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Chapter 1

| ntroduction

A power system is always operated with a significant security margin to ensure that the trans-
mission network is capable of withstanding unpredictable events such asline and generator out-
ages. Sincetheintroduction of competitionin the electricity supply industry in many countries,
the cost of this security margin has become considerably more apparent. This transparency has
quite naturally led some parties to question whether customersare paying for more security than
they need or want.

The work in this project follows the premise that, instead of following fixed security standards
for the operation of the power system, a cost/benefit analysis should be performed. While the
cost of security isreflected directly and deterministically in the paymentsmadeto the generators,
the benefit isrelated to the consequences of stochastic eventsand istherefore considerably more
complex to evaluate. When exposed to the same disturbances under the same conditions, amore
secure dispatch will lead to smaller voluntary or involuntary load disconnections and require
fewer emergency actions than a less secure dispatch. The avoided societal costs of the load
disconnections and the avoided cost of the emergency actions constitute the benefit of the more
secure dispatch.

A method has been developed for systematically and efficiently estimating a priori these out-
age costs in the context of power system operation. Such estimates can be balanced against the
deterministic production cost of various dispatches to determine the optimal level of security in
the operational time frame.

Since unscheduled outages in power systems are stochastic phenomena, computing their cost
requires a probabilistic approach. While probabilistic methods have been used extensively in
power system planning, they have so far not been widely applied in the operational timeframe
domain. Thisdistinctionis not justified by a qualitative difference in the nature of theissues but
by different attitudestowardsrisksand responsibilities. Long-term plannersaccept the probabil -
ity of outages because they would occur in asystem that will not bein operation for afew years.
On the other hand, operators are much more likely to get blamed if the lights go out. They are
therefore less comfortable with uncertainty and prefer deterministic criteria. However, as the
“Review of Security Standards’ [1] performed in 1994 by the National Grid Company for the
UK electricity regulator OFFER shows, competition may force utilities to accept morerisks. In



order to manage this increased exposure to risk, it is likely that they will want to make wider
use of probabilistic techniques.

Power system operation differs from power system planning in terms of the accuracy require-
ments and of the level of uncertainty. Since the analysis takes place much closer in timeto the
actual eventsin the operational time frame, the base case is known with much greater certainty.
On the other hand, since the accuracy requirements are much higher, the models must be more
detailed. Since the computational efficiency of state enumeration falls off rapidly as the system
being studied becomes large and results are required for use by operators, implying a need for
speed, Monte Carlo estimation forms the basis of the calculation of the value of security.

Monte Carlo simulation is defined in [2] and [3] as “any technique for the solution of a model
using random numbers or pseudorandom numbers.” (Others, such as Billinton and Allan [4],
prefer to describe Monte Carlo simulation as applying only to a process that is completely ran-
dom in all respects. They prefer to describe the application of “stochastic smulation” to any
process related to time). While Monte Carlo methods may naturally be used to simulate sys-
tems which have some stochastic content, any system for which a probability density function
(p.d.f.) can be formed can be simulated in the same way.

A Monte Carlo estimation (or simulation) has 5 main aspects (seefigure 1.1):

e probability density functions- the system being modelled must be described intheseterms

e arandom number generator - asource of random numbersuniformly distributedin [0, 1].
No computer algorithm exists to generate genuinely random numbers, but many different
algorithms for generating pseudo-random numbers are available. Of these, many can be
found in pre-written libraries such as the NAG library [5, 6].

e asampling rulefor prescribing how samples from the given p.d.f.s are to be taken.
e scoring (or tallying) to accumulate the outcomes of the trial simulations.

e error estimation - an estimate of the variance is obtained as a function, principally, of the
number of trials.

e Variancereduction - amethod for reducing the variance in the estimated solution in order
to reduce the computation needed to obtain a given accuracy of result.

The Monte Carlo estimation devel oped here allowsthe operator to compare operational planson
the basis of the sum of the production cost of the scheduled plant configuration and the expected
cost of unplanned outages. Unlike conventional security analysis, no assumption is made with
regard to what outages or combinations of outages are possible, or what classes of outages must
under all circumstances be secured against.

For each plan to be evaluated, the estimation starts from the state of the system which would
result from the implementation of the plan. In this“planned” state:

e theload followsthe forecast;
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Figure 1.1: The Monte Carlo simulation

¢ all generators produce active power according to the specified dispatch;
e all equipment isin service except when scheduled for maintenance;

¢ al off-linereserves arein the appropriate state of readiness.

Individual “trials’ are then generated by creating random contingency conditions based on this
state. Thisis done by simulating the following types of random events:

faultson lines, cables, transformers and busbars|eading to an outage of the plant in ques-
tion which is “permanent” in the short-term;

unscheduled shutdowns and derations of generating units;

large, abrupt and unforeseen changes in the load;

cascade, sympathetic and inter-trips trippings.

The probabilities used to generate these random events should reflect not only theintrinsic char-
acteristics of the equipment involved but also external factors such asweather conditions, which
can be taken into account in the operational planning timeframe but which are often “averaged
out” in planning studies. These external factors can have avery significant effect on the proba-
bility of faults and hence on the expected outage cost for a particular dispatch. To improve the
accuracy of the outage cost estimate, the effect of weather conditions on fault rates are modelled
on aregional basis.

Each generated random contingency condition must then simulated to determine what it would
cost wereit to occur. Thisis done using an AC load-flow computation to determine the power
system state. Then, the response of operatorsto that state should be represented. If there are no
violations of operating limits, this response will be to do nothing. Otherwise, generation may
need to be rescheduled or load shed. The costs of these actions constitute the outage costs of the
contingency, with the cost of shedding load determined by some suitable function or parameter,
e.g. the“vaueof lost load”.



Generation of new trials (random contingencies) then continues until the mean calculated from
the random sample isjudged to have reached some pre-determined precision.

The environment in which the computation described above can be achieved may be broken
down into the following components:

¢ Input/output manager.

Monte Carlo block comprising:

— Monte Carlo simulation controller.

— implementation of variance reduction.
— probability of trip monitor.

— random number generator.

Load flow block comprising:

— load flow engine.
— automatic action monitor.

Operator actions block comprising:

— security monitor.

— power system sensitivity analysis.
— corrective action scheduler.

— load restoration process.

Load interruption cost calculation.

Results analyser.

These are illustrated in figure 1.2.

Thisfina report isdivided in two volumes. Thefirst one presents the modelling characteristics
used in the development of the program Value of Security Assessor. The second volume shows
testing this software in both asmall portion of England-Wales southweast system and in thefull
large NGC power system.

Thefirst volume includes:
Chapter 2 describes main characteristics of the modelling of the power system for the compu-
tation of the value of security; such as the load-flow and operator action blocks. Appendix A

provides details of the power system analysis.

I ssues surrounding how load interruptions might be costed are discussed in chapter 3. Chapter
4.2 shows how the weather effect on failureratesisconsidered in the Value of Security Assessor
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Chapters 5, 6 and 7 describe the basic statistical theory used in Monte Carlo estimation, the
Monte Carlo method itself and the background of variance reduction respectively.

The application of variance reduction in this project is described in chapter 10 while underlying
interms of sampling methods and measures of component reliabilty in power systemsare given
in chapter 8. Some background in terms of application of variance reduction in power system
reliability analysisis described in chapter 9.



Chapter 2

System Modelling

Computation of the value of security involvesthe analysis of the system’s behaviour over a pe-
riod of time (for example 1 hour or 1 day). This computation must include the cost associated
with shed load and generation rescheduling, demand variations on the period and the corre-
sponding schedule of generation. Therefore, the value of security must model a planned gen-
eration schedule over aperiod of time with unplanned events represented at the times at which
they occur in the simulation. Thisimplies a sequential simulation of temporal snapshots.

Aschapter 1 states, aMonte Carlo sample simulation computes the variabl e of interest (the cost
in this case) for anumber of trials. This chapter shows the modelling of the power system be-
haviour that isused in the analysis of onetrial.

Thetrial simulationisdividedin sequentially snapshots. For each snapshot, asequenceof events
occurs, such as random outages (section 2.2) and time-dependent phenomena. Theterm “time-
dependent phenomena’ is used to cover a range of influences and effects. These phenomena
are:

e Theevolution of an outagein terms of the response of protection. In particular, this con-
cernsthe possibility of “sympathetic” and cascading (section 2.3) outages.

e Theimpact of transient instability (section 2.3.5).

e Theimpact of voltage collapse (when it happens slowly enough for it to be seen and ar-
rested by operators) (section 2.5).

e The staggering of the random outages over the period of study (section 2.4).

Thetwo main functionsof theload-flow and operator action blocksof the value of security anal-
ysis software are to derive the system state that would be seen by an operator, and to derive the
corrective actions that an operator may take in response to any violations of operating limits
found. These are described in sections 2.1 and 2.6 respectively.

Theassessment of theduration of interruptionsisal so an important factor inthe value of security
calculation. Section 2.7 looks into the uncertain duration of plant outages and of the corrective

6



actionstaken to soften their effectsand their impact on subsequent timeintervalsof adaily gen-
eration schedule. Since a rigorous approach would require impractical amounts of computing
time, suitable approximations will be needed. Hence, a heuristic approach, which takes into
account the unserved load during the interruption, will be used. This approach will model the
interruption duration as tables, rules or curves.

2.1 Derivation of the System State

Figure 2.1 shows the simulation of disturbance eventsfor each trial in the Monte Carlo ssimula-
tion used in the Value of Security Assessor . The sequence of eventsisdivided in three parts:

1. Generation of anew system state.
2. Computation of an equilibrium point.

3. Corrective actions and cost evaluation.

( Initial system state )

i

Simulate random
outages

!

Simulate sympathetic
tripping

!

Simulate transient
instabilities

I

Restore generation/load
balance

Simulate new system state
on load flow Shed load

No

Yes

Simulation of cascade
tripping due to overloads

Any tripping?

Yes — . N
Limit violations?

Find operator actions | | Cost of operator actions=0
v
( Cost of redispatch and lost load )

Figure 2.1: Simulation of one snapshot in atrial



The initial system state given by network topology, load demand and generation schedule is
modified by random disturbances. These disturbances could aso produce other disturbances
such as sympathetic and transient instability trips.

The equilibrium point of the new system state must be cal culated using a power flow computa-
tion (see appendix A for the details of the static modelling). Two outcomes are possiblefor this
computation:

e The power flow converges.

e The power flow diverges. This indicates that the occurrence of this contingency state
would result in voltage stability problems. A heuristic technique has been developed to
determine how much load must be dropped to restore the feasibility of the power flow. In
the Value of Security Assessor , if the load flow diverges, it is assumed that the system or
apart of the system (an island) would have suffered a voltage collapse were the operator
not have taken action. It is further assumed that the operator’s response to an impeding
collapse would have been to shed load in 5% blocksin the area of the biggest mismatch
until convergence is achieved. If convergence has still not been achieved after all load
has been shed, theisland or the system is deemed to have “ collapsed”.

Generationisreduced by matching amounts. Theisland isthen checked for any violations
of operating limits and further operator actions simulated if necessary (see section 2.6).

When the system has reached an equilibrium point (EP1, convergence of theload flow), aseries
of cascade tripping events may occur. In this case, anew load flow computation isrequired. A
divergence of this new load flow indicates a severe problem (voltage collapse) has been caused
by events ocurred after EP1. Asin the computation of EP1, aload shedding is realised until a
new equilibrium point (EP2) is reached.

Asfigure 2.1 shows, a sequence of load flow cal culations and disturbance events may be estab-
lished in aniterative way. This succession of calculation of EP(i)-disturbances-EP(i+1) can be
interpreted as a succession of slow eventsthat provokes a voltage collapse in the system.

Finally, the system reaches a last equilibrium point (EP). The system has a converged load flow
with two possible outcomes:

e Theresulting state of the system does not exhibit any major violation of normal operating
limits. This state does not require any corrective action and has a cost of zero.

e The resulting state has some violations of normal operating constraints. Corrective ac-
tions must be taken to bring the system back within acceptable limits. The cost of these
actionsis computed and tallied.



2.2 Random Outages

Thefirst step in the simulation of onetrial in acomplete Monte Carlo simulation process, isthe
generation of random outages. In the Value of Security Assessor program random outages are
generated for each temporal snapshot. In thisway, the electric power system could be subjected
to coincident events (i.e. outagesthat take place at the same temporal snapshot) or random se-
guential events (i.e. random outages that take place in different snapshots).

Random outages are simulated for a specified time interval from the last interval system state
condition. The set of possible independent failure events includes:

generator failure;

line outage;

double circuit outage;

busbar outage;

e SV C and shunt compensation failure.

Note that transient events are not considered. It may also be noted that double cicuit outages
and busbar outages entail taking out of service more than oneline.

If the failure rate of each type of failure is known and assumed to be constant, the probability
p;(t) of the :th plant item going out of service unexpectedly in atimeinterval of duration ¢ may
be found from [4]

pi(t) =1— 6'\it ~ )\it (21)
where ); isthefailure rate of the ;th plant item.

If the system contains m items of plant and bulk supply points, the status of the system may be
determined for the end of some time period ¢ by taking a vector of random numbers, one for
each of the m statuses. If arandom number U; islessthan p;(t), the ith plant statusis deemed
to be “out of service’; otherwise, it remainsin service.

2.2.1 Topology checking

If the contingency being simulated includes any outage of transmission plant, the topology of
the system state being studied is checked before execution of the load-flow module. Each bus
in the system is assigned to just oneisland and each island is solved in turn.



2.2.2 Moddlling of frequency control

Since the aim of the model is to determine the state of the system that would be seen by an
operator, and then the operator’ sresponseto that state, anumber of functionshave beenincluded
to represent generator primary frequency response and operator actions to maintain frequency.

Three levels of reserve are generally provided in large inter-connected power systems|[7]:

e primary—fast response provided by governor action;

e secondary—qgeneration operating at less than maximum output which may be called on
to change output by the operator;

e standing—unsynchronized, fast start-up plant such as pumped storage and gas turbines.

Since the value of security assessment is designed for use in short operational timescales, “re-
placement” reserve—hot-standby plant or deferred-start plant—has not been modelled.

In order to model the different kinds of reserve available to the operator, all generatorsin the
model are designated as having one of the following types:

1. frequency responsive,

2. availablefor secondary reserve;
3. inflexible;

4. gasturbine;

5. pumped storage/hydro.

Thetotal spinning generation in each island iscompared with the total demand. If an unplanned
outage causes an unbal ance between generation and load of AP = AP, — AP, where AP, is
the change in total load and A P, is the change in total generation, a change in frequency will
result. If the change in load due to a change in frequency is neglected (i.e. the load remaining
after the unplanned outage is assumed to be constant), the change in frequency A f’ when the
system regains steady-state is 8]

—AP
E?;gl (1/ Ri)
where R; isthe “regulation” or “droop” of theth generator and m, isthe number of generators.
The change in generation at the «th generator is then

14
ap, =25
R;

Af = (2.2)

(2.3)

10



If the change in frequency, which is assumed to take place quickly and before an operator has
achance to respond, is such that the system frequency goes outside under-frequency relay lim-
its, the load-shedding action of these relays is modelled and the |oad-generation balanceis re-
checked.

If the sum of the P generationin anislandisstill too low with respect to theload, the generators
not denoted as inflexible are moved in turn to their maximum generation (cheapest generator
first), then, if necessary and depending on the level of water in the relevant reservoir, pumped
storage generation isincreased or pumping reduced. Open cycle gas turbines are then switched
onif required. Asalast resort, load is shed in 5% blocks and the load/generation balance again
checked. If there istoo much generation in an island, the most expensive generation is reduced
in turn to its minimum stable generation or switched off, pumped storage generation is reduced
or pumping started and finally, if necessary, expensive generation is shut-down altogether.

System active power losses calculated in the course of the load-flow solution are distributed
among the generators providing primary response according to their respective droops and max-
iumum limits.

2.3 Sympathetic and cascadetripping

A serious disturbance is characterized by the total or partia collapse of the electric power sys-
tem. A region, or the whole territory served by the utility, is deprived of electric energy. This
collapse is the result of a degradation process in the operation of the system, during which a
least one of the following phenomena occurs:

1. Casacadetripping of transmission elements (lines, transformers)
2. Lossof static stability of generation units (resulting in the tripping of these units)
3. Lossof transient stability of generation units

4. Voltage instability in the power system

A number of causes can trigger this process of degradation[9, 10, 11]: malfuntion of protective
systems; misoperation of the monitoring, operation and control system (EMS/SCADA); uncor-
rect decision taken by the operators, etc. A critical event will be defined [12] asan event which,
in a given operating state of the power system, is potentially responsible for a serious distur-
bance. A serious disturbance is an event which resultsin the collapse of the power system.

Obvioudly, acritical state of the power system is anecessary but not sufficient condition for the
collapse of the system to occur. Thisis because an element can always be operated outside of
its alowable limits for ashort time. It is only when no control action has enabled the element
to regain an allowable operating state that the element will be taken out of service. If thiswere
the case, the tripping might place the systemin acritical state and, by cumulative effect, further
line trippings could occur until the cascade tripping results in a partial or total collapse of the
power system.

11



In order to model appropriately these phenomena in the Value of Security Assessor , they are
divided in two types: “sympathetic” tripping and cascade tripping. They are defined as follow:

e Cascadetripping. Tripping of overloaded parallel linesafter afault on one of theselines.

e “Sympathetic’ tripping. Unnecessary tripping of one or more el ements caused by afault
in their neighbourhood.

2.3.1 Cascadetripping of parallel elements

When a set of paralel or quasi-paralel linesis heavily loaded, a fault and subsequent tripping
of one of these lines may cause overloads on the other lines. Unless corrective action is taken
promptly, overload protection relays on these lines (or faults due to sagging) may then causethe
cascade tripping of the remaining lines.

In some situationsthe operator is not ableto eliminate the overl oads within the maximum period
allowed. Theelement (line) isthen correctly tripped by its protection system[12]. Alternatively,
the overload elimination by the protection system is realised before the operator can take any
action. An example of thisis:

¢ New York Blackout, 9th november 1965. After the tripping of the line Q29BD, the other
four linesarriving at Beck’s station became |oaded beyond their critical level and the pro-
tection system tripped out “in cascade” the four lines 2.7 seconds after the main distur-
bance [13].

In other cases, the operator fails to take action or takes an inappropriate action:

e WSCC System - Blackout August 10, 1996 [11]. “[...] Big Eddy-Ostrander, Jhon Day-
Marion and Marion-Lane 500 kV lines were forced out of service. While none of these
lines were individually judged to be crucial by BPA dispatchers, the cumulative impact
resulted in a susbstantially weakened system. BPA did not communicate these outages to
other WSCC members nor did they reduce loadings on lines or adjust local generation as
precautionary measures...”.

2.3.2 “Sympathetic’ tripping of transmission elements

In alarge proportion of blackouts, it has been observed that protective system failures are acon-
tributing factor in the degradation process. A failed or improperly set protection can make abad
situation worse. A study of significant disturbancesreported by NERC in the period from 1984
through 1988 indicates that protective relays wereinvolved in oneway or another in 75 percent
of major disturbances[14, 15].
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A common scenario is that the relay has an undetected, hidden, defect that is activated under
the conditions created by other disturbances. For example, nearby faults, overloads, or reverse
power flows expose the defective relay and cause afalse trip [14, 15]. The subsequent event
occurs either before the system operator has had time to take any corrective actionin the system.
Some examples:

e New York City Blackout - November Sth 1965 [13]. “[...] the back-up relay protecting
line Q29BD operated normally and caused the circuit breaker at Beck (Station) to trip this
unfaulted line.”

e New York City Blackout - July 1977 [14]. The blackout was caused initially by two light-
ning strikes and a series of relay and control operations and misoperations, including a
malfunctioning directional control contact.

e WSCC System - Blackout July 2, 1996 [16]. The main disturbance was a flashover to a
tree on the Jim Bridger-Kinport 345 kV-line. Misoperation of a ground unit of an analog
electronic relay tripped the parallel Jim Bridger-Goshen 345 kV line.

e WSCC System - Blackout August 10, 1996 [11]. Approximately five minutes after the
main disturbance (failure of the Keeler-Allston 500 kV line) the St. Johns-Merwin 115
kV line tripped due to zone 1 KD relay malfunction.

e WSCC System - Blackout August 10, 1996 [11]. “[...] units a McNary began tripping
due to excitation equipment problems [...]", “The unit is supposed to stay connected to
theline[...] but erroneous protective relay actions tripped the units off line”,

2.3.3 Modelling protection system misoperation in the Value of Security
Assessor

References [14, 15] present the concepts of hidden failure and vulnerability region. It defines
a hidden failure in a protection system as a permanent defect that will cause arelay or arelay
system to incorrectly and inappropriately remove circuit elements as a direct consequence of
another swithching event (theinitial disturbance). So, hidden failures play an important rolein
extending the disturbance.

Each hidden failure has aregion of vulnerability associated withit. If an abnormal event occurs
inside the region of vulnerability, the hidden failure will cause the relay to incorrectly remove
the circuit element, thereby creating an additional abnormal state in which additional hidden
failures may be exposed [14, 15].

Based on these concepts, it is proposed to use a probabilistic model in the Value of Security

Assessor . In thismodel the following characteristics are associated with each transmission el-
ement:

1. A probability (p,) associated with the misoperation of the element’s protective system
when afailure occursinits vulnerability region (conditional probability).
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2. A vulnerability region that defines the portion of the system where a fault may provoke
the tripping of the element.

References[14, 15] definefour types of vulnerability regions (RV) based upon the reach settings
of therelays:

1. Type 1- Reverselocal bus RV. The RV is behind the local bus (A) and extends to half of
the line as determined by the setting of the relays at the remote bus (B) (Seefigure 2.2)

2. Type 2- Remote bus RV. The RV is beyond the remote bus (B) and extends to half of the
line protected.

3. Type 3- Zone 2 RV. The RV is beyond bus B and has a reach of 0.2 of the line protected
by the relay.

4. Type4- Zone 3 RV. The RV isbeyond bus B and hasareach of 1.2 timesthe longest line
connected behind the remote bus.

References [14, 15] use these four regions to calculate the relative importance of each one in
the tripping of elements. This calculation isnot relevant for the value of security calculationin
the Value of Security Assessor . A simpler definition of the vulnerability region based on the
definition of the biggest region that includes the four types defined above will be used. Figure
2.2 shows the proposed RV for the Value of Security Assessor .

1

3 5 7
6 8
il Type 1RV Vulnerability Region for Line A-B
Y Type 2RV Lines : A-1, A4, 2-4, 3-4, 4-5, B-9, B-7, 7-10, 7-8, 6-7
Type 4 RV Busbars : 4, 7,8 and 9

Figure 2.2: Vulnerability region of line A-B

When the Value of Security Assessor simulates afault on an element (line, transformer, busbar),
its effect on protection misoperation will be evaluated for each element which has the original
faulted element in its vulnerability region. For example, suppose that afault occurson line 7-10
of figure 2.2. Since thislineisin the vulnerability region of line A-B a Monte Carlo trial will
indicate whether line A-B istripped by sympathy. The probability used inthisMonte Carlotrial
isthevauep;.
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2.3.4 Modedlingof inability to correct overloadsand humanerror in Value
of Security Assessor

Linesin atransmission system can be overloaded for some time before relays disconnect them
or before they sag and cause afault. During this time the operator must eliminate the overload
intheline. Thistask isnot always completed properly or in time and line trips due to overloads
do occur.

For modelling this characteristic in Value of Security Assessor , it isassumed that in »% of the
situations encountered the overloaded lines are tripped [12]. “r” is the probability that the op-
erator is unableto eliminate the overloadsin time. The value of r isafunction not only of the
operator’s ability to control the system but also of the control tools at the operators disposal.
In practice, it may be assumed that this value increases with the number of overloads that the
operators must correct.

2.3.5 Lossof stability of generation units

One of the major causes of degradation of a power system is the tripping or disconnection of
generation units. Normally, this disconection is provoked by the loss of synchronism of the
generators. Thetripping of these units can be a consequence of either alinefault, afault on the
generator or a cascade of eventsin the transmission system.

In ahigh proportion of major blackouts, generation tripping is an important factor, as shown by
the following examples:

e New York City Blackout 9th November 1965. “The instantaneous result (of the tripping
of the conection lines between Toronto and Beck’s Station) was the acceleration of gen-
erators a Beck and Pasny-Niagara, with a sharp drop in their electrical outputs ... The
instantaneous drop in generation at Beck and Pasny ... resulted in putting this generation
out-of -phasewith most of the other generation attached to the interconnected transmission
system ...” [13].

e WSCC blackout, 10th August 1996. Power and voltage oscillations produced by the ini-
tial cascade of events provoked the separation of the system in four islands. The genera-
tion lost was 25455 MW, involving 178 generation units [11].

¢ Sweden Blackout of 1983. During the cascade tripping of elements, the frequency of the
system decreased very fast. This produced the tripping of nuclear plants in the South of
the system [10].

This section deals with the modelling of generation tripping by loss of synchronism due to a
fault or an event that does not directly affect the generator itself. Faultsthat affect the generator
directly are simulated by the main Monte Carlo ssmulation process.

Two types of instabilities affect power systems: angular instability and voltage instability. An-
gular stability isfurther divided into: transient stability and steady-state stability.
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Transient stability in the Value of Security Assessor

Much work has been done to include transient stability issuesin reliability evaluation [17, 18,
19, 20]. Several factors make this assessment complex:

1. Type of fault: isthe fault a three-phase fault, a double line-to-ground fault, a double line
fault or asingle line-to-ground fault?

2. Location of fault: isthe fault at one end of theline or at an intermediate point?

3. Fault-clearing phenomena: the clearing time of faultsis a stochastic variable.

The first and second factors are independent events while the critical clearing time (CCT) de-
pends on the type and the location of the fault. Therefore, a conditional probability approach
can be used to assess system transient stability.

A discrete probability density function (pdf) which assigns a probability for each type of fault
2 isused. So, for the set of types of fault 7 (3¢, 2¢, 1¢ and double line faults), the following
equation is satisfied:

Y P =10 (2.4)

where P; isthe probability of afault of type:. It isassumed that there are only 4 types of fault
inthe set 7.

The location of fault is stochastically modeled by a discrete pdf which assigns a probability of
fault for each portion of the line. If V; isthe number of possible locations (portions of the line)
where the fault can occur, the following relation must be satisfied:

N]
S P =1.0 (2.5)
7=1

where P; is the probability of afault at location ;.

A possible pdf for thefault clearing timeisanormal distribution[18, 19]. If thecritical clearing
time is the maximum time in which the fault must be cleared, then from its pdf, the probability
of stability (P(S/¢7)) for afault type: at alocation j is obtained.

Using the conditional probability approach, the probability of stability due to afault on line &
(PsT,) isgiven by the following equation [18, 19]:

N; 4
PSTk:ZZPk(S/ij)XPiXPj (26)

7=1:1=1

where P, (S/:) isthe probability of stability for agiven fault of type: at location j of line .
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For the operational timescale evaluation, the transient stability effect on the value of security
calculation can be modeled using the P57}, values. Naturally, off-line work is necesary to ob-
tain the probabilities P,(S/25). In the value of security calculation, a Monte Carlo simulation
will determineif the fault provokes an instability in the system based on the set of probabilities
PST.

Onthe other hand, if astability problem is detected, it is necessary to determine what are the af -
fected generators. Off-line stability studies could be used to determinethe vulnerability regions
associated with the stability of each generator. Thus, if afault on line £ provokes an instability
and thislineisin the vulnerability region of generator /, then the generator is disconnected.

In brief, including the effect of transient stability on the value of security calculation requires
the following data:

1. Set of probabilities PST

2. Vulnerability regions of stability for each generator

Thefirst and most difficult step in the probabilistic approach is to collect statistical dataon sys-
tem faults.

2.4 Staggering of random outages - Sequential Simulation

Computation of the value of security over aperiod of time (for example 1 day) must include the
cost calculation associated with shed load and generation rescheduling, demand variations on
the period and the corresponding schedule of generation. Therefore, the value of security must
model a planned generation schedule over a period of time with unplanned events represented
at thetimes at which they occur in the simulation. Thisimpliesasequential simulation. For this
purpose, the Value of Security Assessor uses a definition of sequential intervals. Each interval
is characterized by aload, considered constant over the interval, and its generation schedule.

Sequential simulation allows the simulation of new random outages on each interval and the
corresponding analysis described in figure 2.1. However, the effect produced by two or more
random outages will be different if they occur at the same moment (beginning of the interval)
or if they occur at different moments over the smulated interval. In order to properly represent
the time at which stochastic events take place, this interval may be further broken down into
"subintervals’. This simulation subinterval is taken asthe time it would take for an operator to
realisethat someevent hastaken placeandto respondtoit. Assuch, it may typically beregarded
as, perhaps, 10 minutes or half-an-hour. Thus, events that take place within one ” subinterval”
may be regarded as having taken place concurrently.

