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Chapter 1

Introduction

A power system is always operated with a significant security margin to ensure that the trans-
mission network is capable of withstanding unpredictable events such as line and generator out-
ages. Since the introduction of competition in the electricity supply industry in many countries,
the cost of this security margin has become considerably more apparent. This transparency has
quite naturally led some parties to question whether customers are paying for more security than
they need or want.

The work in this project follows the premise that, instead of following fixed security standards
for the operation of the power system, a cost/benefit analysis should be performed. While the
cost of security is reflected directly and deterministically in the payments made to the generators,
the benefit is related to the consequences of stochastic events and is therefore considerably more
complex to evaluate. When exposed to the same disturbances under the same conditions, a more
secure dispatch will lead to smaller voluntary or involuntary load disconnections and require
fewer emergency actions than a less secure dispatch. The avoided societal costs of the load
disconnections and the avoided cost of the emergency actions constitute the benefit of the more
secure dispatch.

A method has been developed for systematically and efficiently estimating a priori these out-
age costs in the context of power system operation. Such estimates can be balanced against the
deterministic production cost of various dispatches to determine the optimal level of security in
the operational time frame.

Since unscheduled outages in power systems are stochastic phenomena, computing their cost
requires a probabilistic approach. While probabilistic methods have been used extensively in
power system planning, they have so far not been widely applied in the operational timeframe
domain. This distinction is not justified by a qualitative difference in the nature of the issues but
by different attitudes towards risks and responsibilities. Long-term planners accept the probabil-
ity of outages because they would occur in a system that will not be in operation for a few years.
On the other hand, operators are much more likely to get blamed if the lights go out. They are
therefore less comfortable with uncertainty and prefer deterministic criteria. However, as the
“Review of Security Standards” [1] performed in 1994 by the National Grid Company for the
UK electricity regulator OFFER shows, competition may force utilities to accept more risks. In
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order to manage this increased exposure to risk, it is likely that they will want to make wider
use of probabilistic techniques.

Power system operation differs from power system planning in terms of the accuracy require-
ments and of the level of uncertainty. Since the analysis takes place much closer in time to the
actual events in the operational time frame, the base case is known with much greater certainty.
On the other hand, since the accuracy requirements are much higher, the models must be more
detailed. Since the computational efficiency of state enumeration falls off rapidly as the system
being studied becomes large and results are required for use by operators, implying a need for
speed, Monte Carlo estimation forms the basis of the calculation of the value of security.

Monte Carlo simulation is defined in [2] and [3] as “any technique for the solution of a model
using random numbers or pseudorandom numbers.” (Others, such as Billinton and Allan [4],
prefer to describe Monte Carlo simulation as applying only to a process that is completely ran-
dom in all respects. They prefer to describe the application of “stochastic simulation” to any
process related to time). While Monte Carlo methods may naturally be used to simulate sys-
tems which have some stochastic content, any system for which a probability density function
(p.d.f.) can be formed can be simulated in the same way.

A Monte Carlo estimation (or simulation) has 5 main aspects (see figure 1.1):

� probability density functions - the system being modelled must be described in these terms� a random number generator - a source of random numbers uniformly distributed in ���
	��� .
No computer algorithm exists to generate genuinely random numbers, but many different
algorithms for generating pseudo-random numbers are available. Of these, many can be
found in pre-written libraries such as the NAG library [5, 6].� a sampling rule for prescribing how samples from the given p.d.f.s are to be taken.� scoring (or tallying) to accumulate the outcomes of the trial simulations.� error estimation - an estimate of the variance is obtained as a function, principally, of the
number of trials.� variance reduction - a method for reducing the variance in the estimated solution in order
to reduce the computation needed to obtain a given accuracy of result.

The Monte Carlo estimation developed here allows the operator to compare operational plans on
the basis of the sum of the production cost of the scheduled plant configuration and the expected
cost of unplanned outages. Unlike conventional security analysis, no assumption is made with
regard to what outages or combinations of outages are possible, or what classes of outages must
under all circumstances be secured against.

For each plan to be evaluated, the estimation starts from the state of the system which would
result from the implementation of the plan. In this “planned” state:

� the load follows the forecast;
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Start

Generate random outages

Simulate effect of outages

Tally outcome

Calculate sample variance

Estimate
variance < limit ?

Sample mean = value of security

No

Yes

Figure 1.1: The Monte Carlo simulation� all generators produce active power according to the specified dispatch;� all equipment is in service except when scheduled for maintenance;� all off-line reserves are in the appropriate state of readiness.

Individual “trials” are then generated by creating random contingency conditions based on this
state. This is done by simulating the following types of random events:

� faults on lines, cables, transformers and busbars leading to an outage of the plant in ques-
tion which is “permanent” in the short-term;� unscheduled shutdowns and derations of generating units;� large, abrupt and unforeseen changes in the load;� cascade, sympathetic and inter-trips trippings.

The probabilities used to generate these random events should reflect not only the intrinsic char-
acteristics of the equipment involved but also external factors such as weather conditions, which
can be taken into account in the operational planning timeframe but which are often “averaged
out” in planning studies. These external factors can have a very significant effect on the proba-
bility of faults and hence on the expected outage cost for a particular dispatch. To improve the
accuracy of the outage cost estimate, the effect of weather conditions on fault rates are modelled
on a regional basis.

Each generated random contingency condition must then simulated to determine what it would
cost were it to occur. This is done using an AC load-flow computation to determine the power
system state. Then, the response of operators to that state should be represented. If there are no
violations of operating limits, this response will be to do nothing. Otherwise, generation may
need to be rescheduled or load shed. The costs of these actions constitute the outage costs of the
contingency, with the cost of shedding load determined by some suitable function or parameter,
e.g. the “value of lost load”.
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Generation of new trials (random contingencies) then continues until the mean calculated from
the random sample is judged to have reached some pre-determined precision.

The environment in which the computation described above can be achieved may be broken
down into the following components:

� Input/output manager.� Monte Carlo block comprising:

– Monte Carlo simulation controller.

– implementation of variance reduction.

– probability of trip monitor.

– random number generator.� Load flow block comprising:

– load flow engine.

– automatic action monitor.� Operator actions block comprising:

– security monitor.

– power system sensitivity analysis.

– corrective action scheduler.

– load restoration process.� Load interruption cost calculation.� Results analyser.

These are illustrated in figure 1.2.

This final report is divided in two volumes. The first one presents the modelling characteristics
used in the development of the program Value of Security Assessor. The second volume shows
testing this software in both a small portion of England-Wales southweast system and in the full
large NGC power system.

The first volume includes:

Chapter 2 describes main characteristics of the modelling of the power system for the compu-
tation of the value of security; such as the load-flow and operator action blocks. Appendix A
provides details of the power system analysis.

Issues surrounding how load interruptions might be costed are discussed in chapter 3. Chapter
4.2 shows how the weather effect on failure rates is considered in the Value of Security Assessor
.

4



Input/output
manager

Load flow
engine

Automatic action
monitor

Security
monitor

Power system
sensitivity analysis

Corrective action
scheduler

Probability of trip 
monitor

Random number 
generator

Monte Carlo
simulation control

Implementation of
variance reduction

Results
analyser

Data files

Operator
actions

Monte
Carlo

Load
flow

Input
management

Update generator 
schedule

Update system
topology

Static power
system data
Static power
system data

Generator 
schedule

Power system
topology

Monte carlo
parameters

Update
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Figure 1.2: Value of Security Assessor structure

Chapters 5, 6 and 7 describe the basic statistical theory used in Monte Carlo estimation, the
Monte Carlo method itself and the background of variance reduction respectively.

The application of variance reduction in this project is described in chapter 10 while underlying
in terms of sampling methods and measures of component reliabilty in power systems are given
in chapter 8. Some background in terms of application of variance reduction in power system
reliability analysis is described in chapter 9.
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Chapter 2

System Modelling

Computation of the value of security involves the analysis of the system’s behaviour over a pe-
riod of time (for example 1 hour or 1 day). This computation must include the cost associated
with shed load and generation rescheduling, demand variations on the period and the corre-
sponding schedule of generation. Therefore, the value of security must model a planned gen-
eration schedule over a period of time with unplanned events represented at the times at which
they occur in the simulation. This implies a sequential simulation of temporal snapshots.

As chapter 1 states, a Monte Carlo sample simulation computes the variable of interest (the cost
in this case) for a number of trials. This chapter shows the modelling of the power system be-
haviour that is used in the analysis of one trial.

The trial simulation is divided in sequentially snapshots. For each snapshot, a sequence of events
occurs, such as random outages (section 2.2) and time-dependent phenomena. The term “time-
dependent phenomena” is used to cover a range of influences and effects. These phenomena
are: � The evolution of an outage in terms of the response of protection. In particular, this con-

cerns the possibility of “sympathetic” and cascading (section 2.3) outages.� The impact of transient instability (section 2.3.5).� The impact of voltage collapse (when it happens slowly enough for it to be seen and ar-
rested by operators) (section 2.5).� The staggering of the random outages over the period of study (section 2.4).

The two main functions of the load-flow and operator action blocks of the value of security anal-
ysis software are to derive the system state that would be seen by an operator, and to derive the
corrective actions that an operator may take in response to any violations of operating limits
found. These are described in sections 2.1 and 2.6 respectively.

The assessment of the duration of interruptions is also an important factor in the value of security
calculation. Section 2.7 looks into the uncertain duration of plant outages and of the corrective
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actions taken to soften their effects and their impact on subsequent time intervals of a daily gen-
eration schedule. Since a rigorous approach would require impractical amounts of computing
time, suitable approximations will be needed. Hence, a heuristic approach, which takes into
account the unserved load during the interruption, will be used. This approach will model the
interruption duration as tables, rules or curves.

2.1 Derivation of the System State

Figure 2.1 shows the simulation of disturbance events for each trial in the Monte Carlo simula-
tion used in the Value of Security Assessor . The sequence of events is divided in three parts:

1. Generation of a new system state.

2. Computation of an equilibrium point.

3. Corrective actions and cost evaluation.

Initial system state

No

Yes

Converged?

Simulate transient
instabilities

Restore generation/load
balance

Cost of operator actions=0

Cost of redispatch and lost load

Find operator actions

Simulation of cascade 
tripping due to overloads

Yes

No

Simulate random
outages

Simulate sympathetic 
tripping

Simulate new system state
on load flow Shed load

Limit violations?
Yes No

Any tripping?

Figure 2.1: Simulation of one snapshot in a trial
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The
�

initial system state given by network topology, load demand and generation schedule is
modified by random disturbances. These disturbances could also produce other disturbances
such as sympathetic and transient instability trips.

The equilibrium point of the new system state must be calculated using a power flow computa-
tion (see appendix A for the details of the static modelling). Two outcomes are possible for this
computation:

� The power flow converges.� The power flow diverges. This indicates that the occurrence of this contingency state
would result in voltage stability problems. A heuristic technique has been developed to
determine how much load must be dropped to restore the feasibility of the power flow. In
the Value of Security Assessor , if the load flow diverges, it is assumed that the system or
a part of the system (an island) would have suffered a voltage collapse were the operator
not have taken action. It is further assumed that the operator’s response to an impeding
collapse would have been to shed load in 5% blocks in the area of the biggest mismatch
until convergence is achieved. If convergence has still not been achieved after all load
has been shed, the island or the system is deemed to have “collapsed”.

Generation is reduced by matching amounts. The island is then checked for any violations
of operating limits and further operator actions simulated if necessary (see section 2.6).

When the system has reached an equilibrium point (EP1, convergence of the load flow), a series
of cascade tripping events may occur. In this case, a new load flow computation is required. A
divergence of this new load flow indicates a severe problem (voltage collapse) has been caused
by events ocurred after EP1. As in the computation of EP1, a load shedding is realised until a
new equilibrium point (EP2) is reached.

As figure 2.1 shows, a sequence of load flow calculations and disturbance events may be estab-
lished in an iterative way. This succession of calculation of EP(i)-disturbances-EP(i+1) can be
interpreted as a succession of slow events that provokes a voltage collapse in the system.

Finally, the system reaches a last equilibrium point (EP). The system has a converged load flow
with two possible outcomes:

� The resulting state of the system does not exhibit any major violation of normal operating
limits. This state does not require any corrective action and has a cost of zero.� The resulting state has some violations of normal operating constraints. Corrective ac-
tions must be taken to bring the system back within acceptable limits. The cost of these
actions is computed and tallied.
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2.2 Random Outages

The first step in the simulation of one trial in a complete Monte Carlo simulation process, is the
generation of random outages. In the Value of Security Assessor program random outages are
generated for each temporal snapshot. In this way, the electric power system could be subjected
to coincident events (i.e. outages that take place at the same temporal snapshot) or random se-
quential events (i.e. random outages that take place in different snapshots).

Random outages are simulated for a specified time interval from the last interval system state
condition. The set of possible independent failure events includes:

� generator failure;� line outage;� double circuit outage;� busbar outage;� SVC and shunt compensation failure.

Note that transient events are not considered. It may also be noted that double cicuit outages
and busbar outages entail taking out of service more than one line.

If the failure rate of each type of failure is known and assumed to be constant, the probability��������� of the � th plant item going out of service unexpectedly in a time interval of duration � may
be found from [4] �
��������� ��� �"!$#&%('*) �+� (2.1)

where ) � is the failure rate of the � th plant item.

If the system contains , items of plant and bulk supply points, the status of the system may be
determined for the end of some time period � by taking a vector of random numbers, one for
each of the , statuses. If a random number - � is less than � � ���.� , the � th plant status is deemed
to be “out of service”; otherwise, it remains in service.

2.2.1 Topology checking

If the contingency being simulated includes any outage of transmission plant, the topology of
the system state being studied is checked before execution of the load-flow module. Each bus
in the system is assigned to just one island and each island is solved in turn.

9



2.2.2
/

Modelling of frequency control

Since the aim of the model is to determine the state of the system that would be seen by an
operator, and then the operator’s response to that state, a number of functions have been included
to represent generator primary frequency response and operator actions to maintain frequency.

Three levels of reserve are generally provided in large inter-connected power systems [7]:

� primary—fast response provided by governor action;� secondary—generation operating at less than maximum output which may be called on
to change output by the operator;� standing—unsynchronized, fast start-up plant such as pumped storage and gas turbines.

Since the value of security assessment is designed for use in short operational timescales, “re-
placement” reserve—hot-standby plant or deferred-start plant—has not been modelled.

In order to model the different kinds of reserve available to the operator, all generators in the
model are designated as having one of the following types:

1. frequency responsive;

2. available for secondary reserve;

3. inflexible;

4. gas turbine;

5. pumped storage/hydro.

The total spinning generation in each island is compared with the total demand. If an unplanned
outage causes an unbalance between generation and load of 01� � 02�435�601�87 where 02�43 is
the change in total load and 01� 7 is the change in total generation, a change in frequency will
result. If the change in load due to a change in frequency is neglected (i.e. the load remaining
after the unplanned outage is assumed to be constant), the change in frequency 0295: when the
system regains steady-state is [8] 029 : � �;02�<>=�?�A@CB � �EDEF � � (2.2)

where F � is the “regulation” or “droop” of the � th generator and ,17 is the number of generators.
The change in generation at the � th generator is then

01�87 # � 019 :F �HG (2.3)
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the change in frequency, which is assumed to take place quickly and before an operator has
a chance to respond, is such that the system frequency goes outside under-frequency relay lim-
its, the load-shedding action of these relays is modelled and the load-generation balance is re-
checked.

If the sum of the � generation in an island is still too low with respect to the load, the generators
not denoted as inflexible are moved in turn to their maximum generation (cheapest generator
first), then, if necessary and depending on the level of water in the relevant reservoir, pumped
storage generation is increased or pumping reduced. Open cycle gas turbines are then switched
on if required. As a last resort, load is shed in 5% blocks and the load/generation balance again
checked. If there is too much generation in an island, the most expensive generation is reduced
in turn to its minimum stable generation or switched off, pumped storage generation is reduced
or pumping started and finally, if necessary, expensive generation is shut-down altogether.

System active power losses calculated in the course of the load-flow solution are distributed
among the generators providing primary response according to their respective droops and max-
iumum limits.

2.3 Sympathetic and cascade tripping

A serious disturbance is characterized by the total or partial collapse of the electric power sys-
tem. A region, or the whole territory served by the utility, is deprived of electric energy. This
collapse is the result of a degradation process in the operation of the system, during which a
least one of the following phenomena occurs:

1. Casacade tripping of transmission elements (lines, transformers)

2. Loss of static stability of generation units (resulting in the tripping of these units)

3. Loss of transient stability of generation units

4. Voltage instability in the power system

A number of causes can trigger this process of degradation [9, 10, 11]: malfuntion of protective
systems; misoperation of the monitoring, operation and control system (EMS/SCADA); uncor-
rect decision taken by the operators, etc. A critical event will be defined [12] as an event which,
in a given operating state of the power system, is potentially responsible for a serious distur-
bance. A serious disturbance is an event which results in the collapse of the power system.

Obviously, a critical state of the power system is a necessary but not sufficient condition for the
collapse of the system to occur. This is because an element can always be operated outside of
its allowable limits for a short time. It is only when no control action has enabled the element
to regain an allowable operating state that the element will be taken out of service. If this were
the case, the tripping might place the system in a critical state and, by cumulative effect, further
line trippings could occur until the cascade tripping results in a partial or total collapse of the
power system.
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order to model appropriately these phenomena in the Value of Security Assessor , they are
divided in two types: “sympathetic” tripping and cascade tripping. They are defined as follow:

� Cascade tripping. Tripping of overloaded parallel lines after a fault on one of these lines.� “Sympathetic” tripping. Unnecessary tripping of one or more elements caused by a fault
in their neighbourhood.

2.3.1 Cascade tripping of parallel elements

When a set of parallel or quasi-parallel lines is heavily loaded, a fault and subsequent tripping
of one of these lines may cause overloads on the other lines. Unless corrective action is taken
promptly, overload protection relays on these lines (or faults due to sagging) may then cause the
cascade tripping of the remaining lines.

In some situations the operator is not able to eliminate the overloads within the maximum period
allowed. The element (line) is then correctly tripped by its protection system [12]. Alternatively,
the overload elimination by the protection system is realised before the operator can take any
action. An example of this is:

� New York Blackout, 9th november 1965. After the tripping of the line Q29BD, the other
four lines arriving at Beck’s station became loaded beyond their critical level and the pro-
tection system tripped out “in cascade” the four lines 2.7 seconds after the main distur-
bance [13].

In other cases, the operator fails to take action or takes an inappropriate action:

� WSCC System - Blackout August 10, 1996 [11]. “[...] Big Eddy-Ostrander, Jhon Day-
Marion and Marion-Lane 500 kV lines were forced out of service. While none of these
lines were individually judged to be crucial by BPA dispatchers, the cumulative impact
resulted in a susbstantially weakened system. BPA did not communicate these outages to
other WSCC members nor did they reduce loadings on lines or adjust local generation as
precautionary measures ...”.

