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Transformers  
 

Transformers are used to transfer power between different voltage levels or to regulate real or reactive flow 

through a particular transmission corridor.  Most transformers come equipped with taps on the windings to 

adjust either the voltage transformation or the reactive flow through the transformer.  Such transformers are 

called either load-tap-changing (LTC) transformers or on load tap-changing (OLTC) transformers.  

 

Another type of transformer is known as a phase-shifting transformer (or phase shifter).  Phase-shifting 

transformers, which are less common than LTC transformers, vary the angle of the phase shift across the 

transformer in order to control the MW power flow through the transformer.  This type of control can be 

very useful in controlling the flow of real power through a transmission system.   

 

The emphasis of this document is the modelling of different types of transformers in AC load flow. The first 

section is a short introduction in different types of transformer considered in such AC load flow, afterwards a 

comprehensive branch model and the expressions for line flows trough transformer are given. The summary 

of the previous work based on several references was given in the section Review of the Previous work. The 

succeeding sections contain the basic ideas, formulations, adjustment interactions and algorithm for tap 

adjustments based on AC sensitivity analysis. Small examples are given in the last two sections for the sake 

of practicality. 

 

 

Off-nominal Turns Ratio and Phase Shift Degrees 
 

The off-nominal tap ratio determines the additional transformation relative to the nominal transformation.  

This value normally ranges from 0.9 to 1.1 (1.0 corresponds to no additional transformation).  For phase-

shifting transformers the phase shift value normally ranges from about -40° to 40°.   

 

Several types of transformers are considered:  

1)No Automatic Control (taps are assumed fixed),  

2) Automatic Voltage Regulation (AVR),  

3) Reactive Power Control, and  

4) Phase Shift Control.   

 

 

Transformers with fixed taps operate at the given off-nominal turns ratio and phase shift, and will remain 

fixed at those values during the entire power flow solution process unless manually changed by the user. 
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When on automatic voltage control, the transformer taps automatically change to keep the voltage at the 

regulated bus (usually one of the terminal buses of the transformer) within a voltage range between the 

minimum voltage and maximum voltage values. 

 

When on automatic reactive power control, the transformer taps automatically change to keep the reactive 

power flow through the transformer (measured at the from bus) within a user-specified range.   

 

When a transformer is on phase shift control, the transformer phase shift angle automatically changes to keep 

the MW flow through the transformer (measured at the regulated bus end) between the minimum and 

maximum flow values (with flow into the transformer assumed positive).   

 

 

A Comprehensive Branch Model for Transformers 
 

Figure 1. shows the basic equivalent circuit of transformer in respect to the complex current 

( jii III ,, ' ), complex voltages ( jii VVV ,, ' ), complex tap ratio ( t ) and admittance y .  

 

1:t
i j

y

Vi V'i

Ii

Vj
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Figure 1.  Transformer equivalent circuit 
 
The voltage and current ratio can be then defined as follows: 

''***'' 1:::1: iiiiiiii todueand IVIVtIItVV ===   (T1)   

where: 

• * -refers to conjugate complex number 

• iV  -is the complex voltage at the i end of the line i-j,  

• '
iV  -is the complex voltage behind the ideal transformer, 

• jV  -is the complex voltage at the j end of the line i-j, 

• iI  -is the complex current at the i end of the line i-j, 

• '
iI -is the complex current behind the ideal transformer, 

• jI  -is the complex current at the j end of the line i-j, 

• t -refers to the complex tap ratio of the transformer. 
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The transformer equivalent circuit shown in Fig. 1.  can be transformed to an equivalent π circuit using the 

following equations: 

yVtyVyVtVtyVVtItI jijijiii t *2*'*'* )()( −=−=−== , 

 

yVytVytVVyVVI jiijijj +−=−=−= )()( ' , 

or in a matrix form: 
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Figure 2. Comprehensive branch model for8 transformers 

 
Based on equation (T2) a comprehensive branch model is shown in Fig. 2.  It should be noted that only phase 

shifter transformer has jiij yy ≠ , while for all others types of transformer tt =*  and consequently jiij yy = .  

Besides, this branch model assumes that the transformer admittance is behind the off nominal side of 

transformer. Some other branch models are given in [1].  