Figure 2.3 shows graphically the definition of terms used by Value of Security Assessor for the
sequential simulation.
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Figure 2.3: Division of time scale - Sequential Simulation -

InFigure 2.1, random outages are suppossed ” permanent” over the operational timescale. How-
ever, asit has been mentionned, a series of line trippings can be provoked by these random out-
ages. These trippings cannot be considered to be " permanent” faults. The Value of Security
Assessor model's a reconnection of tripped linesin the next simulation ” subinterval”.

Figure 2.4 shows graphically the Value of Security Assessor algorithm for sequential simulation.
The blocks enclosed in the dashed line represents the algorithm of figure 2.1.

2.5 Voltage collapse consider ations

Voltage stability has been defined by the System Dynamic Performance Comittee of the IEEE as
being the ability of asystem to mantain voltage so that when load admitanceis increased, |oad
power will increase, and both power and voltage are controllable. Voltage stability depends on
the location and type of reactive power sources availablein the system. A voltage collapseisa
major problem in the power system caused by the degradation of the system following a serious
disturbance.

2.5.1 Techniquesof analysisof voltage collapse

Although the voltage collapse s adynamic phenomenon, static analytical approaches have been
developed for its study. The dynamic study using time-domain simulationsis employed mainly
for the coordination of control and protection systems and for the investigation of interactions
among different power system components such as generators, ULTCs, SVCs, generator field
current limiters, etc. Static approaches examine the viability of the equilibrium point repre-
sented by a specified operating condition of the power system. Static approachesalso allow the
identification of voltage-weak areas in the system and the mesure of a distance to instability.
These approaches are[21]:
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Figure 2.4: Sequential Simulation

1. PV and QV curves
2. VQ sengitivity analysis.

3. Moda analysis. This method develops an eigenvalue analysis of the reduced Jacobian
matrix in order to determine the instable or critical modes of the system. This method
determines the main busbars, branches and generators associated with each critical mode
[21, 22] providing information about the mechanism of loss of stability.

4. Continuation load flow.

Formulation of indicators of the distance to the voltage collapse have been developped from
these techniques, such as:

1. Risk of voltage instability indicator, 7. [23, 24]. Theindex L is calculated for each load
node of the system. The value of L is between 0 (no load in the node) to 1 (voltage col-

lapse).

2. Modal proximity to instability [22]. Each eigenval ue of the reduced Jacobian matrix cor-
responds to amode of voltage/reactive power variation. If thisvalueis positive the mode
is stable. The magnitude of the eigenvalue gives an indication of the degree of stahility.
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3. Power (MW, MVAr and MVA) margin to voltage instability.

As reference [22] states, the calculation of L indices for al the load buses requires much less
CPU time than modal analysis while the CPU time required to compute the sensitivities for all
load busesis more than the time required in the modal analysis. On the other hand, modal anal-
ysis provides information about mechanism of instability and about the components associated
with the main instability. However, in the operation timescale an indicator, such astheindex L,
which providesinformation on the voltage-weak area (busbars) for an operating condition and
allowsthe calculation of the emergency load shedding to avoid risk of voltageinstability isvery
useful [24].

2.5.2 Impact of voltage collapsein reliability evaluation

Reference[25] usestheindice L, proposed in[23] to incorporate voltage stability considerations
in the adequacy assessment of composite power systems and proposes a bisection algorithm for
the load-shedding calculation. Busindices /. are used as voltage stability constraints. If these
constraints are violated, the load bus which has the highest voltage stability indicator is sel ected
to carry out load shedding in order to reduce the indicator. The bisection algorithm is used to
determine the minimum load to be shed (A P) to reduce the value of theindicator of the selected
busto the minimum acceptablevoltage stability indicator (threshold value). After load shedding
in the selected bus, indicators are recalculated for al the system load buses and the bisection
processis repeated in the case of the another voltage violation until all buses do not violate the
voltage stability constraints.

2.5.3 Indice L and modified indice B

Reference [23] defines the indicator 7 ; to assess the voltage stability of load bus ; for a given
condition of the system. A hybrid representation of atransmission system is used to define the
indicator. This representation is given by:

VL ZLL FLG ]L
[ G ] = [ KGL yGG ] [ 1745 ] (2-7)

where VI and 1" are vectors of voltages and currents at load nodes; V¢ and I¢ are vectors
of voltages and currents at generation nodes; 7%, FL¢ K%L and Y““ are sub matrices of the
hybrid matrix. The hybrid matrix is generated from the admitance matrix (Y;,,) by partial in-
version.

Theindicator L; is given by [23]:

Y FiVi
o eTe
L=+ = | (2.8)
where ag is the set of generation nodes; F;; is the complex component j: of the sub-matrix
FL%V,; and V; are the complex voltages at nodes: and ; respectively.

20



From the indicator 1., an approximation was developed in [24]. This approximation definesthe
risk indicator as:

B, = \1 4 E“Gf\ (2.9)

where C';; isthe element 5z of matrix C determined by:
[C]=—[B""" [Bra] (2.10)

where [B"] isthe imaginary part of the matrix [Y7z] and [ Br] istheimaginary part of the ma-
trix [Yzc]. [Yzr] and [Yz¢] are submatrices of the Y-bus matrix. Asreference [24] shows, the
approximated indice B; has an error of less of 1% respect to indice L ;.

Theindicator B; can be separated into real and imaginary parts (BF, BY):
Z Cii|Vileos(6; — 6;)

R _ ¢ _ 1€y
Bf =1 A (2.11)

and

Z C]Z|VZ|3m(52 — 5])

I _ _ i€ag
Bl = Vi (2.12)

where §, and é; arethe voltage anglesat buses: and j; |V;| and | V;| are the voltages magnitudes
at buses: and 5. Changesin the value of the indicator due to variations of the load (shedded)
can be calculated as:

ABR AV AQ

where [J] isthe Jacobian matrix and [T] isthe sensitivity matrix between indicator changesand
voltage angle and magnitude changes.

ame | =) sy | = e 26 213

The variation of the indicator at node ; will be given by:

AB; =/(ABF)2 + (AB!)2 (2.14)

2.5.4 Suggestion of an additional constraint to avoid voltage collapse in
the Value of Security Assessor

Asit was mentioned, the load flow divergenceis an indication of voltage stability problems. In
the Value of Security Assessor , if the load flow fails to converge, it is assumed that the system
or apart of the system (an island) would have suffered a voltage collapse were the operator not
havetaken action. It isfurther assumed that the operator’sresponseto impeding collapse would
have been to shed load in 5% blocks in the area of the biggest mismatch until convergenceis
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achieved. If convergence has still not been achieved after al load has been shed, the island or
the system is deemed to have “collapsed”.

On the other hand, if the load flow converges for any contingency, system operators take cor-
rective actionsin response of violation of system operating limits. After that, the power flow of
the system converges but the system could be located in acritical condition in the proximity of
the voltage collapse. If thisis the case, the voltage stability could occur if system operators do
not take additional corrective actions.

The value of security calculation would determine if the system is on a viable operating con-
dition or not and, if it is the case, to determine the emergency load shedding to avoid risk of
voltage instability as an additional corrective action. That is an additional constraint that could
be studied and considered in the Value of Security Assessor .

The Value of Security Assessor may follow some of theideas proposed in [25] taking advantage
of the calculation of indicators B;, proposed in [24]. In order to avoid the iterative process of
the bisection algorithm for the calculation of the load shedding, the Value of Security Assessor
could use the relationship of equation (2.13) between indicator changes and load powersto be
shed [24].

The following algorithm cal culates the impact of risk of voltage collapse:

1. Calculation of indicator B; for all load node ; using equations (2.11), (2.12) and:

B; = \/(BF) + (Bl (2.15)
2. Evauation of:

B] § Bt}w’eshold ,] € oy, (216)

where o, isthe set of load buses. If the relation is satisfied for all nodes ; then stop else
continue.

3. Determination of the load bus ; having the highest indicator, to carry out load shedding.

4. Calculation of load to be shed in order to reduce the indicator value at bus ; to the target
value using equation (2.13). As[24] suggests, alower target value than threshold value
must be used.

5. Calculation of the new state (load flow) and return to first step.

2.6 Modelling of Corrective Actions

In responseto violationsof system operating limits, operatorscan reschedul e generation, change
voltage set-pointsand tap ratios, and, asalast resort, shed load. Since operatorsreach decisions
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about what actionsto take based on advice given by planners, information gleaned from “what-
if” load flow studies, and experience, their actions are represented in the value of security asses-
sor by afuzzy expert system with embedded load flow and linear sensitivity analysis ([26, 27]
and appendix A of thisreport). Threetypes of corrective actions are modelled:

e active dispatch—dispatches settings of active power generation, shedding of load (active
and reactive components in proportion) and changes to phase shifter settingsin order to
relieve overloads of transmission lines and cables;

e reactive dispatch—adispatches settings of reactive control devicesin order to correct vio-
lations of voltage limits;

¢ dispatch of active controlsfor correction of voltage problems—thisisactivated to change
the active generation and, if necessary, shed load in order to remove any outstanding vi-
olations of voltage limits[28].

Fig. 2.5 shows the procedure used to decide on corrective actions.

System state

Any
MW limits

voltage limits
violated?

Derive MW Derive MVAr
actions actions

Derive MW
actions

Any No Any No
actions? actions?
Yes Yes
Apply MW Apply MVAr Apply MW
actions actions actions
L ] L ]
Active dispatch Reactive dispatch Active dispatch

for voltage

Figure 2.5: Modelling of corrective actions

The active dispatch, reactive dispatch and active dispatch for voltage are implemented as shown
infig. 2.6. In each, the operators judgments are modelled by means of “qualitative reasoning”
whereby the decisionsarereached by balancing the criteriaof control effectiveness, control mar-
gin, cost, smplicity and the possibility of unwanted secondary effects. More details of the op-
erator action modelling can be found in [27, 29]

2.7 Duration of load interruption

This section discusses the duration of load interruptionsin power systems. A heuristic method
for the modelling of these interruption duration in the Value of Security Assessor isformulated.
Determination of interruption duration is needed, not only for the calculation of the energy not
supplied, but also for the calculation of the cost associated with the interrupted |oad.
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Figure 2.6: Operation of dispatch routine

Some factorsthat affect the duration of the interruption are:

State of the system.

Generation units start-up

Load variations (load demand curve)

Size (number of MW) and extent (number of affected busses) of the interrupted load

The duration of each load interruption can be divided in two phases:

1. Thecontrol phase. Inthisphase, the operatorstake corrective actions. Also in thisphase,
a degradation of the system involving cascade tripping can occur.

2. Theload restoration phase. This phase involves the process of reconnection of the load
that waslost or voluntarily disconnected during the control phase to maintain the system
in operation.
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2.7.1 Load restoration process

The overall goals of the restoration processis to first rebuild a stable electric system and then
to restore all remaining unserved load [30, 31, 32]. In order to attain these goals, the following
practices should be observed [30]:

1. Restore safely. Precautions must be taken to guard against human injury and equipment
damage, avoiding both thermal overloads and overvoltages.

2. Restore smoothly and deliberately. To assure a stable rebuilt electric system, the bal-
ance between load and generations must be maintained. Repeated interruptions should
be avoided.

3. Minimize overall restoration time. Both minimum and maximum restart times for gener-
ators should be examined when deciding on an unit startup sequence. Restoration actions
should be taken immediately but a hasty restoration should be avoided.

4. Minimize adverse impact to public.

5. Maintain flexibility to respond to problems.

Before arestoration sequence starts, an assessment of the system should be performed to deter-
mine the extent and the characteristics of the problem and the overall status of the system. This
assessment should determine to which of the following cases the problem belongs:

1. A standard power failureinvolving loss of load and regional transmission only. Load can
be restored using straight-forward control actions.

2. Anunstable systemwith significant degradation in voltage, frequency or power flow equi-
librium. Emergency actions, such as load shedding, may help limit further degradation.

3. A major power failure island formation in which a portion of the power system becomes
separated from the main synchronized power grid.

4. A major power failureblackout inwhich critical generation or bulk transmission facilities
arelost resulting in a system collapse or blackout.

Different approachesto the restoration of the system are used depending on the size of de-energized
area, the posibility to receive assistance from interconnected systems, the amount of blackstart
capability in the system and the type of production in the system. Two major strategies [10] for
restoring a power system following a blackout are known:

e Thebuild-up strategy. It is often used when the system has suffered a total blackout and
when it isimpossible to receive assistance from the neighbouring systems. The system
is divided into subsystems that include a least one station with blackstart capability, that
can regulate both frequency and voltage of the subsystem itself and that have a good bal-
ance between production and consumption. After starting the station, emergency power
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is supplied to the stations without blackstart equipment in order to start, if possible, the
units in these stations and to synchronize them to the system. Loads are connected and
more units are taken into operation. Each subsystem isthen synchronized with the others.

e Thebuild-down strategy. Thisstrategy is mostly used in small systemswithout long high
voltage lines or in hydro systems with good reactive absorbing capacity. The interrupted
system has to include aleast one station with blackstart capability. When this station be-
comes operative, it is connected to other stations in order to supply them with the emer-
gency power necessary for their start up. The generators are synchronized with the sys-
tem and more lines are connected. During theseinitial steps some load is connected but
most of the load is connected when most of the generation and transmission systems are
restored.

Based on the goals, objectives and power resources, the utilities make their restoration process
planning. Figure 2.7 [33] shows the outcome of the restoration process following major black-
outs.
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------ Sweden Jan 13 1979, 2700 MW (15%)
———Belgium Aug 4 1982, 2400 MW (50%)
—— Sweden Dec 27 1983, 11400 MW (67%)
— France Dec 19 1978, 28000 MW (75%)
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Figure 2.7: Load Restoration following Major Disturbances

2.7.2 A heuristic approach for the Value of Security Assessor

The modelling of the interruption duration in Value of Security Assessor takes into account the
two phasesof theinterruption. The proposed modelling isused for the restoration of both partial
and total blackouts.
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It is clear that in the evaluation of the value of security, an exhaustive modelling of the restora-
tion processis not necessary. This modelling must only capture the relevant characteristic for
the evaluation of the value of security, that is the duration of interruption. As shown in figure
2.7, thisduration is directly related to the unserved load. In fact, asthe unserved load isrelated
to the size (number of busbar) and the severity of the problem (cause), a relationship between
unserved load and time of restoration could model the interruption duration, in a heuristic way.

A heuristic model is used in the Value of Security Assessor to model the interruption duration.
This model gives the restored load as a function of time. This model divides the restoration
process in two phases. If we measure the duration of the restoration from the moment where
thefirst load is shed or disconnected, the first phase includes:

e the period during which the operator takes corrective actionsto try to stabilise or to solve
therest of the system,

e the period during which the operator assurres the situation and decides an a restoration
strategy,

¢ period during which the operator takes restoration actionsthat do not result in immediate
load reconnections.

No load is thus reconnected during thisfirst phase. It seems reasonable to assume that its dura-
tion is proportional to the severity of the outage. It can be modelled by:

o Pdisconnected

tl = —F— X Ttotalblackout (217)
Ptotal

wheret, istheduration of thefirst phase. T},:a1p14c10u 1Sthe expected duration of thisfirst phase
for atotal blackout. Figure 2.7 (French blackout) suggeststhat 30 minutesis areasonablevalue
fOr Tiotatblackout- Piisconnected @NA Pyorey @rethe unserved and thetotal 1oad of the system, respec-
tively.

The second phase representsthe actual reconnection of theload. It appearsreasonableto assume
that the restoration rateincreasseswith time. Table 2.1 and Figure 2.8 show the restoration rates
that will be used in this project.

Time Period | Restoration Rate
(Min) [MW/min]
0-30 10.0

30-60 33.3
60 - 90 66.6
90 and more 83.3

Table 2.1: Restoration Rates - An example
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v2 1 32 2 52 3 v2 1 32 2 52 3
Restoration Time (hour) Restoration Time (hour)
Continous model Step model

Figure 2.8: Aggregated Restored Load - An example
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Chapter 3

Assignment of a Cost for a Load
|nterruption

The key idea of the Value of Security Assessor isthe weighing up of the cost of security against
the benefit [34]. Thisis achieved by assessing the costs of

o thebaselevel of security i.e. the system and operating schedule with only planned main-
tenance outages.

e any correctiveactionsneeded to removeviolationsof operating limits caused by unplanned
outages.

and comparing these with the value of any load that may be lost due to unplanned outages. Ob-
vioudly, since the aim is to establish the optimum level of security given the probabilities of
unplanned events, the decision on which initial operating scenario from a number of possible
schedules depends critically on using an appropriate measure of the cost to consumers, utilities
and society of an interruption to electricity supply.

In the regime by which the Electricity Supply Industry (ESI) in England and Walesis currently
managed, a standard value is attached to the cost of unsupplied electricity. Thisis known as
the “value of lost load” (VOLL). In spite of considerable importance being attached to VOLL,
and increasing attention being paid worldwide to the worth of supply continuity or the cost of
interruption in order to perform cost-benefit analysis of system reinforcement, thereisrelatively
little discussion in published literature of how suitable values may be found. Asthis discussion
will reveal, the issues involved in deciding on a suitable measure of the cost of an interruption
to electricity supply are far from simple and the data available is rather limited.
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3.1 Termsusedintheliterature

Most of the literature concerning the value of lost load or the worth of supply fallsinto one of
two categories.

e aposteriori studies of significant outage events to establish their overall costs[9]

e assessments of reliability used in planning and reliability studies[35, 36].

The most useful general result that the studies of specific events have yielded is that interrup-
tion costsare substantial. Often, indirect costs such asthe costs of civil disorder and the costs of
emergency servicesfar out-weighed the direct costs [37]. These studies being specific to given
customer mixes, economies and times of day and year, they do not provide information on gen-
eral methodol ogy.

In the context of system reliability, the question is often asked: “what is a consumer prepared
to pay to avoid interruption?’ or “how much reimbursement would the consumer accept in the
event of beinginterrupted?’. Theanswer isthen used to find some expected cost of interruptions
in the course of ayear given conventional reliability analysis involving outage rates and rates
of repair. As such, the reliability analysis often makes use of only one value for the cost of
interruption for thewholeyear, or perhapsavaluethat isafunction of only onevariable, usualy
interruption duration [36]. Aswill be seen presently, this approach islimiting when put into the
context of power system operation.

Among the terms used in the literature are:

Customer Interruption Cost (CIC): the cost resulting from an interruption as perceived by
an individual customer [35].

Customer Damage Function (CDF): function relating some variable, often interruption du-
ration, to a customer’s costs caused by supply interruption [37].

Sector Customer Damage Function (SCDF): The normalised costs of supply interruption of
a sector of customers, expressed as a function of interruption duration [37].

Composite Customer Damage Function (CCDF): a single function relating the costs of in-
terruption of aparticular mix of customersto some variable [37].

Customer Outage Cost (COC): The overall cost of interruptionsin agiven period e.g. one
year [35].

ACOC: “customers marginal benefit” or “reliability worth” [35].

Value of Lost Load (VOLL): “the value an average customer puts on an unsupplied kWh”
[1, 38]. In practice, the figure used may turn out to be, effectively, afunction of the CCDF
for an interruption of one hour [35].
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3.2 Factorsinfluencinginterruption costs

The value of lost load figure as currently used in the UK implies that the net value a customer
attaches to a supply interruption depends on the amount of energy not supplied. This has been
disputed in submissionsto the Review of Transmission Security Standards conducted by the Na-
tional Grid Company plcin 1994 [1] and by various authors writing in the engineering journals.
The principal objection is that “worth of supply” and “energy not supplied” are not directly re-
lated [35, 38], and that stress should be given to the cost per disconnection rather than per kwh
[39]. Allanillustratesthisin [38] by pointing out that the value of being unable to watch alive
transmission of an international football match may be considerably higher than that of being
unable to use a washing machine. Though the energy consumed by the latter is much higher,
watching the live game is time critical. The washing could be done another time, or even by
hand.

Extensive consideration of the cost of an interruption reveals that the costs perceived vary sub-
stantially from customer to customer. They further vary in the sorts of direct (resulting imme-
diately from the cessation of supply) or indirect (arising from the response to an interruption)
impacts the interruptionsimpose. For example, in [37], direct monetary impacts are said to in-
clude

e |lost production.

idle but paid-for resources e.g. labour, capital.

equipment damage.

process restart costs.

spoilage of resources.

costs of damage to health and/or safety.

the utility’s restoration costs.

Direct social impacts may include inconvenience dueto

e lack of transportation.

loss of leisure time.

¢ uncomfortable building temperatures.

personal injury

fear.

Indirect consequences may be either economic or social and may include
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e Crime

e necessitation of residential evacuation due to failure of safety equipment at a nearby in-
dustrial plant.

e political “fallout”.

It can be seen immediately that these vary from customer to customer. In addition, these costs
will vary according to

e time of day.
¢ theduration of the interruption.

¢ theavailability of advance warning.

prevailing weather and hence time of year.

availability of alternative energy sources.

A further, not inconsiderable, factor relating to a customer’s perception of the cost of an inter-
ruption will be the reputation of the utility and the recent history of interruptions[1].

3.3 Alternative M odds of Value of L ost L oad

3.3.1 VOLL currentlyinuseintheESI

VOLL represents the value an average consumer puts on an unsupplied kWh. Itsinitial value
of £2/kWh adopted in 1989 by the Electricity Supply Industry was apparently derived from the
results of aFinnish survey conducted in 1977/78 and has since been pegged to theretail pricein-
dex (RPI). The NGC has used avalue of around £2/kWh (1992/93), asthe VOLL of the system.
S0, thismodel uses one valueas VOLL for all the system.

3.3.2 VOLL derived from customer interruption costs

From the discussion of section 3.2, it is clear that ascertainment of the cost of an interruption
is far from simple. The most popular means of gathering any sort of data has, to date, been
by customer survey. A drawback of the surveys reported in the literature [1, 40] is that they
are normally geared towards reliability studies which make little distinction between times of
day and times of year i.e. they seek values which represent sectors of customersfor “average’
circumstancesfor different interruption durations. Seeing asthe Value of Security Assessor will
be concerned with operating conditionsat a given time and possi ble unplanned events occurring
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within a short time window, to obtain reliable costs for the analysis, the interruption costs for
those conditions should be estimated.

One survey was conducted as part of a study at UMIST in 1994 [35] and the results are repro-
duced in table 3.1. In this study, some analysis of the sensitivity of the customer interruption
costs to variationsin time of day, time of week and season was performed on the UMIST data
[41].

Sector No. of | Response CIC (£) for interruption duration of:
responses | rate (%)

moment 1Imin 20mins 1hr 4hrs 8hrs 24hrs

Residential | 4014 191 - - 019 0.70 4.78 - -
Commercial | 203 4.0 1147 11.74 4912 106 345 719 1.0k
Industrial 119 5.7 12k 1.5k 29% 43k 7.6k 120k 16.3k
Large user 19 29.2 216k 216k 219k 233k 329 413k 581k

Table 3.1: UK Customer Interruption Costs (CIC)

A further difficulty isthat survey resultsarevery sensitiveto themethodsused for the cal cul ation
of the customer interruption cost. Ideally, the “Willingness to Pay (WTP)Y” and the “Willing-
nessto Accept (WTA)?” approaches are complementary and theory suggeststhat values derived
from these methods should be nearly equal. However, actual valuations consistently yield WTP
values significntly less than WTA values[37].

Thesemethods arethe so-called “ direct methods’ of customer survey. Inthe“indirect” approach
of which the “preparatory action method (PAM)*” used at UMIST is an example [42], the cus-
tomer isinvited to select an option from one or more lists regarding responses to interruptions.

Clearly, theimplication of the existence of so many approachesisthat no survey can beregarded
asdefinitive. In addition, limitationsin the sample size especially for commercia and industrial
customers, asinthe UMIST study, constituteadrawback. However, sufficient datato overcome
these drawbacks is unavailable and the survey results are reasonable for relative comparisions
or studies.

An alternative to the survey approach to putting a value on interruptions suggested during the
consultation conducted in the preparation of [1] is simply to leave RECs to “bid” the value of
lost load to be used in their areas. However, in this case, the residentia customers will always
lose out.

A procedure is therefore presented below for using the UMIST survey results to assemble the
interruption cost of a given outage. The method is based on that presented in [35].

1The WTP approach assesses customer willingness to pay premiums for an assured supply considering their
current level of reliability. These premiums are derived from direct monetary estimates by customers or deduced
from premiums expressed as percentage of their electricity bill [41].

2The WTA approach measures customers’ willingnessto accept compensation for reduction in reliability from
the current level. Thisis measured as a percentage redunction in electricity bill [41].

3The PAM approach ask to customers to choose from a ligt, the likely mitigating actions they would take to
alleviate the impacts of interruptions. The rationale hereis that the worth of one good is equivalent to the amount
the user iswilling to pay for some other goods (preparatory actions) which provide the same benefitsasthe primary
good [41].

33



1. Find individua customer interruption costs (CICs) as functions of interruption duration
t. These are denoted C'; .(¢) for each customer x.

2. Normalisethe CIC functionsto find the customer damage functions (CDFs) either by
(a) the customer’sannual energy consumption so that

Cra(t
CE,z(t) _ IE( )

(3.1)

where £, isthe annual energy consumption of customer = in MWh and C (1) is
the normalised customer damage function in £MWh.

(b) or the customer’s peak demand so that

Crall) = CI’L”""(t) 32)

where L, is the peak demand (load) of customer = in kW and C7, () isthe corre-
sponding normalised customer damage function in £/kW.

The normalisation is conducted in order to reduce the impact of afew extreme values on
the overal value. It should be noted that the customer damage function normalised by
peak demand is not the cost of energy not served.

3. Find the sector customer damage function (SCDF).
(@) either

SCDFg, (1) = 258 (3.3)

Ny

where SC D Fg (1) is the sector customer damage function in £MWh with costs
normalised by annual energy and n,. ,, isthe number of customersin sector .

(b) or

SCDFy (1) = =CLalt) (3.4)

Mgy

where SC D F1, (1) isthe sector customer damage function in £/kW with costs nor-
malised by peak load and ., , is the number of customersin sector y.

As[35] shown, SCDFy,(t) and SC D Fg(t) arerelated by

_ SCDFy (1)

SCDFg, (1) = St (35)
‘ Yy

where L F, isthe load factor of sector y.

4. FindtheVOLL associated to aparticular interruption of duration ¢, according to the knowl-
edge of load factors (L F'). So,



(@ if theindividual sector load factorsare known (1 F,), then the VOLL for each sector
y 1s calculated from the sectorial SCDFs as
_ SCDFp,(t)

VOLL, (1) = === (3.6)
Yy

and then, these sectorial VOLLs are weighted by energy consumption. Such as,
S VOLL,(1)E,
VOLL(t) = 3.7
(1 S0 37

(b) if the individual sector load factor information is unavailable, then an equivalent
SCDF is calculated from sectorial SCDFs appropriately weighted by energy con-

sumption
E
SCDF.(t) =Y (SCDFy, (1) ==) (3.8)
2 E,
and the VOLL iscalculated from SCDF, () as
_ SCDF,,(t)
VOLL(t) = < LF (3.9)

TheVOLL isin £/kWh

In this way, interruption duration is identified as the most signficant variable upon which the
cost of an interruption depends. For use of the method, the approximate duration of the outage
must be determined. Thisis likely to depend on the system conditions which gave rise to the
interruption. For example:

1. Supply interrupted to arrest adeclinein system frequency may only be restored when suf-
ficient extra generation has become synchroni sed with the system or when system demand
has fallen sufficiently.

2. Supply interrupted to prevent voltageinstability may only berestored when demand inthe
area judged to be vulnerable to voltage collapse has fallen sufficiently, when sufficient
extralocal generation has become available or when sufficient other extra local MVAr
reserves have become available.

It should be recalled that the* value of security” studieswill be conducted at atransmission level
and that load interruptions, should they arise, will generally be experienced evenly distributed
within individual geographical areas. It may be, instead, that different cost functions, i.e. the
VOLLSs, should be assembled for each geographical area (coinciding with Regional Electricity
Company areas) or for each node of the system.

An example

From asurvey conducted as part of astudy at UMIST in 1994 [35], the CIC costs (table 3.1) and
SCDF functions (see table 3.2) for interruption duration for United Kingdom were cal culated.
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Sector SCDF (E/kW) for interruption duration of:
moment 1min 20mins l1hr 4hrs 8hrs 24hrs

Residential - - 015 054 372 796 24.92
Commercial 099 1.02 389 10.65 39.04 78.65 99.98
Industrial 6.15 6.47 1427 2526 7222 120.11 150.38
Large user 6.74 6.74 6.86 7.18 8386 971 1335

Table 3.2: UK Sector Customer Damage Functions (SCDF) in £/kW

These SCDFs values can be used for the calculation of VOLL of the system, one region or one
node. The method is general for any case. For example, the VOLL associated to the bus = will
be calculated. The following assumptions are made:

1. The energy consumption by sector at bus = is 35% for the residential sector, 25 % for the
commercial sector, 30 % for industrial sector and 10% for the large users sector.

2. Theload factorsare: 0.333 for the residential sector, 0.40 for the commercial sector, 0.50
for the industrial sector and 0.666 for the large users sector.