2.3.2 “Sympathetic” tripping of transmission elements

In a large proportion of blackouts, it has been observed that protective system failures are a con-
tributing factor in the degradation process. A failed or improperly set protection can make a bad
situation worse. A study of significant disturbances reported by NERC in the period from 1984
through 1988 indicates that protective relays were involved in one way or another in 75 percent
of major disturbances [14, 15].
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common scenario is that the relay has an undetected, hidden, defect that is activated under
the conditions created by other disturbances. For example, nearby faults, overloads, or reverse
power flows expose the defective relay and cause a false trip [14, 15]. The subsequent event
occurs either before the system operator has had time to take any corrective action in the system.
Some examples:

� New York City Blackout - November 9th 1965 [13]. “[...] the back-up relay protecting
line Q29BD operated normally and caused the circuit breaker at Beck (Station) to trip this
unfaulted line.”� New York City Blackout - July 1977 [14]. The blackout was caused initially by two light-
ning strikes and a series of relay and control operations and misoperations, including a
malfunctioning directional control contact.� WSCC System - Blackout July 2, 1996 [16]. The main disturbance was a flashover to a
tree on the Jim Bridger-Kinport 345 kV-line. Misoperation of a ground unit of an analog
electronic relay tripped the parallel Jim Bridger-Goshen 345 kV line.� WSCC System - Blackout August 10, 1996 [11]. Approximately five minutes after the
main disturbance (failure of the Keeler-Allston 500 kV line) the St. Johns-Merwin 115
kV line tripped due to zone 1 KD relay malfunction.� WSCC System - Blackout August 10, 1996 [11]. “[...] units a McNary began tripping
due to excitation equipment problems [...]”, “The unit is supposed to stay connected to
the line [...] but erroneous protective relay actions tripped the units off line”,

2.3.3 Modelling protection system misoperation in the Value of Security
Assessor

References [14, 15] present the concepts of hidden failure and vulnerability region. It defines
a hidden failure in a protection system as a permanent defect that will cause a relay or a relay
system to incorrectly and inappropriately remove circuit elements as a direct consequence of
another swithching event (the initial disturbance). So, hidden failures play an important role in
extending the disturbance.

Each hidden failure has a region of vulnerability associated with it. If an abnormal event occurs
inside the region of vulnerability, the hidden failure will cause the relay to incorrectly remove
the circuit element, thereby creating an additional abnormal state in which additional hidden
failures may be exposed [14, 15].

Based on these concepts, it is proposed to use a probabilistic model in the Value of Security
Assessor . In this model the following characteristics are associated with each transmission el-
ement:

1. A probability (� B ) associated with the misoperation of the element’s protective system
when a failure occurs in its vulnerability region (conditional probability).
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2. A vulnerability region that defines the portion of the system where a fault may provoke
the tripping of the element.

References [14, 15] define four types of vulnerability regions (RV) based upon the reach settings
of the relays:

1. Type 1- Reverse local bus RV. The RV is behind the local bus (A) and extends to half of
the line as determined by the setting of the relays at the remote bus (B) (See figure 2.2)

2. Type 2- Remote bus RV. The RV is beyond the remote bus (B) and extends to half of the
line protected.

3. Type 3- Zone 2 RV. The RV is beyond bus B and has a reach of 0.2 of the line protected
by the relay.

4. Type 4- Zone 3 RV. The RV is beyond bus B and has a reach of 1.2 times the longest line
connected behind the remote bus.

References [14, 15] use these four regions to calculate the relative importance of each one in
the tripping of elements. This calculation is not relevant for the value of security calculation in
the Value of Security Assessor . A simpler definition of the vulnerability region based on the
definition of the biggest region that includes the four types defined above will be used. Figure
2.2 shows the proposed RV for the Value of Security Assessor .

K L

MONQP$R4SUT
VMONQP$RXW(T
VMONQP$RXY(T
V

Z
[
\ ] ^ _ ` a

b

ced�fhg$ikj�lnm�o�fhoqpArXstikunoqvngxwyvnj{z�oqg$i�|U} ~�.���n���E����� Z�� �
� ] ��[ � ] ��\ � ] � ] � ^ ��� � b���� � ` � ` � Z���� ` � a � _ � `��� �+�������E� ] � ` � a ���n� b
Z��

Figure 2.2: Vulnerability region of line A-B

When the Value of Security Assessor simulates a fault on an element (line, transformer, busbar),
its effect on protection misoperation will be evaluated for each element which has the original
faulted element in its vulnerability region. For example, suppose that a fault occurs on line 7-10
of figure 2.2. Since this line is in the vulnerability region of line A-B a Monte Carlo trial will
indicate whether line A-B is tripped by sympathy. The probability used in this Monte Carlo trial
is the value � B .
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2.3.4
/

Modelling of inability to correct overloads and human error in Value
of Security Assessor

Lines in a transmission system can be overloaded for some time before relays disconnect them
or before they sag and cause a fault. During this time the operator must eliminate the overload
in the line. This task is not always completed properly or in time and line trips due to overloads
do occur.

For modelling this characteristic in Value of Security Assessor , it is assumed that in ��� of the
situations encountered the overloaded lines are tripped [12]. “ � ” is the probability that the op-
erator is unable to eliminate the overloads in time. The value of � is a function not only of the
operator’s ability to control the system but also of the control tools at the operators disposal.
In practice, it may be assumed that this value increases with the number of overloads that the
operators must correct.

2.3.5 Loss of stability of generation units

One of the major causes of degradation of a power system is the tripping or disconnection of
generation units. Normally, this disconection is provoked by the loss of synchronism of the
generators. The tripping of these units can be a consequence of either a line fault, a fault on the
generator or a cascade of events in the transmission system.

In a high proportion of major blackouts, generation tripping is an important factor, as shown by
the following examples:� New York City Blackout 9th November 1965. “The instantaneous result (of the tripping

of the conection lines between Toronto and Beck’s Station) was the acceleration of gen-
erators a Beck and Pasny-Niagara, with a sharp drop in their electrical outputs ... The
instantaneous drop in generation at Beck and Pasny ... resulted in putting this generation
out-of-phase with most of the other generation attached to the interconnected transmission
system ...” [13].� WSCC blackout, 10th August 1996. Power and voltage oscillations produced by the ini-
tial cascade of events provoked the separation of the system in four islands. The genera-
tion lost was 25455 MW, involving 178 generation units [11].� Sweden Blackout of 1983. During the cascade tripping of elements, the frequency of the
system decreased very fast. This produced the tripping of nuclear plants in the South of
the system [10].

This section deals with the modelling of generation tripping by loss of synchronism due to a
fault or an event that does not directly affect the generator itself. Faults that affect the generator
directly are simulated by the main Monte Carlo simulation process.

Two types of instabilities affect power systems: angular instability and voltage instability. An-
gular stability is further divided into: transient stability and steady-state stability.
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Transient stability in the Value of Security Assessor

Much work has been done to include transient stability issues in reliability evaluation [17, 18,
19, 20]. Several factors make this assessment complex:

1. Type of fault: is the fault a three-phase fault, a double line-to-ground fault, a double line
fault or a single line-to-ground fault?

2. Location of fault: is the fault at one end of the line or at an intermediate point?

3. Fault-clearing phenomena: the clearing time of faults is a stochastic variable.

The first and second factors are independent events while the critical clearing time (CCT) de-
pends on the type and the location of the fault. Therefore, a conditional probability approach
can be used to assess system transient stability.

A discrete probability density function (pdf ) which assigns a probability for each type of fault� is used. So, for the set of types of fault � ( ��� , ��� , �E� and double line faults), the following
equation is satisfied: �� �&@CB � � � � G � (2.4)

where � � is the probability of a fault of type � . It is assumed that there are only 4 types of fault
in the set � .
The location of fault is stochastically modeled by a discrete pdf which assigns a probability of
fault for each portion of the line. If �;  is the number of possible locations (portions of the line)
where the fault can occur, the following relation must be satisfied:¡C¢�  @CB �   � � G � (2.5)

where �8  is the probability of a fault at location £ .
A possible pdf for the fault clearing time is a normal distribution [18, 19]. If the critical clearing
time is the maximum time in which the fault must be cleared, then from its pdf, the probability
of stability ( � ��¤ DE�+£ � ) for a fault type � at a location £ is obtained.

Using the conditional probability approach, the probability of stability due to a fault on line ¥
( �4¦�§�¨ ) is given by the following equation [18, 19]:

�©¦�§ ¨ � ¡C¢�  @CB �� �A@CB �©ª �«¤ D¬�+£ �® � �  �   (2.6)

where �4ª ��¤ DE�+£ � is the probability of stability for a given fault of type � at location £ of line ¥ .
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the operational timescale evaluation, the transient stability effect on the value of security
calculation can be modeled using the � ¤±° ª values. Naturally, off-line work is necesary to ob-
tain the probabilities �©ª �«¤ D¬�+£ � . In the value of security calculation, a Monte Carlo simulation
will determine if the fault provokes an instability in the system based on the set of probabilities� ¤±° ª .
On the other hand, if a stability problem is detected, it is necessary to determine what are the af-
fected generators. Off-line stability studies could be used to determine the vulnerability regions
associated with the stability of each generator. Thus, if a fault on line ¥ provokes an instability
and this line is in the vulnerability region of generator ² , then the generator is disconnected.

In brief, including the effect of transient stability on the value of security calculation requires
the following data:

1. Set of probabilities � ¤±°
2. Vulnerability regions of stability for each generator

The first and most difficult step in the probabilistic approach is to collect statistical data on sys-
tem faults.

2.4 Staggering of random outages - Sequential Simulation

Computation of the value of security over a period of time (for example 1 day) must include the
cost calculation associated with shed load and generation rescheduling, demand variations on
the period and the corresponding schedule of generation. Therefore, the value of security must
model a planned generation schedule over a period of time with unplanned events represented
at the times at which they occur in the simulation. This implies a sequential simulation. For this
purpose, the Value of Security Assessor uses a definition of sequential intervals. Each interval
is characterized by a load, considered constant over the interval, and its generation schedule.

Sequential simulation allows the simulation of new random outages on each interval and the
corresponding analysis described in figure 2.1. However, the effect produced by two or more
random outages will be different if they occur at the same moment (beginning of the interval)
or if they occur at different moments over the simulated interval. In order to properly represent
the time at which stochastic events take place, this interval may be further broken down into
”subintervals”. This simulation subinterval is taken as the time it would take for an operator to
realise that some event has taken place and to respond to it. As such, it may typically be regarded
as, perhaps, 10 minutes or half-an-hour. Thus, events that take place within one ”subinterval”
may be regarded as having taken place concurrently.

Figure 2.3 shows graphically the definition of terms used by Value of Security Assessor for the
sequential simulation.
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Figure 2.3: Division of time scale - Sequential Simulation -

In Figure 2.1, random outages are suppossed ”permanent” over the operational timescale. How-
ever, as it has been mentionned, a series of line trippings can be provoked by these random out-
ages. These trippings cannot be considered to be ”permanent” faults. The Value of Security
Assessor models a reconnection of tripped lines in the next simulation ”subinterval”.

Figure 2.4 shows graphically the Value of Security Assessor algorithm for sequential simulation.
The blocks enclosed in the dashed line represents the algorithm of figure 2.1.

2.5 Voltage collapse considerations

Voltage stability has been defined by the System Dynamic Performance Comittee of the IEEE as
being the ability of a system to mantain voltage so that when load admitance is increased, load
power will increase, and both power and voltage are controllable. Voltage stability depends on
the location and type of reactive power sources available in the system. A voltage collapse is a
major problem in the power system caused by the degradation of the system following a serious
disturbance.

2.5.1 Techniques of analysis of voltage collapse

Although the voltage collapse is a dynamic phenomenon, static analytical approaches have been
developed for its study. The dynamic study using time-domain simulations is employed mainly
for the coordination of control and protection systems and for the investigation of interactions
among different power system components such as generators, ULTCs, SVCs, generator field
current limiters, etc. Static approaches examine the viability of the equilibrium point repre-
sented by a specified operating condition of the power system. Static approaches also allow the
identification of voltage-weak areas in the system and the mesure of a distance to instability.
These approaches are [21]:
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Figure 2.4: Sequential Simulation

1. PV and QV curves

2. VQ sensitivity analysis.

3. Modal analysis. This method develops an eigenvalue analysis of the reduced Jacobian
matrix in order to determine the instable or critical modes of the system. This method
determines the main busbars, branches and generators associated with each critical mode
[21, 22] providing information about the mechanism of loss of stability.

4. Continuation load flow.

Formulation of indicators of the distance to the voltage collapse have been developped from
these techniques, such as:

1. Risk of voltage instability indicator,
�

[23, 24]. The index
�

is calculated for each load
node of the system. The value of

�
is between 0 (no load in the node) to 1 (voltage col-

lapse).

2. Modal proximity to instability [22]. Each eigenvalue of the reduced Jacobian matrix cor-
responds to a mode of voltage/reactive power variation. If this value is positive the mode
is stable. The magnitude of the eigenvalue gives an indication of the degree of stability.
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3. Power (MW, MVAr and MVA) margin to voltage instability.

As reference [22] states, the calculation of
�

indices for all the load buses requires much less
CPU time than modal analysis while the CPU time required to compute the sensitivities for all
load buses is more than the time required in the modal analysis. On the other hand, modal anal-
ysis provides information about mechanism of instability and about the components associated
with the main instability. However, in the operation timescale an indicator, such as the index

�
,

which provides information on the voltage-weak area (busbars) for an operating condition and
allows the calculation of the emergency load shedding to avoid risk of voltage instability is very
useful [24].

2.5.2 Impact of voltage collapse in reliability evaluation

Reference [25] uses the indice
�

, proposed in [23] to incorporate voltage stability considerations
in the adequacy assessment of composite power systems and proposes a bisection algorithm for
the load-shedding calculation. Bus indices

�
are used as voltage stability constraints. If these

constraints are violated, the load bus which has the highest voltage stability indicator is selected
to carry out load shedding in order to reduce the indicator. The bisection algorithm is used to
determine the minimum load to be shed ( 01� ) to reduce the value of the indicator of the selected
bus to the minimum acceptable voltage stability indicator (threshold value). After load shedding
in the selected bus, indicators are recalculated for all the system load buses and the bisection
process is repeated in the case of the another voltage violation until all buses do not violate the
voltage stability constraints.

2.5.3 Indice ³ and modified indice ´
Reference [23] defines the indicator

�   to assess the voltage stability of load bus £ for a given
condition of the system. A hybrid representation of a transmission system is used to define the
indicator. This representation is given by:µ �·¶�
¸º¹ � µ>» ¶�¶ ¼½¶{¸¾ ¸�¶ ¿�¸C¸ ¹ µ ��¶�À¸Á¹ (2.7)

where �;¶ and �t¶ are vectors of voltages and currents at load nodes; �H¸ and �
¸ are vectors
of voltages and currents at generation nodes;

» ¶�¶ 	�¼ ¶t¸ 	 ¾ ¸�¶ and ¿ ¸C¸ are sub matrices of the
hybrid matrix. The hybrid matrix is generated from the admitance matrix ( ¿ÃÂ+Ä$Å ) by partial in-
version.

The indicator
�   is given by [23]:

�   �ÇÆÆÆ �ÉÈ
��+Ê¬Ë�Ì ¼   � � ��   ÆÆÆ (2.8)

where Í ¸ is the set of generation nodes; ¼   � is the complex component £
� of the sub-matrix¼½¶{¸ ; � � and �   are the complex voltages at nodes � and £ respectively.

20



From
¯

the indicator
�

, an approximation was developed in [24]. This approximation defines the
risk indicator as:

�   �ÇÆÆÆ �ÎÈ
��+ÊEË�ÌÐÏ   � � ��®  ÆÆÆ (2.9)

where Ï   � is the element £�� of matrix C determined by:� Ï  � �Ñ�h� :�: �Ò B �Ó� ¶t¸  (2.10)

where ��� :�:  is the imaginary part of the matrix ��¿ ¶�¶  and ��� ¶t¸  is the imaginary part of the ma-
trix ��¿ ¶t¸  . ��¿ ¶O¶  and ��¿ ¶{¸  are submatrices of the Y-bus matrix. As reference [24] shows, the
approximated indice �   has an error of less of 1% respect to indice

�   .
The indicator �   can be separated into real and imaginary parts ( ��Ô  , �ÖÕ  ):

� Ô  � �®� ���ÊEË�Ì Ï   �n× � �Q× Ø�ÙEÚ ��Û � � Û   �× �   × (2.11)

and

� Õ  � � ��+Ê¬Ë Ì Ï   �n× � �Q× Ú ��Ü ��Û � � Û   �× �   × (2.12)

where Û � and Û   are the voltage angles at buses � and £ ; × � ��× and × �   × are the voltages magnitudes
at buses � and £ . Changes in the value of the indicator due to variations of the load (shedded)
can be calculated as: µ 01�ÖÕ01��Ô ¹ � � °  µ 0 Û0 × � × ¹ � � ° ��yÝ( Ò B µ 02�0ßÞ ¹ (2.13)

where [J] is the Jacobian matrix and [T] is the sensitivity matrix between indicator changes and
voltage angle and magnitude changes.

The variation of the indicator at node £ will be given by:02�   �áà � 02� Ô  ��â È � 02� Õ  �kâ (2.14)

2.5.4 Suggestion of an additional constraint to avoid voltage collapse in
the Value of Security Assessor

As it was mentioned, the load flow divergence is an indication of voltage stability problems. In
the Value of Security Assessor , if the load flow fails to converge, it is assumed that the system
or a part of the system (an island) would have suffered a voltage collapse were the operator not
have taken action. It is further assumed that the operator’s response to impeding collapse would
have been to shed load in 5% blocks in the area of the biggest mismatch until convergence is
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achieved. If convergence has still not been achieved after all load has been shed, the island or
the system is deemed to have “collapsed”.

On the other hand, if the load flow converges for any contingency, system operators take cor-
rective actions in response of violation of system operating limits. After that, the power flow of
the system converges but the system could be located in a critical condition in the proximity of
the voltage collapse. If this is the case, the voltage stability could occur if system operators do
not take additional corrective actions.

The value of security calculation would determine if the system is on a viable operating con-
dition or not and, if it is the case, to determine the emergency load shedding to avoid risk of
voltage instability as an additional corrective action. That is an additional constraint that could
be studied and considered in the Value of Security Assessor .

The Value of Security Assessor may follow some of the ideas proposed in [25] taking advantage
of the calculation of indicators �   , proposed in [24]. In order to avoid the iterative process of
the bisection algorithm for the calculation of the load shedding, the Value of Security Assessor
could use the relationship of equation (2.13) between indicator changes and load powers to be
shed [24].

The following algorithm calculates the impact of risk of voltage collapse:

1. Calculation of indicator �   for all load node £ using equations (2.11), (2.12) and:�   � à � � Ô  � â È � � Õ  � â (2.15)

2. Evaluation of: �Î äãå� %�æQç�è Å æ�é 3hê £ìëíÍ ¶ (2.16)

where Í ¶ is the set of load buses. If the relation is satisfied for all nodes £ then stop else
continue.

3. Determination of the load bus £ having the highest indicator, to carry out load shedding.

4. Calculation of load to be shed in order to reduce the indicator value at bus £ to the target
value using equation (2.13). As [24] suggests, a lower target value than threshold value
must be used.

5. Calculation of the new state (load flow) and return to first step.

2.6 Modelling of Corrective Actions

In response to violations of system operating limits, operators can reschedule generation, change
voltage set-points and tap ratios, and, as a last resort, shed load. Since operators reach decisions
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about what actions to take based on advice given by planners, information gleaned from “what-
if” load flow studies, and experience, their actions are represented in the value of security asses-
sor by a fuzzy expert system with embedded load flow and linear sensitivity analysis ([26, 27]
and appendix A of this report). Three types of corrective actions are modelled:

� active dispatch—dispatches settings of active power generation, shedding of load (active
and reactive components in proportion) and changes to phase shifter settings in order to
relieve overloads of transmission lines and cables;� reactive dispatch—dispatches settings of reactive control devices in order to correct vio-
lations of voltage limits;� dispatch of active controls for correction of voltage problems—this is activated to change
the active generation and, if necessary, shed load in order to remove any outstanding vi-
olations of voltage limits [28].

