several buttons and three text fields, each of which is described below.
3. Click the “Open Connection” button.
4. Specify the directory and filename of the PowerWorld case to be examined in the “Directory” and “Case name” fields respectively.
5. Click the “Open Case” button.
6. Click the “Send to Excel” button. This will create a new spreadsheet with, by default, three tabs: “Gen”, “Load”, and “Branch.”
7. Make any changes to the parameters listed on the spreadsheet and then save the spreadsheet in the folder shown in the “Directory” field. The name used for this spreadsheet should be entered into the “Output file name” field.
8. Click the “OPF” button. The new object parameters will appear in a new spreadsheet with the same three tabs.
9. Repeat steps 7 and 8 to run more OPFs. Remember, each time these steps will produce a new spreadsheet, but each new spreadsheet can be saved over the last by using the same name.
Changing Parameters Displayed When Calling “Send Info to Excel”
1. You will first want to determine the names of the parameters that you wish to add. These names must be retrieved from PowerWorld.
a. Open PowerWorld and click the “Model Explorer” button at the top left of the screen.
b. Navigate to the “Explore” window on the left of the screen and find the object type that you are changing the parameters for. The basic parameters for each object type are contained in the Branches, Generators, and Loads items in the “Network” folder, but additional parameters may be found in the corresponding items within the “Optimal Power Flow” folder.
c. Once you have selected an item from the Explore window, parameter names may be found as the column titles of the grid.
2. Make sure that a separate instance of the Excel PowerWorld Interface is saved before making any changes to the code.
3. Open the instance of the Interface to be changed and hit alt-F11 while on the one-button screen. This will open the VBA editor.
4. On the left you will see the “Project Explorer” box, containing a cascading list of folders and items. Find the “UserForm” object in the “Forms” folder, right click it, and select “View Code.”
[bookmark: _GoBack][image:]
5. Above the code window there will be two click-down lists. Select “SendToExcelBtn” from the left one and the code window will show the code block for this button. The code to be changed is clearly marked with a comment.
[image:]
6. In the code you will see a list corresponding to each object type. If you are removing parameters, simply delete them from this list (be sure to continue with these steps, as the parameters have to be deleted elsewhere also). If you are adding parameters, add them to the list so that they are separated from their neighbors with commas, are surrounded by quotation marks, and begin with “pw” (essentially, mimic the syntax used for the parameters already present).
7. Using the click-down list from step 5, navigate to the code for “SendToPWBtn.” The code to be changed is marked in the same way as it was in “SendToExcelBtn.”
[image:]
8. Add or remove parameters here as you did in step 6. It is important that the lists of parameters here are exactly the same as the lists from “SendToExcelBtn,” that is to say; they contain the same parameters in the same order.
9. Hit ctrl-s to save, and future calls to “SendToExcel” will include the newly specified parameters. NOTE: You will not be able to use the “SendToPW” button on any spreadsheets that do not contain exactly the same parameters as specified in the current instance of Excel PowerWorld Interface.
image1.png
PowerWarld Connection

Open Connection

——_

=
|

Open Case

Closa Caze

et G Paramiters

Send Info o Excel

Send Info to Pawerarld

orF

Directoryi | CilsersVAleriDocumentsWATLAE —T
(RN —_—
Spreachhesttame: [i pe—

Opened Case Succassully!

OFF exscutad succesily!

BUS PARAMETERS

Bt P
i 60
2 &0
3 &0

—k

image2.png

image3.png
2 Microsoft Visua Basic for Applcations - PowerWorld Interfacedsm - [UsetForm (Codel]

B File Edit View Inset Format Debug Run Tools Adddns Window Help -8 x
E&-d 9oy uom MY @l !
Project - VBAProject X|[|"sendroEscetstn | crex -
=
Private 5w SenaTobxcelBin Click() | Semds Info to Excel =
& VBAProject (PowerWorld Interface.xism) Dim Genoutput 4s Variant
(-5 Microsoft Excel Objects Dim LoadOutput As Variant
) Sheet1 (Powerworld Automation Server) Dim BranchOutput is Variant
) Thsworkoook Dim OPFOucput As Variant
(=425 Forms Dim MyExe As Object
B Userborm Dim cewp As Range