Thus, using equations 3.6 and 3.7, the VOLL function for each sector are calculated asin table
3.3 and then the VOLL function for bus = is obtained (see table 3.4).

Sector VOLL (E/kWh) for interruption duration of:
moment 1min 20mins 1hr 4hrs 8hrs 24hrs
Residential - - 135 162 279 299 3.12
Commercial 153.0 29.17 26.63 2440 2458 1041
Industrial 776.4 85.62 50.52 36.11 30.03 1253
Large user 606.6 30.87 10.77 332 182 0.83

Table 3.3: VOLL functions by customer sector

Interruption duration: 1min 20mins 1hr 4hrs 8hrs 24hrs
VOLL, (E/kwWh) 3414 365 234 182 164 75

Table 3.4: VOLL bus z - first method -

On the other hand, if the sector’s LF are unknown but the bus LF is known then the VOLL is
calculated using equations 3.8 and 3.9. For this example, the simultaneous maximum demand
corresponds to 80% of residential peak, 40% of commercial peak, 65% of industrial peak and
85% of large user peak. Then, the L F for bus = is 0.42. We suppose that only the last valueis
known, then the VOLL resultsare asin table 3.5.

Variations of the method

In equation 3.7, the sectorial VOLLswere weighted by the energy consumption. Alternatively,
the weighting factors may be the number of consumers in sector y ot their peak demand. As

36



interruption duration:  1min 20mins 1hr 4hrs 8hrs 24hrs
VOLL, (ElkwWh) 4175 428 265 200 177 8.0

Table 3.5: VOLL bus z - second method -

stated in [35], the VOLL curves derived have similar characteristics than the VOLL function
presented in table 3.4, but their absolute values are very different. So, the weighting factors
used for each node may affect their VOLL curves.

Some commentaries

Two methods of normalising CICs are considered since there appears to be no consensusin the
literature as to which is more suitable. It has been argued that for short interruptions, to nor-
malise by peak demand is more appropriate since it is the access to instantaneous power that
has been lost, while normalisation by energy should be used for longer outages [43].

In addition, it will be noted that calculation of VOLL can be made for differents times of day,
day of week or week of year in terms of sectorial weightings, i.e. these will change the mixture
factors of SCDFs. These are likely to significantly influence the indirect costs of interruption.
The sensitivity of the results to these factors will be investigated.

3.3.3 Customer Outage Costs-COC-

An essential weakness of the VOLL approach is that it cal culates the cost of the outage based
only on the energu not supplied [39]. A study of the factors affecting the perceived customer
interruption costs (CIC) [35, 41] has shown that, in the event of supply interruptions, customers
are much more concerned with the inability to usetheir equipment and the likely damageto this
equipment than to the energy they have been unable to consume.

The evaluation of Customer Outage Cost (COC) is an alternative way of valuation of therelia-
bility worth. The COC (in £) due to supply interruptions at the busbar ; isgiven by:

COO] = Ej X C'j(rj) X )\j (310)

where F; is the energy consumption at busbar j in the period of evaluation, r; is the average
outage duration, }; is the number of interruptions during the period of evaluation and C;(r;)
is the composite customer damage function (CCDF) calculated from the weighting of SCDF
sectorial functions by the sectorial energy consumption at busbar ; and expressed in £/kWh.
When the load factors by sectors are known, then the C;(r; ) is given by:

SCDF(r;) B,
C5(rs) = ) Luy

Y

(3.11)

where T' is the duration of the period of evaluation.

37



When only the load factor at busbar j isknown, C;(r;) isgiven by:

1 Ey;

C](T]) LFJ % T %:(SODF(TJ) X ZEy) (3 )
In equation (3.12), >~ £, = FE; a busbar y and £; = P; x LF; x T. Equation (3.10) then
becomes:

COC] = P]’ X SCDFeq(T]') X )\j (313)
where P; isthe peak |oad at busbar ; during the evaluation period 7'.

3.4 VOLL modédlingin the Value of Security Assessor

It must recalled that the principal objectivesof the research grant do not include the arrival at a
decision on what is the best means of costing interruptionsto supply. That decision should rest
withwhoever usesthe value of security analysisprocedure. All that can realistically be provided
is the flexibility of doing the costing by whatever means is chosen and to enable some degree
of sensitivity analysisto be performed with regard to different costing approaches. Thiswill be
accomplished simply by keeping track of the amount and location of load lost in the course of
the Monte Carlo simulation and then costing it al in post-processing by the chosen means after
sufficient samples have been generated.

The current software implementation of the Value of Security Assessor providesthis flexibility
of modelling.

The discussion hasintroduced the need for careful consideration of how interruptionsto supply
are to be costed in the Value of Security Assessor under development at UMIST. Some of the
factors contributing towards the cost of interruption have been outlined and in so-doing, some
of the drawbacks of the “value of lost load” currently used in the UK electricity supply industry
have been pointed out.

A proposal has then been presented for what might constitute a useful first approximation of a
realistic value of lost load in the value of security analysis. Results of the application of Value
of Security Assessor are also presented.

3.5 Effect od Duration of Interruption on the VOLL compu-
tation

In order to illustrate the effect of restoration load schemes in the evaluation of security value,
let us use the following example. Consider an unserved load Pr of 300 MW that is restored at
arate of m; (600 MW/hour). The restoration process starts¢; (10 min) after the failure occurs.
Then, the first step is the calculation of the total time of restoration. Thisisgiven by:

Trestoration = — = 30nmun (314)
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Thus, the total load isrestored between 1 and 1 + T'cstoration = to. 1tiSSUppOSed, that the load
restoration can be realised by one of the restoration schemes of figure 3.1:

1. Thetota load (Pr) isrestoresat,
2. Theload isrestored in n (6) steps of £& (50 MW)

3. Theload isrestored continously at the rate of m,

)
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Restored Load [MW]

| T : : : . : : :
10 20 30 40 10 20 30 40 10 20 30 40
Time [min] Time [min] Time [min]

(a) (b) (c)
Figure 3.1: Schemes of Restoration Load
As, it was showed in [44], VOLL depends on the duration of the load interruption.

Thetotal cost, for each scheme, is given as follow:

e Schemel. Asthetotal load isrestored at ¢,, then:
TC = UOZZ(tQ) X 19 X PR (315)
where TC isthetotal cost (in £) associated with the load interruption.

e Scheme 2. Each step (k) of the restored load has an associated time of restoration ()
and, hence an associated VOLL (voll(t)). Then, TCisgiven by:

TC = Zn:(voll(tk) X tp X %) (316)

k=1

where ;. isgiven by

Trestoration
—k

n

Then,

TC = Y (voll(ty) x (1, + zestoration gy Py (3.18)

k=1 n n
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e Scheme 3. The TC for this case is obtained from the last equation by making n — oc.
Thus, TC isgiven by
t2
TC = (voll(t) x t x mq)dl (3.19)
tq
Intheevaluation of theintegral, it isimportant to takeinto account that the VOLL function
is defined differently for different periods of time, i.e. 2% is not continuous.
If acontinuousfirst derivative voll function between ¢; and ¢, given by:

voll(t) =n x (t — 1) + voll(ty) L <t<iy (3.20

isassumed, TC will be given by:
ta
TC = ((nx (t —t1) + voll(t1)) x t x my)dl (3.20)
t1
or
my(voll(ty) —n X 1)
2

TC =nxmy x (t5—13)+ (12— 1) (3.22)
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Chapter 4

Weather Modelling

4.1 Introduction

It is clear that in an operational timescale, the initial weather is quite predictable, with some
randomvariation. Inaddition, studiesof succeeding conditionswill simply befurther * operation
snapshots’ which will be examined nearer to the time, but for which the weather can also be
fairly predicted. In consequence, the weather needs not be regarded as a random variable, and
the effects of predicted weather patterns can be reflected in the probabilities of different random
events on the power systems.

Section 4.2 presentsthe basical concepts used in the weather modelling and the proposed mod-
elling based on the definition of discrete weather states. Section 4.3 describes the implementa-
tion of thisfeature in the Assessor.

4.2 Weather concepts

Asitis stated in [45] and [46], failure rates of some components such as overhead transmis-
sion lines depend on the weather conditions to which they are exposed. The weather aspects
that affect the performance of the transmission lines could vary from one region to another and
could be different from one season to another. Generally, wind speed, lighning, precipitation and
others are the main contributing factors affecting the reliability of the system. In addition, the
severity of the weather scenario isdetermined by the intensity of the constituent aspects; there-
fore the actual number of severity levels needed to represent weather aspects depends not only
on the available data but also on the appreciation of the intensity of the individual constituent
factors and their impact on the transmission network.

In previous work done at UMIST ([495], [46]), aweather model was devel opped to evaluateits

effect in the composite system reliability evaluation. Thismodel isgeneral in nature and recog-
nises the following characteristics of weather:
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Constituent factors or variables of weather
Severity levels of individual variables
Interdependency between variables
Adversity or stress level of each weather state
Regional variation

Nonstationary attributes of the weather scenario

N o o b~ w N P

Seasonal variation of weather

It should be noted that the number of attributes, variables and severities can be easily reduced to
include only those considered necessary and viable in any particular application with the avail -
abledata. On the other hand, this model considers the weather as arandom variable. For appli-
cation in the operation timescale, the wesather is considered to be predictable.

4.2.1 Definition of weather states

Different weather states can be defined for each region and each season. The number of vari-
ables needed to describe the weather could be function of the region, but in a genera way the
weather states can be defined by the following variables:

1. Wind speed (S)
2. Lightning (L)

3. Precipitation (P)

Therefore, a weather condition can be represented by the following relationship:

To determine the effect of weather on the transmission network, the behaviour of each variable
should berecognised. The number and kind of severity levels needed to represent theimpact of
each variable are determined by the relevant meteorological data.

As it is stated in [45], the weather and therefore the stress level that a transmission network
can encounter could be associated with a continuous distribution. However, it ismuch easier to
develop a discretised distribution from a data collection point of view. For this discretisation,
severity levels are defined for each variable; for example, the number of severity levelsfor the
S, L and Pvariablesare s, [ and p respectively. Therefore the total number of states required to
represent the weather will be s./.p, and equation (4.1) becomes:

W= f(S,Lj,P) ie€sjelkep (4.2)
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Table 4.1 shows the wesather statesfor one region in a specified season. It is assummed that the
weather conditionsfor thisregion are specified using three variables: wind speed, ligthning and
precipitation. For each variable, three levels of severity are defined: low, medium and high.
Hence, the number of weather states will be 27. These states are obtained by combination of
the severity levels of each variable, as shown in the table.

Weather State | Speed Wind Level | Lightning Level | Precipitation Level
1 Low Low Low
2 Low Low Medium
3 Low Low High
27 High High High

Table 4.1: Weather states

However, some of these general weather categoriesarelittlefrequent. In such casg, itisbetter to
identify special weather statesthat are more likely to lead to increased outage rates. The special
weather states can be defined, for example:

Normal weather

Thunderstorm

Freezing rain/wet snow

High winds

Dry spell followed by fog

Alternatively, a more simple definition can be employed using two possible states as function
of dataavailability:

e Adverse weather

e Normal (or non-adverse) weather

4.2.2 Failurestress

The wesather state 1 fromtable 4.1 (i.e. low severity of al varieties) represents the normal state
for which the failure rates of the transmission components are specified. After determining the
weather state in function of variables severity levels, it is necessary to calculate the impact of
this state on the failure rate of the transmission components. This impact is usually measured
quantitatively in terms of increasing failure rate of individual transmission components. For
example, if the weather isin the jth state, then the failure stress (FS) on the nth component can
be specified as:

FS? =

n
- _J
n
AT

(4.3)
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where:

F S = failure stress on nth component in the jth weather state
A7 = failurerate on nth component in the jth weather state
7 = failure rate on nth component in the normal weather state (1).

Thecalculation of thefailure stress usesthe concept of the proportion of failuresthat isexplained
in the following section.

4.2.3 Proportion of failuresconcept

The proportion of failures ocurring in each weather state [4] is defined as:

Tiyn
F' = = 4.4
r=L (44

N

where:

F! isthe proportion of failures for the nth component in the :th weather state. It is such that
Ef\il B =1.0

)" isthe average failure rate of the nth component

A7 isthe failure rate of the nth component in the :th weather state

T; isthe duration of the :th weather state

T =¥, T, isthe duration of all weather states (N)

On the other hand, the failure rate for the normal weather state is known. In addition, from the
data collection, the proportion of failure and the duration of the normal state and the total time
of the sample (history) can be calculated. Hence, the averagefailure rate can be calculated using

equation 4.4. Thus, the failure rate for the nth component is given by:
A ==L 4.5
T Fp (49

The failure rate of the nth component for the :th weather state is obtained replacing 4.5in 4.4
and reordering. Thus:

T K"
A= =2\ 4.6
7 CFZ Fln 1 ( )
It is convenient to use anormalised time 7; such that:
N
3" T = 1.0 (4.7)
=1
Equation 4.6 then becomes:
Tn1 Fr
AP = LT 4.8
7 TnZ Fln 1 ( )
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4.3 Modellingin the Assessor

4.3.1 Prevailingweather scenario

In the Assessor, the value of security evaluation is realised either for one-hour dispatch or for
one-day schedule. For thefirst condition, a prevailing weather scenario can be assumed and its
effect on the failure rate isincorporated using equations 4.5 to 4.8.

A point of dificulty for implementationin the programisto defineif the component’sfailurerate
data (A\) isrelated either to the failure rate for normal weather condition () or to the average
failurerate ().

When the known valueis ), the adjustment equation to apply is:

F
=X 4.9
T (4.9)

Ai

(Sincethisadjustment is applicableto every component in the network, the superscript has been
removed to clarify the equation)

When the known valueis A1, the adjustment equation to apply is:

Fi Tn1
A= ) 4.1
T B (4.10)

In order to give flexibility to the Assessor, the adjustment equation uses three factors for each
area:

1. The normalised duration of the weather state: (7'n;)
2. Thefailure proportion for the weather state : (£;)
3. An adjustment factor equal to:

e 1.0if theknown valueis A
o TF—T if the known valueis )\,

These three data will be given by area and they will be different for each season of the year.
Additional data processing must be performed to determine the duration and failure proportion
factors for each weather state for each area and each season, as explained in section 4.4.

4.3.2 Traversingweather

The evaluation of value security in the one-day case requires that the traversing characteristics
of the weather be included in the modelling. Asit is stated, the weather can be considered as
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predictable in the operation timescale. An alternative way for the required modelling is to use
a succession of ‘operation snapshots'. Then, each snapshot will be modelled as a prevailing
weather condition, as presented in the last section.

4.3.3 Failurerateadjustment of multiregional lines

Theadjustment of \ hasbeen presented for the case of only oneregion traversed by aline. When
alinetraverses several regions, each one will have adifferent adjustment. So, the failure rate of
the line will be adjusted by afactor that ponders the adjustment factors of the traversed regions
based in the length of the line on each region. Thus, equation 4.9 becomes:

_nr Fz lk
A =X il 4.11
;(Tni)k[/ (4.12)

where nr isthe total number of traversed regions by thelineand (- -)x isthe adjustment factor

associated to theregion k. I, isthe length of thelineon region £ and L = "7, [, is the total
length of theline.

4.4 Datarequirements

Two type of dataare necessary for weather modelling: historic dataand forecasted westher data.
The historic data alows the definition of weather states for each area of the system and their
associated factors (duration and proportion of failures). The predicted data allows the determi-
nation of the forecasted weather state and so the determination of factorsto use in the Assessor.

The historic datawill be collected by:

e Areaor region

e Season or period (summer, fall, winter and spring)

If thesystemisdividedin 5 regionsand 4 periods of weather are considered, then 20 data groups
must be collected.

From each data group, i.e. for each region-area entity; the following processes must be devel-
oped:

1. Selection of variablesthat determine different weather states
2. Selection of severity levelsfor each variable

3. Definition of weather states
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4. Calculation of duration and failure proportion of each weather state. This allow the con-
struction of atable that relates weather state and the needed factors for value of security
evaluation (this table will be called the Weather Table).

The predicted datawill be used for determining the wesather state of the region according to the
previously defined weather states. The procedureis:

1. Identify the severity level of each forecasted variable
2. Determine the predicted weather state

3. Obtaintheduration and failure proportion factorsfor the value of security evaluationfrom
the Weather Table
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Chapter 5

Key |deasfrom Statistics

Thissection summariseskey conceptsand termsfrom statistics that are necessary to understand-
ing and using Monte Carlo methods. Fuller descriptions may be in standard statisticstexts such
as[47] and [48].

A processthat is subject to some degree of randomnessis known as a stochastic process. Every
time the process (or experiment as it sometimes known) takes place or is carried out, there will
be a number of possible outcomes. After observing the process many times, it may be possible
to recognise that some outcomes happen more often than others and that it is possible to assign
probabilitiesto them.

The sampl e space of the stochastic process or experiment containsall the possible outcomesand
may be denoted by .S’ (corresponding to the“universal set”). Each realization of the experiment,
known as atrial, will yield one outcome in the space S. The outcome may then be thought of
as being or leading to an event which is either a categorization or consequence of the outcome.
Since events can include sets of outcomes or more general consequences, many textstalk about
events rather than outcomes.

In order to make sense of the different outcomes, real numbers are very often assigned to them.
These are known as random variables since they can vary over the real axis and their values

depend on processes subject to some randomness. Here, they will be denoted by X. A value of
arandom variable (i.e. anumber generated by some random process) will be denoted by X”.

5.1 EXxpectation

If there are afinite number of possible outcomes and afinite population of trials, it will be pos-
sible to find the population mean value of some random variable. If there are N trialsin the
population, the population mean will be

1 N
— -\ x 5.1
7 N;:l: i (5.1)
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The mean is also known as the expected val ue or expectation.

If information on m possible outcomes were to be gathered, the mean could be found by

p=> PX! (5.2

=1

where P; isthe probability of X/ occurring as an outcome.

Very often, however, the whole population of trials cannot be observed and a sample of » trials
of the population will be explored. This allows the calculation of the sample mean denoted by
X:

Xy (53)

5.2 Distributions

Sincethe process being observed is stochastic, it would not be expected that all the random vari-
able being recorded would have the mean value at each trial. There will be some scatter about
themean. Thefrequency by which each value occurs over anumber of trials can be represented
on afrequency function of the random variable. Thisis more commonly known as a probabil -
ity density function or p.d.f. asit represents the probability that particular values of the random
variable will be observed. When the random variableis continuous, thiswill roughly equal zero
for any exact value of the random variable. It is therefore more usual to talk about the proba-
bility of the random variable lying between two bounds. Thiswill be the area under the p.d.f.
between those boundsi.e.

b
Pla< X <t)= [ fr(a)ds (5.4)
where fx (z) isthep.d.f. of X.

If X iscontinuous, then an integral form of equation (5.2) could be written such that

= /_O:o fx(z)zde. (5.5

One common form of p.d.f., a“normal distribution”, is shown in figure 5.1 (that shown is the
distribution of some measurement ="** subject to Gaussian noise).

Another common distribution is that representing a fixed number of trials where each trial has
only two possibleoutcomes- “success’ or “failure”, “hit” or “miss’. If therearen trialsand £ of
theseare successful, therewill havebeen»n — & failures. If p isthe probability of getting asuccess
inonetrial, then 1 —p istheprobability of getting afailure. Theprobability of getting 4 successes
and n — h failuresfor agiven order of successes and failuresis p"(1 — p)"~". The number of
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possible orders of & successes from n trias (i.e. combinations of successes and failures) is C}
or ( " ) whichis

h
n n!
( h ) ~ hl(n—R)V (56)
Thus the probability of getting 4 successesin n independent trialsis
_ n! Rl oyn—h _
f(h) = 7h!(n—h)!p (1—p) forh=0,1,2,...,0rn. (5.7
Thisis known as the binomial distribution. Its mean issimply

Another representation of frequency information is a cumulative distribution function or c.d.f..
This describes the probability that X has a value equal to or less than some other value, say y
andis

Fx(y) = PIX <y) = [ fxla)ds (59)

5.3 Variance

How values of the random variable from different trials vary can be described in terms of the
difference between X; from trial : and the mean. The overall quality of the random process
(i.e. how randomiit is) can be seen from the differences between each X; and the mean. Simply
adding them together would not be very useful asthey would sum to zero. There are also prob-
lems associated with adding the absolute values of the differences so adding the squares of the
differences has been adopted as a standard. Thisis known asthe variance

m

ot = Z:PZ(XZ’ —p)? (5.10
ZI N
= ¥ Z(XZ’ — ). (5.11)

Another way of calculating thisis
ol =X2-X". (5.12)

The variance of a continuous random variableis

o= /_O:o Ix(x)(x — p)’de (5.13)

In practice, adivisor of n — 1 isused for the sample variance s i.e.

o2 1 zn:(xg—Y)?. (5.14)

n_lizl
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Thisis because s? isan estimator of % (¢ is the variance of the population and s? is the vari-
ance of asample of it which may be taken as an estimate of the overall variance). Usingn — 1
makesit unbiased i.e. the average of aseries of such estimatorswill equal the quantity they are
estimating. Theideaof an estimator isquiteimportant in Monte Carlo simulation. For example,
X isan estimator of 4, an ideawhich can be expressed by

E(X) = p. (5.15)
The computing formulafor the sample varianceis then

2 (EI)Z)
DL (5.16)

S
n—1

The variance of a p.d.f. fx(z) can be worked out by equation (5.10) recognising that P, =
fx(X!) sothat

m

o = YKL ) (X)), (517)

=1

The variance of abinomial distributionis
o® =np(l —p) (5.18)
where p isthe probability of a*“success’ inonetria and » isthe number of trials.

It may be usefully noted that

var(ux(z)vx(z)) = var(ux(z))var(vx(z)) (5.19)
ux(@)) _ vaux(z))
@ (’Ux(l')) N Val’(vX(x))' (5.20)

Related to the variance is the positive square root of the variance or standard deviation, o for
the population and s for a sample. Another useful term isthe coefficient of variation which, for
apopulation, is

(5.21)

ag
V= —
I
or forasampleis

S
_ 5 22
Cv =3 (5.22)

Thisallowsthe scatter of random variablesto be compared regardless of the unitsin which they
are measured.
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54 Covariance

If two separate random variables X and Y are defined on the same probability space, the rela-
tionship may be described in terms of the covariance or the correlation coefficient. The covari-
ance is defined by

COV[)(7 Y] =0xy = E[(X — ,LLX)(Y — /Ly)] (523)
while the correlation coefficient p[X, Y] or px y iS
cov X,Y
pPXyYy = # (5.24)
Ox0y

provided that cov[ X, Y], ox and oy al existand ox > 0 and oy > 0.

Asameasureof thelinear relationship between X and Y, cov[.X, Y] will be positivewhen X —
px andY — py tend to have the same sign with high probability and negative when they tend
to have opposite signswith high probability. If thereislittle relationship, the covariance will be
roughly zero.

The magnitude of the covariance depends on the variability of eachof X and Y. The correlation
coefficient removes this dependence by dividing the covariance by the product of theindividual
standard deviationsso that —1 < pxy < 1.

Similar to the expression given in equation (5.12) isthe following expression for computing the
coefficient of correlation of a sampler:

2
SXY

r= [ (5.25)
where Sy x isthe sum of squares of the deviation of X from the mean X or

Sxx = éx’f - % [ﬁ; X{- 2 : (5.26)

Syy isthe sum of squares of the deviation of Y from Y or
Syy = ZY - [Z v| (5.27)

and Sxy isn timesthe “first product m_oment” [48] i_.e. -
Y ZX] [Z Y] (5.28)
- Y -T) T, (5.29)

=1
Sxy Ismorecommonly seen when divided by » — 1 and known asthe sample covariance. The
sample covariance is then most easily computed using equation (5.28) and dividing Sxy by
n — 1.

Just as the mean, variance and standard deviation can be defined for random variables, they can
also be defined for functions of random variables.
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5,5 Estimateerror

One of the most important distributionsin statisticsis the normal or Gaussian distribution (fig-
ure5.1). Thisis described by two parameters, » and 0% such that

1 1 (z=p)?
Guor(T) = Norrh 2T, (5.30)

It isakey component of the central limit theorem which says that the sampling distribution of
the mean has an approximately normal distribution when n islargei.e.

Jx(z) = g,02/n(x) fornlarge (5.31)
where f¢(z) isthep.df of X.

A

PDF(zmeas)

30 20 -0 G 2030 ,meas

Figure 5.1: An example of anormal distribution

It can be shown that this represents the variation of the expectation (or mean) in aMonte Carlo
simulation if the populationisinfinite. Thisisto say that the probability of finding a particular
value for the mean of arandom sample of » trials from a population is represented by anormal
distribution. Moreover, the variance of this normal distribution describing the variation of the
mean (or expected value) of asample of sizen isrelated to the variance of the population from
which the n variables are taken, and n. Thisrelationshipis

2

a
O'QY = TX (5.32)
where %, or simply o, is the variance of the population of values of the random variable X
and a% isthe variance of the mean (or expected value) X of X. The standard error of the mean
is then defined to be

_%x
oy = NG (5.33)
The mean of the sampling distribution of X is
Ix = Ix (5.34)
where i x, or Ssmply y, isthe population mean of X.
If the population isfinite, the standard error is [48]
—  ox N —n
X=—" :
o N S (5.35)
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where N isthe population size. When the sample represents less than about 5% of the popula-

tion, theterm , /]X,j , known asthe finite population correction factor, can be omitted as it will

bevery closeto 1.

5.6 Standard scoresand confidence

Since the purpose of the simulation isto find the expectation, it is not known in advance, so use
can be made of the normal distribution to assign a probability that the estimated expectation is
within agiven range of thetrue one. Thisin turn enables an estimate to be made of the number
of samples needed to find the expectation to a given specification.

Another quantity referred to in some texts is the standard unit, standard score or z-score. Yet
another name that may be seen is “normal score”. It is used to re-express the original scale of
X to enable the forming of a standard normal distribution whichhasy = 0 and o = 1. The
standard unit isreferredtoasz and is

z =

(5.36)

g

A particular valueof z is z,, whichisthevalue of =z above which the areaof the standard normal
distributionis equal to « i.e. if the standard normal distribution is given by ¢(z),

/:o g(z)dz=a = P(z > z,). (5.37)

Likewise, the areasto theright of =, ,, and theleft of —z, , under astandard normal curve are
both a/2. The areabetweenis1 — o (seefigure 5.2).

A

(%)

\

oz 'O _
o} /2\/; X
Figure 5.2: Sampling distribution of the mean

Making use of the central limit theorem, for large random samples from infinite populations, the
sampling distribution® of X is roughly anormal distribution with % = ¢ and o = 7= This

LA sampling distribution is the distribution of a random variable within asample taken from the the popul ation
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can be described in terms of the standard normal distribution ¢(z) where

X
~a/yn

isavalue of arandom variable having approximately the standard normal distribution.

(5.38)

A

Most importantly, the probability is 1 — « that X found from alarge sample will differ at most
from the mean of the population y by z,, 127 i.e

— a J— a
Thus, aconfidenceinterval may be defined such that the probability of thetrue meanlyingwithin
that interval isthe confidence level v such that

PXL<n<xaii= [ gterd 5.40
1= PX—L<pu<X+L)= [ gla)ds (5.40)
where
ag
I = ZQ/Q\/—H (5.41)
v = 1l—a (5.42)

and g(z) istheGaussiandistribution. In natural language, thissaysthat we canbe (1—«) x100%
confident that the estimate of the mean X lies within 41, of the true population mean 1. (Note
that 1 — a = ~ isaso sometimes known as a confidence coefficient or a degree of confidence).

The above relationships are most useful in allowing a decision to be made about the size of
sample needed to obtain an estimate of a given accuracy with a given degree of confidence. If
the error that will betolerated is L. and v = 1 — « is the degree of confidence wanted, z,
can be found from a standard set of tables (a part of which is reproduced in table 5.1) and the
expression

2,2

g~z
n— L;ﬂ (5.43)

used to find a suitable number samples.

Clearly, from equation (5.43) and table 5.1 it can be seen that the required sample size increases
with the degree of confidence but is inversely proportional to the square of the confidence in-
terval.

~ 090 095 099 0.999
e! 010 0.05 0.01 0.001
Zo/2 | 1645 1960 2576 3.291

Table 5.1: Relationship of degree of confidence and =, /, for some useful values of ~
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Thisisan illustration of the law of large numbers. One of its formal statements says that for a
random variable = with an expectation X and a sufficiently small positive number «,

1 & —
hmP(—E X - X
e iz

which means to say that when n is very large, the sample mean of X approachesits true mean
with avery large probability.

< a) = 1.0 (5.44)

Aninevitable problem with equation (5.43) is the presence of the population variance o? which
will not be known. Even the sample variance s* which may make agood approximation for o>
will not be known until anumber of trials have been carried whichisunhel pful for knowing how
many trials to do. A commonly used compromiseis to do some small pilot studiesto obtain a
reasonable value for s? and consequently a required number of trials n.