Fig. 2.5 shows the procedure used to decide on corrective actions.
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Figure 2.5: Modelling of corrective actions

The active dispatch, reactive dispatch and active dispatch for voltage are implemented as shown
in fig. 2.6. In each, the operators’ judgments are modelled by means of “qualitative reasoning”
whereby the decisions are reached by balancing the criteria of control effectiveness, control mar-
gin, cost, simplicity and the possibility of unwanted secondary effects. More details of the op-
erator action modelling can be found in [27, 29]

2.7 Duration of load interruption

This section discusses the duration of load interruptions in power systems. A heuristic method
for the modelling of these interruption duration in the Value of Security Assessor is formulated.
Determination of interruption duration is needed, not only for the calculation of the energy not
supplied, but also for the calculation of the cost associated with the interrupted load.
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Figure 2.6: Operation of dispatch routine

Some factors that affect the duration of the interruption are:

� State of the system.� Generation units start-up� Load variations (load demand curve)� Size (number of MW) and extent (number of affected busses) of the interrupted load

The duration of each load interruption can be divided in two phases:

1. The control phase. In this phase, the operators take corrective actions. Also in this phase,
a degradation of the system involving cascade tripping can occur.

2. The load restoration phase. This phase involves the process of reconnection of the load
that was lost or voluntarily disconnected during the control phase to maintain the system
in operation.
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2.7.1
/

Load restoration process

The overall goals of the restoration process is to first rebuild a stable electric system and then
to restore all remaining unserved load [30, 31, 32]. In order to attain these goals, the following
practices should be observed [30]:

1. Restore safely. Precautions must be taken to guard against human injury and equipment
damage, avoiding both thermal overloads and overvoltages.

2. Restore smoothly and deliberately. To assure a stable rebuilt electric system, the bal-
ance between load and generations must be maintained. Repeated interruptions should
be avoided.

3. Minimize overall restoration time. Both minimum and maximum restart times for gener-
ators should be examined when deciding on an unit startup sequence. Restoration actions
should be taken immediately but a hasty restoration should be avoided.

4. Minimize adverse impact to public.

5. Maintain flexibility to respond to problems.

Before a restoration sequence starts, an assessment of the system should be performed to deter-
mine the extent and the characteristics of the problem and the overall status of the system. This
assessment should determine to which of the following cases the problem belongs:

1. A standard power failure involving loss of load and regional transmission only. Load can
be restored using straight-forward control actions.

2. An unstable system with significant degradation in voltage, frequency or power flow equi-
librium. Emergency actions, such as load shedding, may help limit further degradation.

3. A major power failure island formation in which a portion of the power system becomes
separated from the main synchronized power grid.

4. A major power failure blackout in which critical generation or bulk transmission facilities
are lost resulting in a system collapse or blackout.

Different approaches to the restoration of the system are used depending on the size of de-energized
area, the posibility to receive assistance from interconnected systems, the amount of blackstart
capability in the system and the type of production in the system. Two major strategies [10] for
restoring a power system following a blackout are known:

� The build-up strategy. It is often used when the system has suffered a total blackout and
when it is impossible to receive assistance from the neighbouring systems. The system
is divided into subsystems that include a least one station with blackstart capability, that
can regulate both frequency and voltage of the subsystem itself and that have a good bal-
ance between production and consumption. After starting the station, emergency power
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is supplied to the stations without blackstart equipment in order to start, if possible, the
units in these stations and to synchronize them to the system. Loads are connected and
more units are taken into operation. Each subsystem is then synchronized with the others.� The build-down strategy. This strategy is mostly used in small systems without long high
voltage lines or in hydro systems with good reactive absorbing capacity. The interrupted
system has to include a least one station with blackstart capability. When this station be-
comes operative, it is connected to other stations in order to supply them with the emer-
gency power necessary for their start up. The generators are synchronized with the sys-
tem and more lines are connected. During these initial steps some load is connected but
most of the load is connected when most of the generation and transmission systems are
restored.

Based on the goals, objectives and power resources, the utilities make their restoration process
planning. Figure 2.7 [33] shows the outcome of the restoration process following major black-
outs.

1 2 3 4 5 6 7 8 9 10
Time after fault (h)

100

0

50

Load %

25
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France Dec 19 1978, 28000 MW (75%)
Sweden Dec 27 1983, 11400 MW (67%)
Belgium Aug 4 1982, 2400 MW (50%)
Sweden Jan 13 1979, 2700 MW (15%)

Figure 2.7: Load Restoration following Major Disturbances

2.7.2 A heuristic approach for the Value of Security Assessor

The modelling of the interruption duration in Value of Security Assessor takes into account the
two phases of the interruption. The proposed modelling is used for the restoration of both partial
and total blackouts.
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It
I

is clear that in the evaluation of the value of security, an exhaustive modelling of the restora-
tion process is not necessary. This modelling must only capture the relevant characteristic for
the evaluation of the value of security, that is the duration of interruption. As shown in figure
2.7, this duration is directly related to the unserved load. In fact, as the unserved load is related
to the size (number of busbar) and the severity of the problem (cause), a relationship between
unserved load and time of restoration could model the interruption duration, in a heuristic way.

A heuristic model is used in the Value of Security Assessor to model the interruption duration.
This model gives the restored load as a function of time. This model divides the restoration
process in two phases. If we measure the duration of the restoration from the moment where
the first load is shed or disconnected, the first phase includes:

� the period during which the operator takes corrective actions to try to stabilise or to solve
the rest of the system,� the period during which the operator assurres the situation and decides an a restoration
strategy,� period during which the operator takes restoration actions that do not result in immediate
load reconnections.

No load is thus reconnected during this first phase. It seems reasonable to assume that its dura-
tion is proportional to the severity of the outage. It can be modelled by:� B � � ê � Å�î é�ï�ï"è î %+è ê� %�é�%�ð 3 ñ° %�é�%�ð 3�Â�3 ð î�ª é Ä % (2.17)

where � B is the duration of the first phase. ° %�é�%�ð 3�Â�3 ð î�ª é Ä % is the expected duration of this first phase
for a total blackout. Figure 2.7 (French blackout) suggests that 30 minutes is a reasonable value
for ° %�é�%�ð 3�Â�3 ð î�ª é Ä % . �4ê � Å�î é�ï�ï"è î %+è ê and � %+é�%+ð 3 are the unserved and the total load of the system, respec-
tively.

The second phase represents the actual reconnection of the load. It appears reasonable to assume
that the restoration rate increasses with time. Table 2.1 and Figure 2.8 show the restoration rates
that will be used in this project.

Time Period Restoration Rate
(Min) [MW/min]
0 - 30 10.0
30 - 60 33.3
60 - 90 66.6

90 and more 83.3

Table 2.1: Restoration Rates - An example
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Figure 2.8: Aggregated Restored Load - An example
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Chapter 3

Assignment of a Cost for a Load
Interruption

The key idea of the Value of Security Assessor is the weighing up of the cost of security against
the benefit [34]. This is achieved by assessing the costs of

� the base level of security i.e. the system and operating schedule with only planned main-
tenance outages.� any corrective actions needed to remove violations of operating limits caused by unplanned
outages.

and comparing these with the value of any load that may be lost due to unplanned outages. Ob-
viously, since the aim is to establish the optimum level of security given the probabilities of
unplanned events, the decision on which initial operating scenario from a number of possible
schedules depends critically on using an appropriate measure of the cost to consumers, utilities
and society of an interruption to electricity supply.

In the regime by which the Electricity Supply Industry (ESI) in England and Wales is currently
managed, a standard value is attached to the cost of unsupplied electricity. This is known as
the “value of lost load” (VOLL). In spite of considerable importance being attached to VOLL,
and increasing attention being paid worldwide to the worth of supply continuity or the cost of
interruption in order to perform cost-benefit analysis of system reinforcement, there is relatively
little discussion in published literature of how suitable values may be found. As this discussion
will reveal, the issues involved in deciding on a suitable measure of the cost of an interruption
to electricity supply are far from simple and the data available is rather limited.
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3.1 Terms used in the literature

Most of the literature concerning the value of lost load or the worth of supply falls into one of
two categories:

� a posteriori studies of significant outage events to establish their overall costs [9]� assessments of reliability used in planning and reliability studies [35, 36].

The most useful general result that the studies of specific events have yielded is that interrup-
tion costs are substantial. Often, indirect costs such as the costs of civil disorder and the costs of
emergency services far out-weighed the direct costs [37]. These studies being specific to given
customer mixes, economies and times of day and year, they do not provide information on gen-
eral methodology.

In the context of system reliability, the question is often asked: “what is a consumer prepared
to pay to avoid interruption?” or “how much reimbursement would the consumer accept in the
event of being interrupted?”. The answer is then used to find some expected cost of interruptions
in the course of a year given conventional reliability analysis involving outage rates and rates
of repair. As such, the reliability analysis often makes use of only one value for the cost of
interruption for the whole year, or perhaps a value that is a function of only one variable, usually
interruption duration [36]. As will be seen presently, this approach is limiting when put into the
context of power system operation.

Among the terms used in the literature are:

Customer Interruption Cost (CIC): the cost resulting from an interruption as perceived by
an individual customer [35].

Customer Damage Function (CDF): function relating some variable, often interruption du-
ration, to a customer’s costs caused by supply interruption [37].

Sector Customer Damage Function (SCDF): The normalised costs of supply interruption of
a sector of customers, expressed as a function of interruption duration [37].

Composite Customer Damage Function (CCDF): a single function relating the costs of in-
terruption of a particular mix of customers to some variable [37].

Customer Outage Cost (COC): The overall cost of interruptions in a given period e.g. one
year [35].0 COC: “customers’ marginal benefit” or “reliability worth” [35].

Value of Lost Load (VOLL): “the value an average customer puts on an unsupplied kWh”
[1, 38]. In practice, the figure used may turn out to be, effectively, a function of the CCDF
for an interruption of one hour [35].
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3.2 Factors influencing interruption costs

The value of lost load figure as currently used in the UK implies that the net value a customer
attaches to a supply interruption depends on the amount of energy not supplied. This has been
disputed in submissions to the Review of Transmission Security Standards conducted by the Na-
tional Grid Company plc in 1994 [1] and by various authors writing in the engineering journals.
The principal objection is that “worth of supply” and “energy not supplied” are not directly re-
lated [35, 38], and that stress should be given to the cost per disconnection rather than per kWh
[39]. Allan illustrates this in [38] by pointing out that the value of being unable to watch a live
transmission of an international football match may be considerably higher than that of being
unable to use a washing machine. Though the energy consumed by the latter is much higher,
watching the live game is time critical. The washing could be done another time, or even by
hand.

Extensive consideration of the cost of an interruption reveals that the costs perceived vary sub-
stantially from customer to customer. They further vary in the sorts of direct (resulting imme-
diately from the cessation of supply) or indirect (arising from the response to an interruption)
impacts the interruptions impose. For example, in [37], direct monetary impacts are said to in-
clude

� lost production.� idle but paid-for resources e.g. labour, capital.� equipment damage.� process restart costs.� spoilage of resources.� costs of damage to health and/or safety.� the utility’s restoration costs.

Direct social impacts may include inconvenience due to

� lack of transportation.� loss of leisure time.� uncomfortable building temperatures.� personal injury� fear.

Indirect consequences may be either economic or social and may include
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� crime� necessitation of residential evacuation due to failure of safety equipment at a nearby in-
dustrial plant.� political “fallout”.

It can be seen immediately that these vary from customer to customer. In addition, these costs
will vary according to

� time of day.� the duration of the interruption.� the availability of advance warning.� prevailing weather and hence time of year.� availability of alternative energy sources.

A further, not inconsiderable, factor relating to a customer’s perception of the cost of an inter-
ruption will be the reputation of the utility and the recent history of interruptions [1].

3.3 Alternative Models of Value of Lost Load

3.3.1 VOLL currently in use in the ESI

VOLL represents the value an average consumer puts on an unsupplied kWh. Its initial value
of £2/kWh adopted in 1989 by the Electricity Supply Industry was apparently derived from the
results of a Finnish survey conducted in 1977/78 and has since been pegged to the retail price in-
dex (RPI). The NGC has used a value of around £2/kWh (1992/93), as the VOLL of the system.
So, this model uses one value as VOLL for all the system.

3.3.2 VOLL derived from customer interruption costs

From the discussion of section 3.2, it is clear that ascertainment of the cost of an interruption
is far from simple. The most popular means of gathering any sort of data has, to date, been
by customer survey. A drawback of the surveys reported in the literature [1, 40] is that they
are normally geared towards reliability studies which make little distinction between times of
day and times of year i.e. they seek values which represent sectors of customers for “average”
circumstances for different interruption durations. Seeing as the Value of Security Assessor will
be concerned with operating conditions at a given time and possible unplanned events occurring
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within a short time window, to obtain reliable costs for the analysis, the interruption costs for
those conditions should be estimated.

One survey was conducted as part of a study at UMIST in 1994 [35] and the results are repro-
duced in table 3.1. In this study, some analysis of the sensitivity of the customer interruption
costs to variations in time of day, time of week and season was performed on the UMIST data
[41].

Sector No. of
responses

Response
rate (%)

CIC (£) for interruption duration of:

moment 1 min 20 mins 1 hr 4 hrs 8 hrs 24 hrs
Residential 4014 19.1 - - 0.19 0.70 4.78 - -
Commercial 203 4.0 11.47 11.74 49.12 106 345 719 1.0k
Industrial 119 5.7 1.2k 1.5k 2.9k 4.3k 7.6k 12.0k 16.3k
Large user 19 29.2 216k 216k 219k 233k 329k 413k 581k

Table 3.1: UK Customer Interruption Costs (CIC)

A further difficulty is that survey results are very sensitive to the methods used for the calculation
of the customer interruption cost. Ideally, the “Willingness to Pay (WTP)1” and the “Willing-
ness to Accept (WTA)2” approaches are complementary and theory suggests that values derived
from these methods should be nearly equal. However, actual valuations consistently yield WTP
values significntly less than WTA values [37].

These methods are the so-called “direct methods” of customer survey. In the “indirect” approach
of which the “preparatory action method (PAM)3” used at UMIST is an example [42], the cus-
tomer is invited to select an option from one or more lists regarding responses to interruptions.

Clearly, the implication of the existence of so many approaches is that no survey can be regarded
as definitive. In addition, limitations in the sample size especially for commercial and industrial
customers, as in the UMIST study, constitute a drawback. However, sufficient data to overcome
these drawbacks is unavailable and the survey results are reasonable for relative comparisions
or studies.

An alternative to the survey approach to putting a value on interruptions suggested during the
consultation conducted in the preparation of [1] is simply to leave RECs to “bid” the value of
lost load to be used in their areas. However, in this case, the residential customers will always
lose out.

A procedure is therefore presented below for using the UMIST survey results to assemble the
interruption cost of a given outage. The method is based on that presented in [35].

1The WTP approach assesses customer willingness to pay premiums for an assured supply considering their
current level of reliability. These premiums are derived from direct monetary estimates by customers or deduced
from premiums expressed as percentage of their electricity bill [41].

2The WTA approach measures customers’ willingness to accept compensation for reduction in reliability from
the current level. This is measured as a percentage redunction in electricity bill [41].

3The PAM approach ask to customers to choose from a list, the likely mitigating actions they would take to
alleviate the impacts of interruptions. The rationale here is that the worth of one good is equivalent to the amount
the user is willing to pay for some other goods (preparatory actions) which provide the same benefits as the primary
good [41].
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1. Find individual customer interruption costs (CICs) as functions of interruption durationò
. These are denoted óõôQö ÷tø ò�ù for each customer ú .

2. Normalise the CIC functions to find the customer damage functions (CDFs) either by

(a) the customer’s annual energy consumption so that

óÐû ö ÷ ø ò�ù�ü óõôýö ÷{ø ò�ùþ ÷ (3.1)

where
þ ÷ is the annual energy consumption of customer ú in MWh and ó û ö ÷Oø ò�ù is

the normalised customer damage function in £/MWh.

(b) or the customer’s peak demand so that

óÐÿ ö ÷ ø ò�ù�ü óõôQö ÷tø ò�ù� ÷ (3.2)

where
� ÷ is the peak demand (load) of customer ú in kW and ó ÿ ö ÷Oø ò�ù is the corre-

sponding normalised customer damage function in £/kW.

The normalisation is conducted in order to reduce the impact of a few extreme values on
the overall value. It should be noted that the customer damage function normalised by
peak demand is not the cost of energy not served.

3. Find the sector customer damage function (SCDF).

(a) either � ó���� û ö �Eø ò�ùÐü�� ó û ö ÷{ø ò�ù	 ÷�ö � (3.3)

where
� ó���� û ö �Eø ò�ù is the sector customer damage function in £/MWh with costs

normalised by annual energy and 	 ÷�ö � is the number of customers in sector 
 .

(b) or � ó���� ÿ ö �Eø ò�ùÐü � ó ÿ ö ÷tø ò.ù	 ÷�ö � (3.4)

where
� ó���� ÿ ö ��ø ò.ù is the sector customer damage function in £/kW with costs nor-

malised by peak load and 	 ÷�ö � is the number of customers in sector 
 .

As [35] shown,
� ó���� ÿ ø ò�ù and

� ó���� û ø ò�ù are related by� ó���� û ö �Eø ò�ùÐü � ó���� ÿ ö ��ø ò�ù�������� � � � (3.5)

where
� ��� is the load factor of sector 
 .

4. Find the VOLL associated to a particular interruption of duration
ò
, according to the knowl-

edge of load factors (
� � ). So,
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(a) if the individual sector load factors are known (
� ��� ), then the VOLL for each sector
 is calculated from the sectorial SCDFs as������� �tø ò�ù�ü � ó����©ÿ ö � ø ò�ùò � � ��� (3.6)

and then, these sectorial VOLLs are weighted by energy consumption. Such as,������� ø ò�ù ü � ������� �Oø ò�ù þ �� þ � (3.7)

(b) if the individual sector load factor information is unavailable, then an equivalent
SCDF is calculated from sectorial SCDFs appropriately weighted by energy con-
sumption � ó���� �"!�ø ò.ù±ü$# ø � ó���� ÿ ö �Eø ò�ù þ �� þ � ù (3.8)

and the VOLL is calculated from
� ó���� �"! ø ò.ù as������� ø ò�ùÐü � ó���� �%!$ø ò�ùò � � � (3.9)

The VOLL is in £/kWh

In this way, interruption duration is identified as the most signficant variable upon which the
cost of an interruption depends. For use of the method, the approximate duration of the outage
must be determined. This is likely to depend on the system conditions which gave rise to the
interruption. For example:

1. Supply interrupted to arrest a decline in system frequency may only be restored when suf-
ficient extra generation has become synchronised with the system or when system demand
has fallen sufficiently.

2. Supply interrupted to prevent voltage instability may only be restored when demand in the
area judged to be vulnerable to voltage collapse has fallen sufficiently, when sufficient
extra local generation has become available or when sufficient other extra local MVAr
reserves have become available.

It should be recalled that the “value of security” studies will be conducted at a transmission level
and that load interruptions, should they arise, will generally be experienced evenly distributed
within individual geographical areas. It may be, instead, that different cost functions, i.e. the
VOLLs, should be assembled for each geographical area (coinciding with Regional Electricity
Company areas) or for each node of the system.

An example

From a survey conducted as part of a study at UMIST in 1994 [35], the CIC costs (table 3.1) and
SCDF functions (see table 3.2) for interruption duration for United Kingdom were calculated.

35



Sector SCDF (£/kW) for interruption duration of:
moment 1 min 20 mins 1 hr 4 hrs 8 hrs 24 hrs

Residential - - 0.15 0.54 3.72 7.96 24.92
Commercial 0.99 1.02 3.89 10.65 39.04 78.65 99.98
Industrial 6.15 6.47 14.27 25.26 72.22 120.11 150.38
Large user 6.74 6.74 6.86 7.18 8.86 9.71 13.35

Table 3.2: UK Sector Customer Damage Functions (SCDF) in £/kW

These SCDFs values can be used for the calculation of VOLL of the system, one region or one
node. The method is general for any case. For example, the VOLL associated to the bus ú will
be calculated. The following assumptions are made:

1. The energy consumption by sector at bus ú is 35% for the residential sector, 25 % for the
commercial sector, 30 % for industrial sector and 10% for the large users sector.