& UserFormt
& VBAProject (test16.xlsx) '

Specify parameters to be moved to excel. These arrays must match corresponding arrays in SendToPUBtn Click
GenFields = Array("puBusiun”, "puGenld”, "puGenNU", "puGenProdCost”, "puGenMUMin®, "puGenMiMax”, "puGenBidli”, "puGens
LoadFields = Array("puBusNu”, "puloadID”, "puloadii”, "puloadilVR")

BranchFields = Array("puBusHun”, "puBusNum:1", "puLineCircuit”, "pulineR”, "puLineX")

GenOutput = NySimhuto.SendToExcel ("Gen”, "7, GenFields] ' Sends All the Tnformation of Gens to Excel
Properties x| Loadoutput = NySimAuto.SendToExcel("Load”, ™", LoadFislds]

Branchoutput = HySimkuto.SendToExcel ("Branch”, "7, BranchFields)
Alphabetic | Categoried End sws

Private Sub SendToPWetn Click(]
Din GenInput As Variamt

Din LoadInput As Variant
Dinm BranchInput is Variant
Dim GenParamlList is Variant
Dim LoadParanlist Ls Variant
Dim BranchParexList As Variant
Dim OutputFileName As String
Din GenRange As String
Dim LoadRange hs String
Dim wbkDestination is Workbaok
Dim r1 ke Range
Dim rz ke Range
Dim r3 ke Range
Dim & is Integer
Dim b is Integer

i ’

image4.png
2 Microsoft Visua Basic for Applcations - PowerWorld Interfacedsm - [UsetForm (Codel]

B File Edit View Inset Format Debug Run Tools Adddns Window Help -8 x
EH&-d 9l 0 a KISEY @ s v
it X [Senatopwotn < ciek B
Frivae Su SemaToRUBTRCIioK() =
=& VBAProject (Powerworld Interface xlsm) Din GenInput is Variant
(-5 Microsoft Excel Objects Dim LoadInput is Variant
) Sheet1 (Powerworld Automation Server) Dim BranchInput As Variant
&) heworbock Dim GenParawlist ks Veriant
(=425 Forms Dim LoadParawlist As Variant
8 Userfom Dim BranchParanlist s Variant
B Lserrormt Dim OutputFileName ks String
%5 vBAProject (test16.xlsx) Dim GenRange ks String
Dim LoadRange ks String
Dim wbkDestination ks Vorkbook
Dim r1 ks Renge
Dim x2 ks Renge
Dim x5 ks Renge
Dim & ks Integer
Propeties x| Dim b ks Integer
Dim temp la Varian
Aphabeti | Categoried Set wbkbestination = Workbooks.Open (DirNaweBox.Text + ™\7 + OutputFilsNameBox.Text)

GenParanList = Array("puBusun”,
LoadParanlist = irray("pwBusiun”,

LineParanlist = irray("pwBusiun”,

Specify parameters to be moved to excel.

"puGenTd”, "puGenMU”, "puGenProdCost”, "puGenMUNin",
"pULoadID”, "puLoadlli”, "pwloadVRY)
"puBusNuwa: 17, "pulineCircuit”, "pulineR”, "pulinex”)

"puGenNtax",

These arrays must match corresponding arrays in SendToExcelBtn Clic

"puGenBidN",

TpuGe

Sheets ("Gen") .Select
If Range("A3") = "7 Then

Set r1 = Range("32", Range("A2"
Else

Set r1 = Range("h2", Range("A2"
End If

a = ri.rows.Count
b = ri.columms.Count
ReDin GenValueList(a - 1)
ReDin Thelrray(b - 1)

End(x1ToRight) |

End (x1Davn) . End (x1ToRight])