If the sample variance s? is used as an approximation of o2, equation (5.43) may be used as a
test for “convergence” of a sample to pre-defined confidence interval and confidence limit i.e.
once n is greater than, say, 20, stop taking any more samples once

LQ
52 < Z§/27' (5.45)

The question may arise: can confidence limits be defined for small samples with, say, less than
30 observations? When the sample is small and the population variance is unknown, the sam-
ple variance must be used. Under these circumstances, the sampling distribution cannot be ap-
proximated by anormal distribution. However, if it can be assumed that the populations being
sampled have roughly the shape of anormal distribution, the confidence limits can be based on
the statistic

_ X

s/yn’
Thisisthe value of arandom variable having Sudent’st distribution. While it is similar to the
normal distribution—bell-shaped and with a zero mean but with longer tails—it's exact shape
depends on the number of degrees of freedom. Using a number of degrees of freedom equal to

n — 1 where n isthe sample size, the t distribution can be adopted to find the value,,,, which
replaces z, /, in the calculation of a confidence interval.

t

(5.46)

It may be further noted that confidence intervals can be expressed for variance [49]. Using the
definition of the variance of a sample of » trials from anormally distributed population as
n ' X)?
52 — Ez:l (XZ X) , (547)

n—1

and recognising that s? is an unbiased estimate of #2, it can be shown that the sampling distri-
bution of (n — 1)s*/o? isx*(n — 1). Thus,

— 1)s?
P Xz(l—a/Q;n—l)gug)&)(a/?;n—l) =1-a (5.48)

g

where y%(1 — «/2;n — 1) isthe upper 100(«a/2) percentage point of the y?(rn — 1) distribution.
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Rearranging eguation (5.48) enables the expression of a confidence interval for o% such that

_ 2 _ 2
n—1)s o n—1s —1-a (5.49)

P
X(a/2;n—1) 7 T X*(1—a/2;n—1)

Confidence intervals for #% (and hence for &) are usually quite wide unless the sample size is
very asan estimate of theavariancewill alwaysbeless precisethan that of amean asan average
of squared observations is more variable than an average of observations.
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Chapter 6

Monte Carlo Algorithms

Perhapsthebest way of describing how Monte Carlo schemeswork isto show examples. A ssim-
ple exampleisthat of calculating the integral of afunction. When the function is not regular, a
Monte Carlo based estimation of theintegral becomes more attractive than using a conventional
numerical technique. Two such Monte Carlo estimation algorithms are offered - one which can
be understood asreturning 1 or 0 “hits’ or “misses” in the required area, the other which returns
an expected value from ap.d.f..

A third example of use of Monte Carlo simulation is offered in section 8 in terms of its appli-
cation to reliability analysis of a power system.

6.1 The"Hitor Miss’ method

The “Hit or Miss” method is based on a graphical interpretation of an integral as an area. It is
possibly the easiest the understand and was originally the one usually propounded in discussion
of Monte Carlo techniquesthough it isthe least efficient [2] (aproof of thisisoffered in [50] as
well as[2)]).

6.1.1 “Hitor Miss’ applied to a one-dimensional integral

Thebounded integral of aone-dimensional function ~(x) isto befound [50] (figure6.1). It may
be supposed that

0< h(z) <e¢ (6.1)
a< x <b (6.2

The area of the rectangle bounded by y = 0, y = ¢, = a and z = b isdenoted A and is
A={(z,y):a<z<b0<y<c}. (6.3
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A random vector (X, Y') is supposed to be uniformly distributed over A withap.d.f.fxy (z,y)
such that

1 if(z,y) €A

fxv(z,y) = { clb=a) (6.4)

0 otherwise

i.e. fxy(z,y) = 1/area(A) when (z,y) falswithin A, and 0 outside A. Thisin turn means to
say the the probability of hitting any spot inside A is the same and is inversely proportional to
the area of A, whilethereis no chance of (z, y) falling outside A.

h(X) A /

C

a b X

Figure 6.1: Illustration of “Hit or Miss’ method

Thetask now isto find the probability p of arandom vector (X, Y') falling in the area under the
curve h(z). If H isdefined suchthat H = {(z,y) : y < h(z)}, then
b
areaunder /() = area( H) = / h(z)dz. (6.5)

Now it can be seen that
- aeaH) [P h(z)dx 1
N area( A) N c(b—a) N c(b—a)

Let it be assumed that » independent random vectors (X7, YY), (X3, Yy),...,(X],Y.)) are gen-
erated. p can be estimated by

(6.6)

p="2 (6.7)

n

where ny isthe number of timesthat Y/ < h(X]) for: = 1,2,...,n i.e. the number of “hits’
inarea H, whilen — ny isthe number of “misses’ whereY, > h(X!) for:=1,2,...,n.

It follows, then, that equation (6.6) can be used to estimate the integral 7 i.e.

IT~0=cb—a) (6.8)

n

A sample of n trialsistaken from fxy(z,y), the number of hits ny is counted and equation
(6.8) isapplied to find 6.

It remains for the required precision of the estimator # and the required number of trials to be
defined.
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6.1.2 Precison of the“Hit or Miss’ method

Since § is an estimator of 7 and each of the trialsis a Bernoulli trial?, the following equalities
aretrueasc, b, a and n are known and not estimated:

E(8) = ¢(b—a)E (”—h) —ep— )P a1 (6.9)
n n
(Thisimpliesthat § is an unbiased estimator of 7).
The variance of the estimated quantity p is
ng 1
o? = var (7) = —var(n) (6.10)

where var(n ) isthe variance of ny (which hasabinomial distribution) and is

var(ny) = np(l — p). (6.12)
Hence, the variance of p is
o; = %p(l —p). (6.12)
Substituting p from (6.6),
=11 a_a_n (6.13)

P nle(b—a)?

Now, finding the variance of the right hand side in equation (6.8),

op = var <c(b — a)?%[) = [c(b— a)]*c? (6.14)
= [elb— a)F'=p(1 ~p) (615)
= e(bh—a)~ 1] (6.16)

Now, the requirement of a certain degree of confidence « that the estimate 6 of 7 lieswithin a
certain bound can be stated

Po—1<e)>a (6.17)

This can be expressed in terms of Chebyshev's inequality which says that the probability of the
absolute difference between the estimated value and the true value being less than ¢ is at least

1A Bernoulli trial isatrial of an experiment with only two possible outcomes.
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o with o expressed in terms of the variance of the estimate and ¢ 2

P(|9—I|<a)21—§—;g (6.18)
so that, from equations (6.17) and (6.18)
a<l-— :—5 (6.19)
Substituting equation (6.15) in to (6.19),
agl_P“—ng—aW (6.20)
is obtained which can be solved for n:
nZZKlzfﬂii;“”% (6.21)

This gives the required number of trials.
When . islarge enough, the central limit theorem can be applied which saystherandomvariable

# where
0—1
(6.22)

o

0 =

is distributed approximately according to the standard normal distributionii.e.

PO <z)=g(z) (6.23)
where ¢g(z) isthe standard normal distribution.
It can be shown that, for aconfidence level of 1 — «, the confidence interval for 7 is
Hizwfw_axgﬂ_ﬁ) (6.24)
where
Zas2 =g (a). (6.25)

2Another way of stating it isto say that the probability of the absolute difference between the estimate and the

true value being greater than ¢ islessthan 1 — « or

|0

p(|x_Y|ze)g‘€’

V)

where

=1—-«

™ |19
N8 o

which is analogous to equation (5.37)
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6.1.3 Summary of the“Hit or Miss’ algorithm

1. Generate a sequence of 2n random numbers.

2. Arrange the random numbersinto n pairs (U7, V{), (U5, V3), ..., (U}, V') in any manner
such that each random number from the original sequence is used exactly once.
3. Calculate
X/ =a+4+Ul(b—a) | .
a(X1) }2—1,2,...,71 (6.26)
4. Count the number of casesny for which
g( X)) > Vi (6.27)
5. Estimatetheintegra I by
0= c(b—a)-2. (6.28)

n

6.2 The"Sample-Mean” method

6.2.1 Computing an integral by the* Sample-Mean” method

Anintegral 7 such that
b
= / h(z)dz (6.29)

may be represented as the expected value of somerandom variable. If theintegral isre-written
as

= b h(l’) xr)ax
1= / Ty @ (6.30)

where fx (z) isany p.df. such that fx(z) > 0 when h(z) # 0, then making use of equation
(5.5),

I=E [ f]j(XX))] (6.31)

where the random variable X is distributed according to fx ().
In asimilar manner to that adopted in section 6.1, fx(x) may be defined as

L jffa<z<bd

fx(z) = { 0" (6.32)

otherwise
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Thus

and

1= (b—a)E[h(X)).

An unbiased estimator of 7 isits sample mean

0=(b—a)= Y h(X)).

I |~

6.2.2 Precision of the“Sample-Mean” method

From equation (5.12), the variance of 6 is E(6%) — [F(6)]? so that

aj:var

Lo— 0 30|

l(b —a)? /: %dx - J?]

[(b —a) /: h2(z)dx — 12] .

S |—= 3|

6.2.3 Summary of the* Sample-Mean” algorithm
1. Generate a sequence of n random numbers {U/}"_,.
2. Compute X; =a+ Uj(b—a),1=1,2,...,n.
3. Compute h(X!),i =1,2,...,n.

4. Compute the sample mean # according to equation (6.36) which estimates /.
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Chapter 7

Variance Reduction

It can be seen from equation (5.43) that to obtain a given accuracy in the result of a sample
estimate for a given degree of confidence may require many trials. In Monte Carlo smulation
each trial may require significant computational effort. The greatest attention in use of Monte
Carlo simulation hastherefore been spent in reducing the number of samplesneeded for agiven
confidence interval and degree of confidence by means of variance reduction.

Hammersley and Handscomb [2] say: “If, at any point of a Monte Carlo calculation, we can
replace an estimate by an exact value, we shall reduce the sampling error in the final result.”
This can be understood by considering the variance of an estimated parameter. If thevarianceis
zero, the parameter is known perfectly and there would be no need for Monte Carlo simulation.

Variance reduction is away of making better use of existing knowledge about a problem [50].
Exactly what form that existing knowledge takes determines what kind of variance reduction
technique can be used. The more existing knowledge there is, the more effective variance re-
duction will be.

There are 5 main variance reduction methods:

e antithetic variates.

correlated sampling.

control variates.

importance sampling.
e stratified sampling.

Of these, all except correlated sampling have found at |east some application in power systems,
examples of which are given in section 9.

Other variance reduction techniques include dagger sampling and selective sampling. These
and those listed above are next described in the next sections. Other means of improving the
efficiency of aMonte Carlo simulation are described in [50] and [3].
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It may al so be noted that the variance of an estimate can bereduced if someanalytical integration
can be performed with respect to some of the variables.

7.1 Antithetic variates

This technique is based on finding two unbiased estimators for the unknown parameter (e.g.
theintegral 7) which have strong negative correlation. If the two estimators are ¢; and ¢,, the
estimator of 7 will be 2(¢; + ¢,) with variance

var [ (61 + 62)] = {var(en) + {var(es) + Joov(61,62) (7.9

Clearly, from equation (7.1), if cov(¢1, ¢2) is strongly negative, the overall variance can bere-
duced.

By way of example, consider the integral

= /1 h(z)dz (7.2)
whichisequal to
1
1= 5/0 [h(z) + h(1 — 2] de. (7.3)
The estimator of 7 isthen
¢ = %(qﬁl + ¢2) = % [R(U) + k(1 = U)] (7.4)

where U/ isauniformly distributed random number sequence between [0, 1]. ¢ isan unbiased
estimator of / because both ¢, = A(U/) and ¢, = h(1 — U) are unbiased estimators of /.

To estimate 7, a sample size of » istaken from the uniform distribution and
1 n
0= > [h(U}) +h(1 = U))] (7.5)
2n =1
isfound.

When sampling, the effect isto have pairs of trials which are negatively correlated, the first one
determined by a random number or vector of random numbers U/, the second by 1 minus the
same random number(s), 1 — U, so that if one trial returns a large outcome, the other will be
likely to return asmall one. It would be hoped that the average of the two will be near to the
population average. Thus, if many such pairs of trials are performed, the spread (or variance)
of the averages of the pairswill be low, i.e. the variance of the sample will have been reduced.

When carrying out a Monte Carlo estimation using antithetic variates and tracking the sample
variance to detect convergence of the estimate to some pre-defined limits, it should be noted
that if the covariance of ¢; and ¢, is not to be computed (using equation (5.28)) in order to
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evaluate theright hand side of (7.1), the average of pairsof trials (one of ¢, and the other of ¢,)
should betalliedin order to evaluate the left hand side of (7.1). From this, it should be clear that
the computation time required by equation (7.5) is twice that required by the standard sample-
mean method (sincetwo trialsarerequired to provide onetallied ‘ datapoint’) so the estimator of
(7.5) ismoreefficient only whenits varianceis lessthan half that of the straightforward sample-
mean approach. A proof isincluded in [50] which shows that this can be guaranteed if 2(zx) is
amonotonic function.

Trial

Sample
mean

Outcome

Figure 7.1: Illustration of use of antithetic variates

The benefit of antithetic variatesisillustrated in figure 7.1. Individual trials costs' differences
from the mean are shown by light horizontal lines. The variance of simple sampling will be the
sum of the square of these differences divided by the number of trials. In antithetic variates,
however, theindividual trials' outcomes are not logged as data points, but the averages of pairs
of trials are. If there is significant negative correlation between pairs of trials, each pair will
generally acomprise alower outcome and a higher outcome the average of which will be closer
to the sample mean. The differences between the pair averages and the sample average can be
seen to be smaller meaning thereisless spread of outcomes, i.e. thereis smaller variance.

A further point worth noting isthat when antithetic variatesare applied to simulationsof systems
comprising two-state stochastic variables (such as power systems—see sections 7.6 and 8.3 for
brief descriptions), the correlation of ¢, and ¢, and hence the efficiency of the method islikely
to fall off as the probability of the ‘out of service' state gets smaller. Thisis becauseif U! is
such that the ‘basic event’ is‘in service', U] needsto be very large for the state to change when
itisafunctionof 1 — U. Since this happens rarely, the negative correlation is reduced. Take a
failure probability of 0.15 asan example. If U/ > 0.15, the stateis“in service” but U hasto be
> 0.85 for 1 — U/ to givethe “out of service” condition for the ‘antithetic’ state.
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7.2 Correlated sampling

The aim of correlated sampling is to produce a high positive correlation between two similar
processes so that the variance of the difference is considerably smaller than it would be if the
two processes were statistically independent [50].

This may be used, for example, in assessing the effect of a small changein asystem. A Monte
Carlo run could be carried out for the system with the change and then for the system without
it. The results of the two runs could then be subtracted. However, that difference may often
be small in comparison with each individual result or with the variances of those results. The
variance of the difference, meanwhile, would be the sum of the variances of each run.

A way, then, of reducing the variance of the difference would be to use the same random num-
bersfor each run so that the individual results are highly positively correlated.

Take, by way of example, the difference A7 of the integrals /; and I, of two functions, ¢, (z)

Al = L -1 (7.6)
= [é1(@)dz — [ 6s(x)da. (7.7)
I hy(z) and hy(z) are defined such that
¢1(z)
hi(z) = 7.8
@ = 5 79
$2(7)
holz) = 7.9
() () (7.9
where f;(z) and f,(z) are p.d.f.s, then
L = / b (2) fi(2)de (7.10)
L = /hg(a:)fg(:z:)dz:. (7.11)

If X7,..., X/ aresampled from f;(z) and Y/, ..., Y, from f,(z), Al can be estimated using

A = LY (X)) = = k() (7.12
n =1 n =1
1 n
= = Z d; (7.13)
n =1
where
The variance of Ad is
o’ =0l +o0; — 2COV(§1, ég) (7.15)
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where

0, = %éhl()(;) (7.16)
b, = %ﬁ;hg(m (7.17)
o? = E(g1 — L)’ (7.18)
o2 = E(by— 1) (7.19)

and
cov(f1,02) = E (6 — )(0, — I)] . (7.20)

If 6, and 6, are statistically independent, then

cov(fs,0,) =0 (7.20)

and
o? = o? 4 o, (7.22)

However, if the random variables X and Y are positively correlated and k4 () has a similar
shapeto h,(z) then the variance of A will be greatly reduced. Thus, the key to exploiting this
form of variance reduction is in ensuring positive correlation between the estimates of I, and
I 1f fy (z) and f»(x) are similar, this can be achieved by taking a sequence of random numbers
Ui,...,U! andfinding X!, ..., X’ andY/,..., Y/ by X! = F;'(U!)and Y/ = F; ' (U!) where
F~1istheinverseof the cumulative distribution function of f used in the generation of random
variates [50, 51].

Accordingto [50], thereisno general procedurethat can beimplemented in correl ated sampling.
However, it can be usefully employed when

¢ theeffect of asmall change in asystemisto be calculated.

¢ thedifferencein aparameter in two or more similar cases is of more interest than its ab-
solute value.

This form of variance reduction is also described in [3] where it is known as common random
numbers.

7.3 Control variates

Also known as regression sampling [3], this technique replaces the direct estimation of a pa-
rameter with an estimate of the difference between the problem of interest and some analytical
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model [50]. Thisispossible, for example, when the problem contains apart which can be solved
by means of an analytical model so that the Monte Carlo simulation is used to calculate the dif-
ference between the solution of the problem and this part [2].

A random variate C' isacontrol variatefor Y if itiscorrelated with Y and if its expectation ¢
isknown. C' can then be used to estimate ; with a smaller variance than the estimator Y.

For any value of «,
Y(a)=Y —a(C — uc) (7.23)
is an unbiased estimator of ;. [50].
Thevariance of Y (a) isgiven by
var[Y(a)] = var[Y] — 2acov[Y, C] + a*var[C]. (7.24)
Variance reduction is achieved if
2acov[Y, C] > a’var[C]. (7.25)

Thevalue of « that minimizesvar[Y (a)] is

. cov[Y, (]
~a(c] (7.26)
and the minimum variance is equal to
varly (a”)] = (1 — p} o var[Y] (7.27)
where py ¢ isthe correlation coefficient between Y and C'.
7.4 Importance sampling
To illustrate the concept, the problem of estimating 7 is considered where
= /h(;z;)da;, reD (7.28)

and it is supposed that [ ~?(z)dz and I both exist [50, 52].

The basic idea of importance sampling is to concentrate the distribution of sample pointsin the
parts of region D where h(x) ismost significant instead of spreading them evenly.

Aswas donein equations (6.30) and (6.31), the integral can be represented by

-

h(z) _ | X
fX(x)fX(x)d;L’ =F [fX(X)] (7.29)
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where X isany random variable with p.d.f. fx(z) suchthat fx(z) > 0foreachz € D. The
function fx () is called the importance sampling distribution. From equation (7.29), it is pos-
sible to say that

¢ = h(z)/fx(x) (7.30)
is an unbiased estimator of /. Thevarianceof ¢ is
o} = E(¢%) — [E(6)]*. (7.31)
Since E(¢) = I, thisis
o2 = / ¢ fx(a)de — I (7.32)
h(z) : 2
/<fx($)) fx(z)dz — I (7.33)

Inorder to estimatetheintegral, asample{ X7, X}, ..., X } istakenfrom fx (z) and the sample-
mean formula used whereby
1 & (XD

K3

= L hxy

=1

(7.34)

3

Thetask isto choose fx (z) to minimize the variance of ¢ which is the same as minimizing the
variance of §.

In[53], itis proved that o7 isaminimum when

Ix(z) = % (7.35)
and
o2 = (/ |h(:x)|d:c)2 _ (7.36)

(A proof isaso offered in [50]). It isfurther proved that if ~2(z) > 0, the optimal p.d.f. fx(xz)
IS

fx(z) = h(f) (7.37)

andafb = 0.

One serious problem with this should immediately be apparent: to choose an optimal fx ()
to reduce the variance of the estimate of 7, I or [ |h(z)|dz (whichis practically equivalent to
computing 7) should be known. But if they are known, there is no need for the Monte Carlo
estimate!

Although this may seem to be a terminal case, it has been shown that the variance can still be
significantly reduced if fx(z) ischosen to have a shape similar to [ |h(z)|dx. When choosing
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fx(z), careshould betakento ensurethat itisrelatively easy to samplefrom, especialy if | (z)|
is not well-behaved. Another difficulty may be that an inappropriate choice of the importance
sampling distribution may theoretically increase the variance of the estimate of /.

Sincetheshapeof fx(x) shouldfollow |2 (x)|, somecomputational timemay besavedinfinding
the integral if random numbers are sampled from the subregion D’ = {z : h(x) # 0} of D i.e.

fx(z)>0, ifh(x)#0 (7.38)
fx(z) =0, ifh(z) =0. (7.39)

7.5 Stratified sampling

The main idea of stratified sampling is similar to that of importance sampling. The region of
interest D is subdivided into m disointed regions (i.e. they are adjacent but do not overlap)
D=vur,D;,D,ND; =0,k # 3. Theintegra (if the integral is to be found) of each region
can then be found separately with more trials conducted in the regions of more interest.

To demonstrate the method, et the integral to be found be

1= /D h(z) fx(z)dz. (7.40)
Now sub-divide theregion D into m sub-regions Dy, D, ..., D,, sothat
I = /D h(z) fx(z)dz. (7.41)
If
Pi= [ x(a)da (7.42)
it should be clear that
Y P=1 (7.43)
=1
and
I = /Dh(x)fx(:c)d:c:;/m h(z) fx(2)dz (7.44)
= Y I (7.45)
=1
Now #,(z) is defined such that
h(z), ifxze D;
hi(w) = { 0($) otrferwise. (7.46)
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Theintegral /; can be re-written as

= P E[hi(X)]
where

/Di fx(z)dz = P,

A sample-mean estimator for /; can be written

Y, = Ph(X))

where the random variable X, is distributed according to fx (z)/P; on D;.

Theintegral /; can be estimated by
P .
gbi = — Z nlh(in), kZ = 1,...,ni,z = 1,...,771
n; k;=1

and the final integral /7 by

Thevarianceof § is

where

1 ?
ot = var (h(X)) = /D W) fx(w)da — 5.

(7.47)
(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

Note the use of the population variance for each stratum. In many studies, thisis not available

and is approximated by the sample variance s?.

If the stratification is carried out well, the variance of the estimate should be less than the vari-

ance of an estimate found using the basic sample-mean method.
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7.5.1 Allocation of trials

It has been proved [50] that if the sample size n; in each subregion D; is proportional to P;
(effectively the size of the subregion) i.e. n, = n/F;, the variance of the stratified sampling
method is guaranteed to be lessthan or equal to the variance of the sample-mean method. (This
rule for apportioning »; is known as proportionally stratified sampling [3]).

The question remains. how many samples should be assigned to each subregion once the sub-
regions have been chosen? If »; is the number of samples assigned to subregion D; such that

Z n,=n (7.57)
=1

where n isthe total number of samples, the minimum of the variance of 4, i.e.

min (i 5220'2»2) (7.58)

=1 n;
occurs when
P.o;
n,=n———— (7.59)
Z]’:1 Pio;
and isequal to
1 [ ?
! [z pm] . (7.60
n =1

Thus minimum variance of # occurs when n; are proportional to P;o;. Of course, thisisnot of
much use sincethe o; are not usually known in advance. However, it may be possibleto conduct
some small “pilot” run to get rough estimates for o;.

Theparticular casewhen P; = 1/m andn, = N/m isthe so-called systematic sampling method
and is described in detail in [54] and outlined in [50].

7.5.2 Stratification after sampling

Kleijnen describes a procedure for stratification after sampling [3]. In this, the number of sam-
plesin each stratumisnot fixed beforehand but depends on the sample outcome. L et theestimate
obtained by this means be > such that

W = Z Pz (7.61)
=1
where
k=1 ni
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If the estimate obtained by this method isthe same asthat by the simple sample-mean approach,
the estimates can be equated:

12 1 L
0 = —Zh ZZh X)) (7.63)

ni 1 k=1
m ; o h(X,

_ oy iy ) (7.64)
=1 n k=1 n;
m n;

= Y —z (7.65)
=1 n

= =33 A(Xy). (7.66)
n =1 k=1

It can be seen that the “empirical” weights n;/n have replaced the “theoretical” weights P.
Sincethe number of samples per stratum dependson the sampleresults, itisknown asastochas-
tic variable. n; can then be further understood as being an estimator of P;n i.e.

The variance of the estimate can be estimated by

sf/j = ZPfsi (7.68)
=1
m nZ 2
S (_) (7.69)
=1 n
where
e (nZ — 1) n;
1
= —F var(h(X))] (7.72)
n;
Hence
s = ifj o 2 (h(Xy,) — 2] (7.72)
v n? i=1 14 T 1 k=1 l Z
or, using the computing formulafor s2
1 & P (X))
—QZ _1{Z[h X ) - | k—lnf ) } (7.73)

It isdemonstrated in [55] that stratification after sampling isnearly as precise as proportionally
stratified sampling so long asthe number of samples per subregionisreasonably large, say > 20.
The method then becomes attractiveif it is difficult or impossibleto fix the number of trials per
subregion in advance.

74



7.5.3 Choice of stratum boundaries

It may be noted that the preceeding discussion has assumed that the stratum boundaries have
already been allocated. In practice, choice of stratum boundary depends, firstly, on the chosen
stratification variable. In order that trials can be concentrated in the region of most interest,
the stratification variable should be strongly correlated with the variable being estimated [55],
ideally the variable itself though thisis not aways possible.

Cochran [55] discusses a rule concerning the optimum allocation of stratum boundaries which
minimizes the variance of the estimate. The optimum allocation problem is shown in [55] to
reduceto theminimizationof - P;o;. Aswould be expected from comparison of stratified sam-
pling with importance sampling, the solution depends on knowledge of the probability density
function of the stratification variable. In the following illustration, the stratification variable is
assumed to be the variable being estimated.

Let

Z(z) = /XX Fx()de. (7.74)

If the strata are numerous and narrow, fx () should be approximately constant, i.e. rectangular
in shape, within each stratum. Hence,

X;
Po= [ Jx(a)da m fi(X = Xio) (7.75)
1
o, = E(Xi—Xi_l) (776)
X;
Zi—Zin = [ \Ix(@)ds (7.77)
~ /I (X - Xi) (7.78)

where fx, isthe “constant” value of fx in stratum «. Substituting these approximations, it is
found that

S (X = X (.79
i(ZZ- — Zio1)®. (7.80)

=1

2

\/ﬁz Pia'i
=1

&

Since (Z,, — Z,) isfixed, it can be verified that the right hand side of equation (7.80) can be
minimized by making (7; — Z;_1) constant.

Thus, given fx(z), theruleisto form the cumulative of / fx(«) and choose X; so that equal

intervals are created on the cum |/ fx () scale. Thisisillustrated for 5 stratain table 7.2 for
the datain table 7.1 where fx (=) isdefined in terms of the frequency of outcomesin 10 classes
(bands) of . Intable 7.2, it can be seen that, due to the need to fix stratum boundaries on class

boundaries, theinterval for each stratum on the cum / fx (z) scaleis not constant. The stratifi-
cation is done to make this as constant as possible.
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x fx(z) cum/fxz
0-5 3464 58.9
5-10 2516 109.1

10-15 2157 155.5
15-20 1581 195.3
20-25 1142 229.1
25-30 746 256.4
30-35 512 279.0
3540 376 298.4
40-45 265 314.7
4550 207 3290.1

Table 7.1: Frequency distribution data for stratum allocation

Stratum 1 2 3 4 5
Boundaries 0-5 510 10-20 20-30 30-50

Interval oncum +/fx(z) | 589 502 862 611 727

Table 7.2: Stratum allocation for datain table 7.1

Evidenceis quoted in [55] to suggest that little reduction in estimate variance can be expected
beyond m = 6 strata.

7.5.4 Difficultiesin stratified sampling

For many studies, fixing of the number of trialsin each stratum in advance isimpossible. Strat-
ification after sampling then becomes attractive, but this, too has a number of difficulties. They
are;

Errorsin stratum weights. If the theoretical weights cannot be known, they must be esti-
mated. In stratification after sampling, an estimate of P, = n;/n isreadily available,
though Cochran believes this may lead to bias in the estimate of the mean [55] in strati-
fied sampling in general, though the discussion of stratification after sampling in section
7.5.1 above shows that thisis not the case here.

The stochastic nature of n; in post-stratification. This has the effect of making the confi-
dence limits more approximate than for cases where the theoretical weights are known
and the n; are fixed [3].

Theapproximatenatureof confidencelimitsdueto use of samplevarianceinstead of pop-
ulation variance. This may be partially resolved by modelling the sampling distribution
for each stratum by a Student t distribution with an underestimate of the degrees of free-
dom. The distribution of the variance of an estimate obtained by stratified sampling is
too complex to allow an analytical modelling, but Cochran [55] quotes an approximate
formula due to Satterthwaite for a corrected number of degrees of freedom. It requires
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knowledge of the population size of each stratum, but itslower boundisequal to the small-
est of then; — 1.