2. The load factors are: 0.333 for the residential sector, 0.40 for the commercial sector, 0.50
for the industrial sector and 0.666 for the large users sector.

Thus, using equations 3.6 and 3.7, the VOLL function for each sector are calculated as in table
3.3 and then the VOLL function for bus ú is obtained (see table 3.4).

Sector VOLL (£/kWh) for interruption duration of:
moment 1 min 20 mins 1 hr 4 hrs 8 hrs 24 hrs

Residential - - 1.35 1.62 2.79 2.99 3.12
Commercial 153.0 29.17 26.63 24.40 24.58 10.41
Industrial 776.4 85.62 50.52 36.11 30.03 12.53
Large user 606.6 30.87 10.77 3.32 1.82 0.83

Table 3.3: VOLL functions by customer sector

Interruption duration: 1 min 20 mins 1 hr 4 hrs 8 hrs 24 hrs&('*)�) ÷ (£/kWh) 341.4 36.5 23.4 18.2 16.4 7.5

Table 3.4: VOLL bus ú - first method -

On the other hand, if the sector’s LF are unknown but the bus LF is known then the VOLL is
calculated using equations 3.8 and 3.9. For this example, the simultaneous maximum demand
corresponds to 80% of residential peak, 40% of commercial peak, 65% of industrial peak and
85% of large user peak. Then, the

� � for bus ú is 0.42. We suppose that only the last value is
known, then the VOLL results are as in table 3.5.

Variations of the method

In equation 3.7, the sectorial VOLLs were weighted by the energy consumption. Alternatively,
the weighting factors may be the number of consumers in sector 
 ot their peak demand. As
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interruption duration: 1 min 20 mins 1 hr 4 hrs 8 hrs 24 hrs&�'+)�) ÷ (£/kWh) 417.5 42.8 26.5 20.0 17.7 8.0

Table 3.5: VOLL bus ú - second method -

stated in [35], the VOLL curves derived have similar characteristics than the VOLL function
presented in table 3.4, but their absolute values are very different. So, the weighting factors
used for each node may affect their VOLL curves.

Some commentaries

Two methods of normalising CICs are considered since there appears to be no consensus in the
literature as to which is more suitable. It has been argued that for short interruptions, to nor-
malise by peak demand is more appropriate since it is the access to instantaneous power that
has been lost, while normalisation by energy should be used for longer outages [43].

In addition, it will be noted that calculation of VOLL can be made for differents times of day,
day of week or week of year in terms of sectorial weightings, i.e. these will change the mixture
factors of SCDFs. These are likely to significantly influence the indirect costs of interruption.
The sensitivity of the results to these factors will be investigated.

3.3.3 Customer Outage Costs -COC-

An essential weakness of the VOLL approach is that it calculates the cost of the outage based
only on the energu not supplied [39]. A study of the factors affecting the perceived customer
interruption costs (CIC) [35, 41] has shown that, in the event of supply interruptions, customers
are much more concerned with the inability to use their equipment and the likely damage to this
equipment than to the energy they have been unable to consume.

The evaluation of Customer Outage Cost (COC) is an alternative way of valuation of the relia-
bility worth. The COC (in £) due to supply interruptions at the busbar , is given by:ó � ó - ü þ - � ó -"ø/.0- ù �21 - (3.10)

where
þ - is the energy consumption at busbar , in the period of evaluation, .0- is the average

outage duration,
1 - is the number of interruptions during the period of evaluation and ó -"ø3.0- ù

is the composite customer damage function (CCDF) calculated from the weighting of SCDF
sectorial functions by the sectorial energy consumption at busbar , and expressed in £/kWh.
When the load factors by sectors are known, then the ó -"ø3.0- ù is given by:

ó -Eø/.4- ùÐü # � ø � ó����1ø3.0- ù� ��� �65 � þ �/-� þ � ù (3.11)

where
5

is the duration of the period of evaluation.
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When
7

only the load factor at busbar , is known, ó -"ø/.0- ù is given by:ó -"ø/.0- ùÐü 8� �9- �65 # � ø � ó����2ø/.0- ù � þ �:-� þ � ù (3.12)

In equation (3.12), � þ � ü þ - at busbar , and
þ - ü<; - � � �9- �=5 . Equation (3.10) then

becomes: ó � ó - ü>; - � � ó���� �"!�ø3.0- ù �21 - (3.13)

where
; - is the peak load at busbar , during the evaluation period

5
.

3.4 VOLL modelling in the Value of Security Assessor

It must recalled that the principal objectives of the research grant do not include the arrival at a
decision on what is the best means of costing interruptions to supply. That decision should rest
with whoever uses the value of security analysis procedure. All that can realistically be provided
is the flexibility of doing the costing by whatever means is chosen and to enable some degree
of sensitivity analysis to be performed with regard to different costing approaches. This will be
accomplished simply by keeping track of the amount and location of load lost in the course of
the Monte Carlo simulation and then costing it all in post-processing by the chosen means after
sufficient samples have been generated.

The current software implementation of the Value of Security Assessor provides this flexibility
of modelling.

The discussion has introduced the need for careful consideration of how interruptions to supply
are to be costed in the Value of Security Assessor under development at UMIST. Some of the
factors contributing towards the cost of interruption have been outlined and in so-doing, some
of the drawbacks of the “value of lost load” currently used in the UK electricity supply industry
have been pointed out.

A proposal has then been presented for what might constitute a useful first approximation of a
realistic value of lost load in the value of security analysis. Results of the application of Value
of Security Assessor are also presented.

3.5 Effect od Duration of Interruption on the VOLL compu-
tation

In order to illustrate the effect of restoration load schemes in the evaluation of security value,
let us use the following example. Consider an unserved load

;@?
of 300 MW that is restored at

a rate of ACB (600 MW/hour). The restoration process starts
ò B (10 min) after the failure occurs.

Then, the first step is the calculation of the total time of restoration. This is given by:5ED �"FHGJI DLK G�M�I%N ü ;@?ACB ü>OQP ACR 	 (3.14)
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Thus,
S

the total load is restored between
ò B and

ò BUT 5VD �"FWGXI DLK G�M�I%N ü òZY . It is supposed, that the load
restoration can be realised by one of the restoration schemes of figure 3.1:

1. The total load (
;9?

) is restores a
òZY

2. The load is restored in 	 (6) steps of [�\N (50 MW)

3. The load is restored continously at the rate of A]B

^`_badcfegad_bh4ij k lmk nok pokj koklokok
nokok
qsrtu vwrxy vz
x{|}~

^�_badcfegad_bh4ij k lok nok pokj koklokok
nokok
qsrtu vwrxy vz
x{|}~

^`_badcfegad_bh4ij k lok nok pokj koklokok
nokok
qsrtu vwrxy vz
x{|}~

�g�L� �g��� �����
Figure 3.1: Schemes of Restoration Load

As, it was showed in [44], VOLL depends on the duration of the load interruption.

The total cost, for each scheme, is given as follow:� Scheme 1. As the total load is restored at
òZY

, then:5 ó ü$���Q�%� ø òZYQù � òZY � ;9? (3.15)

where TC is the total cost (in £) associated with the load interruption.� Scheme 2. Each step ( � ) of the restored load has an associated time of restoration (
òZ�

)
and, hence an associated VOLL (

���Q�"� ø ò���ù ). Then, TC is given by:5 ó ü N#�Z� B ø ���Q�"� ø ò � ù � ò � � ;@?	 ù (3.16)

where
ò��

is given by ò � ü ò B T 5VD �"FWGXI DLK G�M�I%N	 � (3.17)

Then, 5 ó ü N#��� B ø ���Q�"� ø ò � ù � ø ò B T 5VD �"FHGJI D:K G�M�I%N	 � ù � ;9?	 ù (3.18)

39



� Scheme 3. The TC for this case is obtained from the last equation by making 	�� � .
Thus, TC is given by 5 ó ü>� G��GX� ø ���Q�"� ø ò.ù � ò � A]B ùL��ò (3.19)

In the evaluation of the integral, it is important to take into account that the VOLL function
is defined differently for different periods of time, i.e. �:� I/�g�� G is not continuous.
If a continuous first derivative voll function between

ò B and
ò Y

given by:���Q�"� ø ò�ù©ü 	 � ø ò � ò B ù T ���Q�"� ø ò B ù ò B�� ò � ò Y (3.20)

is assumed, TC will be given by:5 ó ü � G��GX� øQø 	 � ø ò � ò B ù T ���Q�"� ø ò B ùnù � ò � ACB ù:��ò (3.21)

or 5 ó ü 	 � ACB � ø òL�Y � òL�B ù T A B ø �����"� ø ò B ù�� 	 � ò B ù  ø ò YY � ò YB ù (3.22)
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Chapter 4

Weather Modelling

4.1 Introduction

It is clear that in an operational timescale, the initial weather is quite predictable, with some
random variation. In addition, studies of succeeding conditions will simply be further ‘operation
snapshots’ which will be examined nearer to the time, but for which the weather can also be
fairly predicted. In consequence, the weather needs not be regarded as a random variable, and
the effects of predicted weather patterns can be reflected in the probabilities of different random
events on the power systems.

Section 4.2 presents the basical concepts used in the weather modelling and the proposed mod-
elling based on the definition of discrete weather states. Section 4.3 describes the implementa-
tion of this feature in the Assessor.

4.2 Weather concepts

As it is stated in [45] and [46], failure rates of some components such as overhead transmis-
sion lines depend on the weather conditions to which they are exposed. The weather aspects
that affect the performance of the transmission lines could vary from one region to another and
could be different from one season to another. Generally, wind speed, lighning, precipitation and
others are the main contributing factors affecting the reliability of the system. In addition, the
severity of the weather scenario is determined by the intensity of the constituent aspects; there-
fore the actual number of severity levels needed to represent weather aspects depends not only
on the available data but also on the appreciation of the intensity of the individual constituent
factors and their impact on the transmission network.

In previous work done at UMIST ([45], [46]), a weather model was developped to evaluate its
effect in the composite system reliability evaluation. This model is general in nature and recog-
nises the following characteristics of weather:
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1. Constituent factors or variables of weather

2. Severity levels of individual variables

3. Interdependency between variables

4. Adversity or stress level of each weather state

5. Regional variation

6. Nonstationary attributes of the weather scenario

7. Seasonal variation of weather

It should be noted that the number of attributes, variables and severities can be easily reduced to
include only those considered necessary and viable in any particular application with the avail-
able data. On the other hand, this model considers the weather as a random variable. For appli-
cation in the operation timescale, the weather is considered to be predictable.

4.2.1 Definition of weather states

Different weather states can be defined for each region and each season. The number of vari-
ables needed to describe the weather could be function of the region, but in a general way the
weather states can be defined by the following variables:

1. Wind speed (S)

2. Lightning (L)

3. Precipitation (P)

Therefore, a weather condition can be represented by the following relationship:¡ ü$¢ ø ��£ � £ ;�ù (4.1)

To determine the effect of weather on the transmission network, the behaviour of each variable
should be recognised. The number and kind of severity levels needed to represent the impact of
each variable are determined by the relevant meteorological data.

As it is stated in [45], the weather and therefore the stress level that a transmission network
can encounter could be associated with a continuous distribution. However, it is much easier to
develop a discretised distribution from a data collection point of view. For this discretisation,
severity levels are defined for each variable; for example, the number of severity levels for the
S, L and P variables are ¤ , � and ¥ respectively. Therefore the total number of states required to
represent the weather will be ¤ . � .¥ , and equation (4.1) becomes:¡ ü>¢ ø � M £ � - £ ;��Eù R�¦2¤ £ ,�¦ � £ ��¦§¥ (4.2)
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able 4.1 shows the weather states for one region in a specified season. It is assummed that the
weather conditions for this region are specified using three variables: wind speed, ligthning and
precipitation. For each variable, three levels of severity are defined: low, medium and high.
Hence, the number of weather states will be 27. These states are obtained by combination of
the severity levels of each variable, as shown in the table.

Weather State Speed Wind Level Lightning Level Precipitation Level
1 Low Low Low
2 Low Low Medium
3 Low Low High

27 High High High

Table 4.1: Weather states

However, some of these general weather categories are little frequent. In such case, it is better to
identify special weather states that are more likely to lead to increased outage rates. The special
weather states can be defined, for example:� Normal weather� Thunderstorm� Freezing rain/wet snow� High winds� Dry spell followed by fog

Alternatively, a more simple definition can be employed using two possible states as function
of data availability:� Adverse weather� Normal (or non-adverse) weather

4.2.2 Failure stress

The weather state 1 from table 4.1 (i.e. low severity of all varieties) represents the normal state
for which the failure rates of the transmission components are specified. After determining the
weather state in function of variables’ severity levels, it is necessary to calculate the impact of
this state on the failure rate of the transmission components. This impact is usually measured
quantitatively in terms of increasing failure rate of individual transmission components. For
example, if the weather is in the , th state, then the failure stress (FS) on the 	 th component can
be specified as: � � N- ü 1 N-1 N B (4.3)
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where:� � N- = failure stress on 	 th component in the , th weather state1 N- = failure rate on 	 th component in the , th weather state1 N B = failure rate on 	 th component in the normal weather state (1).

The calculation of the failure stress uses the concept of the proportion of failures that is explained
in the following section.

4.2.3 Proportion of failures concept

The proportion of failures ocurring in each weather state [4] is defined as:� NM ü©¨�ª¨ 1 NM1 N (4.4)

where:� NM is the proportion of failures for the 	 th component in the R th weather state. It is such that�]«M � B � NM ü 8 � P1 N
is the average failure rate of the 	 th component1 NM is the failure rate of the 	 th component in the R th weather state5 M is the duration of the R th weather state5 ü �]«��� B 5 � is the duration of all weather states (N)

On the other hand, the failure rate for the normal weather state is known. In addition, from the
data collection, the proportion of failure and the duration of the normal state and the total time
of the sample (history) can be calculated. Hence, the average failure rate can be calculated using
equation 4.4. Thus, the failure rate for the 	 th component is given by:1 N ü 5 B5 1 N B� NB (4.5)

The failure rate of the 	 th component for the R th weather state is obtained replacing 4.5 in 4.4
and reordering. Thus: 1 NM ü 5 B5 M � NM� NB 1 N B (4.6)

It is convenient to use a normalised time
5 M such that:«# M � B 5 	 M ü 8 � P (4.7)

Equation 4.6 then becomes: 1 NM ü 5 	 B5 	 M � NM� NB 1 N B (4.8)
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4.3 Modelling in the Assessor

4.3.1 Prevailing weather scenario

In the Assessor, the value of security evaluation is realised either for one-hour dispatch or for
one-day schedule. For the first condition, a prevailing weather scenario can be assumed and its
effect on the failure rate is incorporated using equations 4.5 to 4.8.

A point of dificulty for implementation in the program is to define if the component’s failure rate
data (

1
) is related either to the failure rate for normal weather condition (

1 B ) or to the average
failure rate (

1
).

When the known value is
1
, the adjustment equation to apply is:1 M ü ��M5 	 M 1 (4.9)

(Since this adjustment is applicable to every component in the network, the superscript has been
removed to clarify the equation)

When the known value is
1 B , the adjustment equation to apply is:1 M ü ��M5 	 M 5 	 B� B 1 B (4.10)

In order to give flexibility to the Assessor, the adjustment equation uses three factors for each
area:

1. The normalised duration of the weather state R (
5 	 M )

2. The failure proportion for the weather state R ( ��M )
3. An adjustment factor equal to:� 1.0 if the known value is

1� ¨ N��¬ � if the known value is
1 B

These three data will be given by area and they will be different for each season of the year.
Additional data processing must be performed to determine the duration and failure proportion
factors for each weather state for each area and each season, as explained in section 4.4.

4.3.2 Traversing weather

The evaluation of value security in the one-day case requires that the traversing characteristics
of the weather be included in the modelling. As it is stated, the weather can be considered as
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predictable in the operation timescale. An alternative way for the required modelling is to use
a succession of ‘operation snapshots’. Then, each snapshot will be modelled as a prevailing
weather condition, as presented in the last section.

4.3.3 Failure rate adjustment of multiregional lines

The adjustment of
1

has been presented for the case of only one region traversed by a line. When
a line traverses several regions, each one will have a different adjustment. So, the failure rate of
the line will be adjusted by a factor that ponders the adjustment factors of the traversed regions
based in the length of the line on each region. Thus, equation 4.9 becomes:1 M ü 1 N D#�Z� B ø ��M5 	 M ù � �J�� (4.11)

where 	 . is the total number of traversed regions by the line and ø ¬ ª¨ N ª ùL� is the adjustment factor
associated to the region � .

�J�
is the length of the line on region � and

� ü � N D�Z� B �J� is the total
length of the line.

4.4 Data requirements

Two type of data are necessary for weather modelling: historic data and forecasted weather data.
The historic data allows the definition of weather states for each area of the system and their
associated factors (duration and proportion of failures). The predicted data allows the determi-
nation of the forecasted weather state and so the determination of factors to use in the Assessor.

The historic data will be collected by:� Area or region� Season or period (summer, fall, winter and spring)

If the system is divided in 5 regions and 4 periods of weather are considered, then 20 data groups
must be collected.

From each data group, i.e. for each region-area entity; the following processes must be devel-
oped:

1. Selection of variables that determine different weather states

2. Selection of severity levels for each variable

3. Definition of weather states
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4. Calculation of duration and failure proportion of each weather state. This allow the con-
struction of a table that relates weather state and the needed factors for value of security
evaluation (this table will be called the Weather Table).

The predicted data will be used for determining the weather state of the region according to the
previously defined weather states. The procedure is:

1. Identify the severity level of each forecasted variable

2. Determine the predicted weather state

3. Obtain the duration and failure proportion factors for the value of security evaluation from
the Weather Table
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Chapter 5

Key Ideas from Statistics

This section summarises key concepts and terms from statistics that are necessary to understand-
ing and using Monte Carlo methods. Fuller descriptions may be in standard statistics texts such
as [47] and [48].

A process that is subject to some degree of randomness is known as a stochastic process. Every
time the process (or experiment as it sometimes known) takes place or is carried out, there will
be a number of possible outcomes. After observing the process many times, it may be possible
to recognise that some outcomes happen more often than others and that it is possible to assign
probabilities to them.

The sample space of the stochastic process or experiment contains all the possible outcomes and
may be denoted by

�
(corresponding to the “universal set”). Each realization of the experiment,

known as a trial, will yield one outcome in the space
�

. The outcome may then be thought of
as being or leading to an event which is either a categorization or consequence of the outcome.
Since events can include sets of outcomes or more general consequences, many texts talk about
events rather than outcomes.

In order to make sense of the different outcomes, real numbers are very often assigned to them.
These are known as random variables since they can vary over the real axis and their values
depend on processes subject to some randomness. Here, they will be denoted by  . A value of
a random variable (i.e. a number generated by some random process) will be denoted by ¯® .
5.1 Expectation

If there are a finite number of possible outcomes and a finite population of trials, it will be pos-
sible to find the population mean value of some random variable. If there are ° trials in the
population, the population mean will be± ü 8° «# M � B  ®M � (5.1)
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mean is also known as the expected value or expectation.

If information on A possible outcomes were to be gathered, the mean could be found by± ü ²# M � B ; MW ®M (5.2)

where
; M is the probability of ¯®M occurring as an outcome.