 

 

Line Flows Through A Transformer 
 

The complex line flow from node i to node j can be formulated as: 

 

ytVVytytyytVVVtytVS ***2*222*** })()1({ jiiiijiiiij VVtV −+−=−+−= , 

 

ytVVyS **22
jiiij tV −= ,     (T3) 

Using polar coordinates the voltages, tap ratio and admittance can be written as follows: 

• iiiiii VeV i VVV j ∠=== θθ ,, ,                               (T4) 

• jjjjjj VeV j VVV j ∠=== θθ ,, ,                               (T5) 
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• ttt j ∠=θ== θ ,t,te ,                   (T6) 

• g
barctan,bgye =ψ+== ψ jy j

.                   (T7) 

 

Substituting the complex variables with the polar coordinates given in equations (T4-T7), equation (T3) can 

be rewritten as: 

 

))( )(22 θ+ψ−θ−θ−−+= jityeVVbgtV jiiij
jjS ,    (T8) 

 

or,  in terms of  real and reactive power flows as: 

 

{ } { })cos(Re 22 θψθθ +−−−== jijiiijij tyVVgtVSP ,    (T9) 

 

{ } { })sin(Im 22 θψθθ +−−−−=−= jijiiijij tyVVbtVSQ .   (T10) 

 

Similarly one can calculate the line flows in the opposite direction (from j to i): 

 

tyVVtytyyytVVVtyVS ijjjjijjjji VVV *222* })()1({ −+−=−+−= , 

 

tyVVyS ijjji V *2 −=       (T11) 

or, in terms of real and reactive power as: 

 

{ } { })cos(Re 2 θψθθ −−−−== ijjijjiji tyVVgVSP ,   (T12) 

 

{ } { })sin(Im 2 θ−ψ−θ−θ−−=−= ijjijjiji tyVVbVSQ .  (T13) 
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Review of the Previous Work 
 

Several approaches to automatic tap adjustment have been found in the literature [2-5]. These can be 

categorised as follows: 

• Tap changer value is modelled as an independent variable instead of the controlled voltage [2,5]. When 

the tap changer hits the limit, it must be fixed and replaced by the controlled voltage in the state vector 

(vector of independent variables). 

• The controlled voltage is a state variable all the time [3-4]. When the controlled voltage is not within the 

specified limit, the corresponding tap changer will move in order to bring the voltage to the specified 

range.  

The previous modelling of tap changer in the Newton-Raphson (N-R) iteration procedure was based on an 

approach from the first category. It was shown by some researchers at UMIST that this approach has serious 

problems to handle tap limits. In a Newton - Raphson iteration procedure, tap adjustments might force taps to 

move beyond their limits. Once a tap hits its limit, it will be fixed and replaced by the controlled voltage in 

the state variable vector. This replacement will significantly perturb the Jacobian, causing the propagation of 

perturbation to subsequent iterations, frequently leading the iterative procedure to a solution quite different 

from the expected one. Therefore, the biggest problem in this so-called bus switching approach is the effect 

of perturbation caused by the needed replacements in the state vector. 

 

The tap adjustments approaches that belong to the second category are based on the sensitivity calculation 

[3,4]. The sensitivity (desired) function in such calculation is the controlled variable and the control variable 

is the corresponding tap changer value. This sensitivity calculation is based on 1")( −B  and the second cycle 

of the fast-decoupled load flow. Fast forward –backward substitutions is used to obtain an auxiliary solution 

and update the voltages. If there are no interactions between adjustments this approach works reasonable 

well. Therefore, the emphasis of this document is on the AC sensitivity based adjustments. The novelty of 

this approach is in using  the inverse of the Jacobian matrix to calculate exact sensitivities. 

 

 

Tap Adjustment Using AC Sensitivity Analysis  

 
The steady state equilibrium conditions for a power network can be represented by a system of N real non-

linear network equations: 

0yxg =),(        (T14) 

where x is the vector of independent variables (for example active and reactive power at a PQ bus) and y is 

the vector of dependent variables (for example voltage and angle for a PQ bus). This system of non-linear 
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equations can be linearised at a particular point 0x  by expanding it into a Taylor’s series and retaining only 

the first- order terms. Therefore, 

u
u
puxgx

x
puxg

xx ∆
∂

∂
−=∆

∂
∂

00

),,(),,( ,     (T15) 

where  the vector of independent variables y is split into the vector of controllable variables u  (for example 

tap changer values) and the vector of fixed parameters p . 