In addition, it may be intuitively understood that the confidence limits are more approxi-
mate with more strata since there are more variables subject to error involved. Also, with
more strata, there will be fewer trialsin each stratum implying greater error in the stratum
sample variance.

These difficulties may be resolved by

e “robust estimation” or “resampling” to deal with trialswhich aren’t normally distributed.

e tracking the variance of stratum variances. Force more trials until each sample stratum
variance comes within some (arbitrary) confidence limits.

Two robust resampling techniques, the “jackknife” and the “bootstrap”, are described in section
7.8.

7.6 Dagger sampling

This method is due to Kumamoto et al [56] and is described in [52] as being particularly well-
suited to two-state variables and small probability events. As such, the method can be under-
stood as an extension of antithetic variates overcoming the degradation of the negative correla-
tion of the two estimators under such circumstances. Two-state variables and rare events will
be considered in describing the procedure.

A uniformly distributed random number U/’ between [0, 1] can be generated to test whether a
system component with failure probability p isin the faillure state or normal state. If /" < p,
the component isin the failure state. If /' > p, itisinthe normal state. Each random num-
ber therefore corresponds to onetrial of the component state. This approach is known as direct
Monte Carlo sampling.

Dagger samplingproceedsinthefollowingway. If = isthelargestinteger not larger than 1 /p, the
interval [0, 1] may bedivided into = subinterval seach of length p. Theremay also bearemainder
subinterval, for examplein the case wherep = 0.15, 1/p = 6.66 and z = 6. There arethen 6
subintervals of length 0.15 plus aremainder part of length 0.1.

In dagger sampling, each subinterval formed in the above way correspondsto atrial of a com-
ponent. If a generated random number falls into the :th subinterval, the component failureis
assumed to occur in trial » and not in the other trials. If the random number fallsin the remain-
der part, the component is assumed not to fail in z trials.

In this procedure, only one random number determines the outcome of = trials of the component
state (it is as if one random number piercesin =z subintervals, hence the name “dagger”). If
the generated random number falls in the :th sub-interval, then the “dagger number”, i.e. the
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number of the trial in which a failure takes place, will be:. Since z trials are determined by
one random number after which another random number must be generated to determine the
component’s status in the next = trials, = may be known as the “dagger cycle length”.

Combination of all component statesyieldsthe state vector ¥. Let ¥, ¥,, ..., ¥, ben system
vectors obtained by dagger sampling. The system unavailability can be estimated by

b=—> 1(W) (7.81)

where /(W) is an indicator function which equals 0 if the state ¥ isanon-failurestateand 1 if
itisafailure state.

The variance of 6, s2, can be calculated by *

$2 = % {var[](\Il)]+ fj COV[](\IIZ-),I(\IIJ')]}. (7.82)

(VR

With direct Monte Carlo sampling, there is no correlation between /(¥;) and /(¥®,),: # 7,
whilein dagger sampling, different random vectors within each group of = trials are correl ated:
if afailure occurson onecomponent in atrial, it definitely doesnot occur in another z — 1 trials.
If ¥, and U, are single elements of the state vectors ¥, and W¥; associated with component
k,and thetrials: and ; are generated by a common random number for component %, ¥, and
U ;. have negative covariance as one of W, and ¥ ;. will always be zero, i.e.

COV(\IIHC, \Iljk) = E(\Ilik, \Iljk) — E(\Ilzk)E(\Il]k) = —pi < 0. (783)

Thus the correlation between two system state random vectors is negative if they have some
elements corresponding to a common random number. Since /(¥ ) is an indicator variable, the
negative correlation between ¥, and ¥; also appliesto /(¥;) and /(¥;). Dagger sampling
therefore has a smaller variance than direct sampling.

A concern may be that some biaswill be introduced due to presence of aremainder subinterval
in [0, 1] implying that individual components’ number of failures will not match the expected
number. 1t will now be shown by means of an illustration that this is not the case.

Suppose that a component has a probability of failureof p = 0.3. 1/p = 3.333 so the greatest
integer not greater than 1/p is z = 3. Thus, there will be 3 intervals each of length 0.3 in the
[0, 1] interval with aremainder interval of length 0.1. Thisisillustrated in figure 7.2.

One random number can now be used to determine z trialswhich, in thiscase, is 3. If arandom
number /' fallsin thefirst subinterval, afailure of the component will take place in the first of
the next = = 3 trials. If U’ falsin the second, the failure will be in the second trial, and if in
the third subinterval the failure will be in the third trial. However, if U’ fallsin the remainder
subinterval, no failure will take place in the set of = trials.

11t should be noted that the author believesthe version of equation (7.82) that appearsin [56] iserroneous. The
expression that appears here is therefore different.

78



1st subinterval ! 2nd subinterval ! 3rd subinterval + Remainder
’ : ' subinterval
-

I R R R R R T
O 01 02 03 04 (5 06 07 08 09 1

Figure 7.2: Partitioning of the [0, 1] interval for p = 0.3 in dagger sampling

It can be seen from figure 7.2 that the probability of having one failure in three trialsis 1 —
P(U’ fallsin theremainder subinterval) i.e. 1 — 0.1 = 0.9. Itisreadily apparent that if the
probability of having onefailurein 3 trialsis 0.9, the probability of having one failurein 1 trial
is0.9/3 = 0.3 whichistheoriginal probability of failure of the component. Thus, the behaviour
of the component has been correctly represented.

If variances are being monitored in the course of a Monte Carlo simulation to decide when to
stop sampling, a potential disadvantage of dagger sampling is the need to calcul ate the covari-
ancesin equation (7.82). The number of covariances to be computed will be

z 2!
( r ) T 2(z—2)! (7.89)

_ =D (7.85)
2

Alternatively, it may be noted that the correlation between trials of different sets of = trials will
be zero (each set of = trialsis generated by a different vector of independent random numbers).
Thus, if each tallied trial constitutes the average of all the trials in a set of z triads, the need
for computation of the covariances is negated. In addition, this illustrates the mechanism by
which the variance of the estimate is reduced as each average of each set of = trias, since it
contains very nearly the expected number of failures of each component, will be expected to
be near to the popul ation average thus reducing the spread of the outcomes of the independent
trials. Inevitably, however, this dictates that the number of trials required will be factor of =
greater than the number required by direct Monte Carlo sampling meaning that the variance of
the dagger sampling estimate needsto be = timesless than that of direct sampling for any benefit
to be seen.

Thisprocedure also servestoillustrate the way in which dagger sampling can be regarded asan
extension of antithetic variates. While with rare events modelled using antithetic variates, the
‘antithetic event’ cannot be guaranteed to happen (i.e. if the component state caused the random
number U/’ is‘in service’ on onetria, theuse of 1 — U’ will not guarantee that the component
is‘out of service' on the next trial), with dagger sampling the ‘out of service' stateisvirtually
guaranteed to happen oncein z trials.

The antithetic random number of 1 — UU" can be thought of as being areflection in the interval
[0, 1] about 0.5 of theinitial number U/’. In this way, the antithetic variates method causes the
[0, 1] interval to be divided into two with the out of service state comprising only a small part
of one of them. Dagger sampling, on the other hand, divides [0, 1] into sufficient intervals to
virtually guarantee that one of them entirely includesthe ‘out of service' state.
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A further advantage of dagger samplingisthat it better guaranteesthat the number of occurences
of aparticular state for a particular component matches the expected number.

The question may now beraised asto what happenswhen not al the components comprising the
modelled system have the same probability of failure. The necessary number of partitions of the
[0, 1] interval becomes less than obvious and reference [56] fails to address this possibility. It
may be understood that the primary need, dictated by the need to avoid the cal cul ation of whole
sets of covariances, is to find the number of trials in which there is some correlation between
each trial due to the use of similar vectors of random numbers. Tallies may then be kept of the
outcomes of independent sets of trials. There are a number of possible ways of achieving this
which will now be described in turn.

Suppose that three components have probabilities of failure of p,, p, and p3 such that
p2 < p3 < pi. (7.86)

The number of trialsin which the states of each are determined by one random number for each
component arethen z; = 1/py, 22 = 1/p; and z3 = 1/p; where

29 > 23 > Z71. (787)

Every state of component 1 will be correlated to every other state within each cycle of z, trials.
Every state of component 2 will be correlated to every other state within each cycle of z, trials,
and likewise for component 3.

If cycles z1, 2z and z3 are not all exactly the same, it can be seen that some correlation of the
system state will exist across cycles, even if it is small, possibly due to the influence of only
one component. Thus, two trials are guaranteed to be independent only if they exist in separate
cycles, or sets, of 2’ trialswhere 2’ isthe smallest integer of which all of z4, z; and z3 aredivisors.
Hence, if the estimate obtained by direct sampling is# and that from dagger samplingisé, with
variances of estimates of s; and s7_ respectively, for any benefit to be observed from use of
dagger sampling over direct sampling,

2. < ‘Z—@ (7.89)

where
2 > max(z1, 22, 23) (7.89)
> ! (7.90)

min(p1, p2, p3)

Where 2’ is greater than al of z, z; and z3, it can be seen that the benefit of dagger sampling
is reduced compared to if 2’ had been equal to the longest cycle. As an aternative, no loss of
accuracy will be found if

2" = max(z1, 22, 23). (7.91)

Inthiscase, if z, isthe longest cycle, the dagger variables will be reset for the z; and z; cycles
at theend of every ' = z, trials whether or not the z; and z3 cycles are complete [57]. If the
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dagger numbers for either fell into the remainder of the cycles not completed, then no outage
will have taken place in the truncated cycle. Instead, an outage may already have taken in the
truncated cycle, and may happen early in the next, too. Thus, over many such cycles, the outage
rate of the component will converge to its expected value so that no bias should be found.

Using this approach, the effectiveness of dagger sampling will be determined by therarest basic
event in the modelled system.

There are two further alternativesto this scenario suggested by Kelen [57]:

1. reset al cycles at the end of each turn through the shortest cycle. If the shortest cycleis
for component 1 and has z; trids, then if arandom number U, for component 2 fallsin
the +th sub-interval such that : > 27, the component will not fail in that cycle. If 7 < 2,
it will fail.

2. reset adl cyclesat the end of each cycle corresponding to the most significant component
or component type.

In al of these methods, there isno correlation across cycles.

One final remark: the similarity between rotation or reflective sampling, described in [58] as
being extensions of antithetic variates, and dagger sampling has been noted by Kelen [59] who
has formulated rotation sampling in such away that its behaviour isidentical to that of dagger
sampling.

7.7 Selective sampling

In this, the number of events of a particular type within a sample isfixed to equal the expected
number of events of that type [60]. The work of the originator of the technique is summarised
in [3] in the following way.

It isassumed that only onevalueisto beestimated, say Y. Itisfurther assumedthat Y isdiscrete
and has M possible values each of which has the same probability of occurring, g¢;.

If there are m trials in a sample, the number of times Y hasthe value Y/ is V;. The expected
value of V; will be

E(V;) = gim. (7.92)
In selective sampling, the number of timesthat a particular value of Y is sampled isfixed to the

expected number of timesi.e.

Vi=qgm (7.93)
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where

M M

ZVZ':qui:m. (7.94)
=1 =1

1=

The number of timesthat avalue occursin asampleis, of course, aninteger i.e. V; isan integer.
However, ¢;m, in general, isnot an integer. ¢;m isthen made to be an integer in such away that
the sum of the squared deviations between the “theoretical” values ¢;m and V; isminimizedi.e.
z iIsminimized where

z = E(Vz —qm)>. (7.95)

It remains then for each V; to be chosen subject to the need to minimize = in equation (7.95).
Brenner gives an algorithm for this purpose which sets V; to the integer closest to ¢;m. If it
turnsout that >~ V; > m then the terms which have the smallest fractional parts of ¢;m which
are greater than 0.5 have the values V; reduced by 1 until >~ V; = m. Likewise, if 3>V, < m,
the terms which have the largest fractional parts of ¢, which are lessthan 0.5 have the values
V; increased by 1 until 3" V; = m.

The value of V; which minimizes = may be denoted V;*. The number of times that Y, occurs

isnow fixed. In order to meet this number in the sample, sampling without replacement is per-

formed whereby the probability of sampling the value Y/ in the ¢th trial (wheret = 1,...,m)

is

P(YZ/) — ‘/z — G
m—1t+1

where ¢, isthe number of timesthat Y, has already been sampled.

(7.96)

It is noted in [3] that the method may be biased. It is also noted that it may theoretically be
applied to the estimation of continuous random variables whose values are divided into afinite
number of classes or strata.

7.8 Resampling Techniques

The techniques described here are not, strictly speaking, variance reduction techniques. How-
ever, they are useful in estimating the variance of estimates of statistics derived from distribu-
tions that are far from normal or from small samples such that the sampling distribution cannot
be assumed to be normal. They can also help to reduce any bias inherent in an estimate. The
two techniques which will now be described are the “jackknife” and the “bootstrap”.

7.8.1 Thejackknife

The jackknife was the first method devised to estimate biases and standard errors. It was orig-
inally proposed by Quenouille in the 1940s [61] and was refined by Tukey [62]. It involves
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recal culating the statistic of interest for the sample with one observation removed. Thisisdone
with the removal of each observation in turn, and the resulting stetistics are recombined to give
an estimate of the bias in the original sample. It can thus also be used to compensate for the
bias to give a better estimate and to give a better estimate of the population variance than can
be obtained by conventional techniques.

Supposethat atrue mean 4 isto be estimated by the mean X of asampleof sizen. Theestimate
will be denoted by the statistic 7;,. The biasin the estimate will be given by

bias(T,,) = E(T,) — u (7.97)
where

T, = X. (7.98)

Now let 7’,_; ; bethe statistic (i.e., in this case, the mean) based on n — 1 observations

X1,..., X1, Xip1, ..., X, 1.6 with the 7th observation from the origina sample removed.
Then, the average of the means of the samples with each observation removed in turn, i.e. the
averageof the 7,,_, ; fori = 1,...,n, isdenoted 7', such that

_ 12
T, =— Z o1, (7.99)
ni5

Quenouille then derives ajackknife bias estimator b;,.; whichis
bjack = (n — 1)(Tn — Tn) (7100)
This leads to a bias-reduced jackknife estimator of 1,

Tiack = Ty — bjack (7.101)

= nl,—(n—-1T,. (7.102)
(See[61, 63] for proofs of these relationships).

Tukey’s principal contribution to use of the jackknife was in showing that it could be used to
construct variance estimators [62]. With 7, re-written as

Tjack - l Z [nTn - (n - 1)Tn—1,i] 5 (7103)
n

=1

Tukey defined

Tn,i = nTn — (n — 1)Tn_172' (7104)

as “jackknife pseudovalues’ and conjectured that, for: = 1, ..., n, they may be treated asin-
dependent and identically distributed (i.i.d.), and as having approximately the same variance as
v/nT,. Inthisway, he defined the delete-1 jackknife variance estimator for 7,, given by

2
1 - 1 & s
o ol F , 7.1
v]auk n(n _ 1) : (Tnﬂ n Z Tnvj) ( 05)



2

_n - 1 2:; (Tn_m - %]Z:Tn_m) (7.106)

- 2! Z (Tors = T,)’ (7.107)

= (n—1) E (; Tj_u-) - T_f] (7.108)
n—1

(Xn: Ti_u) — % (an Tn_u) } . (7.109)

The advantage of the jackknifeisthat it isless dependent on model assumptions (e.g. the nor-
mality of the sampling distribution) than traditional methods. Its disadvantage is, clearly, the
extra computation needed to calculate the required statistic » times.

7.8.2 Thebootstrap

The bootstrap method, generally attributed to Efron [64], isa“robust” statistical method in that
it isclaimed to deal adequately with non-smooth (i.e. discontinuous) and biased stetistics, and
with non-normal sampling distributions. It involves taking an existing sample and resampling
it, drawing observations from that sample with replacement to obtain a series of bootstrap sam-
ples. These can then be compared with each other and with the original sample to gain more
complete information about the population from which the original sample was drawn. In par-
ticular, it allowsthe formation of an empirical distribution function which can be used to derive
confidence limits for underlying distributions which, for example, do not permit the applica-
tion of the central limit theorem where the distribution of the mean is assumed to be normal.
The disadvantage of the method is that the empirical distribution is obtained at the expense of
considerably more computation.

Bootstrap-t confidence limits

According to standard statistics, the “ standard score” of an observation X on asampling distri-
bution is denoted by > and is given by

X -y
NG

where y is the mean of the underlying distribution, o the standard deviation of the underlying
distribution and » isthe sample size.

(7.110)

z

The quantity o /+/n isknown as the standard error.

By the central limit theorem, i.e. when r is large enough, the standard scores of the sampling
distribution are assumed themselves to follow a normal distribution. That is to say that, if a
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number of samplesof similar (large) size are taken from the underlying distribution, the means
of each of those samples are assumed to follow anormal distribution. Thisisthen used to derive
confidence limits.

A difficulty of statisticsisthat samplesare often too small for the characteristics of the underly-
ing distribution for the sampling distributionto be normal. The simplest way of overcoming this
using the bootstrap is to replace X and the standard error in equation (7.110) by the bootstrap
equivalents.

Bootstrap quantities are generally identified by a * superfix. Thus, the bootstrap standard score
of the sampling distribution for the th bootstrap sampleis[65]

X, -X

*
S€p

%
Zp

(7.112)

where X, is the mean of the bth bootstrap sample and se; is the standard error of the bth boot-
strap sample. Then, the o/2th percentile of z; where 100(1 — «) is the percentage degree of
confidence, is estimated by the value ¢(*/2) such that number of values of z; less than or equal
to (/%) equals B(«a/2) where B is the total number of bootstrap samples. Likewise, ¢{1=2/2)
is given as the B(1 — «/2)th value of z;. Thisimplies that, for example, if B = 1000 and
100(1 — o) = 90.0, the estimate of the 5% point, i.e. ¢('=>/2), will be the 50th largest value of
z; while the 95% point, ¢(*/2), will be the 950th largest.

Finally, the so-called “bootstrap-¢” confidence interval is
(X — 1=/ ge X — (/) se) (7.112)
where se isthe standard error of the original sample.

While this would appear to be quite straightforward to calculate, three things should be noted:

¢ the number of bootstrap samples B must be large, B > 1000.
¢ theinterval derived isvalid only for the given origina sample.

¢ the interval can be heavily influenced by a few outlying data points and can thus give
somewhat erratic results.

These difficulties lead to consideration of the “bootstrap BC',”, or bias-corrected and acceler-
ated interval. Thisis described below.

Bootstrap BC', confidence limits

Thebootstrap BC', confidenceintervalsare based on* percentile methods” whereby resultsfrom
ahistogram of the bootstrap samplesare used directly rather than using bootstrap standard scores
to find “pivot points” asin the bootstrap-¢ method.
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1f X"*/? isthe 100(/2)th percentileof B bootstrap replications X, Xs, . .., X 3, theinterval
(X1, X 1) of the intended coverage 1 — « is obtained from

(X 1o, Xni) = (7*(0/2), 7*(1_0/2)). (7.113)

Thus, the percentileinterval for B = 2000 and « = 0.1 istheinterval extending from the 100th
to the 1900th ordered values of the 2000 numbers X;.

The BC, interval end-points are given in asimilar way but depend on the acceleration « and
the bias correction z, [65]. These are used to obtain «; and «, and theinterval is, in turn,

(Ko, X)) = (X700 X0, (7.114)

The values o; and «; are given by

2o _|_ Z(a/?)

a1 = () (ZO + 11— a(zo n 2(0/2)) (7115)
20 _|_ Z(l_a/Q)

Qg = () (ZO + 11— a(go i Z(l—a/Z)) (7116)

where &(-) isthe standard normal cumulative distribution function and =(*/?) isthe 100(«/2)th
percentile point of the standard normal distribution.

It may be noted that if « and z, are zero, equations (7.115) and (7.116) reduce to the ssimple
percentile method.

The bias correction z is calculated by

= (7.117)

. (number of X, < 7)
Z0 = d
where ~!(-) indicates the inverse function of a standard normal cumulative distribution func-
tion.

There are various ways to calculate the acceleration a. One uses a jackknife method [65] in
which

— 3
jo (X %) — (7.118)

6 [z;;l (X - Yn_u)Q]

whereYn_M isthe mean of the original samplewith the:th value removed. n isthe size of that
original sample.

Whilethe effect of outlyingtrialsisreduced with respect to the bootstrap-¢, the required number
of bootstrap samplesisstill large.
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7.8.3 Useof thebootstrap

Aswasnoted above, the disadvantage of the bootstrap isthe large computational overhead. This
is especially large when the method is being used to derive confidence limits as at least 1000
bootstrap samples are likely to be needed [66, 65].

One possibleapproach may beto perform the bootstrap itself by aMonte Carlo estimation, apply
classical confidencelimitsfor the upper and and lower bounds being cal cul ated by the bootstrap
to ascertain when to stop the simulation.

Thelarge computational overhead effectively precludesthe bootstrap from use asatest for con-
vergence of aMonte Carlo simulation to agiven precision and degree of confidence. However,
it can be used to quantify the confidenceinterval of afixed, given samplewhere the statistic has
anon-normal distribution.
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Chapter 8

Application of Monte Carlo Simulation in
Composite Power System Reliability

The operation and planning of apower system have long been recognised as having a consider-
able number of uncertainties, not |least due to unexpected failures of plant, whether they be the
sudden unavailability or “derating” (reducing of capacity) of generating plant or the tripping of
linesor transformersdueto faults, and attempts have been made to represent these uncertainties
by probabilistic analysis since the 1940s. Some engineers have argued that, given all these un-
certainties, a power system should be described in terms of itsreliability i.e. its overall ability
to perform its function.

In power systems, reliability is conventionally broken into two aspects. adequacy and security
[52]. Adequacy relatesto “the existence of sufficient facilities within the system to satisfy the
consumer load demand or system operational constraints.” Security, on the other hand, relates
to “the ability of the system to respond to dynamic or transient disturbances arising within the
system.” Computational toolsto assessthelatter category are not yet well-devel oped, so “ power
system reliability” tends to imply adequacy.

8.1 Measuresof component reliability

Individual components' reliabilities may be expressed in a number of ways. In essence, the
reliability expressesthe proportion of timethecomponentis“in service” or “available’ for. Data
may also be used, however, to express the probability of the component being in service at a
particular time.

The availability A of acomponent isexpressed as [4]

_ > (up time)
~ Y (uptime) + 3~ (down time)

(8.1)

where the “up time” is the total time the component isin service and the “down time” the total
time whenitisnot. A may be re-expressed in terms of the “mean time to failure” £ and the
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“mean timeto repair” R so that

F
A= ——. 8.2
F+R (82)
These mean times may further be re-expressed in terms of expected “failure rate” A\ and the
expected “repair rate” p such that

1 . .
A= 7= number of failures per unit time (8.3)
po= % = number of reapirs per unit time (8.4)
1
A = 5 ﬁr X (8.5)

The sum of the mean timeto failure and mean timeto repair isknown asthe “ mean time between
fallures’.

The converse of the availability is the unavailability &/ and it can be defined in similar termst:
>~ (down time)

v 5" (down time) + 3~ (up time) (8.6)
A

T X+ 7

A p (8.7)
R

" R+F 8.8)

In general, thefailure and repair rates need not be constant but may be functions of time, though
assumptions that they are constant normally suffice.

The probability P () that the component is available at time ¢ is sometimes known as the “cu-
mulative failure distribution function” and is the integral of the “failure density function” f(t),
i.e

Py = [ Cf()dt. 8.9)

Likewise, the “survivor function” S(t) expresses the probability that the component will still be
inserviceat timei:
1

S)=1-P(t)=1— / F(t)dt. (8.10)

0

Clearly, the failure density function, f(¢) is

dP(1)

() = I (8.11)
_ 8
— _W. (8.12)

1The unavailability is sometimes known as the “forced outage rate’ .
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The failure density function may be fitted to any one of a number of standard functions such
as the normal, Weibull or exponential. The “negative exponential” is the most well-known so
that, when X is assumed constant, the repair rate is infinite and the component is available at
time¢ = 0, the probability of finding the component on outage at timet¢ = 7' is

P(t)=1—e M= (8.13)

If \ < 1, thisis
P(t) ~ M. (8.14)

It may be noted that when f(¢) istaken to be negative exponential, the a posteriori probability
P.(t), the probability of the component failing during ¢ given that the component has survived
upto Ty is

Prob(surviving up to 7 and failing during the period 7, to 7y + t)

F() = Prob(surviving up to 7p) (819

Ji2 T F(t)dt
= o (8.16)
e~ To _ MTott)
= T (8.17)
= l—eM (8.18)
= P(t) (8.19)

i.e. the probability of failureisindependent of how long the component has already been oper-
ating for and depends only on the length of theinterval ¢. In other, P(¢) has no memory of the
past.

state 2 =( state 3

derated down

Figure 8.1: Three-state model of a generator

The notion of “failure” and “repair” rates may be extended to models where the components
have more than two states. Figure 8.1 shows athree-state model for a generator where the three
statesare “up”, “derated” (where the maximum output has been reduced) and “down”. Transi-
tionsrates between the three statesare shown. Thesemay all be denoted by A with the subscripts
writtenin the appropriate order to suggest the order of thetransition, but heretransitionstowards
full generating capacity are represented by 1 to maintain consistency with the idea of a repair
rate. If all thetransition density functionsare assumed to be exponential or negative exponential
and thetimeinterval ¢ isassumed to be short such that the probability of atransitionin an inter-
val of length ¢ approximately equalsthe product of the transition rate and ¢, a“discrete Markov
chain” can be depicted as in figure 8.2.
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1- Aot - A gat

state 2 > state 3
ated down

1-ppqt - )\23t 1- pgat - pagt

Figure 8.2: Discrete Markov chain for three-state model

If the period ¢ is so short that it may be assumed that only one state transition occurs in that
time, a state diagram of a system comprising a number of components may be drawn showing
appropriate system state transition probabilities and the probability of the system being in any
one state may be derived.

8.2 Power system reliability indices

Variousindices have been used in the engineering literature to measure adequacy. Most of them
are expected values of random variables (though some give ap.d.f.). Among these are [52]

L oss of load expectation (LO L FE) in days/year or hourslyear:
LOLE =) pT (8.20)

€S

where p; is the probability of system state :, 7" is the time unit of the index (i.e. either
one day or one hour) and S isthe set of all possible system states associated with |oss of
load. Theindex gives the expected (or mean) number of days or hoursin a given period
(usually one year) in which the daily peak load or hourly load is exceeds the available
generating capacity.

Note that neither the severity of the generation deficiency nor the frequency or duration
of the loss of load are indicated.

L oss of ener gy expectation (LOFE E) in MWh/year:

LOEE = 8760C;p; (8.21)

€S

wherep; and S areasabove and C; isthe number of MWsof load lost for system state:. It
givesthe expected energy not supplied by the generating systemdue to the load exceeding
the available generating capacity. When the energy actually supplied is divided by the
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total energy demanded, anormalized index known asthe energy index of reliability (EIR)
isfound.

Loss of load frequency (Z.O L F') in number of occurences per year:

LOLF =3 (F; - f) (8.22)

€S

where F; isthe“frequency of departing system state:” and f; isthe“portion of F; which
does not change from being part of the ‘loss-of-load state set’ to being part of ‘no-loss-
of-load state set’ ”.

Loss of load duration (Z.O L D) in hours per occurrence:

LOLE
LOLF’

This represents the duration of each state in which load had been lost.

LOLD =

(8.23)

Theterm load curtailment is sometimes used in the context of system statesin which some load
has been lost. Some authors seem to use it distinguish “ composite system adequacy” (in which
transmission outages are considered along with generation outages or deratings) from “genera-
tion adequacy” (where transmission system effects are not considered).

8.3 Simulation approachesin reliability evaluation

There are three main simulation approaches in reliability evaluation and another introduced in
[52].

8.3.1 Statesampling

The system state depends on the combination of all component states while each component
state can be determined by sampling the probability that the component appears in that state.
The p.d.f. of each component is usually modelled by a uniform distribution between [0, 1] with
two possible states - “success’ and “failure” - and a probability of failure p;.

If the state of a system W is described by a vector comprising the states of the m components
Uy, WUy, ..., U, suchthat

‘I’: [\I}hqlg,...,qlm], (824)
then the expected value of some index Z(¥) will be
E(L) =Y L(®)P(¥P) (8.25)

vesS

92



where S isthe set of all possible system states. In asimulation, this can be estimated by

E(L) =~ 3 L(®)na(w) (8.26)

" ges

where ny () isthe number of occurrences of state ¥ and n is the total number of trials.

Advantages of the “state sampling” approach include

e simplicity - only necessary to generate random numbers on a uniform distribution.

¢ only the component state probabilities are required.

The disadvantageisthat dependency of acomponent’sstate or a system state on previous states
as behaviour devel ops through time cannot be represented.

8.3.2 Stateduration sampling

Thisisbased on sampling the p.d.f. of the duration of a component state. Each component has
an initial state and the duration of each remaining in that state is sampled, for example from
an exponentia distribution. If the state of a component changes within the time span of the
simulation, how long it remains in the next state is sampled repeatedly until the time span is
reached. Thus descriptions of the system state for the whole time span are obtained and the
desired index is calcul ated.