Very often, however, the whole population of trials cannot be observed and a sample of 	 trials
of the population will be explored. This allows the calculation of the sample mean denoted by :  ü 8	 N# M � B  ®M � (5.3)

5.2 Distributions

Since the process being observed is stochastic, it would not be expected that all the random vari-
able being recorded would have the mean value at each trial. There will be some scatter about
the mean. The frequency by which each value occurs over a number of trials can be represented
on a frequency function of the random variable. This is more commonly known as a probabil-
ity density function or p.d.f. as it represents the probability that particular values of the random
variable will be observed. When the random variable is continuous, this will roughly equal zero
for any exact value of the random variable. It is therefore more usual to talk about the proba-
bility of the random variable lying between two bounds. This will be the area under the p.d.f.
between those bounds i.e. ; ø3³�´µ¶´¸· ùÐü ��¹K ¢�º ø�ú ùL� ú (5.4)

where
¢ º ø�ú ù is the p.d.f. of  .

If  is continuous, then an integral form of equation (5.2) could be written such that± ü �§»¼ » ¢½º ø�ú ù ú � ú � (5.5)

One common form of p.d.f., a “normal distribution”, is shown in figure 5.1 (that shown is the
distribution of some measurement ¾ ² � K F subject to Gaussian noise).

Another common distribution is that representing a fixed number of trials where each trial has
only two possible outcomes - “success” or “failure”, “hit” or “miss”. If there are 	 trials and ¿ of
these are successful, there will have been 	 � ¿ failures. If ¥ is the probability of getting a success
in one trial, then 8 � ¥ is the probability of getting a failure. The probability of getting ¿ successes
and 	 � ¿ failures for a given order of successes and failures is ¥ÁÀtø 8 � ¥ ù N ¼ À . The number of
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possible orders of ¿ successes from 	 trials (i.e. combinations of successes and failures) is ó NÀ
or Â 	 ¿ÄÃ which is Â 	 ¿ Ã ü 	�Å¿ Å ø 	 � ¿ ù Å � (5.6)

Thus the probability of getting ¿ successes in 	 independent trials is¢ ø�¿ ùÐü 	�Å¿ Å ø 	 � ¿ ù Å ¥ À ø 8 � ¥ ù N ¼ À for ¿ ü$P £ 8 £   £ �`�`� £ or 	 � (5.7)

This is known as the binomial distribution. Its mean is simply± ü 	 ¥ � (5.8)

Another representation of frequency information is a cumulative distribution function or c.d.f..
This describes the probability that  has a value equal to or less than some other value, say 

and is � º ø/
 ù ü>; ø%Æ´�
 ùÐü � �¼ » ¢½º ø�ú ù:� ú (5.9)

5.3 Variance

How values of the random variable from different trials vary can be described in terms of the
difference between  M from trial R and the mean. The overall quality of the random process
(i.e. how random it is) can be seen from the differences between each  M and the mean. Simply
adding them together would not be very useful as they would sum to zero. There are also prob-
lems associated with adding the absolute values of the differences so adding the squares of the
differences has been adopted as a standard. This is known as the varianceÇ Y ü ²# M � B ; M�ø" ®M � ± ù Y (5.10)ü 8° «# M � B ø% ®M � ± ù Y � (5.11)

Another way of calculating this is Ç Y ü  Y �  Y � (5.12)

The variance of a continuous random variable isÇ Y ü$��»¼ » ¢½º ø�ú ù ø�ú � ± ù Y � ú (5.13)

In practice, a divisor of 	 � 8 is used for the sample variance ¤ Y i.e.¤ Y ü 8	 � 8 N# M � B ø% ®M �  ù Y � (5.14)
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is because ¤ Y is an estimator of Ç Y ( Ç Y is the variance of the population and ¤ Y is the vari-
ance of a sample of it which may be taken as an estimate of the overall variance). Using 	 � 8
makes it unbiased i.e. the average of a series of such estimators will equal the quantity they are
estimating. The idea of an estimator is quite important in Monte Carlo simulation. For example, is an estimator of ± , an idea which can be expressed byþ ø  ù ü ± � (5.15)

The computing formula for the sample variance is then

¤ Y ü � ú Y � ø � ÷ ù �N	 � 8 �
(5.16)

The variance of a p.d.f.
¢½º ø�ú ù can be worked out by equation (5.10) recognising that

; M ü¢½º ø%6®M ù so that Ç Y ü ²# M � B ø% ®M � ± ù Y ¢½º ø" ®M ù � (5.17)

The variance of a binomial distribution isÇ Y ü 	 ¥ ø 8 � ¥ ù (5.18)

where ¥ is the probability of a “success” in one trial and 	 is the number of trials.

It may be usefully noted that

var ø/È º ø�ú ùL��º ø�ú ùQù ü var ø/È º ø�ú ùQù var ø �½º ø�ú ùQù (5.19)

var Â È º ø�ú ù�½º ø�ú ù Ã ü var ø/È º ø�ú ùQù
var ø �½º ø�ú ùnù � (5.20)

Related to the variance is the positive square root of the variance or standard deviation, Ç for
the population and ¤ for a sample. Another useful term is the coefficient of variation which, for
a population, is É ü Ç± (5.21)

or for a sample is ó � ü ¤ �
(5.22)

This allows the scatter of random variables to be compared regardless of the units in which they
are measured.
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5.4 Covariance

If two separate random variables  and Ê are defined on the same probability space, the rela-
tionship may be described in terms of the covariance or the correlation coefficient. The covari-
ance is defined by

cov Ëb £ Ê�Ì ü Ç º ö Í ü þ Ë�ø" � ± º®ù ø/Ê � ± Í ù Ì (5.23)

while the correlation coefficient ÎEËs £ Ê�Ì or Î º ö Í isÎ º ö Í ü cov Ëb £ Ê�ÌÇ º Ç Í (5.24)

provided that cov Ës £ ÊÏÌ , Ç º and Ç Í all exist and Ç º$ÐµP
and Ç Í Ð�P

.

As a measure of the linear relationship between  and Ê , cov Ëb £ ÊÏÌ will be positive when  �± º and Ê � ± Í tend to have the same sign with high probability and negative when they tend
to have opposite signs with high probability. If there is little relationship, the covariance will be
roughly zero.

The magnitude of the covariance depends on the variability of each of  and Ê . The correlation
coefficient removes this dependence by dividing the covariance by the product of the individual
standard deviations so that

� 8 ´$Î º ö ÍÑ´ 8 .
Similar to the expression given in equation (5.12) is the following expression for computing the
coefficient of correlation of a sample . :. ü � Yº Í� º ºÓÒ � ÍÔÍ (5.25)

where
� ºÕº

is the sum of squares of the deviation of  from the mean  or� º º ü N# M � B  ® YM � 8	¸Ö N# M � B  ®MH× Y £ (5.26)� ÍEÍ is the sum of squares of the deviation of Ê from Ê or� ÍÔÍ ü N#M � B Ê ® YM � 8	 Ö N#M � B Ê ®M × Y (5.27)

and
� º Í is 	 times the “first product moment” [48] i.e.� º Í ü N#M � B  ®M Ê ®M � 8	ØÖ N# M � B  ®MW× Ö N# M � B Ê ®MÙ× (5.28)ü N#M � B ø" ®M �  ù ø/Ê ®M � Ê ù � (5.29)� º Í is more commonly seen when divided by 	 � 8 and known as the sample covariance. The

sample covariance is then most easily computed using equation (5.28) and dividing
� º Í by	 � 8 .

Just as the mean, variance and standard deviation can be defined for random variables, they can
also be defined for functions of random variables.
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5.5 Estimate error

One of the most important distributions in statistics is the normal or Gaussian distribution (fig-
ure 5.1). This is described by two parameters, ± and Ç Y such thatÚ�Û ö Ü � ø�ú ùÐü 8Ý  QÞ Ç Yàß ¼ ��àáoâ�ãÙä�å �æ � �

(5.30)

It is a key component of the central limit theorem which says that the sampling distribution of
the mean has an approximately normal distribution when 	 is large i.e.¢ º ø�ú ù�ç Ú�Û ö Ü �Zè N ø�ú ù for 	 large (5.31)

where
¢ º ø�ú ù is the p.d.f of  .

z
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Figure 5.1: An example of a normal distribution

It can be shown that this represents the variation of the expectation (or mean) in a Monte Carlo
simulation if the population is infinite. This is to say that the probability of finding a particular
value for the mean of a random sample of 	 trials from a population is represented by a normal
distribution. Moreover, the variance of this normal distribution describing the variation of the
mean (or expected value) of a sample of size 	 is related to the variance of the population from
which the 	 variables are taken, and 	 . This relationship isÇ Yº ü Ç Yº	 �

(5.32)

where Ç Yº , or simply Ç Y , is the variance of the population of values of the random variable 
and Ç Yº is the variance of the mean (or expected value)  of  . The standard error of the mean
is then defined to be Ç º ü Ç ºÝ 	 � (5.33)

The mean of the sampling distribution of  is± º ü ± º (5.34)

where ± º , or simply ± , is the population mean of  .

If the population is finite, the standard error is [48]Ç  ü Ç ºÝ 	 Òàé ° � 	° � 8 (5.35)
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where ° is the population size. When the sample represents less than about 5% of the popula-
tion, the term ê « ¼ N« ¼ B , known as the finite population correction factor, can be omitted as it will
be very close to 8 .
5.6 Standard scores and confidence

Since the purpose of the simulation is to find the expectation, it is not known in advance, so use
can be made of the normal distribution to assign a probability that the estimated expectation is
within a given range of the true one. This in turn enables an estimate to be made of the number
of samples needed to find the expectation to a given specification.

Another quantity referred to in some texts is the standard unit, standard score or z-score. Yet
another name that may be seen is “normal score”. It is used to re-express the original scale of to enable the forming of a standard normal distribution which has ± üëP

and Ç ü 8 . The
standard unit is referred to as ¾ and is ¾ ü  � ±Ç �

(5.36)

A particular value of ¾ is ¾�ì which is the value of ¾ above which the area of the standard normal
distribution is equal to í i.e. if the standard normal distribution is given by Ú ø/¾ ù ,��»î3ï Ú ø/¾ ù:� ¾ ü í ü>; ø/¾�ð$¾ ì ù � (5.37)

Likewise, the areas to the right of ¾ ì è Y and the left of
� ¾ ì è Y under a standard normal curve are

both íòñ   . The area between is 8 � í (see figure 5.2).

σµ

α

x

α / 2 α / 2

1 -

f ( x )

α / 2
z

n

Figure 5.2: Sampling distribution of the mean

Making use of the central limit theorem, for large random samples from infinite populations, the
sampling distribution1 of  is roughly a normal distribution with ± º ü ± and Ç º ü Üó N . This

1A sampling distribution is the distribution of a random variable within a sample taken from the the population
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can be described in terms of the standard normal distribution Ú ø/¾ ù where¾ ü  � ±Ç ñ Ý 	 (5.38)

is a value of a random variable having approximately the standard normal distribution.

Most importantly, the probability is 8 � í that  found from a large sample will differ at most
from the mean of the population ± by ¾ ì è Y Üó N i.e.; Â  � ¾ ì è Y ÇÝ 	 ´ ± ´ ëTÓ¾ ì è Y ÇÝ 	 Ã ü 8 � í � (5.39)

Thus, a confidence interval may be defined such that the probability of the true mean lying within
that interval is the confidence level ô such thatô üõ; ø  � � ´ ± ´ ëT � ù ü � º ö ÿº ¼ ÿ Ú ø�ú ùL� ú (5.40)

where � ü ¾ ì è Y ÇÝ 	 (5.41)ô ü 8 � í (5.42)

and Ú ø�ú ù is the Gaussian distribution. In natural language, this says that we can be ø 8 � í ù � 8 P÷P %
confident that the estimate of the mean  lies within ø � of the true population mean ± . (Note
that 8 � í ü ô is also sometimes known as a confidence coefficient or a degree of confidence).

The above relationships are most useful in allowing a decision to be made about the size of
sample needed to obtain an estimate of a given accuracy with a given degree of confidence. If
the error that will be tolerated is

�
and ô ü 8 � í is the degree of confidence wanted, ¾ ì è Y

can be found from a standard set of tables (a part of which is reproduced in table 5.1) and the
expression 	 ü Ç Y ¾ Yì è Y� Y (5.43)

used to find a suitable number samples.

Clearly, from equation (5.43) and table 5.1 it can be seen that the required sample size increases
with the degree of confidence but is inversely proportional to the square of the confidence in-
terval. ô 0.90 0.95 0.99 0.999í 0.10 0.05 0.01 0.001¾ ì è Y 1.645 1.960 2.576 3.291

Table 5.1: Relationship of degree of confidence and ¾ ì è Y for some useful values of ô
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This
S

is an illustration of the law of large numbers. One of its formal statements says that for a
random variable ú with an expectation  and a sufficiently small positive number ù ,úJûXüN�ý » ; Âdþþþþþ 8	 N# M � B  ®M �  þþþþþ � ù Ã ü 8 � P (5.44)

which means to say that when 	 is very large, the sample mean of  approaches its true mean
with a very large probability.

An inevitable problem with equation (5.43) is the presence of the population variance Ç Y which
will not be known. Even the sample variance ¤ Y which may make a good approximation for Ç Y
will not be known until a number of trials have been carried which is unhelpful for knowing how
many trials to do. A commonly used compromise is to do some small pilot studies to obtain a
reasonable value for ¤ Y and consequently a required number of trials 	 .

If the sample variance ¤ Y is used as an approximation of Ç Y , equation (5.43) may be used as a
test for “convergence” of a sample to pre-defined confidence interval and confidence limit i.e.
once 	 is greater than, say, 20, stop taking any more samples once¤ Y ´¸¾ Yì è Y � Y	 �

(5.45)

The question may arise: can confidence limits be defined for small samples with, say, less than
30 observations? When the sample is small and the population variance is unknown, the sam-
ple variance must be used. Under these circumstances, the sampling distribution cannot be ap-
proximated by a normal distribution. However, if it can be assumed that the populations being
sampled have roughly the shape of a normal distribution, the confidence limits can be based on
the statistic ò ü  � ±¤Qñ Ý 	 � (5.46)

This is the value of a random variable having Student’s t distribution. While it is similar to the
normal distribution—bell-shaped and with a zero mean but with longer tails—it’s exact shape
depends on the number of degrees of freedom. Using a number of degrees of freedom equal to	 � 8 where 	 is the sample size, the t distribution can be adopted to find the value

ò ì è Y which
replaces ¾ ì è Y in the calculation of a confidence interval.

It may be further noted that confidence intervals can be expressed for variance [49]. Using the
definition of the variance of a sample of 	 trials from a normally distributed population as¤ Y üÿ� NM � B ø% ®M �  ù Y	 � 8 £

(5.47)

and recognising that ¤ Y is an unbiased estimate of Ç Y , it can be shown that the sampling distri-
bution of ø 	 � 8 ù ¤ Y ñ Ç Y is � Y ø 	 � 8 ù . Thus,; Ö � Y ø 8 � í ñ  �� 	 � 8 ù ´ ø 	 � 8 ù ¤ YÇ Y ´�� Y ø/í ñ  �� 	 � 8 ù × ü 8 � í (5.48)

where � Y ø 8 � íòñ  �� 	 � 8 ù is the upper 8 P÷P ø/í ñ   ù percentage point of the � Y ø 	 � 8 ù distribution.
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Rearranging
�

equation (5.48) enables the expression of a confidence interval for Ç Y such that; Ö 	 � 8 ù ¤ Y� Y ø/í ñ  �� 	 � 8 ù ´ Ç Y ´ 	 � 8 ù ¤ Y� Y ø 8 � í ñ  �� 	 � 8 ù × ü 8 � í � (5.49)

Confidence intervals for Ç Y (and hence for Ç ) are usually quite wide unless the sample size is
very as an estimate of the a variance will always be less precise than that of a mean as an average
of squared observations is more variable than an average of observations.
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Chapter 6

Monte Carlo Algorithms

Perhaps the best way of describing how Monte Carlo schemes work is to show examples. A sim-
ple example is that of calculating the integral of a function. When the function is not regular, a
Monte Carlo based estimation of the integral becomes more attractive than using a conventional
numerical technique. Two such Monte Carlo estimation algorithms are offered - one which can
be understood as returning 8 or

P
“hits” or “misses” in the required area, the other which returns

an expected value from a p.d.f..

A third example of use of Monte Carlo simulation is offered in section 8 in terms of its appli-
cation to reliability analysis of a power system.

6.1 The “Hit or Miss” method

The “Hit or Miss” method is based on a graphical interpretation of an integral as an area. It is
possibly the easiest the understand and was originally the one usually propounded in discussion
of Monte Carlo techniques though it is the least efficient [2] (a proof of this is offered in [50] as
well as [2]).

6.1.1 “Hit or Miss” applied to a one-dimensional integral

The bounded integral of a one-dimensional function ¿ ø�ú ù is to be found [50] (figure 6.1). It may
be supposed that P ´ ¿ ø�ú ù ´�� (6.1)³�´ ú ´Ø· � (6.2)

The area of the rectangle bounded by 
 ü$P
, 
 ü � , ú ü ³ and ú ü · is denoted � and is� ü
	 ø�ú £ 
 ù�� ³�´ úC´Ø· £ P ´�
�´��� � (6.3)
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A
�

random vector ø" £ Ê ù is supposed to be uniformly distributed over � with a p.d.f.
¢½º ÍÉø�ú £ 
 ù

such that ¢½º ÍÐø�ú £ 
 ù�ü�� B��� ¹ ¼ K�� if ø�ú £ 
 ù ¦��P
otherwise

(6.4)

i.e.
¢½º ÍÐø�ú £ 
 ùÐü 8 ñ area ø�� ù when ø�ú £ 
 ù falls within � , and

P
outside � . This in turn means to

say the the probability of hitting any spot inside � is the same and is inversely proportional to
the area of � , while there is no chance of ø�ú £ 
 ù falling outside � .

a b x

h(x)

c

A

h(x)

H

Figure 6.1: Illustration of “Hit or Miss” method

The task now is to find the probability ¥ of a random vector ø% £ Ê ù falling in the area under the
curve ¿ ø�ú ù . If � is defined such that � ü�	 ø�ú £ 
 ù�� 
�´Ø¿ ø�ú ù � , then

area under ¿8ø�ú ù�ü area ø�� ù ü ��¹K ¿ ø�ú ùL� ú � (6.5)

Now it can be seen that ¥ ü area ø�� ù
area ø�� ù ü�� ¹K ¿ ø�ú ùL� ú�eøL· � ³ ù ü  �Eø�· � ³ ù � (6.6)

Let it be assumed that 	 independent random vectors ø%6®B £ ÊÏ®B ù £ ø%6®Y £ Ê�®Y ù £ �`�`� £ ø%6®N £ Ê�®N ù are gen-
erated. ¥ can be estimated by !¥ ü 	#"	 (6.7)

where 	$" is the number of times that ÊÏ®M ´ ¿ ø"¯®M ù for R ü 8 £   £ �`��� £ 	 i.e. the number of “hits”
in area � , while 	 � 	#" is the number of “misses” where ÊÏ®M Ð ¿ ø%6®M ù for R ü 8 £   £ �`�`� £ 	 .

It follows, then, that equation (6.6) can be used to estimate the integral  i.e. ç&%Hü �eøL· � ³ ù 	$"	 �
(6.8)

A sample of 	 trials is taken from
¢�º ÍÐø�ú £ 
 ù , the number of hits 	#" is counted and equation

(6.8) is applied to find
%
.

It remains for the required precision of the estimator
%

and the required number of trials to be
defined.
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6.1.2
'

Precision of the “Hit or Miss” method

Since
%

is an estimator of  and each of the trials is a Bernoulli trial1, the following equalities
are true as � , · , ³ and 	 are known and not estimated:þ ø %tùÐü �eøL· � ³ ù þ)( 	 À	+* ü �Eø�· � ³ ù þ ø 	#" ù	 ü ¥,�Eø�· � ³ ù�ü  � (6.9)

(This implies that
%

is an unbiased estimator of  ).