The changes in any desired function ),( yxf with respect to the single parameter change iu∆ can be found 

from the total differential as follows [6]: 
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Using equation (T16) the change of control variable iu∆ can be adjusted to achievestrike the desired change 

in function f  if the sensitivity value 
iu

f
∆
∆  is known. This sensitivity analysis with respect to a single 

parameter change can be implemented in tap adjustments, selecting appropriate desired functions. Thus, in 

the case of the voltage-controlled transformers the desired function is the voltage at the controlled bus. For 

reactive power control transformers the desired function is the reactive power flow at the from bus. In both 

cases, the controllable variable iu∆  is the tap changer value. The calculation of sensitivity shown in the 

previous equation requires the following calculation steps: 

1. calculation of 
x∂

∂f , 

2. calculation of 1−J  

3. calculation of 
iu∂

∆g  and  

4. calculation of 
iu

f
∂
∂ . 

The calculation of 
x∂

∂f and 
iu

f
∂
∂  depends on the desired function choice as it will be shown separately for 

both type of transformers in the following sections. 
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 Tap Adjustment of Voltage Control Transformers Based on Sensitivity Analysis 

 

 The calculation of 
x∂

∂f ,
iu∂

∂g and 
iu

f
∂
∂  in the case where the voltage control transformer between the buses i 

and j is used to control the voltage at bus j within a specified range. Therefore, the desired function is jVf =  

and the control variable is iji tu = .  Then, the calculation required by the steps 1,3, and 4  (see the previous 

section) is: 

• [ ] T
j

f e
x

==
∂
∂ 0100 L , where the non-zero entry refers to the position of the voltage jV  

in the state vector  (vector of independent variables) of  the Newton-Raphson iteration 

procedure. 
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where jiji QBQBPBPB ,, ,   are the real and reactive balance equation at buses i and j,  respectively. 

These balance equations give the total injection of real and reactive power into a bus, summing 

generation, load and line flows to/from the bus ( inj
ji

L
ji

G
jiji PPPPB //// −−=  and 

inj
ji

L
ji

G
jiji QQQQB //// −−= ). It can be observed that the vector 

iu∂
∆g has four non-zero entries. 

• 0=
∂
∂

iu
f  

 

The calculation of the vectors 
x∂

∂f ,
iu∂

∂g and 
iu

f
∂
∂ is really straightforward and computationally fast. On the 

other hand, the calculation of the inverse Jacobian is time demanding, especially for large systems. This 

calculation can be avoided using the illustration of the  
000

1
xxx

gJ
x iu
f

∂
∂

∂
∂ −  matrix multiplication structure 

shown in Fig. 3.  It can be seen that such structure has only one non-zero value in the vector 
x∂

∂f , which is 

beneficial in the sense that the calculation of the inverse Jacobian matrix can be avoided. In essence, in Fig.3 
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we can observe that only one row of the inverse Jacobian matrix is required. If the dimension of the Jacobian 

matrix is N, than having found the lower (L ) and the upper (U ) triangular sub-matrices, an inverse matrix 

calculation would require N forward-backward substitutions ( IJJ =−1* [ ]NLU jjj L21*⇒  

[ ]Neee L21= ). In each of these substitutions ( Niii ,1,* == ejLU ) one column ( ,ij ) of the inverse 

Jacobian matrix is determined. However, this time consuming calculation of each column to determine only 

one row of the inverse Jacobian can be avoided using the equation 11 )()( −− = TT JJ . Therefore, instead of N 

forward-backward substitutions only one substitution ( j
row
j

TT ejLU =* ) will be required to determine the row 

row
jj that corresponds to the position of the independent variable jV  (see Figure 3). The next simplification in 

the sensitivity calculation is related to the LU decomposition. At each iteration step in a Newton-Raphson 

procedure, LU decomposition is needed. Using the assumption that the change of the Jacobian matrix is not 

so dramatic between two subsequent steps in a Newton-Rapshon iteration procedure, already obtained L and 

U sub-matrices can be used for the calculation of the corresponding inverse Jacobian row. This assumption is 

even more sensible if one takes into account that the tap adjustments will take place only if the maximal 

mismatch in the iteration procedure is relatively small. A complete algorithm of the suggested tap 

adjustments is shown in Fig. 4. Special attention is paid to acceleration factors in order to prevent excessive 

tap movements or to avoid oscillations in the iteration procedure. These oscillations might appear if a tap 

change of a transformer cause unwanted change of another voltage controlled by another transformer. These 

adjustment interactions are summarised in [7], which is in the author’s opinion is the best paper ever written 

on this topic. Therefore, the effect of a tap change can be sometime mitigated/aggravated by another tap 

change. The acceleration factors are equal to 1.0 if the normal tap change is required, and less than 1.0 for 

excessive tap changes. It should be noted that the impact of simultaneous tap adjustments on divergence has 

not been fully investigated. However, the testing has shown that a correct choice of the acceleration factors 

makes this algorithm very robust in terms of convergence. The tap adjustments based on this approach have 

been successfully tested on IEEE 14 bus system and the NGC power system (1100 buses, 1700 branches).  