The advantages of this approach are

e it can easily be used to calculate a frequency index.
e any state duration p.d.f. can be considered.
e thep.d.f. of adesired reliability index can be calculated.

e the“history” and trend of a state can be taken into account.

Disadvantages are that more computation and storage are required (not least in the computation
of each random variate?) and more parameters are needed to define the variates.

8.3.3 Sequential sampling

In common with state duration sampling, sequential simulation [67] allowsthe history of astate
to be taken into account. Unlike state duration sampling where the history of each component’s

2A random variate is arandom variable which follows a given p.d.f.
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state is assembled independently and different system states must then be identified and evalu-
ated, in sequential sampling, the period of interest is divided into timeintervals and each oneis
simulated in sequence with the state of each component at the start of each time interval gener-
ated randomly depending on the component’s state at the start of the previous interval and the
duration of the interval.

Conventional sequential Monte Carlo simulationisgenerally what may becalled a“ synchronous’
sequential simulation [68] in that successive time slots are simulated with constant time inter-
vals. Theinterval length may be chosen to be so short that a maximum one component state
will have changed, or to track significant changesin particular variable (say theload in a power
system reliability analysis).

Advantages of the method are that the evolution of both individual component states and the
system state can be tracked and that any form of state duration distribution can be modelled.
Disadvantages are the computational demand, the need to choose a suitable length of timein-
terval, and the need to generate many random numbers at the start of each interval.

8.3.4 Statetransition sampling

Thisfollowsthetransition of system state rather than of individual component states[69, 4] and
issimilar to sequential sampling.

|t isassumed that the system startswith state ¥ (') and moves successively tostates (), ... w(*),
The transition of the system state depends randomly on the state duration of the component
which departs earliest from its present state. The duration of each state ¥(*) can be described
in terms of the random variable 7'*) which is the minimum of the state durations of each com-
ponent 7; for: = 1,...,m.

Sincethe state duration of each component follows an exponential distribution, it can be proved
that each 7*) follows an exponential distribution. Further, each depends on a conditional prob-
ability. For example, if the transition from ¥ (*) to W(*+1) takes place at time t,., the probability
that thistransition is caused by the jth component is

PY =P (10 = 1,]1® = 1) . (8.27)

J

The statetransition appraoch may bedescribed asan “ asynchronous” sequential simulation method
[68] inthat simul ationsof successive statesare carried out but thetime of the event which changes
the system state varies.

The advantages of this approach are

¢ exact frequency index information can be cal culated without the need to sample the dis-
tribution function and store chronological data.

¢ only one random number is required to produce the next system state unlike in the state
sampling approach which requires one random number for each component.
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e the“history” and trend of a state can be taken into account.

The disadvantages are that it is computationally expensive and it applies only to exponentially
distributed component state durations.

8.3.5 Hybrids

It has aready been noted that the three methods outlined above, state duration sampling, se-
guential simulation and state transition sampling, which deal withthe evolution of system states,
necessary when a system state depends on what happened before, have the significant disadvan-
tage of being highly computationally intensive. This has led researchers to adopt simplifying
assumptions and implement hybrids of the various sampling approaches.

A hybrid of state sampling and sequential simulation is reported in [70]. The basic premise of
the work isthat the generation of states is not computationally demanding, but the analysis of
their effectsis. Theduration of load interruptionsis, however, required, something which is not
available from simple state sampling but only from some sampling approach that represents se-
guences of events. A large set of sequences of states is sampled but not ssmulated. Let this set
of sequencesbe called S. Since only states where loss-of-load are of interest, simple sampling
of sequences from within S is carried out. If there are ns sequences in the set, this involves
partitioning the [0,1] interval in ns sub-intervals and generating a random number from a uni-
form distribution. If the random number fallsin the :th sub-interval, the :th sequence is taken
(with replacement). Onetimeinterval, say the jth, from that sequenceisthen sampled and sm-
ulated. If the jth snap-shot contains aloss of load, then the time interval s after it are simulated
in sequence until the loss of load condition has gone, and simulated before it until the start of
the loss of load condition. If, on the other hand, the jth interval of the :th sequence does not
contain aloss of load, another sequence from S is sampled. Sampling from S then continues
until sufficient precision in the estimate has been obtained.

A hybrid of state transition and the pseudo-sequential sampling described in [70] is reported in

[71]. The method is essntially the same asin [70] but the paper describes the additional use of
a variance reduction technique known as “ conditional Monte Carlo” [72, 73].

8.4 Exampleof the“state sampling” method

The following is adescription of asimple example givenin [52].

The objective is to find the expected value of some reliability index from equation (8.26). As
outlined above, the reliability index is invariably concerned with loss of load or “load curtail-
ment”. The index need only be worked out for those states in which curtailment occurs and
experience shows that they are relatively few in number. The key, then, is to identify them.

The complete set of states may be sub-divided in the manner shown in figure 8.3.
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contig

contig maybe

contig
resched
yes

contig
resched
no

Figure 8.3: Classifications of system state in reliability evaluation

A system stateis obtained by sampling the state of each individual component, transmission and
generation. Where any component isin the “down” state, the resulting system state is denoted
a“contingency state” and is amember of SO,

If agenerating unit has been lost or derated, the capacity of the remaining generating units at
the buswhere it waslost isfirst worked out. Thisis donefor each generator derating or loss. If
therearen; generating unitsat bus:, theinitial (normal) active power outputsare P,;., k € n; and
the maximum outputs in contingency system state are P/7**, k € n;, thetruth of the following
inequality isfound:

S (PR — Py) >0 (8.28)

kEn;

If (8.28) issatisfied for all buses where generator loss or derating has taken place, whether any
load curtailment will take place will depend on the effects of any transmission outages. If, how-
ever, (8.28) fail sto be satisfied for at Ieast one bus, the system statewill belong to set §°ONtig maybe,

Further analysiswill be necessary to determineiif the state is amember of scontig resched no o
gcontig resched yes

If atransmission component hasbeenlost, it must be determined if any overloads have been cre-
ated. If there are no overloads and equation (8.28) has been satisfied for all generator buses, the
system state belongsto SCPNMYI N0 Otherwise, the state belongsto S €OMY MaYLE 4n reschedul -
ing of generation must take place.

For any system state in set SCONt9 Maybe generation must reschedul ed to meet demand and re-
move overloads while minimising load curtailment. Thisis often achieved by means of alinear
program. Then, if any load has been curtailed, the system state belongs to .5 €ONtig resched yes
and the appropriateindex should beworked out. Otherwise, the state belongsto s contig resched no
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8.5 Solution by “state enumeration”

Thismethod isthe traditional one of carrying out reliability analysis and isthe main aternative
to using Monte Carlo simulation. A brief description isoffered here so that the reasonsfor using
Monte Carlo can be better understood.

Sate enumeration involves explicitly evaluating every case in a pre-defined sequence until a
certain level of accuracy isjudged to have been obtained. Itseffect isto determine according to
some rule which subset of the whole set of possible states isworthy of study.

The rule used often depends on use of so-called capacity outage probability tables[4]. A prob-
ability cut-off is defined such that any contingencies deemed to be less likely than the cut-off
are also deemed to be not worthy of study having insignificant impact on the reliability index
being used.

If astateistermed a“level 1 state” when one fault has occurred causing one component to go
out of service, a“level 2 state” when 2 faults have occurred and so on, where the probability
of each fault isthe same, the probability of atrial having aparticular level will be given by the
binomial distribution f5(z) where

IB(z) = ( Z )p””(l —p)"r (8.29)

and n isthe number of components, = isthe level of aparticular trial and p isthe probability of
a component being out of service.

When the number of possible levels(i.e. number of componentswhich may be faulted) islarge,
the binomial distribution may be approximated by the normal distribution. A graph may be
drawn of theform shown infigure 8.4 of the cumulative probability F'x (y) of beingin particular
state level iy against the state level i.e. of the probability of being at that level or below.

F(y) ¢

1.0 —

7

Cut-off

»
>

y

Figure 8.4: Cumulative distribution function of level probability

It can be seen that a cumulative cut-off probability may befixed on the figure so that state levels
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wherethe cumul ative probability is greater than the cumul ative cut-off are neglected. Implicitin
this approach, however, isthe assumption that the contributions of each statelevel to the overall
reliability index follow the shape of 1 — F'x(y) i.e. the characteristic shown in figure 8.5 since
the number of possible contingency scenarios at each state level follows that shape.

Iy) |

»
>

y

Figure 8.5: Contribution of state levelsto reliability index

It will be recalled that these characteristics, derived from a binomial distribution, are based on
the assumption that all faults have the same probability. While this may be approximately true
for a transmission system, it is not true for areal power system comprising both transmission
and generation where generator failure rates are generally significantly higher than branch fail-
ure rates. Add in the phenomenon of cascade tripping and the possibility of protection failures
meaning that one fault can lead to the failures of many branches and it can be seen that the prob-
abilities of each possible scenario must be evaluated explicitly. Further, consideration of the
characteristics of alarge power system revealsthat the concurrent outage of, say, 5 lines due to
the (not very probable) concurrence of 5 separate faults may lead to no unreliability if all the
lines are remote from each other. Use of the enumeration approach when the system has 500
items of plant would make the binomial distribution of state level greatest at level 5 (and the
c.d.f. steepest), implying that this would make most contribution to the reliability index. On
the other hand, the concurrent outage of two lines in close proximity may lead to, for example,
agreat deal of load being shed.

Thusit can be seen that for areasonably realistic model of alarge power system, the state enu-

meration approach with a probability cut-off has serious limitations. A Monte Carlo estimation
of system reliability, even with its great computational demands, becomes extremely attractive.
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Chapter 9

Applicationsof Variance Reduction in
Power Systems

9.1 Applicationof importancesamplingto power system plan-
ning

The National Grid Company has developed a number of toolsfor assessment of the value of in-
vestment in transmission system plant [74]. The main criterion for the investment isthat system
reliability isimproved or the operating cost reduced. When assessing the reliability, work has
been donein exploiting importance sampling [ 75]. Thefollowing offerstwoillustrations of that
work showing the influence of system outage probabilities on the number of trials needed in a
Monte Carlo evaluation of reliability *.

9.1.1 Outlineof method

In common with section 8.2, apower system isconsidered with n; line componentsand n,, gen-
erator components giving atotal of m components subject to random failures. The set of all
possible system statesis S and an individual stateis ¥ € S comprising the states of each com-
ponent {Wy, Wy, ..., ¥, }.

A system failure index /(W) is defined such that /(¥) = 1 if any consumer disconnections
occur in state ¥ and 0 otherwise. The system failure probability is then

f=E[I(®)]. (9.1)
If pg isthe probability that state ¥ will occur,
F=Y pel(®). (©2)
wresS

Lmportance samplingisalso mentioned in [76] in combinationwith control variatesand in[77] where theissue
of “cascade tripping” in power system disturbancesis considered.

99



f may be estimated in a Monte Carlo simulation by f such that

where n isthe number of trialsand ¥, is the system state in the :th trial.

The variance of f isgiven by?

o= I*(¥)pg — [Z 1(‘1’)1)4 :

Since I*(W;) = I(W;) as I isawayseither 0 or 1, thisis

of = I(®)ps — [Z ](‘I’)Pw} :

ASY ges I()pe = f and [Cges 1(W)pe]’ = f2, thisgives

=/

g

~ o

(9.3)

(9.4)

(9.5)

(9.6)

Inasimulation, f isapproximated by f and the varianceof the population may be approximated

by

Now let state ¥ be sampled with probability pj,. f now becomes

[ = [(P)wepy

wesS

where the weighting wyg IS

Thevariance of [* isthen

of = Y P(Puwgpy — f°
resS
= Y PF(®)weps — [

eSS

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

2A factor of pg in asummation of all the possible statesis equivalent to afactor of 1/N where N is the popu-

lation size in asummation over all the outcomesin the population.
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f* can be approximated in the simulation by

L1
Im= EZI(‘I,Z)w‘I’ (9.13)
=1
of which the variance s7. is
*2 1 g A*2
sy = EZIQ(WZ')UJ%IH - . (9.19)
=1

The aim of the importance sampling strategy is then to choose wy to minimise 3}2 :

Supposethat biasfactors w; and w, are appliedto individual line and generator outage probabil-
itiesp; and p,. Applied to acomplete system in which all lines have uniform outage probability
p and all generators p,, the probability of sampling a state ¥ with ¢;(¥) linesand ¢,(¥) gen-
eratorstripped is

Py = (pro))™ ™ (1 — praog) =) - (p, )70 (1 — pywy) o ~to(H) (9.15)
compared with an intrinsic probability of

Py = p;l(‘l’)(l _ pl)m—tz(\ll) _ng(‘ll)(l . pg)ng—tg(\ll). (9.16)

The sampling weight is then

(1= =91 et
w1 = preon) =t (1= pyw, et (®)
v e o
p}fl( )(1 _ pl) 1=t () .ng(‘l’)(l _ pg) 9—tg(¥)

= : 9.18
p*tl(‘l’)(l _ p;ﬂ)nl—tz(‘ll) . p;tg(q')(l — pz)ng—tg(‘l’) ( )

(9.17)

‘u]q, _=

{
where p; isthe biased line failure probability and p; isthe biased generator failure probability.
Stateswhere any given linefails arethen over-represented in the simulation by afactor w; while
states in which it does not fail are over-represented by afactor (1 — p;w;)/(1 — p;) or under-
represented by afactor (1 — p;)/(1 — pwy).
It can be seen that application of the method to systems with non-uniform outage probabilities

will be straightforward since separate factors from each component are simply multiplied to-
gether.

9.1.2 Firstillustration of method

Consider thesysteminfigure9.1[75]. Let therebe uniform outage probabilitiessuchthat p, = 0
and p; = . A suitable value of w; isto be found.

It can be seen that a system failure state /(W) = 1 will result if
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Generator Generator

Load

Figure 9.1: Four bus, three line example system

1. linesA and B fail but not line C. pg = o*(1 — a).
2. linesA and Cfail but not line B. pg = o*(1 — a).

3. linesA, B and C dl fail. pg = o®.

Averaging over all system states gives

f = Z 1(¥)py (9.19
veSs
= 20 —a’. (9.20)
When o issmall,
I~ 2t (9.21)

The variance of aMonte Carlo estimate® may be found by making use of equation (5.32) with
o? approximated by s%. With f approximated by f, this gives a coefficient of variation of the
estimate of

ST

ove = o _ 9.22
P v &2
1—f
_ i (9.23)
nf
v b (9.24)
~ nf ~ am. .

Frorrl this, it can be seen that to obtain an estimate coefficient of variation of 10%whena = 0.01
and f =2 x 10~* would requiren = 5 x 10° trias.

Performing the same simulation with importance sampling, it may be found that the varianceis

2 1 [e®  2a%(1 —a)? ) 319
e e E e O : 2
51 n* [w? wi(1 — wa) (207 — o) (9.25)
5% issmallest when
2
w; = —. (9.26)
3a

3Note that this is the variance of the estimate not the variance of the sample.
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For thisvalue of wy,

%2 19&4
and the estimate coefficient of variationis
19

It can now be seen that a coefficient of variation of 10% can be achieved with only »* = 240
simulations.

9.1.3 Second illustration of method

This illustration is based on that described in [78]. Consider the system shown in figure 9.2.
With ¥ and /(W) defined as before, it can be seen that failure states result when

1. only line Cfails. pg = a1 — a).

2. linesA and B fail but not line C. pg = o*(1 — a).
3. linesA and Cfail but not line B. pg = o*(1 — a).
4. linesB and Cfail but not line A. pg = o*(1 — a).

5. linesA, B and C dl fail. pg = o”.

Generator

Generator

it

Figure 9.2: Alternative four bus, three line example system
If p» = aandp, =0,

f = a(l—a)’+3e*(1—a)+a’ (9.29)
= a(l +a—a?). (9.30)
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This may be approximated to «.

Asin the first example in the preceding section, o7 = [ — f?and CV; = /(1 — [)/nf ~
1/y/nf. Let the number of trials » be found for which the estimate coefficient of variation is
10% whena = 0.01. With f = f = a, n ~ 1.0 x 10%.

Now using importance sampling, it can be seen from equations (9.12) and (9.18) with p; = «
that

5 atl(‘ll)(l _ a)nl—tl(q’)
o= (¥ pe — 2 9.31
O ‘I’XE:S ( )p?(tl,('l’)(l —p?‘)nl_tl(q’)p‘l’ f ( )
tl(‘l’) 1 _ , ?’Ll—tl(‘l’)
= 2 I OimE1 Q)> e M e (932)
Wes pp o (L —pp)mh
a?tl(‘ll) 1 — o 2(‘)’Ll—tl(‘1’))
= ( *tlm( ) - — (9.33)
Tes 4 (1 —pp)m—tl®
where n; = 3 for the three-line network under discussion 4.
Since o issmall, the lowest power of o dominates so
g o 21(®) )
o] Z () ) — [ (9.34)

wes y2 (1 — pp)m—t(®)

Theonly one of thethree stateswhere;(¥) = 1 for which /(¥) # 0 isthe state corresponding
to the tripping of line C with lines A and B still in service. Thus, since f = a,

) 1
o7 = a? (7 - 1) . 0.35
! pi(1 = pp)? (539

From here, it can be found that 0}2 is minimized when p; = 1/3.

Recallingthet C'V; = o/ f and 0% = o' /n*,

1 [o7
CV; = 7V (9.36)
Withp; = 1/3 and [ = «, thisgives
|4 2
CV; =~ ‘)'751“ (9.37)
« n

Thus, the number of trialsusing importance sampling »* can befound for an estimate coefficient
of variation of 10%. It isfound to be independent of « and equal to 575.

ny
(P
as I(®) may be different for each.

“Theterm ( ) ) does not appesr as each state withthe samet; () is counted separately inthe summation
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9.1.4 Remarks

A comparison can be made between the relative improvement in the number of trials needed
for agiven coefficient of variation between an estimate made with and without importance sam-

pling.
From the first examplein section 9.1.2, theratio of n ton* is

n 5 x 10°
— = ~ 2080 0.38
n* 240 ( )

while for the second example in section 9.1.3 the relative improvement in the number of trials
is
n 1.0x10*

— =~ 17. 9.39
n* 575 ( )

The fact that the first example gives a better improvement is consistent with the idea that the
importance sampling works better the rarer the failure states are. Consideration of equations
(9.12) and (9.18) shows that for minimum variance, wg should be minimized and, in turn, the
denominator of (9.18) maximized. Thisoccursfor 0 < p; < 1 when
L (W
i =2 (9.40)

n
For p; > p; (whichis necessary to achieve areduction in variance),

m < @ (9.41)

ny

This can be interpreted as a restriction on the number of lines tripped [78]:
tl(‘I’) > piny. (942)

For p;, = 0.01, this provides no difficulty on a small network, but for a system with around
500 lines, ¢;,(¥) should be more than 5. In other words, importance sampling should be used
to biasthe Monte Carlo simul ation towards the extreme conditions which lead to loss of supply
5. However, even having the number of line trips for a particular trial greater than or equal to
5 does not guarantee the occurrence of afailure state: the tripped lines may be geographically
distributed such that all load can continue to be supplied.

Another important point is that the derivation of the necessary weights for importance sampling
in the above examples depended on analytical knowledge of the estimated quantity. In practice,
of course, this quantity to be estimated is not known.

Itis clear, then, that some form of additional knowledge is necessary to find weightings which
give significant improvement to the efficiency of the Monte Carlo algorithm. The information
relevant to the power system reliability problem is. which terms from the series by which the

SFor an index that was continuous rather than simply 0 or 1, this may be interpreted as biassing the simulation
to have more trials around the expected estimate to better “ confirm” the validity of that estimate.
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expected valueis calcul ated contribute most to the mean probability of failureto supply. Inthe
two illustrations given above, it has been assumed that certain terms dominate the series making
approximations possible. However, this is only true for small networks. In larger networks,
while individual terms corresponding to outages of single components may be large, there are
many terms corresponding to different combinations of multiple outages.

It may be necessary, assuggestedin[75], torunatrial simulationto get apreliminary estimate of
the system failurerate in order to cal cul ate the importance sampling weightings and the number
of trials needed, and then run the full study. More qualitative knowledge gained from operators
may be useful in this context to weight different system components separately according to
empirical knowledge of which ones tend to cause most problems, though it may be difficult to
ensure that thisknowledge is“generic” i.e. can be applied smilarly to all large power systems,
rather than system specific. Alternatively, somerepresentation of that empirical knowlegde may
be accessible from sensitivity analysis of the intact system - changes in generation or in injec-
tions caused by losses of lineswhich have greater impact on other system components operating
near to their limits may be weighted in proportion to those sensitivities.

9.2 Application of control variatesto power system reliabil-
ity

An application of control variates (or “regression sampling”) isoutlined in [79], [80] and [76].

In [79, 80, 76], contributions to “loss of load probability” (LOLP) and “expected power not
supplied” (EPNS) indices are broken down into those caused by

e generation outages severe enough to lead to load curtailment even if there were no limi-
tations in transmission capacity.

¢ transmission outages severeenough to lead to load curtailment eveniif all generation were
available.

e composite outages where the effects of generation and transmission alone would not be
enough to cause load curtailment but whose combined effect |eads to system problems.

The expected energy not supplied caused solely by generation outages is denoted in [79] as
UDG. The expected energy not supplied caused by outages of either generation or transmis-
sion or bothisdenoted / DGT'. The control variate C' from equation (7.23) where

Y(a)=Y —a(C — pe) (9.43)

is chosen to be U DG, Y(a) is anew function which is an unbiased estimator of uc. e is

calculated from enumeration of I/ DG (in general, this enumeration will provide an estimate of

pe). Takinga = 1 (an approximationwhich isoften used in power system compositereliability
analysis) and the expected values of equation (9.43) it is found that

ElY(a)] = E(Y)—E(C)+ po (9.44)

= E(Y) (9.45)
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meaning that an estimate of a“residual”, here £(Y) — E(C') + uc, would give the desired result
when E(C') =~ pe with, aswas shown in section 7.3, areduced estimate variance.

=)

(1]

| Calculate E(UDG) by enumeration |
¥

| Sample generation vector g; |
v

Calculate UGD(g;) |

(]
| Sample transmission vector t;

¥
Calculate UDGT (g;,t;)
12
Find ‘residual’
Y;= UDGT(g;.tj) - UDG(g;) + E(UDG)
¥
| Update E(Y) and var(Y) |

<>

Yes

( o0 )

Figure 9.3: Illustration of the use of a control variate

| i=i+l

In the context of [79], then, the Monte Carlo simluation proceedsin the manner shown in figure
9.3. First i, here denoted by the expected value of I/ D, isfound. Then arandom generation
vector ¢; issampled and the EPNS caused by this vector of generation states (with the transmis-
sion system intact), U/ DG/(g;), is found. This represents the random variate C' from equation
(9.43). A transmission vector ¢; is then sampled and the EPNS calculated for the composite
system described by ¢; and ¢;. Denoted U DGT'(g;, t;) here, this represents the random variate
Y from (9.43). Findly, theresidual isfound for thetria in question. If thisisthesth trial, this
may be denoted Y; and represents the random variate Y (a) from (9.43).

Two test systems were used in [80] to find the relative contributions. The first had 465 buses,
679 branches and 104 generating units. Thisgave therelative contributionsto each index being
approximately distributed with between 7 and 12 % caused by generation outages, 25-30% by
transmission and 60% by composite effects. The second system with 519 buses, 706 branches
and 51 generating units gave contributionsto LOLP as follows: generation 24%, transmission
62% and composite effects 14%. For the EPNS index, however, this system gave generation
78%, transmission 16% and composite 6%.

The results show that the speed-up gained by use of a particular control variate is likely to de-
pend significantly on the system being analysed. For the first test system above, for example, it
may be useful to adopt two control variates (or “regression variables’): generation and single
circuit transmission outages. The final choice of regression variable should be dictated by the
expected correl ation between the composite system index and the candidate regression variable
or by prior numerical tests. It should also be recalled that calculation of the regression variable
itself has a computational overhead.

A speed-up of 12 timesfor the EPNSindex and 30 timesfor the LOLPindex isclaimedin [80].
Further speed-upisclaimedin [76] due to combination of control variates and importance sam-
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pling schemes. It is also noted in [80] that the effectiveness of load curtailment cuased simply
by generation outages as acontrol variate will depend on the system being studied and the |oad-
ing level. For example, if thereis plenty of spare generating capacity relative to the load, the
impact of the loss of any one generator will be less.In this circumstance, load curtailment due
solely to transmission outages may be much more correlated to the composite system index of
interest and would make a better choice as control variate.

In [81], it is noted that « in equation (9.43) is very often taken simply as 1 in power system re-
liability studies. It isproposed instead that greater variance reduction can be achieved by using
estimates of «* based on estimates of cov|[Y, C] and var[C] obtained as the Monte Carlo simula-
tion proceeds. It is noted that the estimate for 1 need not then be unbiased but that the bias may
be expected to decrease as the number of trials increases.

9.3 Application of stratified samplingto power system relia-
bility

Itisnoted in[52] that in reliability evaluation requiring analysis over aperiod of time, high load
level pointsinthedaily or annual load curves make greater contributionsto unreliability indices
than low load level points.

The work reported in [82] proposes running afull Monte Carlo study for production costing in
one simulation period to estimate the population parameters necessary to define the number of
strata, their boundaries and their weights. Other simulation periods are therefore estimated us-
ing the appropriately applied stratification. A disadvantage of this method, however, aswell the
overhead of performing the initial crude Monte Carlo simulation and the possibility the stratifi-
cation found may lessthan ideal for other simulation periods, isthe need for expert knowledge
to interpret the results of the crude simulation. Various papers by Huang and associates, for ex-
ample [83], therefore propose a more automated procedure along the same lines. The method
is, however, only applied to production simulation.

9.3.1 Stratification after sampling

One of the difficulties associated with stratified sampling is the need to be able to choose in
advance of each trial which stratum it should fall into. Having chosen the stratum, the trial is
then randomly generated within it. This permits control over the number of trialsin each stra-
tum which can enable considerable reduction in variance. However, it is not always possible
to fix the stratum in advance. Fortunately, aswas shown in section 7.5, significant reduction in
variance can still be achieved by stratification after sampling when the number of trialsin each
stratum has been determined by the sampling processitself.

Thisiswhat was done in [84]. However, the theoretical probabilities of atrial occurringin the

kth stratum must be known in advance, which is possible given the stratification carried out in
[84]: the strata are
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1. thosetrials with no outages.
2. thosetrialswith only line outages.
3. those trialswith only generator outages.

4. those trials with both line and generator outages.

It may also be envisaged that stratification could be carried out on a basis of the “contingency
levels’ outlined in section 8.51.e.

1. thosetrials with no outages.

2. thosetrialswith only one outage (“level 1”).

3. those trials with two concurrent outages (“level 27).
4. those trials with three concurrent outages (“level 3”).

5. those trials with four or more concurrent outages (“level 4 or above”).

The above two stratification schemes could be combined to provide subdivisions of line outage,
generator outage and combined line and generator outage strata.

It can be seen from [84] that the choice of stratais critical as for “extreme emergencies’, an
improvement in efficiency of stratified sampling over a crude Monte Carlo estimation of only
1.056 isreported.

9.4 Application of antithetic variatesto power system relia-
bility

Use of antithetic variates has been mentioned in [84]. Little description is offered in [84] of its
use, and certainly no analytical justification. Suffice to say that the method involves generating
oneset of randomnumbersly, ..., U! intheinterval [0, 1] and carrying out onesimulation using
Ui,...,U andthenanotherusing 1 — U5, ..., 1 —U/. Theresultsreported show asignificantly
improved computational efficiency using antithetic variatesover the crude M onte Carl o method.

Use of antithetic variatesin [85] is claimed to reduce the number of trials needed by more than
3 times. Antithetic variates were also used in [86]

A ssimple exampleis also offered in [87].
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9.5 Application of correlated sampling to power system reli-
ability

An exampleisreported in [88] of use of correlated sampling. The variance reduction technique
is used to improve the variance of the difference in cost between two operating policies for a
fixed number of trials.
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Chapter 10

Application of Variance Reduction in
Value of Security Assessment

Each variance reduction method discussed in chapter 7 has its own distinctive characteristics.
Quite how they fit with a particular problem largely cannot be known in advance so, in this
project, a number of variance reduction techniques have been implemented for the purposes
of detailed comparison. How they behave also depends on the frequency of underlying events,
so how the random events are generated and used in obtaining an estimate is outlined in the
first section of this chapter. Detailed discussion of each variance reduction method in turn then
follows.

10.1 General estimation model

The Monte Carlo estimation processis used so that, when the sampleislargeenough, the sample
mean cost can be taken as a good estimate of the expected cost.