The variance of the estimated quantity

!¥ isÇ Y -. ü var
( 	 "	�* ü 8	 Y var ø 	 À ù (6.10)

where var ø 	#" ù is the variance of 	$" (which has a binomial distribution) and is

var ø 	 À ù ü 	 ¥8ø 8 � ¥ ù � (6.11)

Hence, the variance of

!¥ is Ç Y -. ü 8	 ¥8ø 8 � ¥ ù � (6.12)

Substituting ¥ from (6.6), Ç Y -. ü 8	  Ë/�Eø�· � ³ ù Ì Y Ë/�Eø�· � ³ ù �  Ì � (6.13)

Now, finding the variance of the right hand side in equation (6.8),Ç Y0 ü var
( �eøL· � ³ ù 	#"	1* ü Ë/�Eø�· � ³ ù Ì Y Ç Y -. (6.14)ü Ë/�Eø�· � ³ ù Ì Y 8	 ¥ ø 8 � ¥ ù (6.15)ü  	 Ë2�eøL· � ³ ù@�  Ì � (6.16)

Now, the requirement of a certain degree of confidence í that the estimate
%

of  lies within a
certain bound can be stated ; ø43 %(�  3 � ù ù ð$í � (6.17)

This can be expressed in terms of Chebyshev’s inequality which says that the probability of the
absolute difference between the estimated value and the true value being less than ù is at least

1A Bernoulli trial is a trial of an experiment with only two possible outcomes.
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í with í expressed in terms of the variance of the estimate and ù 2; ø43 %(�  3 � ù ù ð 8 � Ç Y0ù Y (6.18)

so that, from equations (6.17) and (6.18)íÄ´ 8 � Ç Y0ù Y � (6.19)

Substituting equation (6.15) in to (6.19),íÄ´ 8 � ¥8ø 8 � ¥ ù Ë2�eøL· � ³ ù Ì Y	 ù Y (6.20)

is obtained which can be solved for 	 :	 ð ¥ ø 8 � ¥ ù Ë2�eøL· � ³ ù Ì Yø 8 � í ù ù Y �
(6.21)

This gives the required number of trials.

When 	 is large enough, the central limit theorem can be applied which says the random variable
!%

where !%�ü %(�  Ç 0 (6.22)

is distributed approximately according to the standard normal distribution i.e.; ø % ´�¾ ù�ç Ú ø3¾ ù (6.23)

where Ú ø3¾ ù is the standard normal distribution.

It can be shown that, for a confidence level of 8 � í , the confidence interval for  is% ø ¾ ì è Y �eøL· � ³ ù ê !¥(ø 8 � !¥ ùÝ 	 (6.24)

where ¾ ì è Y ü Ú ¼ B ø/í ù � (6.25)

2Another way of stating it is to say that the probability of the absolute difference between the estimate and the
true value being greater than 5 is less than 687:9 or;=<?> @ 7 A >CB 5EDGFIHKJL5 J
where HKJL5 JNM 6$7O9
which is analogous to equation (5.37)
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6.1.3
'

Summary of the “Hit or Miss” algorithm

1. Generate a sequence of
  	 random numbers.

2. Arrange the random numbers into 	 pairs øQP*®B £ � ®B ù £ øQP*®Y £ � ®Y ù £ ���`� £ øQP*®N £ � ®N ù in any manner
such that each random number from the original sequence is used exactly once.

3. Calculate 6®M ü ³ÏTRP*®M øL· � ³ ùÚ ø"¯®M ù S R ü 8 £   £ ���`� £ 	 (6.26)

4. Count the number of cases 	$" for whichÚ ø% ®M ù�Ð � � ®M � (6.27)

5. Estimate the integral  by %Hü �eøL· � ³ ù 	$"	 �
(6.28)

6.2 The “Sample-Mean” method

6.2.1 Computing an integral by the “Sample-Mean” method

An integral  such that  ü � ¹K ¿ ø�ú ù:� ú (6.29)

may be represented as the expected value of some random variable. If the integral is re-written
as  ü � ¹K ¿ ø�ú ù¢½º ø�ú ù ¢ º ø�ú ùL� ú (6.30)

where
¢½º ø�ú ù is any p.d.f. such that

¢½º ø�ú ù�ÐÿP
when ¿ ø�ú ùUTü P

, then making use of equation
(5.5),  ü þ Ö ¿ ø% ù¢ º ø% ù × (6.31)

where the random variable  is distributed according to
¢½º ø�ú ù .

In a similar manner to that adopted in section 6.1,
¢�º ø�ú ù may be defined as¢�º ø�ú ùÐü�� B¹ ¼ K if ³ � ú � ·P

otherwise
(6.32)
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Thus
S þ Ëm¿ ø" ù Ì ü  þ Ë ¢�º ø" ù Ì (6.33)ü  · � ³ (6.34)

and  ü øL· � ³ ù þ Ëm¿ ø% ù Ì � (6.35)

An unbiased estimator of  is its sample mean% ü ø�· � ³ ù 8	 N# M � B ¿8ø" ®M ù � (6.36)

6.2.2 Precision of the “Sample-Mean” method

From equation (5.12), the variance of
%

is
þ ø % Y ù�� Ë þ ø %tù Ì Y so thatÇ Y0 ü var Ö 8	 øL· � ³ ù N# M � B ¿ ø" ®M ù × (6.37)ü 8	¸Ö ø�· � ³ ù Y ��¹K ¿ Y ø�ú ù· � ³ � ú �  Y × (6.38)ü 8	 Ö ø�· � ³ ù ��¹K ¿ Y ø�ú ù:� ú �  Y × � (6.39)

6.2.3 Summary of the “Sample-Mean” algorithm

1. Generate a sequence of 	 random numbers
	 P*®M � NM � B .

2. Compute  ®M ü ³(TRP ®M øL· � ³ ù £ R ü 8 £   £ �`�`� £ 	 .

3. Compute ¿ ø%6®M ù £ R ü 8 £   £ �`�`� £ 	 .

4. Compute the sample mean
%

according to equation (6.36) which estimates  .
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Chapter 7

Variance Reduction

It can be seen from equation (5.43) that to obtain a given accuracy in the result of a sample
estimate for a given degree of confidence may require many trials. In Monte Carlo simulation
each trial may require significant computational effort. The greatest attention in use of Monte
Carlo simulation has therefore been spent in reducing the number of samples needed for a given
confidence interval and degree of confidence by means of variance reduction.

Hammersley and Handscomb [2] say: “If, at any point of a Monte Carlo calculation, we can
replace an estimate by an exact value, we shall reduce the sampling error in the final result.”
This can be understood by considering the variance of an estimated parameter. If the variance is
zero, the parameter is known perfectly and there would be no need for Monte Carlo simulation.

Variance reduction is a way of making better use of existing knowledge about a problem [50].
Exactly what form that existing knowledge takes determines what kind of variance reduction
technique can be used. The more existing knowledge there is, the more effective variance re-
duction will be.

There are 5 main variance reduction methods:� antithetic variates.� correlated sampling.� control variates.� importance sampling.� stratified sampling.

Of these, all except correlated sampling have found at least some application in power systems,
examples of which are given in section 9.

Other variance reduction techniques include dagger sampling and selective sampling. These
and those listed above are next described in the next sections. Other means of improving the
efficiency of a Monte Carlo simulation are described in [50] and [3].
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It
V

may also be noted that the variance of an estimate can be reduced if some analytical integration
can be performed with respect to some of the variables.

7.1 Antithetic variates

This technique is based on finding two unbiased estimators for the unknown parameter (e.g.
the integral  ) which have strong negative correlation. If the two estimators are W B and W Y , the
estimator of  will be BY øXWEB�TRW Y�ù with variance

var Y 8  øQW BòTZW Y�ù�[Hü 8\ var øXWEB ù T 8\ var øXW Y�ù T 8  cov øXWEB £ W Y�ù � (7.1)

Clearly, from equation (7.1), if cov øQWEB £ W Y�ù is strongly negative, the overall variance can be re-
duced.

By way of example, consider the integral ü � B] ¿8ø�ú ùL� ú (7.2)

which is equal to  ü 8  � B] Ë�¿8ø�ú ù Tµ¿ ø 8 � ú ù Ì � ú � (7.3)

The estimator of  is thenW ü 8  øQWEB�TZW Y�ùÐü 8  Ëo¿ øQP ù Tµ¿ ø 8 � P ù Ì (7.4)

where P is a uniformly distributed random number sequence between Ë P £ 8 Ì . W is an unbiased
estimator of  because both WEB ü ¿ øQP ù and W YÎü ¿ ø 8 � P ù are unbiased estimators of  .

To estimate  , a sample size of 	 is taken from the uniform distribution and%½ü 8  	 N# M � B Ëm¿ øQP ®M ù T ¿8ø 8 � P ®M ù Ì (7.5)

is found.

When sampling, the effect is to have pairs of trials which are negatively correlated, the first one
determined by a random number or vector of random numbers P , the second by 1 minus the
same random number(s), 8 � P , so that if one trial returns a large outcome, the other will be
likely to return a small one. It would be hoped that the average of the two will be near to the
population average. Thus, if many such pairs of trials are performed, the spread (or variance)
of the averages of the pairs will be low, i.e. the variance of the sample will have been reduced.

When carrying out a Monte Carlo estimation using antithetic variates and tracking the sample
variance to detect convergence of the estimate to some pre-defined limits, it should be noted
that if the covariance of WEB and W Y is not to be computed (using equation (5.28)) in order to
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evaluate the right hand side of (7.1), the average of pairs of trials (one of WEB and the other of W Y )
should be tallied in order to evaluate the left hand side of (7.1). From this, it should be clear that
the computation time required by equation (7.5) is twice that required by the standard sample-
mean method (since two trials are required to provide one tallied ‘data point’) so the estimator of
(7.5) is more efficient only when its variance is less than half that of the straightforward sample-
mean approach. A proof is included in [50] which shows that this can be guaranteed if ¿8ø�ú ù is
a monotonic function.

OutcomeSample
mean

Trial

Figure 7.1: Illustration of use of antithetic variates

The benefit of antithetic variates is illustrated in figure 7.1. Individual trials’ costs’ differences
from the mean are shown by light horizontal lines. The variance of simple sampling will be the
sum of the square of these differences divided by the number of trials. In antithetic variates,
however, the individual trials’ outcomes are not logged as data points, but the averages of pairs
of trials are. If there is significant negative correlation between pairs of trials, each pair will
generally a comprise a lower outcome and a higher outcome the average of which will be closer
to the sample mean. The differences between the pair averages and the sample average can be
seen to be smaller meaning there is less spread of outcomes, i.e. there is smaller variance.

A further point worth noting is that when antithetic variates are applied to simulations of systems
comprising two-state stochastic variables (such as power systems—see sections 7.6 and 8.3 for
brief descriptions), the correlation of W B and W Y and hence the efficiency of the method is likely
to fall off as the probability of the ‘out of service’ state gets smaller. This is because if P ®M is
such that the ‘basic event’ is ‘in service’, P ®M needs to be very large for the state to change when
it is a function of 8 � P ®M . Since this happens rarely, the negative correlation is reduced. Take a
failure probability of

P � 8_^ as an example. If P ®M Ð�P � 8`^ , the state is “in service” but P ®M has to beð P �  ^ for 8 � P*®M to give the “out of service” condition for the ‘antithetic’ state.
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7.2 Correlated sampling

The aim of correlated sampling is to produce a high positive correlation between two similar
processes so that the variance of the difference is considerably smaller than it would be if the
two processes were statistically independent [50].

This may be used, for example, in assessing the effect of a small change in a system. A Monte
Carlo run could be carried out for the system with the change and then for the system without
it. The results of the two runs could then be subtracted. However, that difference may often
be small in comparison with each individual result or with the variances of those results. The
variance of the difference, meanwhile, would be the sum of the variances of each run.

A way, then, of reducing the variance of the difference would be to use the same random num-
bers for each run so that the individual results are highly positively correlated.

Take, by way of example, the difference a  of the integrals  B and  Y of two functions, W B ø�ú ù
and W Y ø�ú ù i.e. a  ü  B �  Y (7.6)ü � W B�ø�ú ùL� ú � � W Y ø�ú ùL� ú � (7.7)

If ¿UB$ø�ú ù and ¿ Y ø�ú ù are defined such that¿UB�ø�ú ù ü WEB�ø�ú ù¢ B ø�ú ù (7.8)¿ Y ø�ú ù ü W Y ø�ú ù¢ Y ø�ú ù (7.9)

where
¢ B�ø�ú ù and

¢QY ø�ú ù are p.d.f.s, then B ü � ¿UB�ø�ú ùL¢ B�ø�ú ùL� ú (7.10) Y ü � ¿ Y ø�ú ùL¢QY ø�ú ùL� ú � (7.11)

If ¯®B £ �`�`� £ ¯®N are sampled from
¢ B$ø�ú ù and Ê�®B £ �`��� £ Ê�®N from

¢÷Y ø�ú ù , a  can be estimated usinga % ü 8	 N# M � B ¿ B ø% ®M ù�� 8	 N# M � B ¿ Y ø/Ê ®M ù (7.12)ü 8	 N# M � B � M (7.13)

where � M ü ¿ÁB�ø% ®M ù�� ¿ Y ø/Ê ®M ù � (7.14)

The variance of a % is Ç Y ü Ç YB T Ç YY �   cov ø !% B £ !%�Y.ù (7.15)
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where !% B ü 8	 N#M � B ¿ÁB�ø% ®M ù (7.16)!%�Y ü 8	 N#M � B ¿ Y ø/Ê ®M ù (7.17)Ç YB ü þ ø !% B �  B ù Y (7.18)Ç YY ü þ ø !%�Y �  Y.ù Y (7.19)

and

cov ø !% B £ !%½Y�ùÐü þcb ø !% B �  B ù ø !%�Y �  Y�ù�d � (7.20)

If

!% B and

!%�Y
are statistically independent, then

cov ø !% B £ !%½Y�ùÐü$P
(7.21)

and Ç Y ü Ç YB T Ç YY � (7.22)

However, if the random variables  and Ê are positively correlated and ¿ÁB�ø�ú ù has a similar
shape to ¿ Y ø�ú ù then the variance of a % will be greatly reduced. Thus, the key to exploiting this
form of variance reduction is in ensuring positive correlation between the estimates of

! B and
! Y . If

¢ B�ø�ú ù and
¢QY ø�ú ù are similar, this can be achieved by taking a sequence of random numbersP*®B £ �`�`� £ P*®N and finding ¯®B £ �`�`� £ 6®N and Ê�®B £ �`�`� £ Ê�®N by ¯®M ü � ¼ BB øQP*®M ù and Ê�®M ü � ¼ BY øQP*®M ù where� ¼ B is the inverse of the cumulative distribution function of

¢
used in the generation of random

variates [50, 51].

According to [50], there is no general procedure that can be implemented in correlated sampling.
However, it can be usefully employed when� the effect of a small change in a system is to be calculated.� the difference in a parameter in two or more similar cases is of more interest than its ab-

solute value.

This form of variance reduction is also described in [3] where it is known as common random
numbers.

7.3 Control variates

Also known as regression sampling [3], this technique replaces the direct estimation of a pa-
rameter with an estimate of the difference between the problem of interest and some analytical
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model [50]. This is possible, for example, when the problem contains a part which can be solved
by means of an analytical model so that the Monte Carlo simulation is used to calculate the dif-
ference between the solution of the problem and this part [2].

A random variate ó is a control variate for Ê if it is correlated with Ê and if its expectation ±8e
is known. ó can then be used to estimate ± with a smaller variance than the estimator Ê .

For any value of ³ , Ê2ø/³ ù�ü Ê � ³Ãø«ó � ±8e ù (7.23)

is an unbiased estimator of ± [50].

The variance of Ê1ø3³ ù is given by

var Ë�Ê2ø/³ ù Ì ü var ËgÊÏÌ �   ³ cov Ë�Ê £ ó(Ì�TÓ³ Y var Ëyó(Ì � (7.24)

Variance reduction is achieved if   ³ cov ËgÊ £ ó(Ì Ð ³ Y var Ëyó(Ì � (7.25)

The value of ³ that minimizes var Ë�Ê2ø/³ ù Ì is³�f ü cov Ë�Ê £ ó(Ì
var Ë&ó�Ì (7.26)

and the minimum variance is equal to

var Ë�Ê2ø/³ f ù Ì ü ø 8 � Î YÍ e ù var Ë�Ê(Ì (7.27)

where Î Í e is the correlation coefficient between Ê and ó .

7.4 Importance sampling

To illustrate the concept, the problem of estimating  is considered where ü � ¿ ø�ú ù:� ú £ ú]¦2� (7.28)

and it is supposed that � ¿ Y ø�ú ùL� ú and  both exist [50, 52].

The basic idea of importance sampling is to concentrate the distribution of sample points in the
parts of region � where ¿8ø�ú ù is most significant instead of spreading them evenly.

As was done in equations (6.30) and (6.31), the integral can be represented by ü$� ¿ ø�ú ù¢½º ø�ú ù ¢�º ø�ú ù:� ú ü þ Ö ¿ ø% ù¢½º ø% ù × (7.29)
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where  is any random variable with p.d.f.
¢½º ø�ú ù such that

¢½º ø�ú ù(Ð P
for each úÓ¦µ� . The

function
¢½º ø�ú ù is called the importance sampling distribution. From equation (7.29), it is pos-

sible to say that W ü ¿8ø�ú ù ñ ¢ ÷ ø�ú ù (7.30)

is an unbiased estimator of  . The variance of W isÇ Yg ü þ øQW Y ù�� Ë þ øQW ù Ì Y � (7.31)

Since
þ øXW ùÐü  , this is Ç Yg ü � W Y ¢½º ø�ú ùL� ú �  Y (7.32)ü � Â ¿ ø�ú ù¢ º ø�ú ù Ã Y ¢ º ø�ú ùL� ú �  Y � (7.33)

In order to estimate the integral, a sample
	 6®B £ ¯®Y £ �`��� £ 6®N � is taken from

¢�º ø�ú ù and the sample-
mean formula used whereby %�ü 8	 N# M � B ¿ ø"¯®M ù¢�º ø%¯®M ù � (7.34)

The task is to choose
¢�º ø�ú ù to minimize the variance of W which is the same as minimizing the

variance of
%
.

In [53], it is proved that Ç Yg is a minimum when¢ º ø�ú ù±ü 3g¿8ø�ú ù 3� 3g¿ ø�ú ù 3 � ú (7.35)

and Ç Yg ü ( � 3�¿ ø�ú ù 3 � ú * Y �  Y � (7.36)

(A proof is also offered in [50]). It is further proved that if ¿ ø�ú ù Ð$P
, the optimal p.d.f.

¢�º ø�ú ù
is ¢�º ø�ú ùÐü ¿8ø�ú ù (7.37)

and Ç Yg üõP
.

One serious problem with this should immediately be apparent: to choose an optimal
¢�º ø�ú ù

to reduce the variance of the estimate of  ,  or � 3g¿8ø�ú ù 3 � ú (which is practically equivalent to
computing  ) should be known. But if they are known, there is no need for the Monte Carlo
estimate!

Although this may seem to be a terminal case, it has been shown that the variance can still be
significantly reduced if

¢½º ø�ú ù is chosen to have a shape similar to � 3g¿ ø�ú ù 3 � ú . When choosing
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¢½º ø�ú ù , care should be taken to ensure that it is relatively easy to sample from, especially if 3g¿ ø�ú ù 3
is not well-behaved. Another difficulty may be that an inappropriate choice of the importance
sampling distribution may theoretically increase the variance of the estimate of  .