An illustrative example is given at the end of this document, emphasising some crucial points of the 

suggested AC sensitivity approach. 

Vj position in the state vector

θ

θ

i position in the state vector

j position in the state vector

Vj position in the state vector

Vi position in the state vector

J-1
ej

og
uo

jj 
row

 
Figure 3 – Illustration of non-zero entries used for sensitivity calculation 
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Is the mismatch less then specified ?

Calculate the sensitivity for  each
transformer if its regulated voltage is

not within the limits. If  all the
regulated voltages are within the
limits, return to Newton-Raphson

iteration procedure

Using these sensitivites determine the
new tap positions and update the

admittances.  An accelerating  factor
should be determined for each tap

change in order to prevent some large
tap movements.

Return to Newton-Raphson iteration
procedure.

no

yes

 
Figure 4 – Algorithm of tap adjustments 
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 Tap Adjustments of Reactive Power Control Transformers Based On 

Sensitivity Analysis. 
 

Reactive power control transformers change taps automatically to keep the reactive power flow through the 

transformer (measured at the from bus) within a user-specified range. Therefore, the desired function and the 

control variable are ijQf =  and iji tu = , respectively. The expressions for 
x∂

∂f  and 
iu

f
∂
∂  can be obtained using 

equation (T11) as follows:  
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• )sin(2 2 ψθθ −−−−=
∂

∂
=

∂
∂

jijii
ij

ij

i

yVVtbV
t
Q

u
f       (T19) 

There are a few changes with respect to the voltage control transformer sensitivity calculation. The vector 

x∂
∂f  has now four non-zero entries, and consequently the calculation of four rows of the inverse Jacobian is 

required. The relatively complex matrix multiplication structure of 
000

1
xxx

gJ
x iu
f

∂
∂

∂
∂ − is shown in Fig. 6. The 

scalar value 
iu

f
∂
∂ is now a non-zero value. 

Vj position in the state vector

θ
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i position in the state vector

j position in the state vector

Vj position in the state vector

Vi position in the state vector

J-1

og
uo

Vi position in the state vector

θ
i  position in the state vector

θ
j  position in the state vector

 
Figure 6 – Illustration of non-zero entries used for sensitivity calculation 
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Tap Adjustment Interactions 

 
Tap adjustment interactions arise in many different forms in the load flow solution [7]. They slow down the 

convergence and can often cause oscillatory solution or even divergence. In the past, their existence was 

accepted as a matter of fact and almost negligible attention has been paid to this problem.  Reference [7] is 

actually one of the rare successful attempts, to tackle this problem. In general, there are three types of 

interactions [7]. The first one, namely cross-type interactions are the interactions which occur between 

different types of adjustments, for example generator and its step up transformer controlling the same bus 

voltage. The single type local interactions occur when a system quantity is simultaneously controlled by 

multiple devices of the same type, for example two voltage control transformers controlling the same remote 

voltage.  The third one called single type global interactions represent the coupling effects amongst the same 

type of control devices that regulate different quantities. For example, two voltage control transformers 

regulate voltage at different PQ buses, which are not directly coupled.  

 

The first type of interactions is handled using the proper starting criteria (mismatch less then a specified 

small value) and a specific priority. Thus, if a voltage is controlled by generator and a voltage control 

transformer, the priority will be given to the generator and taken over by the transformer only if the generator 

hits its Q limits. 

 

The second type of interactions is not considered because the remote voltage control is not considered in the 

Newton-Raphson iteration procedure. 

 

The third ones are resolved by using an adaptive tracking approach to change acceleration factors [7]. These 

types of interactions require further testing to make sure that the approach is really robust, as it has been 

proved on the tested examples.  If some further testing show that handling the interactions on this way is not 

robust enough, than the automatic scaling technique and two- pass solution suggested in [7] can take place. 

 

 

Novelty and Further Work 
 

This approach deals with reasonable fast calculation of tap adjustment based on the exact sensitivity 

calculation for a full AC load flow.  Tap adjustments can be started only when the solution is moderately 

converged. An adaptive tracking acceleration factor has been proposed to prevent adjustment interactions. 

 

The author would suggest further improvement especially on: 

• interactions adjustment, 

• faster calculation of  AC sensitivities, and  
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• the comparison of this approach with the approaches suggested in [2,3,4,7].  