Individual trialsare created by generating random outages for aspecified timeinterval assuming
that the system stateisknown at the start of thisinterval. The set of possibleindependent failure
eventsincludes

e generator fallure;

¢ line outage;

e double circuit outage;
e busbar outage;

e SVCfallure

Note that transient events are not considered. It may also be noted that double cicuit outages
and busbar outages entail taking out of service more than oneline.
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If the failure rate of each type of failure is known and assumed to be constant, the probability
p;i(t) of the:th plant item going out of service unexpectedly in atimeinterval of duration ¢ may
be found from [4]

pi(t) =1- ekit ~ )\it (101)

where ); isthefailurerate of the:th plant item (see chapter 8 for more onfailurerates and outage
probabilities).

If the system contains m: individual basic events, i.e. line faults, busbar faults, double circuit
faults, generator faultsand SV C faults (deration of generation and sudden changes of 1oad have
been neglected in this project to date), the status of the system may be determined for the end
of sometime period ¢ by taking a vector of random numbersU = [U;,...,U,,]. Each U;,: =
1,...,mistakenfromauniformdistributionintheinterval [0, 1]. If arandom number U; isless
than p;(¢), the :th plant status ¥, (where the plant is regarded as aline, busbar, double circuit,
generator or SVC) is deemed to be “out of service”; otherwise, it remainsin service. A vector
of plant statuses ¥ (U) = [U4(U}), ..., V,,(U,,)] may thus be obtained and may be called the
contingency state.

Deration of generation and sudden reduction of demand at a given bulk supply point may be
modelled in a similar way with sets of state transition rates describing the number of changes
from onestate to another per unit time whereastate may be considered to be the generator output
or the demand. The probability of changing from one state to another can then calculated in the
same way asin equation (10.1).

The cost of agiven plan at agiven time will be afunction of the contingency state ¥ and will
comprise the sum of load shedding costs s(¥) and generation costs ¢(¥ ) so that the total cost

F(®)iss(¥) + g(P). If f(P(U)) isrepresented by ~(U), the expected total cost for agiven
time and plan may then be estimated by 6 such that

0==3 h(U)) (10.2)

where n isthe number of trials.

10.2 Antithetic variates

This technique is based on finding two unbiased estimators for the unknown parameter f(¥)
which have strong negative correlation [50]. If the two estimators are ¢, and ¢-, the estimator
of f(®) will be 3(¢1 + ¢2) with

var[L(o1 + ¢2)] = (103
1 1 1
Zvar(qﬁl) + Zvar(%) + §COV(¢>17 $2).

1Random numbers may be generated by any suitable random number generator such as that included in the
NAG library [6] (random number generation algorithms are discussed in [51]).
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Clearly, from equation (10.3), if cov(¢y, ¢,) is strongly negetive, the overall variance can be
reduced.

To estimate the expected value of f(W¥), £[f(¥)], asample of n tridsis taken with ¥ deter-
mined by avector of random numbers U taken from the uniform distribution. The two estima-
torsmay betakenas ¢, = f[¥(U)] = h(U)and ¢, = f[¥(1—U)] = 2(1—-U). Theantithetic
variates estimator 4, isthen

b= o S H(U) + (1 = U], (10.4)

When sampling, the effect isto have pairs of trials where thefirst trial hasits contingency con-
dition ¥; determined by U; and the second one has ¥, givenby U;;; = 1 — U,. Thetwo
trialsare negatively correlated so that if onetrial returnsalarge outcome, the other will belikely
to return asmall one. It would be hoped that the average cost of the two, [2(U;) + A(U;4)],
will be near to the population mean. Thus, if many such pairsof trials are performed, the spread
(or variance) of the averages of the pairswill be low.

Sincetheaverage of pairsof trialsistallied, it should be clear that the computation time required
by equation (10.4) is twice that required by the simple Monte carlo sampling (since two trials
are required to provide one independent tallied ‘ data point’) so the estimator of (10.4) is more
efficient only when its varianceis less than half that of the simple approach.

10.3 Dagger sampling

In the context of power system value of security assessment, the application of dagger sampling
requires an appropriate choice of system dagger cyclelength. Thismeansthat any item of plant
that, according to its own outage probability, would have a dagger cycle longer than the sys-
tem one would haveits cycle truncated. Items of plant with shorter cycleswould have repeated
cycles contained within system cycles. Any cycle that isincomplete when the system cycleis
finished will also be truncated. An illustration of thiswill now be given.

Suppose component « has an outage probability of 0.1 so that the dagger cycle length z, is 10;
component 4 has an outage probability of 0.33 so that z, = 3; and component ¢ has an outage
probability of 0.15 so that z. = 6. Choosing the system dagger cycle length as = = 6 would
mean that two cycles could be completed for component 4 for each one for component ¢. This
meansthat for every singlerandom number which must be generated to determinethe statusof ¢
ineach of acycleof z, = 6 trias, two random numbers must be generated for 4. For component
a, however, one random number would determine its status in each of z, = 10 trials. If the
system cyclelength is 6, anew random number will be generated for component « after 6 trials
regardless of the dagger number for « determined before. Thiswill fix the next 10 trials, only
thefirst 6 of which will be modelled according to that (new) random number.

Aswas seen in section 7.6, where different componentsin a system have different outage prob-
abilities, a choice must be made as to what the system dagger cycle should be.
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If aminimum number of tallied data points needed for areasonabl e estimate of the sample vari-
anceistaken arbitrarily as 10, the minimum number of trialsneeded tobesimulatedis10z. With
an absol ute maximum number of trialSset asn,,,,.. in order to prevent excessive solution times,
it can be seen that alimit will be imposed on =z such that

2 < ”1“0 (10.5)

In general, alonger dagger cycle will give agreater reduction in variance although, as = trias
are needed for each data point, thismay imply alarge number of trials. Which dagger method is
best then depends on the system being evaluated, the outage probabilities and the relative gain
in variance reduction for a particular =.

In order to removethis system dependence, then, two refinements of dagger sampling have been
developed. These have been called “automatic dagger sasmpling” and “ alternative dagger sam-

pling”.

Inthefirst of these, the system dagger cyclelengthisinitially set equal tothe shortest cycleinthe
system. After some minimum number of tallied points have been collected (say, 10), the sample
variance is calculated. Based on the assumption that the calculated sample variance will not
change significantly as sampling continues, ajudgment is then made as to how many more data
points need to be collected for variance of the sample mean to reach the required level. Thisin
turn, sincethe system dagger cycle length isknown, implies a prediction of the required number
of simulated trials. If thisnumber is greater than the minimum number of trials that would need
to be simulated were the system dagger cyclelength to be equal to the greatest component cycle
lenght (thisis based on an arbitrary choice of aminimum number of tallied data points, such as
10 above), it would appear that a result could be reached more quickly using the longer dagger
cycle. The system dagger cycle length is then switched to equal the longest component cycle
length in the system and the costs of the trials already simulated are included in the calculation
of the next tallied outcome.

Since the outage probability of the rarest type of component failure may so long as to make
the switching described above very inadvantageous, another method, “aternative cycling”, has
been offered. This follows the same principle as the “automatic cycling” but the user of the
software chooses which plant type theinitial system dagger cycle should be fixed to, and which
plant type to switch to where possible. Clearly, the outage probability of the first plant type
should be higher than the second?.

10.4 Stratification by changein MVA

Stratification is carried out after sampling (or, more precisely, as sampling proceeds) on abasis
of the changein MVA capacity. Thisenableslineand generator outagesto betreated onthe same
basis (unlike the work in [84]) and also takes into account MVArs aswell asMWs. Aswell as

2Further variations of the “automatic” and “alternative” cycles could clearly be thought of where the system
dager cycle length steps up in order of component cycle lenghts wherever it is estimated to be useful to do so.
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giving some account of voltage problems, this means that SV C outages can also be included.
It has the further advantage of being simple to implement as the range of possible changesin
MVA is known in advance allowing the stratum boundaries to be determined before sampling
commences.

While extensive analysis could be carried out to find the correct stratum weights, thisis likely
to be almost as computationally demanding as the estimation of the expected cost itself. Thus,
it was felt that each stratum weight (which is the probability of an individual trial falling into
the stratum) would be better approximated by the ratio of the number of trials in the stratum
to the total number of trials. As was noted by Kleijnen [3], this makes each stratum weight
stochastic since the number of trialsin each stratumis stochastic, and impliesthat the confidence
interval ismoreapproximate. Cochran [55] goesfurther to suggest that errorsin stratum weights
can introduce bias to the estimate. Thisis not felt by the author of this report to be the case
in stratification after sampling as the estimate is not a function of the number of trialsin each
stratum (with other stratification methods, it is).

10.5 *“Adaptive’ stratification by cost

For this method, it was noted that the ideal stratification variable would be the trial outcome
itself. However, this cannot be known a priori. Further, it was noted that certain rules exist
for optimum determination of stratum boundaries. Of these rules, the best established is the
so-called “cum /f” rule [55].

The method exploitsthe fact that as sampling proceeds, more knowledge of the problemis con-
tinually gained in the form of the frequency distribution of the outcomes (costs). Given that
when the number of trials per stratumis*“large”, say greater than 20, stratification after sampling
isnearly as precise as proportionally stratified sampling, thisknowledgeis used “adaptively” to
determine stratum boundaries whenever the sampleis so large that at least 20 trialswould bein
each stratum.

At thestart of sampling, thereisjust onestratum. By monitoring the cost frequency distribution,

the“cum /f” ruleisused to split the stratum in such away that thecum / f(cost) interval isthe
samein each half and each half has at least 20 trials. Aseach new trial isevaluated, its outcome
is added to the appropriate stratum. The frequency distribution of each stratum is continually
monitored until it, too, can be split, creating a new stratum until a maximum number of strata
has been obtained. This maximum number of stratahas been set at 8 sinceit lendsitself well to
such “binary” splitting and is close to the figure of 6 suggested by Cochran [55].

Such adaptive stratification allows the most appropriate stratification to be carried out at the ear-
liest possible moment so that a minimum number of trials needed for agiven estimate variance
can be obtained as nearly asis practicable. However, a stratification carried out early onin the
sampling, ideal according to the the knowledge at thetime, i.e. the frequency distribution of the
sampleto date, may be seen to be less than ideal as new knowledgeis gained. Hence, the entire
sampleisrestratified periodically, say every 1000 or n., trias.
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Figure 10.1: Flow chart of “adaptive” stratification

The method isillustrated in figure 10.1.

The main disadvantage of the method is that while the theory regarding the confidence inter-
val requires the use the population variance of each stratum, only the sample variance of each
stratum is available. In addition, the theoretical weights of each stratum are not known and are
approximated by the ratios of the number of trialsin each stratum to the total number of trials.
These circumstances makethe confidenceinterval approximate meaning that sampling may stop
earlier than necessary leading to imprecision in the estimate. (No biasis introduced as can be
seen from the results shown chapter ??. The mean of the sample meansis equal to population
mean.)

Experiments have shown that fewer strata than 8 lead to lessimprecision (according to [55], 6
isan ideal number of strata) but, inevitably, as the benefit of stratification is reduced by reduc-
ing the number of strata, moretrials are needed. Thiswasfelt to indicate the dependence of the
stopping criterion on the estimates of population variances. With fewer strata, the error accruing
from the error in each stratum variance is less, and there are more trialsin each stratum making
each estimate more reliable. Further, with more trials, the central limit theorem which states
that when a sample is large, the sampling distribution may be approximated by a normal dis-
tribution regardless of the underlying population distribution, holds with greater certainty than
with smaller samples.
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Figure 10.2: Flow chart of “adaptive” stratification with convergence checking for estimates of
stratum variances

Theory has shown that confidenceinterval s can be set not only for means, but also for variances.
Sincethe maximum number of stratamust be set in advance of sampling, thishas been exploited
to ensuremore reliable estimates of the stratum variances by forcing sampling to continue while
pre-set confidence limits are not met by any one stratum sample variance, so giving less aproxi-
mate confidencelimitsfor the mean cost. Thisapproachisillustratedin figure 10.2. What tends
to happen, in thiscase, isthat the stratum with largest costs will have the greatest within-stratum
variance and hencethe least reliable estimate of the stratum population variance. Where alloca-
tion of trialsin advanceis possible, thiswould be the stratum which would have proportionally
more trials. With stratification after sampling, sampling must simply continue until sufficient
precision in the estimate of the stratum variance is obtained.

Evenin the case where sampling isforced to continue until certain confidence limits on stratum
variances have been reached, sampling can stop inappropriately due to error in the variance of
the estimate. It isalready been noted that the underlying distribution in each stratum is not nor-
mal and that this leads to imprecision in the confidence limits. One means tried to voercome
this has been to split a stratum only at the minimum turning point in the stratum’s frequency

117



distribution that is nearest to the break-piint suggested by the cum,/ rule, though this still has
limited effectivenessin the presence of extreme outliers.

It hasbeen noted in theliterature that resampling methods such asthejackknife or bootstrap (see
section 7.8) can derive better estimates of the variance of the estimate under such conditions.
Some investigation of application of both the jackknife and the bootstrap has therefore been
carried out. Thisis described in the next two sections.

10.5.1 Useof thejackknifein stratified sampling

Theweights, P;,: = 1,...,m wherem isthe number of strata, are kept equal to the empirical
weights found in the original sample, i.e. P, = n;/n wheren; isthe number of trialsin the ;th
stratum and r. is the number of trialsin the whole sample. (If the weights were alowed to vary
with the deletion of each observation, the statistic would reduce to the simple average and the
advantage of the stratification would be lost.)

In the conventional approach, the estimates of the variances of the weighted stratum means are
summed to give the variance of the final estimate. With the jackknife, the variance of the final
estimate is found directly since the statistic evaluated by the jackknife method is the sum of the
weighted stratum means where the weights P; are given by n; /n.

The estimated cost before the jackknifeis

=T, = f} (10.6)
- i% (10.7)

where _
7, = i Z vi.. (10.8)

If the deleted observation & fallsin the hth stratum, the jackknife statistic, 7,1 x, is then

m Z 1 np
T = | X S )+ DTS (10.9)
i=tizh nom= b,
1 [/ m n np
= — 222w | =D, + k. Z o | —ue| (10.10)
n i=1j=1 j=1 np—1

S |

_ 1 (i iyi]) m— (th) — nb_lyk] (10.11)

where the j,th observation of the hth stratum correspondsto the kth observation of the sample.

118



AlltheT,,_1 4,k = 1,...,n arethen used to obtain v,,.;, the jacknife estimate of the variance
of the final estimated mean which is then used in conjunction with the classical normal model
of the sampling distribution to ascertain confidence limits.

The jackknife procedure also permits the final mean itself to be cal culated with some compen-
sation for any error incurred by the ratios r; /n not being, in general, equal to 7.

Since the model of convergence based on a jackknife estimate of the mean will generally im-
ply aneed to generate moretrial s than the conventional model, the computational burden of the
jackknife procedureisreduced by not carrying out the jackknifeto cal culate more accurate vari-
ances until the confidence limits determined by the conventional model have aready been met.
Thisisillustrated in figure 10.3.

Generate trial
y
Tally outcome

Yes Flag N
usejack set?

Estimate variance Estimate variance
using jackknife by conventional means

Variance < limit? Variance < limit?

( Stop ) Set usejack=true
|

Figure 10.3: Use of the jackknife

10.5.2 Useof thebootstrap in stratified sampling

The bootstrap may be exploited to model the confidence interval better, being based, asit is, on
an “empirical distribution”.

The decision must be made as to whether to apply the bootstrap to the whole sample, or to treat
each stratum as a separate i.i.d. sample. The effect of this difference is that in the latter case
the number of trialsin each stratum isthe same asin the original sample, while in the former it
need not be. In common with the application of the jackknife, theweightsaretaken asthen; /n
from the original sample.

As was noted in section 7.8, amajor difficulty with the bootstrap is the large amount of extra
computation needed to generatethe bootstrap samples. Itisalso not clear fromtheliterature how
many bootstrap samplesare needed, though itisassertedin [66, 65] that at |east 1000 are needed.
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One possibleapproach may beto perform the bootstrap itself by aMonte Carlo estimation, apply
classical confidencelimitsfor the upper and and lower bounds being cal cul ated by the bootstrap
to ascertain when to stop the ssimulation.

Thelarge computational overhead effectively precludesthe bootstrap from use asatest for con-
vergence of aMonte Carlo simulation to agiven precision and degree of confidence. However,
it can be used to quantify the confidence interval of afixed, given sample where the statistic
has a non-normal distribution, such the sample mean worked out by stratification. As such, it
confirms that considerable reduction in variance may be achieved by the “adaptive stratified
sampling” method and indicates that relatively few additional trials would be needed in addi-
tion to those suggested by classical confidence intervals for the degree of confidence specified
to be met.

10.6 Stratification by outagetype

Thisissimilar to the method used in [84], but achieves greater reduction in variance by group-
ing together more similar outages in the two-way stratification shown in figure 10.4 where the
numbers in italics are the stratum numbers. It has the advantage over the other stratification
methods described above of having the theoretical stratum weights available. Its disadvantage
isthat the stratification variables may not be particularly straongly correlated with the outcome
of atrial.

Number of
generator
outages 2
O | 1/|or
Number
of line more
outages
0 1 2 3
1 4 5 6
2 or more 7 8 9

Figure 10.4: Two-way stratification by outage type

10.7 Control variates

Two variations on the method have been implemented thus far in this project and are based on
thework in [79, 80]. One uses the expected cost of contingencies comprising only generation
outages as the regression (or control) variable (figure 10.5) while the other uses the expected
cost of transmission outages (figure 10.6).

The expected cost of theregression variableisfirst evaluated by enumeration up to agiven “out-
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Figure 10.5: The use of the expected cost of generation outages as a control variable

agelevel”3. Monte Carlo simulationthen proceeds. If arandomly generated vector of regression
variable plant statuses was evaluated in the enumeration, its cost is either calculated or looked
up from previously stored values, i.e. for enumeration up to level 3, any vector comprising 1,
2 or 3 outages will have its cost found. Otherwise, since the scenario was not covered in the
enumeration, it must be taken as having cost 0. Random statuses are then taken for all the other
plant and cost of al the plant outagesis found. The “residua” isthen found and tallied.

Theaverageresidual givesan unbiased estimate of the expected outage cost for all plant outages.
The variance reduction can be seen through the tallied values being the average of theregression
variable'sexpected value plus the costs incurred by the other variables. Thus, since the element
of variability due to the regression variable (in the two cases studied, either generation outages
or transmission outages) has been removed, the overall spread of tallied costs should be less.

10.8 Correlated sampling

Thisis a simple method in which the variance of the difference in a statistic calculated from
two similar distributions can be reduced by performing Monte Carlo sampling of each using the
same set of random numbers [50]. Although it has few theoretical difficulties, its implementa-
tion in this project has required considerable re-writing of the software to enable the necessary
comparison between different initial scenarios.

3Theoutagelevel isthe number of concurrent independent outages. Eval uation of generation outagesup to level
of 3, for example, would entail calculating the cost times the probability of every possible single generator outage
and all combinationsof pairsof generator outages and of 3 concurrent outages. The expected valueisthen the sum
of al these products. The accuracy of the enumeration depends on the assumption that the costs of scenarios above
the given level areinsignificant.
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Figure 10.6: The use of the expected cost of transmission outages as a control variable

The action of correlated sampling in the context of the assessment of the value of security is
illustrated in figure 10.7. In the figure, two pairs of power system scenarios are shown. The
scenarios on the left concern a part of a system where the only generator is generating 1000
MW. In those on the right, the same generator is generating 1270 MW. Let it be supposed that
the cheapest scenario is to be found - that with the illustrated generator generating 1270 MWs,
or that where it is generating 1000 MWs and some other generator is generating an extra 270
MWs. All other plant statuses may be assumed to be the same in each case.

Figure 10.7: lllustration of correlated sampling in comparing scenarios
In estimating the value of the security afforded by the different levels of generation at the gen-

erator in question, random outages may applied to the system and the resulting costs and cost
differencestallied. In the pair of situations at the top of the figure, the same outage has been
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applied to each case. In the bottom pair, there are different outages. Another way of expressing
the aim of the simulation is to discover the effect of the change in generation on the expected
outage cost. It should be clear that the cost difference Az between the top pair of situationsis
due solely to the difference in generation patterns, while the cost difference between the bottom
paris(z + Az) — y and is due both to the different outage in each case and the differencein
generation.

The effect of correlated sampling is to tally the differences Az for similar outage scenarios.
Variations due to factors other than the difference in initial condition are removed and the vari-
ance of the tallied cost differences is reduced so that a decision on which of two scenariosis
cheaper can be made quickly.

The software has been written so that correlated sampling can be exploited to make comparisons
between scenarios in one of two ways:

1. by forcing sampling to continueuntil adegree of confidence specified by the user hasbeen
obtained for the sign of the difference in cost between two scenarios.

2. by forcing sampling to continue until a given degree of confidence in the sign of the dif-
ference has been obtained, and an estimate of each individual scenario’s cost has been
obtained within a pre-specified confidence interval.

The necessary degree of confidence in the sign of the cost difference is detected quite simply.
With knowledge of the sample variance (of the cost difference), the sample size and an assump-
tion that the sampling distribution is normal, the standard expressions relating degree of confi-
dence and confidenceinterval can be used:

L = tw% (10.12)
v = 1l—a (10.13)

where L isthe confidence interval, s is the sample variance, » is the sample size and ~ isthe
desired degree of confidence. ¢/, isfound fromthet-distributionwith» —1 degrees of freedom.
(Notethat I isaways positive.)

If X1, X,,..., X, arethetallied cost differences, the expected cost difference can be estimated
by

Xi. (10.14)

— 1
X=—
n_q

n

k3

Since the meaning of the confidence interval is that the true population mean lies within + 7. of
the estimated mean with 100~% confidence, only when | X'| > L canthere be 100v% confidence
inthe sign of the actual cost difference. Thisisbecause, if | X| < L and X is, say, negative, the
confidence interval describing the possible range of the true mean (with 100~v% confidence) is
X — L, whichis clearly negative, to X + L, which is positive when | X| < L, meaning that
the true population mean could be positive rather than negative implying a different answer to
the question “which scenario is cheaper?’ Thisisillustrated in figure 10.8. When the sampleis
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still quite small, the sample mean X isfound and the confidenceinterval L, calculated. It can
be seenthat L, > |X|. Sampling isthen continued and at some later point the sample mean
and confidence interval are recalculated. These are denoted X, and L,. Now, L, < |X,| so
sufficient precision has been obtained and sampling can stop.

sample size

Y2' Lz ?2 X2+ Lz
1

1"-1 )I(l X1+ I-1
} >

0 cost
difference

Figure 10.8: Illustration of confidence limitsin correlated sampling

In general, there will be a need to compare more than 2 scenarios. The method for doing this
adopted hereresemblesa®knock-out” competition. Thefirst two scenariosare compared, gener-
ating onetrial set of random outageswhich isapplied to both scenarios, simulating the outcome
of those outages on each and tallying the individual costs and the difference in cost before gen-
erating another set of outages until sufficient precision has been achieved. The outage set asso-
ciated with each trial isrecorded. The cheapest scenario isthen regarded asthe “winner” and is
compared to the next scenario. The same outages from thefirst “contest” are applied to the new
scenario and the costs of those outages on that scenario tallied. The winner from the previous
contest does not need to be simulated again since all the costs have already been tallied, which
enables the cost differences between the new scenario and the previous “winner” to be tallied.
The recorded outages are applied until sufficient precision has been obtained. If, however, the
precision is not yet sufficient when the record of outage setsis exhausted, new sets of random
outages must be generated and simulated on both the new scenario and the previous “winner”.
A winner will then be found for this * contest” (which may be the same asthe previous winner),
and another new scenario simulated for the same common outage sets. I1n thisway, any number
of scenariosmay be compared in order to find the single cheapest one. The processisillustrated
infigure 10.9.

2]3]«]5 6 ]7]e e |

5 |3|4|5 _.|..6 E N

Cheapest

|:| Trial = randomly generated system state
Trial = previously simulated state

Trials with same numbers have same random events

Figure 10.9: Comparison of scenariosin correlated sampling
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10.9 Importance sampling

Work on importance sampling has focused on biasing not only individual plant outages but also
the expected number of outages per trial of each plant type.

It may further be found after a simluation that the average number of outages per trial for dif-
ferent plant types for trials with outcomes close to the mean is something else. Thus, in order
that there be more trials with costs around the expected cost, in further simulations of similar
scenarios, the outage probabilties may be biased to achieve the expected number of outagesfor
outcomes close to the mean.

A further investigation has been based on the observation that over-biasing may cause there to
be too many trialsin a simulation with very high cost. In particular, it was previously felt that
individual plant itemswhich are associated with high cost should be weighted more highly than
others. Thishasthe effect of moving the cost frequency distribution too far to the right and may
result in ahigher rather than lower variance. Instead, individual plant items whose outages are
associated with costs that are found afterwards to be close to the mean (or expected) cost are
weighted more heavily in subsequent simulations of similar scenarios.

Early findingsindicatethat these approachesto importance sampling do not significantly reduce
the number of trials needed for agiven precision of estimate. While importance sampling may
still, intheory, yield large reductionsin variance, on the basis of theresultsfound sofar, itisfelt
by the author that for significant rewards, too much time would need to be spent in the course
of this project to warrant further investigation. It should be noted, however, that an opportunity
may present itself in the course of some other project to return to the subject, and that such an
opportunity may well be worth taking.
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Appendix A

Static Analysisin the Value of Security
A Sssessor

Two basic tools included in the “Value of Security” assessor package are described here for
static analysis of power systems (i.e. concerned with the algebraic rather than differential equa-
tions). Thefirst istheload flow tool which solvesthe non-linear equations concerned with com-
plex nodal voltages, power injections and power flows. The second is sensitivity analysisin
which the algebraic load flow equations are linearised to show changes in dependent variables
for changesin control variables. The equations are introduced in the first section.

A.1 Basics

A power system can be described by a set of differential equations and a set of algebraic equa-
tionsto form adifferential-algebraic system which can be written

= F(z,u,p) (A.D)
0 = G(Cl?,u,p) (AZ)

where x is the vector of power system state (dependent) variables, « is the vector of indepen-
dent variablesand p isavector of system parameters. Alternatively, the system can be described
in terms of differential equations, algebraic equations and difference equations describing dis-
crete time events such as changes to on-load tap changing transformer tap ratiosand changesin
switchable shunt susceptances. In this case, the system can be written

&t = F(z,u,z,p) (A.3)
0 = Gl.u,%p) (A4)
z(k+1) = H(z,u,z(k),p) (A.5)

where z isthe vector of variables which can be changed in discrete steps at time £.

In this study, only static controls and their algebraic constraints are being considered as even
when constraints are originally defined according to dynamic criteria, standard practice in op-
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eration of large power systems determines that the constraints are expressed in terms of static
guantities. Hence, only equation A.2 is of interest.

Thefunction & isthe sum of the set of power injection equations. These equationsare functions
of the complex nodal voltagesand complex branch currents. Thetotal complex power S should
be zero for each node. For anode: itis

S; = Vil; (A-6)

where V; isthe complex voltage at node: and /; isthe current at node ;. For every branch from
node:toanodeyj,j =1...N,j # 1,
N,j#i
Si=P+iQ= Y Vil (A7)
j=1
where P isthe active power and () isthereactivepower. If thecomplex admittanceof the branch
connecting nodes: and j iSy;;,

S; = Vi(yij (Vi = V)" (A.8)

A.2 Load Flow

Load flow routines have been used to solve the algebraic power flow equations in analysis of
static power system conditionsfor many years and have taken many different forms[89]. Inthe
late 1970s and early 1980s, fast decoupled routines became popular [90], although trends now
again favour fully coupled implementations for analysis of systems run under a wider variety
of conditions.

Theload flow routineimplemented as part of thisproject isbased on astandard formul ation such
asthat described in [91]. It has been further developed to provide an interactive shell through
which the user can easily change parameters such as transformer tap ratios, generator P and V/
set pointsand () generation limits, and line switched in/out status. Network sensitivity matrices
can be calculated from each new system condition (see section A.3).

The operating state of an interconnected power system can be described in terms of four sets of
guantities which relate to each node of the system. These are the nodal voltage magnitude V,
voltage angle ¢, active power injection P and reactive power injection (). Theload flow allows
two of these quantities to be found for each node once the others have been defined.

Three different bus conditions are defined depending on which two of the four parameters are
pre-defined. Theseare

PV or voltage-controlled (regulated) bus. Such a bus has the facility to maintain a fixed
voltage magnitude V' which is specified and as such will be a variable source of reactive
power. The active power injected is also specified. In practice, this represents a genera-
tor or compensator bus, and maximum or minimum limits on the reactive power injected
Qomaz @A Q. May be set.
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PQ or unregulated bus. Thetotal injection P+j() is specified corresponding to the load at a
load bus.

Slack or swing bus. This bus defines the voltage angle reference and also has the voltage
magnitude defined. P and () are allowed to vary since all powers cannot be defined in
advance as system losses are unknown. The slack bus can be regarded as analogousto a
generator responsible for maintenance of system frequency.