Since the shape of
¢½º ø�ú ù should follow 3�¿ ø�ú ù 3 , some computational time may be saved in finding

the integral if random numbers are sampled from the subregion � ® ü�	 ú � ¿8ø�ú ùhTü$P � of � i.e.¢½º ø�ú ù�Ð�P £
if ¿ ø�ú ùiTü$P

(7.38)¢ º ø�ú ù�ü$P £
if ¿8ø�ú ù üõP �

(7.39)

7.5 Stratified sampling

The main idea of stratified sampling is similar to that of importance sampling. The region of
interest � is subdivided into A disjointed regions (i.e. they are adjacent but do not overlap)� ü)j ²M � B ��M £ � �lk �Ï- ü P £ � Tü , . The integral (if the integral is to be found) of each region
can then be found separately with more trials conducted in the regions of more interest.

To demonstrate the method, let the integral to be found be ü �nm ¿ ø�ú ù:¢ º ø�ú ù:� ú � (7.40)

Now sub-divide the region � into A sub-regions ��B £ � Y £ ���`� £ � ² so that M ü �`m ª ¿ ø�ú ùL¢�º ø�ú ù:� ú � (7.41)

If ; M ü �nm ª ¢�º ø�ú ù:� ú £ (7.42)

it should be clear that ²#M � B ; M ü 8 (7.43)

and  ü �`m ¿ ø�ú ùL¢ º ø�ú ù:� ú ü ²# M � B �`m ª ¿ ø�ú ùL¢ º ø�ú ùL� ú (7.44)ü ²#M � B  M � (7.45)

Now ¿�M�ø�ú ù is defined such that¿�M�ø�ú ù±ü)� ¿ ø�ú ù £ if úC¦2��MP £
otherwise.

(7.46)
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The
S

integral  M can be re-written as M ü � m ª ; M%¿ ø�ú ù ¢½º ø�ú ù; M � ú ü$; M � m ª ¿�M�ø�ú ù ¢½º ø�ú ù; M � ú (7.47)ü ; M þ Ëm¿�M�ø" ù Ì (7.48)

where �`m ª ¢½º ø�ú ùL� ú ü$; M � (7.49)

A sample-mean estimator for  M can be writtenÊUM ü$; M%¿ ø%�M ù (7.50)

where the random variable �M is distributed according to
¢½º ø�ú ù ñ ; M on ��M .

The integral  M can be estimated byWUM ü ; M	 M #� ª � B 	 M"¿8ø" � ª ù £ ��M ü 8 £ �`��� £ 	 M £ R ü 8 £ �`�`� £ A (7.51)

and the final integral  by % ü ²# M � B WUM (7.52)ü ²# M � B ; M	 M N ª#� ª � B ¿ ø" � ª ù � (7.53)

The variance of
%

is Ç Y0 ü ²# M � B ; YM	 M var ø�¿ ø% M ùQù (7.54)ü ²# M � B ; YM Ç YM	 M (7.55)

where Ç YM ü var øL¿ ø%�M ùQùÐü 8; M �`m ª ¿ Y ø�ú ù:¢½º ø�ú ùL� ú �  YM; YM � (7.56)

Note the use of the population variance for each stratum. In many studies, this is not available
and is approximated by the sample variance ¤ YM .
If the stratification is carried out well, the variance of the estimate should be less than the vari-
ance of an estimate found using the basic sample-mean method.
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7.5.1
o

Allocation of trials

It has been proved [50] that if the sample size 	 M in each subregion � M is proportional to
; M

(effectively the size of the subregion) i.e. 	 M ü 	 ; M , the variance of the stratified sampling
method is guaranteed to be less than or equal to the variance of the sample-mean method. (This
rule for apportioning 	 M is known as proportionally stratified sampling [3]).

The question remains: how many samples should be assigned to each subregion once the sub-
regions have been chosen? If 	 M is the number of samples assigned to subregion ��M such that²# M � B 	 M ü 	 (7.57)

where 	 is the total number of samples, the minimum of the variance of
%
, i.e.ü�ûqp Â ²# M � B ; YM	 M Ç YM Ã (7.58)

occurs when 	 M ü 	 ; M Ç M�C²- � B ; - Ç - (7.59)

and is equal to 8	 Ö ²#M � B ; M Ç M × Y � (7.60)

Thus minimum variance of
%

occurs when 	 M are proportional to
; M Ç M . Of course, this is not of

much use since the Ç M are not usually known in advance. However, it may be possible to conduct
some small “pilot” run to get rough estimates for Ç M .
The particular case when

; M ü 8 ñ�A and 	 M ü °�ñÙA is the so-called systematic sampling method
and is described in detail in [54] and outlined in [50].

7.5.2 Stratification after sampling

Kleijnen describes a procedure for stratification after sampling [3]. In this, the number of sam-
ples in each stratum is not fixed beforehand but depends on the sample outcome. Let the estimate
obtained by this means be r such that r ü ²# M � B ; M"¾`M (7.61)

where ¾`M ü N ª#�Z� B ¿ ø" � ª ù	 M �
(7.62)
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If
V

the estimate obtained by this method is the same as that by the simple sample-mean approach,
the estimates can be equated:% ü 8	 N#M � B ¿ ø% M ùÐü 8	 ²#M � B N ª#��� B ¿ ø% � ª ù (7.63)ü ²# M � B 	 M	 N ª#�Z� B ¿ ø% � ª ù	 M (7.64)ü ²# M � B 	 M	 ¾`M (7.65)ü 8	 ²#M � B N ª#��� B ¿8ø" � ª ù � (7.66)

It can be seen that the “empirical” weights 	 M%ñ 	 have replaced the “theoretical” weights
; M .

Since the number of samples per stratum depends on the sample results, it is known as a stochas-
tic variable. 	 M can then be further understood as being an estimator of

; M 	 i.e.þ ø 	 M ùÐü�; M 	 � (7.67)

The variance of the estimate can be estimated by¤ Ys ü ²# M � B ; YM ¤ Yî ª (7.68)ü ²# M � B ( 	 M	:* Y ¤ Yî ª (7.69)

where ¤ Yî ª ü � N ª��� B Ëm¿ ø" � ª ù�� ¾`MXÌ Yø 	 M � 8 ù Ò 8	 M (7.70)ü 8	 M þ Ë var ø�¿ ø"�M ùQù Ì (7.71)

Hence ¤ Ys ü 8	 Y ²#M � B 	 M	 M � 8 N ª#�Z� B Ëm¿ ø% � ª ù�� ¾ÙM�Ì Y (7.72)

or, using the computing formula for ¤ Yî ª ,¤ Ys ü 8	 Y ²#M � B 	 M	 M � 8 � N ª#��� B Ë ¿ ø" � ª ù Ì Y � Ë � N ª��� B ¿8ø" � ª ù Ì Y	 M S � (7.73)

It is demonstrated in [55] that stratification after sampling is nearly as precise as proportionally
stratified sampling so long as the number of samples per subregion is reasonably large, say

Ð   P
.

The method then becomes attractive if it is difficult or impossible to fix the number of trials per
subregion in advance.
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7.5.3
o

Choice of stratum boundaries

It may be noted that the preceeding discussion has assumed that the stratum boundaries have
already been allocated. In practice, choice of stratum boundary depends, firstly, on the chosen
stratification variable. In order that trials can be concentrated in the region of most interest,
the stratification variable should be strongly correlated with the variable being estimated [55],
ideally the variable itself though this is not always possible.

Cochran [55] discusses a rule concerning the optimum allocation of stratum boundaries which
minimizes the variance of the estimate. The optimum allocation problem is shown in [55] to
reduce to the minimization of � ; M Ç M . As would be expected from comparison of stratified sam-
pling with importance sampling, the solution depends on knowledge of the probability density
function of the stratification variable. In the following illustration, the stratification variable is
assumed to be the variable being estimated.

Let t ø�ú ù�ü � ºº8u ê ¢½º ø�ú ùL� ú � (7.74)

If the strata are numerous and narrow,
¢ º ø�ú ù should be approximately constant, i.e. rectangular

in shape, within each stratum. Hence,; M ü � º ªº ª ã � ¢�º ø�ú ù:� ú ç ¢ M�ø%�M � �M ¼ B ù (7.75)Ç M ç 8Ý 8   ø"�M � �M ¼ B ù (7.76)t M � t M ¼ B ü � º ªº ª ã � ê ¢½º ø�ú ùL� ú (7.77)ç ê ¢�º ª ø"�M � �M ¼ B ù (7.78)

where
¢�º ª is the “constant” value of

¢�º
in stratum R . Substituting these approximations, it is

found that Ý 8   ²# M � B ; M Ç M ç ²# M � B ¢ º ª ø% M �  M ¼ B ù Y (7.79)ç ²# M � B ø t M � t M ¼ B ù Y � (7.80)

Since ø t ² � t ] ù is fixed, it can be verified that the right hand side of equation (7.80) can be
minimized by making ø t M � t M ¼ B ù constant.

Thus, given
¢½º ø�ú ù , the rule is to form the cumulative of ê ¢½º ø�ú ù and choose �M so that equal

intervals are created on the cum ê ¢�º ø�ú ù scale. This is illustrated for 5 strata in table 7.2 for
the data in table 7.1 where

¢½º ø�ú ù is defined in terms of the frequency of outcomes in 10 classes
(bands) of ú . In table 7.2, it can be seen that, due to the need to fix stratum boundaries on class
boundaries, the interval for each stratum on the cum ê ¢½º ø�ú ù scale is not constant. The stratifi-
cation is done to make this as constant as possible.
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ú ¢ º ø�ú ù cum
Ý ¢ º ú

0-5 3464 58.9
5-10 2516 109.1
10-15 2157 155.5
15-20 1581 195.3
20-25 1142 229.1
25-30 746 256.4
30-35 512 279.0
35-40 376 298.4
40-45 265 314.7
45-50 207 329.1

Table 7.1: Frequency distribution data for stratum allocation

Stratum 1 2 3 4 5
Boundaries 0-5 5-10 10-20 20-30 30-50

Interval on cum ê ¢½º ø�ú ù 58.9 50.2 86.2 61.1 72.7

Table 7.2: Stratum allocation for data in table 7.1

Evidence is quoted in [55] to suggest that little reduction in estimate variance can be expected
beyond A ü � strata.

7.5.4 Difficulties in stratified sampling

For many studies, fixing of the number of trials in each stratum in advance is impossible. Strat-
ification after sampling then becomes attractive, but this, too has a number of difficulties. They
are:

Errors in stratum weights. If the theoretical weights cannot be known, they must be esti-
mated. In stratification after sampling, an estimate of

; M ü 	 M ñ 	 is readily available,
though Cochran believes this may lead to bias in the estimate of the mean [55] in strati-
fied sampling in general, though the discussion of stratification after sampling in section
7.5.1 above shows that this is not the case here.

The stochastic nature of 	 M in post-stratification. This has the effect of making the confi-
dence limits more approximate than for cases where the theoretical weights are known
and the 	 M are fixed [3].

The approximate nature of confidence limits due to use of sample variance instead of pop-
ulation variance. This may be partially resolved by modelling the sampling distribution
for each stratum by a Student t distribution with an underestimate of the degrees of free-
dom. The distribution of the variance of an estimate obtained by stratified sampling is
too complex to allow an analytical modelling, but Cochran [55] quotes an approximate
formula due to Satterthwaite for a corrected number of degrees of freedom. It requires
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knowledge of the population size of each stratum, but its lower bound is equal to the small-
est of the 	 M � 8 .
In addition, it may be intuitively understood that the confidence limits are more approxi-
mate with more strata since there are more variables subject to error involved. Also, with
more strata, there will be fewer trials in each stratum implying greater error in the stratum
sample variance.

These difficulties may be resolved by� “robust estimation” or “resampling” to deal with trials which aren’t normally distributed.� tracking the variance of stratum variances. Force more trials until each sample stratum
variance comes within some (arbitrary) confidence limits.

Two robust resampling techniques, the “jackknife” and the “bootstrap”, are described in section
7.8.

7.6 Dagger sampling

This method is due to Kumamoto et al [56] and is described in [52] as being particularly well-
suited to two-state variables and small probability events. As such, the method can be under-
stood as an extension of antithetic variates overcoming the degradation of the negative correla-
tion of the two estimators under such circumstances. Two-state variables and rare events will
be considered in describing the procedure.

A uniformly distributed random number P ® between Ë P £ 8 Ì can be generated to test whether a
system component with failure probability ¥ is in the failure state or normal state. If P*® ´ ¥ ,
the component is in the failure state. If P*® Ð ¥ , it is in the normal state. Each random num-
ber therefore corresponds to one trial of the component state. This approach is known as direct
Monte Carlo sampling.

Dagger sampling proceeds in the following way. If ¾ is the largest integer not larger than 8 ñ ¥ , the
interval Ë P £ 8 Ì may be divided into ¾ subintervals each of length ¥ . There may also be a remainder
subinterval, for example in the case where ¥ ü P � 8`^ , 8 ñ ¥ ü ��� �Q�

and ¾ ü �
. There are then

�
subintervals of length

P � 8_^ plus a remainder part of length
P � 8 .

In dagger sampling, each subinterval formed in the above way corresponds to a trial of a com-
ponent. If a generated random number falls into the R th subinterval, the component failure is
assumed to occur in trial R and not in the other trials. If the random number falls in the remain-
der part, the component is assumed not to fail in ¾ trials.

In this procedure, only one random number determines the outcome of ¾ trials of the component
state (it is as if one random number pierces in ¾ subintervals, hence the name “dagger”). If
the generated random number falls in the R th sub-interval, then the “dagger number”, i.e. the
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number of the trial in which a failure takes place, will be R . Since ¾ trials are determined by
one random number after which another random number must be generated to determine the
component’s status in the next ¾ trials, ¾ may be known as the “dagger cycle length”.

Combination of all component states yields the state vector v . Let v B £ v Y £ �`�`� £ v�N be 	 system
vectors obtained by dagger sampling. The system unavailability can be estimated by%�ü©8	 N#M � B  øXv�M ù (7.81)

where  øQv ù is an indicator function which equals
P

if the state v is a non-failure state and 8 if
it is a failure state.

The variance of
%
, ¤ Y0 , can be calculated by 1

¤ Y0 ü 8	 Yxwy z var Ë  øXv ù ÌàT N#M+ö -�ö M|{� - cov Ë  øQv§M ù £  øQv�- ù Ì~} �� � (7.82)

With direct Monte Carlo sampling, there is no correlation between  øQv§M ù and  øQv�- ù £ R Tü , ,
while in dagger sampling, different random vectors within each group of ¾ trials are correlated:
if a failure occurs on one component in a trial, it definitely does not occur in another ¾ � 8 trials.
If �*M � and � - � are single elements of the state vectors v�M and v�- associated with component� , and the trials R and , are generated by a common random number for component � , �*M � and� - � have negative covariance as one of �+M � and � - � will always be zero, i.e.

cov øQ�*M � £ � - �Eù ü þ øX�*M � £ � - �¬ù�� þ øQ�*M ��ù þ øX� - ��ùÐü � ¥ Y� � P �
(7.83)

Thus the correlation between two system state random vectors is negative if they have some
elements corresponding to a common random number. Since  øQv ù is an indicator variable, the
negative correlation between v�M and v�- also applies to  øXv�M ù and  øQv�- ù . Dagger sampling
therefore has a smaller variance than direct sampling.

A concern may be that some bias will be introduced due to presence of a remainder subinterval
in Ë P £ 8 Ì implying that individual components’ number of failures will not match the expected
number. It will now be shown by means of an illustration that this is not the case.

Suppose that a component has a probability of failure of ¥ ü P � O
. 8 ñ4¥ ü O � OQO÷O

so the greatest
integer not greater than 8 ñ4¥ is ¾ üÿO

. Thus, there will be 3 intervals each of length
P � O

in theË P £ 8 Ì interval with a remainder interval of length
P � 8 . This is illustrated in figure 7.2.

One random number can now be used to determine ¾ trials which, in this case, is 3. If a random
number P ® falls in the first subinterval, a failure of the component will take place in the first of
the next ¾ ü O

trials. If P*® falls in the second, the failure will be in the second trial, and if in
the third subinterval the failure will be in the third trial. However, if P*® falls in the remainder
subinterval, no failure will take place in the set of ¾ trials.

1It should be noted that the author believes the version of equation (7.82) that appears in [56] is erroneous. The
expression that appears here is therefore different.
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0 10.5

1st subinterval 2nd subinterval 3rd subinterval Remainder
subinterval

0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

Figure 7.2: Partitioning of the Ë P £ 8 Ì interval for ¥ ü$P � O
in dagger sampling

It can be seen from figure 7.2 that the probability of having one failure in three trials is 8 �; øQP*® falls in the remainder subinterval
ù

i.e. 8 � P � 8 üÆP ���
. It is readily apparent that if the

probability of having one failure in 3 trials is 0.9, the probability of having one failure in 1 trial
is
P ��� ñ OÖü�P � O

which is the original probability of failure of the component. Thus, the behaviour
of the component has been correctly represented.

If variances are being monitored in the course of a Monte Carlo simulation to decide when to
stop sampling, a potential disadvantage of dagger sampling is the need to calculate the covari-
ances in equation (7.82). The number of covariances to be computed will beÂ ¾ . Ã ü ¾ Å  Å ø/¾ �   ù Å (7.84)ü ¾Cø3¾ � 8 ù  �

(7.85)

Alternatively, it may be noted that the correlation between trials of different sets of ¾ trials will
be zero (each set of ¾ trials is generated by a different vector of independent random numbers).
Thus, if each tallied trial constitutes the average of all the trials in a set of ¾ trials, the need
for computation of the covariances is negated. In addition, this illustrates the mechanism by
which the variance of the estimate is reduced as each average of each set of ¾ trials, since it
contains very nearly the expected number of failures of each component, will be expected to
be near to the population average thus reducing the spread of the outcomes of the independent
trials. Inevitably, however, this dictates that the number of trials required will be factor of ¾
greater than the number required by direct Monte Carlo sampling meaning that the variance of
the dagger sampling estimate needs to be ¾ times less than that of direct sampling for any benefit
to be seen.

This procedure also serves to illustrate the way in which dagger sampling can be regarded as an
extension of antithetic variates. While with rare events modelled using antithetic variates, the
‘antithetic event’ cannot be guaranteed to happen (i.e. if the component state caused the random
number P*® is ‘in service’ on one trial, the use of 8 � P+® will not guarantee that the component
is ‘out of service’ on the next trial), with dagger sampling the ‘out of service’ state is virtually
guaranteed to happen once in ¾ trials.

The antithetic random number of 8 � P ® can be thought of as being a reflection in the intervalË P £ 8 Ì about
P � ^ of the initial number P ® . In this way, the antithetic variates method causes theË P £ 8 Ì interval to be divided into two with the out of service state comprising only a small part

of one of them. Dagger sampling, on the other hand, divides Ë P £ 8 Ì into sufficient intervals to
virtually guarantee that one of them entirely includes the ‘out of service’ state.
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further advantage of dagger sampling is that it better guarantees that the number of occurences
of a particular state for a particular component matches the expected number.

The question may now be raised as to what happens when not all the components comprising the
modelled system have the same probability of failure. The necessary number of partitions of theË P £ 8 Ì interval becomes less than obvious and reference [56] fails to address this possibility. It
may be understood that the primary need, dictated by the need to avoid the calculation of whole
sets of covariances, is to find the number of trials in which there is some correlation between
each trial due to the use of similar vectors of random numbers. Tallies may then be kept of the
outcomes of independent sets of trials. There are a number of possible ways of achieving this
which will now be described in turn.

Suppose that three components have probabilities of failure of ¥ÁB £ ¥ Y and ¥ � such that¥ Y � ¥ � � ¥UB � (7.86)

The number of trials in which the states of each are determined by one random number for each
component are then ¾�B ü 8 ñ ¥UB £ ¾ Y ü 8 ñ4¥ Y and ¾ � ü 8 ñ4¥ � where¾ Y�Ð ¾ � Ð ¾�B � (7.87)

Every state of component 8 will be correlated to every other state within each cycle of ¾�B trials.
Every state of component

 
will be correlated to every other state within each cycle of ¾ Y trials,

and likewise for component
O
.