 

 

Tap Adjustment of Voltage Control Transformer on A Small Example 
 

The given tap adjustments approach was first tested on a small power system shown in Fig.5. The input data 

related to buses and lines are given in Table 1 and Table 2, respectively. 

 
Table 1 – Bus data 
 Type of bus P load(MW) Q load(MW) P gen (MW) Q gen (MW) 
1.Gen_bus Slack 0.0 0.0 105 104 
2.Load_1 PQ 95 43 0.0 0.0 
3.Load_2 PQ 55 45 0.0 0.0 
 
Table 2 – Transformer data 
ID 1 ID 2 Automatic 

control 
Control value Lower Limit 

(control value) 
Upper Limit 

(control value) 
Lower tap 

limit 
Upper tap 

limit 
1 2 fixed tap n.a. n.a. n.a. n.a. n.a. 
1 3 fixed tap n.a. n.a. n.a. n.a. n.a. 
3 2 Yes voltage at bus 3 

or 2 
0.96(3) 
0.98(2) 

0.98(3) 
0.985(2) 

0.9 1.3 

 

 
Figure 5 – A small power system 

 

It can be seen in Table 2 that the following scenarios were analysed: 

1. LTC transformer between buses 3 and 2 controls the voltage at the bus number 3 within the interval 0.96 

– 0.98.  

2. LTC transformer between buses 3 and 2 controls the voltage at the bus number 2 within the interval 0.98 

– 0.985. 

 

In the first scenario, the sensitivity 32023.0
32

3

32
−=

∆
∆

=
∆
∆

t
V

t
f  is calculated in the second iteration of the N-R 

iteration procedure, because the controlled voltage 950782.03 =V was out of the specified range, and 

correction of 00921767.03 =∆ wantedV was wanted. This correction requires the tap change of 
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028744.032 −=∆t . After the tap position had been changed, a new iteration of the N-R procedure was carried 

out and the voltage at bus number 3 was changed to 960233159.03 =V . It should be noted that the voltage 

change is slightly larger than the wanted one, which is the consequence of the implemented linearisation. In 

the next iteration, the voltage at bus number 3 was 9599439.03 =V , which is still out of the specified range, 

but within an acceptable tolerance (0.002). 

 

In the second scenario, the sensitivity 318302.0
32

2

32
=

∆
∆

=
∆
∆

t
V

t
f  was calculated in the second iteration of the N-

R iteration procedure, because the controlled voltage 950174.02 =V was out of the specified range, and 

correction of 0298259.02 =∆ wantedV was wanted. However, the sensitivity is now positive and consequently a 

positive tap change of 0937.032 =∆t is required. After the tap position had been changed, a new iteration of 

the N-R procedure was carried out and the voltage at bus number 2 was changed to 98180.02 =V . In the 

next iteration, the voltage at bus number 2 was 9785541.02 =V , which is still out of the specified range, but 

within an acceptable tolerance (0.002). 

 

 

 

Tap Adjustments of Reactive Power Control Transformer on A Small Example 
 

The same small power system example will be used to illustrate reactive power control transformer tap 

adjustments. Instead of the voltage control transformer between buses  3 and 2, a reactive power control 

transformer is connected. Therefore, the last row in Table 2 is changed as follows: 

 
Table 2 Modified row – Transformer data 
ID 1 ID 2 Automatic 

control 
Control value Lower Limit 

(control value) 
Upper Limit 

(control value) 
Lower tap 

limit 
Upper tap 

limit 
3 2 Yes Reactive power 

control at the 
bus number 3 

0.2 0.3 0.9 1.3 

 

 It can be seen in the modified Table 2 that the following scenario was analysed: 

• Reactive power control transformer between buses 3 and 2 controls the reactive power flow at bus 3 

within the range  0.2 – 0.3.  

 

For this scenario, the sensitivity 580067.2
32

32

32

=
∆
∆

=
∆
∆

t
Q

t
f was calculated in the second iteration of the N-R 

iteration procedure, because the controlled reactive power flow 00637.032 −=Q was out of the specified 

range, and correction of 20637.032 =∆ wantedQ was wanted. The required tap movement was 07998.032 =∆ t  and 

the wanted changes of independent variables are: 
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The change of independent variables calculated in the nest iteration of the N-R iteration procedure, after the 

tap change 32t∆  took place was: 



















−

−
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00144.0
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x  

and the reactive power flow at the from bus was improved to 225.032 =Q . No other change in the tap position 

was required during the iteration procedure. 
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