The set of simultaneous power equations which defines the system’s state is non-linear. It is
therefore solved viaa set of successive linear approximationsbased on first order Taylor expan-
sions of the power equations. The most common method is that of Newton which iswhat has
been used in this study.

The solution routine requires the assignment of some initia estimate to all the busbar voltage
magnitudes and angles (the slack bus angle is typically assigned to 0.0 degrees and the calcu-
lation of the initial real and reactive power mismatches. Should any of these be above the set
tolerance, the Jacobian isformed and solved for updates of voltages and angles upon which new
estimates of the power mismatches are obtained. While convergence is not obtained, the Jaco-
bian is again formed and new updates of V' and # are found.

The power equation for bus & is

Sp =P+ iQr = ViI; (A.9)
= Vi) Vi (A.10)

mek

where V;, isthe voltage at bus & and
Ep = Vi 4+ jVi™ = Vilby, (A.11)

Yrm 1S the admittance between buses k£ and m and 7}, is the current injected at bus . In polar
co-ordinates, P, and () are

= Z Vk\/m {ka COS(ek - Gm) —|— Bkm sin(&k - Hm)} (A12)
mek
Qr = Y ViV {Grm sin(0 — 0,,) — By cos(0 — 0,,)} (A.13)
mek
where

Linear relationships for small changesin V' and ¢ are found so that for a P() bus

AP, = Zap’ua +Z OF% 5 (A.15)
mEk
Q1+ an
/ = Ae A m Al
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For a PV bus, only equation A.15is used since (). is not specified, and there are no equations
for the slack bus.

With the voltages in rectangular form, the partial derivativesare

Hi = 3 = GV = VEVET) = B (VIVEm + ViPVi) - (ALT)
Nim = Vagrs = Grn(VIV," = ViI"VIE) = Ben (Vi"VE+ VITV,) - (AL8)
Jem = % = —Nim (A.19)
Lim = Vmget = Hpp (A.20)
Hy= 5E  =-Qr— BuV\’ (A.21)
N = VigE = P+ GuVi? (A.22)
Jw= G =P— GuVi (A.23)
Lix = Vi3 = Qr— BuVi (A.249)

These are assembled in amatrix equation of the form

(A.25)

Apr1 Hr—t NPl AL
AQrt | T gt Lt || &Y
which is solved for A#? and AV? at the pth iteration where A PP~! are the P mismatches for
al PQ and PV busbars, AQ?~! are the Q mismatchesfor the PQ busbars, A§? arethe § cor-
rectionsfor al P and PV busbarsand AV? arethe V correctionsfor all P buses.

A.2.1 PV busreactivelimits

M aximum and minimum limits on reactive generation are often defined for PV buses. Oncethe
maximum mismatch is |ess than some pre-defined quantity (meaning that the solution is being
approached), the () injections at all the PV buses are compared with their limits. When alimit
isexceeded, (7 at that busisfixed to thelimiting value and the bus typeis switched to P with
V to befound. The effectisthenfor V to ‘float’ to meet the required system conditions.

If, at subsequent iterations, the busvoltagemagnitude V ishigher thanitstarget valueand () isat
its maximum value (meaning that too many MVArs are being generated when there is freedom
to generatefewer) or V isbelow itstarget and () isat its minimum val ue (meaning that too many
MVArs are being absorbed when there is freedom to absorb fewer), the type is switched back
to PV with V set to itstarget value.

Only enforcing the @) limits once the biggest mismatch becomes less than a certain value pre-
vents early divergence of the iterative process due to excessively large changes.
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A.2.2 Distributed dack bus

The slack bus is conventionally used to provide a reference voltage angle and to take up the
system losses which cannot be predicted prior to running the study. It could also be thought of
compensating any difference between load and generation and in thisway is alike a generator
with governor contral. It is often chosen as the “largest” PV node on the system.

In practice, there will not be only one generator operating with governor control. The effect of
modelling more can be represented by a “distributed slack” where one bus is retained as pro-
viding a reference, but adjustments to active power generation due to differences between the
total load (including losses) and total generation are divided among a number of PV busesin
proportion to the maximum generation at the bus since this can be taken to be proportional to
theinertia of the machine(s).

Once the maxmimum mismatch becomes less than some pre-defined threshold, the difference
between the reference bus active generation and its scheduled generation is distributed among
all the “free governor” buses changing the scheduled P setting at the start of the next iteration.
Any subsequent changes in reference bus active generation from one iteration to the next are
similarly distributed. Whilethismight be expected to increasethe number of iterationsrequired,
it isfound that only one extra iteration is needed. (“Free governor buses’ are indicated in the
input study file and the bus typeis set accordingly. See section A.2.6 for details of bus types.)

A.2.3 Moddling of SVCs

An SVC (static VAr compensator—so-called asit providesinductive or capacitve VArsbut, un-
like a synchronous compensator, does not rotate) can be modelled like a PV bus with a given
voltage and limits set for reactive power. In such amodel, the V' — I characteristic would be
likethat infigure A.1. However, in reality, some droop is present in the SV C characteristic, es-
sentialy for reasons of stability. Thisisto ensure that the switching characteristic of the SVC
controller is such that a stable voltage is found. This can be understood by reference to figure
A.2. Curve A represents the voltage at the SV C bus as the reactive load changes and can be
thought of as the characteristic of the system. If the SV C characteristic were to be asflat as that
in A.l, it can be seen that the cross-over between the “ system curve’ and the SVC curveisless
well-defined. The result isthat for any given V., tothe SVC, some error between V..., and the
final Vsy o will be present.

The operating area of the SVC will be given by the design of its components and is shown in
A.2 by the shaded area. By varying againin the controller, the slope of the characteristic can be
varied. V,. s can also bevaried and with aslopegiven, onelineisdefined for operation. Thisline
can be defined interms of points p; and p, with pairsof values (Q in, Vimin) @A (Qmazy Vimaz)-

Intheload flow implementation, the SV C characteristicisdefined by (Qnin, Vinin) 80 (Q oz Vinas)

intheinput study filesinceitisassumed that V. will not be changed by the operator. TheSVC
nodeis then modelled asa P() busasfollows.
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ref

min svC max |

inductive current capacitive current

Figure A.2: Terminal voltage V' against current magnitude / for SVC

For Vsve < Viin,

V?S'VC
QSVC’ — v2 ' Qmaz- (A26)

FOf szn < VSVC’ < Vmaza

VSVC Qmar szn

@sve Vo v v (Vsve = Vinae) + Vmw(vmm — Vsve)|. (A.27)
For VSVC > vmara
Vive
Qsve = 35 Wmin (A.28)

where
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Qsve = reactive power generation of the SVC,;

Qmee = Maximum reactive power generation of the SVC,;
Qmin = Minimum reactive power generation of the SVC,;
Vsye =termina voltage of the SVC;

Vimaz = maximum control voltage of the SVC,;

Vimin = minimum control voltage of the SVC.

Thefollowing L, termsin the Jacobian corresponding to the SV C bus are modified with extra
derivative terms added for the changes due to the SVC.

For Vsve < Viin,

v dQsve  2Viye
SV Newe V.

@maz- (A.29)

For vmzn < VSVC < vmaz‘a

0Qsve Vsve Qmac
aVSVC’ B szn - Vmaz szn

Qmin
Vmaz

Vsve (2Vsve — Viaz) + (Vinin — QVSVCQ}\-SO)

For Vsve > Viaz

0Qsve _ 2Vive
OVsve V2% .z

Vsve Qmin- (A.31)

Further discussion of the SVC model can be foundin [92].

A.2.4 Treatment of transformers

Figure A.3 shows the basic equivalent circuit of atransformer with the currents 75, and 7,,.s,
voltages V4, V,,, and V', admittance y;.,, and turnsratio « shown.

l.a
k Ikm km |mk m

Figure A.3: Transformer equivalent circuit

Witha =1,

Lk = Yrm(Vin — Vi) (A.33)

i.e I = —1k.
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Witha # 1,

V= Vi (A.34)

Eliminating V' from (A.35) and replacing /... in (A.36),

]km - a2ykm‘/k - aykmvm (A37)

or in admittance matrix form,

Lim | | @®Yem  —aYrm Vi
PR eI 3

]mk —AaYkm Ykm

This corresponds to equivalent circuit shown in figure A 4.

ayk
m
k |km |mk m

» <

l-a
Vk a (a_ l) ykm ( ) ykm m

Figure A.4: Transformer equivalent circuit with winding removed

On-load tap changing transformers

On-load tap changing transformers (OLTCs) automatically change their tap ratios in discrete
stepswhile under load. The changestake placein order to try to attain atarget voltage on either
theHV or LV side. If thevoltage error on the side of the transformer that is scheduledis V? — V
at time &, afunction f(AV) [93] can be used to determine the new tap ratio a;, where

ary1 = ar — f(AV)Aa (A.40)
1 ifvVi—V>e¢
FAV) = do ifpveovV|<e (A.41)
{ -1 ifVP—-V < —¢

and Aa isthe maximum tap step size, V° is the scheduled voltage magnitude, and ¢ is a dead-
band.

Such afunction f(AV) can be implemented in aload-flow routine at the end of each iteration
so that anew tap ratio can be found and the solution adjusted. However, the solution can tend to
zig-zag around due to the discrete nature of the change. Instead, either adjustment of tap ratios
can be delayed until beyond the first iteration of the load flow, or a continuous model should
be implemented in which V is kept constant and is replaced as the state variable by «, and the
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partial derivatives corresponding to the tap-controlled bus are taken with respect to «. When
the bus being controlled isbus % i.e. a replaces V; and the transformer isasin figure A.3, the
relevant partial derivatives are then [94]

aP;

55 0= N = —2Gm Viia® 4 (e Vi€ + fuVi™)a (A.42)
a
an _ _ 2 2 im re
a a = ka = QBkak a” 4+ (eka — fm‘/k )CL (A43)
a
opP,, .
o0 = Nup = (V" + iV")e (A.44)
oP,, :
sa= L= (V" = fiVi0)a (A.45)
a
where
Vi = V4" (A.47)
Vi, = Vo4V (A .48)
Vi = [Vil (A.49)
ex+ 7 = Vivrm. (A.50)

In order to avoid excessive interaction with other variables, taps are regarded as fixed until the
maximum mismatch falls below some given level. The tap-controlled voltage is then set to the
target voltage and the state to sol ved for becomesthetap ratio. In addition, oscillation of theload
flow solution is prevented by updating the tap ratio only when the change exceedsthe minimum

tap step.

If the tap ratio a reaches an upper or lower limit, « isreplaced by V. as the state variable and
updates of V. are obtained from subsequent iterations of the load flow with « fixed.

A.25 Treatment of quadratureboosters

The basic equivalent circuit for a quadrature booster or phase-shifting transformer is similar to
that shown in figure A.3, but the turns ratio « is replaced by the complex turnsratio «, asin
figure A.5, where

a=a+jb (A.51)
and

V' = al (A.52)

Since power lossin the ideal transformer is negligible,

Vil = —V'I" (A.53)
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k Ikm km Imk m

Figure A.5: Quadrature booster equivalent circuit

From (A.52) and (A.53),
I; = —(a+jb)I” (A.54)
or
I = —I'(a—jb)= —I'a* (A.55)

Thus it can be seen that there are two different turns ratios, one for voltage, o, = a + jb, and
onefor current, o;; = a — 3b.

Solving for terminal currents,

]k — ai]/ — ai(vl - Vm)ykm = ai(vl - Vm)ykm (A56)
= (Vi = Vi) Ukm = @i0Yim Vi — @Yk Vin
_]m = I'= avykm‘/k - ykmvm (A57)

or in admittance matrix form,

I Ay QiYkm  —QiYkm Vi
_ A58
l ]m ] l — Oy Ykm Ykm ] l Vm ( )

It can be seen that, unlike for a standard transformer whose admittance matrix is described by
(A.39), the admittance matrix for aquadrature booster is non-symmetric and the equivalent cir-
cuitisnot readily available. The expression for the active power entering the booster, however,
can be easily found. Considering the power at node k, S, = Vi I} or

If the complex tap ratio o iswrittenas o = a 4+ jb = /¢ and the voltages V;, and V,,, as
Vi = Vil0i, V,, = VinZ0,,, then from equations A.58 and A.59

Se = Vi (Porn Vi = tyinVinl —0) (A.60)
= i (PViE = ViVl (B — 0, + ) (A.61)
With .., = ¢ + 7b, the active power P, isthereal part of S, andis
Py = g (Vi = ViV €05 ¢) — 1hVi Vi sin ¢ (A.62)
where ¢ = 0, — 0,, + 1.
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A.2.6 Summary of sub-categoriesof busbar types

In the code, different busbar types are denoted by an integer in which bits are set denoting prop-
erties or combinations of properties. All the busbar types are one of

e sack (reference) bus,
e PV bus,
e PQ bus.

Some buses have on-load tap-changing transformers (OLTCs). While most of these will be PQ)
buses, some are PV buses. For these, the tap is not moved until the reactive generation reaches
alimit and the bus type switchesto P(). When an OLTC is “active” i.e. the tap-changing is
moving to meet a target voltage, the voltage magnitude at the bus is assumed constant and is
replaced as the variable for which an update is found in the load flow solution by the tap ratio.
If the tap ratio hits an upper or lower limit, the tap ratio becomes fixed (the “tap limited” bit in
the type integer is set) and the voltage magnitude once again becomes the state variable so that
it is updated at each iteration.

The bus types are summarised in table A.1.

Description Bit set Type
dack Freegov. PV PQ SVC OLTC @ limited taplimited
Slack Vv dack
Free governor vV vV PV
PV vV PV
PV + OLTC Vv Vv PV
Freegov., ¢ = limit vV vV Vv PQ
PV, @ = limit V V PQ
PV + OLTC, @ = limit Vi V V ? PQ
PQ v PQ
PQ+OLTC vV Vv ? PQ
sve vV rQ

Table A.1: Summary of bustypes. “?" signifieshbit is sometimes set

A.2.7 Summary of categoriesof line/branch types

The types of lines or branches that are modelled are

e A transmission line.

e A transformer with afixed tap ratio.
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A transformer with atap ratio that is fixed in each load flow study but which can never-
theless be varied between solutions.

An on-load tap-changing transformer (OLTC) for which atarget voltage may be set for
one terminal of the transformer implying that the load flow state variableis the tap ratio
while it remains within the upper and lower bounds.

A quadrature booster (phase-shifting transformer) where the phase shift is fixed in each
load flow study but may be changed between studies.

A shunt compensator, usually a capacitor with fixed susceptance.

A.3 Power System Sensitivity Analysis

Consider apower system with N interconnected nodes. If the total power injected into the sys-
tem is described by the vector G of nodal power injections and is afunction of the vector of N
dependent complex variables =, M control variables « and the vector of power system param-
eters such as line impendances and shunt susceptances p, then for balanced operation [26],

G(z,u,p) =0 (A.63)
If asmall changeto the control vector Aw isapplied then asmall change in the vector of depen-

dent variables Az will result. For balanced operation to continue

Gz + Az,u+ Au,p) =0 (A.64)

Using a Taylor series expansion and neglecting higher order terms, A.64 can be re-expressed as
G(z0,u0,p) + Gu(x0, ug, p) Az + Gy (0, uo, p)Au = 0 (A.65)

where z, and uq arethe original = and « vectors before the changeand . and G, are the Jaco-
bians of G with respect to = and u respectively. If the system was balanced before the change,
the first term vanishes leaving

Gr(xo, uo, p) Az + G20, tg, p)Au =0 (A.66)

From this, the change Az resulting from Aw can be found
Az = —Gy(0, o, p) " G0, 1o, p) Au (A.67)
S0 that the sengitivity matrix S relating Az to Au is
S = —Go(xo,ug, p) " Gu(zo, uo, p) (A.68)
Once S isknown, the change Az; resulting from the change in control Awu; can be estimated
smply as .S;; Au;.
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A.3.1 Relation of reactive power controlsto voltage magnitudes

If the well-known principle of decoupling the active and reactive power equations of a power
system is utilised, equation A.66 can be re-expressed for the reactive subsystem as

GQag(TQo, Uqe: P)ATQ + GQug (T, Ugy, P)Aug = 0 (A.69)
where the Jacobians GG,. and G, are
dGg
, = A.7
0Gq
A.71
GQ“Q auQ i ( )

and G¢ comprises only the reactive power equations. z¢ contains dependent voltage magni-
tudes V; and reactive powers (),. ug contains controllable voltage magnitudes at generators,
synchronous compensatorsor SVCs V, adjustable transformer tap ratios ¢ and adjustabl e shunt
susceptances B.

The N x M reactive sensitivity matrix Sq is found by

SQ = _GQHEQ(:EQmquap)_lGQuQ (IQmquap) (A72)

In practice, Sq isfound by re-expressing equation A.72 as

GQIQ(xQoaquvp)SQ = _GQuQ('rQo’quvp) (A-73)
and factorising G, into lower and upper triangular factors so that
LUSQ = _GQuQ (IQO,UQO,p) (A74)

If the matrices Sg and G, are described in terms of column vectors sy ... sy and g; ... gur
where

So = [s1...5M] (A.75)
GQuQ = [91 .- -QM] (A.76)

then each equation
LUs; = —g; (A.77)

for: = 1... M can be solved for s; by forward and backward substitution.

Finally, Sq can be represented as
At
AB

[AW]:[SVt Svs SVV]

AQ, Sar Sep Sov || Ay
where V] is the vector of V; load bus voltage bus magnitudes, @), is the vector of N, reactive
injections at generator or compensation buses, V, isthe vector of N, generator or static voltage

compensator (SVC) voltage set-points, B is the vector of /V, shunt susceptances and ¢ is the
vector of V; transformer tap ratios.

(A.78)
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A.3.2 Relation of active power controlsto active power flows

Most references describing the formulation of amatrix of sensitivities of active power flowsto
active controls have required some pseudo-inverse matrix to be found, for example [95]. The
approach adopted in this study and described in this section, however, avoids that and allows
fast sparse matrix techniques to be used. Thisis achieved by finding the (sparse) Jacobian of
derivatives of active power flow with respect to voltage angles and pre-multiplying it with an
inverted square matrix.

If up isdefined asthe 1 x M vector of controllable active power injections and quadrature
booster angles, bus 1 is the slack bus, buses 2 to . are load buses and buses I. + 1 to N are
generation buses, a sensitivity matrix Ap can be found relating small changesin up to small
changes in the active state vector = comprising the active power generation at the slack bus
and the nodal voltage angles ¢ at all the others. Ap is such that

A:L’p = APAUP (A79)
and
Ap = —G5 Gpu, (A.80)
where
up = {PL+17'"7PN7¢17"'7¢M—(N—L)}T (A81)
rp = {P17027"'70N}T (A82)
Gps, = oG (A.83)
al’p cp=zp
Gpo, = 207 (A.84)
8UP up=up

('p comprises only the active power equations.

The changes in slack bus power and nodal voltage angles can be related to changes in active
power transmitted along each transmision line or through each transformer F;,, from general
node k to node m by

Py,
AP, = P Azp (A.85)
al’p

Hence, amatrix directly relating change in active power generation and quadrature booster an-
gles (the vector of quantities which can be set) and change in active power flow (which isto be
controlled) is found from

AP, = oF M ApAup (A.86)
a{L'p
It is denoted Sp such that
5o = om 4 (A.87)
a.fL‘p
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If equation A.80 is re-expressed as

oG Ap = — oG (A.88)
a'IP 0uP

then Ap can befound and pre-multiplied by 0 Py, /dxp to obtain Sp. Since APy, = —AP,.,
Sp can then be used to determine the effects of changes in active power generation and quadra-
ture booster angles on active power flows measured at each end of items of transmission plant.
Note that change in slack bus power is not available as a control variable.

A.3.3 Relation of active power controlsto voltage magnitudes

Whenever it has been found that movement of conventional reactive controls such as generator
terminal voltages, transformer tap ratios, SV C set points and switchable shunt susceptances has
been insuficient to remove violations of load bus voltage magnitude limits, it becomes apparent
that the contribution of the transmission system itself to reactive demand must be altered. This
can only be achieved by moving MW controls (active generation and quadrature booster angles)
to alter flows. However, that such measures are necessary suggests that the system is highly
stressed and use of load shedding to amend MW and MVAr demand aswell asto change power
flows on the system should be considered too.

In order to make use of these controls effectively, some sensitivity of the quantities to be con-
trolled to movementsin MW generation, quadrature booster angles and shedding of |oad should
befound. Theload sheddingwill be achieved by shedding both active and reactive load in equal
proportions since it may in general be assumed that load power factors will remain constant.

AsinsectionsA.3.1and A.3.2, it is convenient to describe the power balance equation in terms
of control vector v and state vector = partitioned into active and reactive components. In this
case, however, up Will comprise active generation, quadrature booster angles and active load
while ug will comprise only reactiveloads. zp consists of busbar voltage angles and slack bus
active power, and z¢ includes busbar voltage magnitudes for PQ buses and reactive generation
for PV buses.

The power balance equation is then

G(zg,zp,ug,up,p) =0 (A.89)
If up is changed by Aup and ug by Aug, for balance to be maintained, there will be small
changesin the states Az and Az p such that

Glzg + Axg,zp + Axp,ug + Aug,up + Aup,p) =0 (A.90)

Taking the Taylor series expansion of this expression and neglecting higher order terms,

G('rQo’xPov UQos UPO,P) + GTQ($Q07 TPy UQos uPovp)A'rQ + G'rp(xQo’ TPy UQos uPO,p)A:Up
+Gg (20 TPy UQgy UPyy P)AUG + Glup (T, TPy UQy, URy, P)Aup =0 (A.91)
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where

oG
Goy = Brg (A.92)
Gop = G (A.93)
al’p
aG
G, = oa (A.95)
auP

Sincethe systemwasinitially in balance, thefirstterm, G(zq,, zp,, ug,, ur,, p), iISZero leaving

oG oG oG G

If, now, ¢ is aso partitioned into active and reactive equationsit can be seen that

oP P oP P
[%&Q ACUQ:—[%E]ASCP—[@;_QQ AUQ—l%ﬁ]AUP (A.97)
dzg drp dug dup
This represents two equations:
0P 0P 0P 0P
Q o 0Q 9Q 9Q
83}QA$Q = _al'prP_ auQAUQ — aUPAuP (Agg)
Equation (A.98) can be re-arranged to give
0P 0P 0P 0P
and then
apP1 ™ [ ap P P
Substituting (A.101) into (A.99),
0Q «  9Q oQ [oP| ™" [oP P apP
al’QATQ N _8UQAU + al’p [amp] aJ}QAIQ + 8uQAuQ + 8upAuP
—a—QAup (A.102)
8uP

Grouping termsinvolving Azq, Aug and Aup together,

{aQ 90 lapl‘ aP}MQ _ {aQ lapl‘ 6P_8Q}AUQ

a.TL‘Q B a.rp al‘p a.TL‘Q a.rp al‘p 8uQ 6uQ

+{6Q lapl‘ aP 90

al‘p al‘p 6up B 8UP

} AufA.103)
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Since Aug consists only of changesto reactive load and these are in proportion to the changes
in active load, Au can be represented by

Aug = ol Aup (A.104)

where « isa column vector where the terms corresponding to changesin active generation and
guadrature booster anglesin up are zero and the others, as load power factors are assumed to
be constant, are tan ¢; where ¢, isthe power factor angle of the load at the:th bus. Further, %

under this circumstance is zero. Hence, equation (A.103) reduces to

{aQ a0 lapl‘ 8P}A$Q:

6:@ B al’p a:fjp a:L'Q
aQ TorP1  aP  0Q 0Q ,
— — / A.l
{al‘p |f9$p] 8up 8up 8uQa AUP ( 05)

From equation (A.105), it can be seen that a sensitivity matrix relating changesin MW controls
and load shedding to load bus voltage magnitudes and PV bus reactive generation can be found
such that

ALL'Q = SQPAUP (A106)

where

-1
o9 o9 [or]7' apP aQ [oP17  aP  8Q 9Q
= - - - A.107
SQP {al’Q al’p [amp] 61@} {al’p a:fjp 8up 8up 8uQa 0 )

In practice, Sqp isfound by solving

ASgp =B (A.108)
where
oQ oQ [orP]™" apr
= — A.l
A { 81@ axp [axp] a:L‘Q } ( 09)

B =

{aQ lapr P 9Q  9Q aT} (A110)

a:L'p aiL’p 6up 8up auQ

by triangular factorisation of A and repeated forward and backward substitution for each column
of SQP.

Under certain circumstances, likely to be when thetransmission systemisnot very heavily loaded,
-1
an approximation may be possible by considering that the term 7 [i] % has two cross-

dzrp
coupling terms between the active and reactive subsystems and isthereforelikely to be insignif-
icant [28]. A will then besimply %. This speedsthefinding of the sensitivity matrix consider-
ably since the triangular factors of % will have already been found in the use of reactive con-
trols for voltage control which preceeds the invocation of any MW controls for voltage. Care
must be taken, though, to ensure that the approximation is valid under the system conditions
being investigated.

142



A.3.4 Exampleof Jacobiansfor voltage control

Consider the small test power system shownin figure A.6 with N = 6 nodes, n¢._ s wherethere
IS generation at n4 and n;, static compensation at n3; and a tap-changing transformer between
no and n3 so that M = 4. Using standard loadflow analysis, n, and n5 are designated as ‘ PV’
nodes, i.e. nodes with controllable active power injection P and voltage magnitude V. Load
nodes n, .., are designated ‘' PQ’ nodes with fixed P and () injections and have voltage magni-
tudes which are to be controlled. Node 3 can be regarded in one of two ways, either as aload
‘PQ’ node with a shunt capacitor, or a‘PV’ node with variable set voltage magnitude V' [91].

These will be considered in turn.
O

0 1 4—@

Figure A.6: Example 6 bus system

Static compensator nodetreated asa‘PV’ node

For the test system described and node 5 treated asa‘ PV’ node, z(, isacolumn vector of order
N and ug isacolumn vector of order M such that,

o = {Vo, Vi, Ve, Qs,Qu, Q5" (A.112)
uQ = {t037‘/37‘/47‘/5}T (A112)

where ty3 isthe tap ratio of the transformer between nodes n, and ns.

" 0Qo/ Vi
9Q./OV: 9Q, OV,

~ 9Q/0V: 9Q2/ OV,

Gar = | 90,0V 8Qs/0V: 9QajdVs —1 (A-113)

0Q4/0Vy 0Q4/0V, —1

9Qs/9V2 —1
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[ 0Qo/0tos 0Qo/0V3

901 /0y 9Q1/0Vi

~ 0Qa) Vs 0Qa) Vs 0Qu/OVs

Gau = | 90,/010 0Q4)0V: 90/ 0V; (A-114)
9Q)Vs 00./0V

9Qs/0Vs 0Q5/0Vy 0Qs/9V5 |

Static compensator nodetreated asa‘PQ’ node

With node n; treated as a ‘PQ’ node, there are two possibilities for the control at bus 3: an
M SC with a variable shunt susceptance B,; and an SV C modelled as having some “droop” and
avariable V... Thelatter caseisnot considered here since the SV Cs on the studied systemsare
regarded as having V. ; fixed. In the former casei.e. with the control variable regarded as B,

:L]Q = {‘/07‘/17‘/27‘/376247625}T (A115)
ug = {tos, B, Va, V5}" (A.116)
and
[ 0Q0/3Vo Qo) 0Vs

9Q./OVi 0Q1JOVs 9Q:/OVs
- 0Qa/OVi 0Qu)OVs DQa/OVs
Gas = | 90,/0V0 00.)0V: 0Qs/0Vs 9Qa)OVs (A.117)

8Q4/8V1 8624/8‘/2 —1

IQs/0V2 0Q5/9V5 =1 ]

:(%20/87503

0Q1/0V,

_ 0Q2/0Vy 0Q4/0V;

Gau = | 50s/0tes 903/, 005/ AV (A.118)
0Q4/0Vy 0Q4/0V5

8Q5/8‘/4 aQS/a‘/S d

With on-load tap-changing transfor mer

With the transformer between nodes 0 and 3 regarded as an OLTC with the tap changing to
control the voltage at bus 0 (a ‘PQ’ bus) and bus 3 modelled as a ‘PV’ bus, the state vector
z¢ and the control vector ug are

:UQ = {t037‘/17‘/27Q37Q47Q5}T (Allg)
ug = {Vo, Vs, Vi, V5}' (A.120)
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and the Jacobians are

[ 8@0/87503

(%23/87503

" 0Q0/0V

9Q3/0Vy

9Q1/0W;
9Q2/ 0V
9Qs/ 0V
9Q4/0V1

9Qo/ Vs
dQ1/0Vs
0Q2/0Vs
9Qs3/0Vs

9Q5/0Vs

9Q1/0V;
0Q2/ 0V,
9Q3/ 0V,
0Qa/0V;
9Qs5/0V;

0Q1/0V,4
0Q2/ 0V

0Qa/ V4
9Qs/9Vs
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9Q2/0V5
9Q3/0V5
9Qa/0V5

0Q5/0V5 |

(A.121)

(A.122)
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