If cycles ¾�B £ ¾ Y and ¾ � are not all exactly the same, it can be seen that some correlation of the
system state will exist across cycles, even if it is small, possibly due to the influence of only
one component. Thus, two trials are guaranteed to be independent only if they exist in separate
cycles, or sets, of ¾Q® trials where ¾Q® is the smallest integer of which all of ¾�B £ ¾ Y and ¾ � are divisors.
Hence, if the estimate obtained by direct sampling is

%
and that from dagger sampling is

% î with
variances of estimates of ¤ Y0 and ¤ Y0�� respectively, for any benefit to be observed from use of
dagger sampling over direct sampling, ¤ Y0�� � ¤ Y0¾ ® (7.88)

where ¾ ® ð ü���� ø/¾�B £ ¾ Y £ ¾ � ù (7.89)ð 8ü�û�p øX¥UB £ ¥ Y £ ¥ � ù � (7.90)

Where ¾Q® is greater than all of ¾½B £ ¾ Y and ¾ � , it can be seen that the benefit of dagger sampling
is reduced compared to if ¾Q® had been equal to the longest cycle. As an alternative, no loss of
accuracy will be found if ¾ ® ü ü���� ø3¾�B £ ¾ Y £ ¾ � ù � (7.91)

In this case, if ¾ Y is the longest cycle, the dagger variables will be reset for the ¾�B and ¾ � cycles
at the end of every ¾Q® ü ¾ Y trials whether or not the ¾�B and ¾ � cycles are complete [57]. If the

80



dagger numbers for either fell into the remainder of the cycles not completed, then no outage
will have taken place in the truncated cycle. Instead, an outage may already have taken in the
truncated cycle, and may happen early in the next, too. Thus, over many such cycles, the outage
rate of the component will converge to its expected value so that no bias should be found.

Using this approach, the effectiveness of dagger sampling will be determined by the rarest basic
event in the modelled system.

There are two further alternatives to this scenario suggested by Kelen [57]:

1. reset all cycles at the end of each turn through the shortest cycle. If the shortest cycle is
for component 1 and has ¾ B trials, then if a random number P ®Y for component 2 falls in
the R th sub-interval such that R Ð ¾ B , the component will not fail in that cycle. If R ´Ø¾ B ,
it will fail.

2. reset all cycles at the end of each cycle corresponding to the most significant component
or component type.

In all of these methods, there is no correlation across cycles.

One final remark: the similarity between rotation or reflective sampling, described in [58] as
being extensions of antithetic variates, and dagger sampling has been noted by Kelen [59] who
has formulated rotation sampling in such a way that its behaviour is identical to that of dagger
sampling.

7.7 Selective sampling

In this, the number of events of a particular type within a sample is fixed to equal the expected
number of events of that type [60]. The work of the originator of the technique is summarised
in [3] in the following way.

It is assumed that only one value is to be estimated, say Ê . It is further assumed that Ê is discrete
and has � possible values each of which has the same probability of occurring, � M .
If there are A trials in a sample, the number of times Ê has the value ÊÏ®M is

� M . The expected
value of

� M will be þ ø � M ù�ü � M�A � (7.92)

In selective sampling, the number of times that a particular value of Ê is sampled is fixed to the
expected number of times i.e. � M ü � MXA (7.93)
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where �#M � B � M ü A �# M � B � M ü A � (7.94)

The number of times that a value occurs in a sample is, of course, an integer i.e.
� M is an integer.

However, � MWA , in general, is not an integer. � MJA is then made to be an integer in such a way that
the sum of the squared deviations between the “theoretical” values � M A and

� M is minimized i.e.¾ is minimized where ¾ ü �# M � B ø � M � � MJA ù Y � (7.95)

It remains then for each
� M to be chosen subject to the need to minimize ¾ in equation (7.95).

Brenner gives an algorithm for this purpose which sets
� M to the integer closest to � M�A . If it

turns out that � � M Ð A then the terms which have the smallest fractional parts of � MJA which
are greater than

P � ^ have the values
� M reduced by 1 until � � M ü A . Likewise, if � � M � A ,

the terms which have the largest fractional parts of � MWA which are less than
P � ^ have the values� M increased by 1 until � � M ü A .

The value of
� M which minimizes ¾ may be denoted

� fM . The number of times that Ê ®M occurs
is now fixed. In order to meet this number in the sample, sampling without replacement is per-
formed whereby the probability of sampling the value Ê ®M in the

ò
th trial (where

òäü 8 £ �`�`� £ A )
is ; ø/Ê ®M ù�ü � fM � Ú MA � ò T 8 (7.96)

where Ú M is the number of times that Ê�®M has already been sampled.

It is noted in [3] that the method may be biased. It is also noted that it may theoretically be
applied to the estimation of continuous random variables whose values are divided into a finite
number of classes or strata.

7.8 Resampling Techniques

The techniques described here are not, strictly speaking, variance reduction techniques. How-
ever, they are useful in estimating the variance of estimates of statistics derived from distribu-
tions that are far from normal or from small samples such that the sampling distribution cannot
be assumed to be normal. They can also help to reduce any bias inherent in an estimate. The
two techniques which will now be described are the “jackknife” and the “bootstrap”.

7.8.1 The jackknife

The jackknife was the first method devised to estimate biases and standard errors. It was orig-
inally proposed by Quenouille in the 1940s [61] and was refined by Tukey [62]. It involves
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recalculating the statistic of interest for the sample with one observation removed. This is done
with the removal of each observation in turn, and the resulting statistics are recombined to give
an estimate of the bias in the original sample. It can thus also be used to compensate for the
bias to give a better estimate and to give a better estimate of the population variance than can
be obtained by conventional techniques.

Suppose that a true mean ± is to be estimated by the mean  of a sample of size 	 . The estimate
will be denoted by the statistic

5 N . The bias in the estimate will be given by

bias ø 5 N ùÐü þ ø 5 N ù�� ± (7.97)

where 5 N ü  � (7.98)

Now let
5 N ¼ BQö M be the statistic (i.e., in this case, the mean) based on 	 � 8 observations�B £ �`��� £ �M ¼ B £ �M ö B £ �`�`� £ �N , i.e. with the R th observation from the original sample removed.

Then, the average of the means of the samples with each observation removed in turn, i.e. the
average of the

5 N ¼ BQö M for R ü 8 £ �`�`� £ 	 , is denoted
5 N such that5 N ü 8	 N# M � B 5 N ¼ BQö M � (7.99)

Quenouille then derives a jackknife bias estimator ·�- K � � which is·L- K � �®ü ø 	 � 8 ù ø 5 N � 5 N ù � (7.100)

This leads to a bias-reduced jackknife estimator of ± ,5 - K � � ü 5 N � ·L- K � � (7.101)ü 	 5 N � ø 	 � 8 ù 5 N � (7.102)

(See [61, 63] for proofs of these relationships).

Tukey’s principal contribution to use of the jackknife was in showing that it could be used to
construct variance estimators [62]. With

5 - K � � re-written as5 - K � �®ü©8	 N#M � B Ë 	 5 N � ø 	 � 8 ù 5 N ¼ BQö MXÌ £ (7.103)

Tukey defined �5 Neö M ü 	 5 N � ø 	 � 8 ù 5 N ¼ BQö M (7.104)

as “jackknife pseudovalues” and conjectured that, for R ü 8 £ ���`� £ 	 , they may be treated as in-
dependent and identically distributed (i.i.d.), and as having approximately the same variance asÝ 	 5 N . In this way, he defined the delete-1 jackknife variance estimator for

5 N given by� - K � � ü 8	 ø 	 � 8 ù N# M � B��� �5 NEö M �ë8	 N#- � B �5 Neö -E�� Y (7.105)
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ü 	 � 8	 N#M � B��� 5 N ¼ Býö M � 8	 N#- � B 5 N ¼ BQö -��� Y (7.106)ü 	 � 8	 N#M � B�� 5 N ¼ BQö M � 5 N�� Y (7.107)ü ø 	 � 8 ù Ö 8	 Â N# M � B 5 YN ¼ BQö M Ã � 5 N Y × (7.108)ü 	 � 8	 �� Â N#M � B 5 YN ¼ BQö M Ã � 8	 Â N# M � B 5 N ¼ Býö M Ã YQ�� � (7.109)

The advantage of the jackknife is that it is less dependent on model assumptions (e.g. the nor-
mality of the sampling distribution) than traditional methods. Its disadvantage is, clearly, the
extra computation needed to calculate the required statistic 	 times.

7.8.2 The bootstrap

The bootstrap method, generally attributed to Efron [64], is a “robust” statistical method in that
it is claimed to deal adequately with non-smooth (i.e. discontinuous) and biased statistics, and
with non-normal sampling distributions. It involves taking an existing sample and resampling
it, drawing observations from that sample with replacement to obtain a series of bootstrap sam-
ples. These can then be compared with each other and with the original sample to gain more
complete information about the population from which the original sample was drawn. In par-
ticular, it allows the formation of an empirical distribution function which can be used to derive
confidence limits for underlying distributions which, for example, do not permit the applica-
tion of the central limit theorem where the distribution of the mean is assumed to be normal.
The disadvantage of the method is that the empirical distribution is obtained at the expense of
considerably more computation.

Bootstrap-
ò

confidence limits

According to standard statistics, the “standard score” of an observation  on a sampling distri-
bution is denoted by ¾ and is given by ¾ ü  � ±Ç ñ Ý 	 (7.110)

where ± is the mean of the underlying distribution, Ç the standard deviation of the underlying
distribution and 	 is the sample size.

The quantity Ç ñ Ý 	 is known as the standard error.

By the central limit theorem, i.e. when 	 is large enough, the standard scores of the sampling
distribution are assumed themselves to follow a normal distribution. That is to say that, if a
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number of samples of similar (large) size are taken from the underlying distribution, the means
of each of those samples are assumed to follow a normal distribution. This is then used to derive
confidence limits.

A difficulty of statistics is that samples are often too small for the characteristics of the underly-
ing distribution for the sampling distribution to be normal. The simplest way of overcoming this
using the bootstrap is to replace  and the standard error in equation (7.110) by the bootstrap
equivalents.

Bootstrap quantities are generally identified by a � superfix. Thus, the bootstrap standard score
of the sampling distribution for the · th bootstrap sample is [65]¾ f¹ ü  f¹ � ¤ ß f¹ (7.111)

where  f¹ is the mean of the · th bootstrap sample and ¤ ß f¹ is the standard error of the · th boot-
strap sample. Then, the í ñ   th percentile of ¾ f¹ where 8 P÷P ø 8 � í ù is the percentage degree of
confidence, is estimated by the value

ò � ì è Y � such that number of values of ¾ f¹ less than or equal
to
ò ì è Y � equals �ßø/í ñ   ù where � is the total number of bootstrap samples. Likewise,

ò � B ¼ ì è Y �
is given as the �ßø 8 � í ñ   ù th value of ¾ f¹ . This implies that, for example, if � ü 8 P÷PQP and8 P÷P ø 8 � í ùõü � P � P , the estimate of the 5% point, i.e.

ò � B ¼ ì è Y � , will be the 50th largest value of¾ f¹ while the 95% point,
ò � ì è Y � , will be the 950th largest.

Finally, the so-called “bootstrap-
ò
” confidence interval isø  � ò � B ¼ ì è Y � Ò ¤ ß £  � ò � ì è Y � Ò ¤ ß ù (7.112)

where ¤ ß is the standard error of the original sample.

While this would appear to be quite straightforward to calculate, three things should be noted:� the number of bootstrap samples � must be large, ��ð 8 P÷PQP .� the interval derived is valid only for the given original sample.� the interval can be heavily influenced by a few outlying data points and can thus give
somewhat erratic results.

These difficulties lead to consideration of the “bootstrap �1ó K ”, or bias-corrected and acceler-
ated interval. This is described below.

Bootstrap �1ó K confidence limits

The bootstrap �1ó K confidence intervals are based on “percentile methods” whereby results from
a histogram of the bootstrap samples are used directly rather than using bootstrap standard scores
to find “pivot points” as in the bootstrap-

ò
method.
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If
V  f � ì è Y � is the 8 PQP ø/í ñ   ù th percentile of � bootstrap replications  fB £  fY £ �`�`� £  f� , the intervalø  ��I £  À M ù of the intended coverage 8 � í is obtained fromø 2�gI £  À M ù�ü ø  f � ì è Y � £  f � B ¼ ì è Y � ù � (7.113)

Thus, the percentile interval for � ü   P÷PQP and í ü$P � 8 is the interval extending from the 100th
to the 1900th ordered values of the 2000 numbers  f¹ .
The �1ó K interval end-points are given in a similar way but depend on the acceleration ³ and
the bias correction ¾ ] [65]. These are used to obtain í�B and í Y and the interval is, in turn,ø 2�gI £  À M ùÐü ø  f � ì � � £  f � ì � � ù � (7.114)

The values í�B and í Y are given byí�B ü   Âà¾ ] T ¾ ] TÓ¾ � ì è Y �8 � ³Ãø/¾ ] TÓ¾ � ì è Y � ù Ã (7.115)í Y ü   Âà¾ ] T ¾ ] TÓ¾ � B ¼ ì è Y �8 � ³Ãø/¾ ] TÓ¾ � B ¼ ì è Y � ù Ã (7.116)

where
  ø ÒAù is the standard normal cumulative distribution function and ¾ � ì è Y � is the 8 P÷P ø3íòñ   ù th

percentile point of the standard normal distribution.

It may be noted that if ³ and ¾ ] are zero, equations (7.115) and (7.116) reduce to the simple
percentile method.

The bias correction ¾ ] is calculated by¾ ] ü&  ¼ B Â number of  f¹ � � Ã (7.117)

where
  ¼ B ø Ò�ù indicates the inverse function of a standard normal cumulative distribution func-

tion.

There are various ways to calculate the acceleration ³ . One uses a jackknife method [65] in
which ³ ü � NM � B �  �  N ¼ BQö M � �� Y � NM � B �  � ¯N ¼ BQö M � Y [ B�¡ ¢ (7.118)

where  N ¼ BQö M is the mean of the original sample with the R th value removed. 	 is the size of that
original sample.

While the effect of outlying trials is reduced with respect to the bootstrap-
ò
, the required number

of bootstrap samples is still large.
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7.8.3
o

Use of the bootstrap

As was noted above, the disadvantage of the bootstrap is the large computational overhead. This
is especially large when the method is being used to derive confidence limits as at least 1000
bootstrap samples are likely to be needed [66, 65].

One possible approach may be to perform the bootstrap itself by a Monte Carlo estimation, apply
classical confidence limits for the upper and and lower bounds being calculated by the bootstrap
to ascertain when to stop the simulation.

The large computational overhead effectively precludes the bootstrap from use as a test for con-
vergence of a Monte Carlo simulation to a given precision and degree of confidence. However,
it can be used to quantify the confidence interval of a fixed, given sample where the statistic has
a non-normal distribution.
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Chapter 8

Application of Monte Carlo Simulation in
Composite Power System Reliability

The operation and planning of a power system have long been recognised as having a consider-
able number of uncertainties, not least due to unexpected failures of plant, whether they be the
sudden unavailability or “derating” (reducing of capacity) of generating plant or the tripping of
lines or transformers due to faults, and attempts have been made to represent these uncertainties
by probabilistic analysis since the 1940s. Some engineers have argued that, given all these un-
certainties, a power system should be described in terms of its reliability i.e. its overall ability
to perform its function.

In power systems, reliability is conventionally broken into two aspects: adequacy and security
[52]. Adequacy relates to “the existence of sufficient facilities within the system to satisfy the
consumer load demand or system operational constraints.” Security, on the other hand, relates
to “the ability of the system to respond to dynamic or transient disturbances arising within the
system.” Computational tools to assess the latter category are not yet well-developed, so “power
system reliability” tends to imply adequacy.

8.1 Measures of component reliability

Individual components’ reliabilities may be expressed in a number of ways. In essence, the
reliability expresses the proportion of time the component is “in service” or “available” for. Data
may also be used, however, to express the probability of the component being in service at a
particular time.

The availability � of a component is expressed as [4]� ü � (up time)� (up time) T � (down time)
(8.1)

where the “up time” is the total time the component is in service and the “down time” the total
time when it is not. � may be re-expressed in terms of the “mean time to failure” � and the
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“mean time to repair” £ so that � ü ��õTI£ � (8.2)

These mean times may further be re-expressed in terms of expected “failure rate”
1

and the
expected “repair rate” ± such that1 ü 8� ü number of failures per unit time (8.3)± ü 8£ ü number of reapirs per unit time (8.4)� ü ±± T 1 � (8.5)

The sum of the mean time to failure and mean time to repair is known as the “mean time between
failures”.

The converse of the availability is the unavailability P and it can be defined in similar terms1:P ü � (down time)� (down time) T � (up time)
(8.6)ü 11 T ± (8.7)ü ££õT=� (8.8)

In general, the failure and repair rates need not be constant but may be functions of time, though
assumptions that they are constant normally suffice.

The probability
; ø ò�ù that the component is available at time

ò
is sometimes known as the “cu-

mulative failure distribution function” and is the integral of the “failure density function” f(t),
i.e. ; ø ò�ù ü � G] ¢ ø ò�ùL��ò � (8.9)

Likewise, the “survivor function” S(t) expresses the probability that the component will still be
in service at time

ò
: � ø ò.ù±ü 8 �Ó; ø ò�ùÐü 8 � � G] ¢ ø ò�ùL��ò � (8.10)

Clearly, the failure density function,
¢ ø ò�ù is¢ ø ò�ù ü �à; ø ò�ù��ò (8.11)ü � � ø ò�ù��ò � (8.12)

1The unavailability is sometimes known as the “forced outage rate”.
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The
S

failure density function may be fitted to any one of a number of standard functions such
as the normal, Weibull or exponential. The “negative exponential” is the most well-known so
that, when

1
is assumed constant, the repair rate is infinite and the component is available at

time
ò ü$P

, the probability of finding the component on outage at time
òÐü 5

is; ø ò�ù�ü 8 � ß ¼�¤ G 3 G � ¨ � (8.13)

If
1 ò¦¥ 8 , this is ; ø ò�ù�ç 1 ò �

(8.14)

It may be noted that when
¢ ø ò�ù is taken to be negative exponential, the a posteriori probability; � ø ò�ù , the probability of the component failing during

ò
given that the component has survived

up to
5 ] is; � ø ò�ù ü Prob(surviving up to

5 ] and failing during the period
5 ] to

5 ] T ò )
Prob(surviving up to

5 ] ) (8.15)ü � ¨ uLö G¨ u ¢ ø ò.ù:��ò� »¨ u ¢ ø ò�ù:��ò (8.16)ü ß ¼�¤ ¨ u � ß ¤ � ¨ u3ö G �ß ¤ ¨ u (8.17)ü 8 � ß ¼�¤ G (8.18)ü ; ø ò�ù (8.19)

i.e. the probability of failure is independent of how long the component has already been oper-
ating for and depends only on the length of the interval

ò
. In other,

; ø ò�ù has no memory of the
past.
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Figure 8.1: Three-state model of a generator

The notion of “failure” and “repair” rates may be extended to models where the components
have more than two states. Figure 8.1 shows a three-state model for a generator where the three
states are “up”, “derated” (where the maximum output has been reduced) and “down”. Transi-
tions rates between the three states are shown. These may all be denoted by § with the subscripts
written in the appropriate order to suggest the order of the transition, but here transitions towards
full generating capacity are represented by ¨ to maintain consistency with the idea of a repair
rate. If all the transition density functions are assumed to be exponential or negative exponential
and the time interval © is assumed to be short such that the probability of a transition in an inter-
val of length © approximately equals the product of the transition rate and © , a “discrete Markov
chain” can be depicted as in figure 8.2.
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Figure 8.2: Discrete Markov chain for three-state model

If the period © is so short that it may be assumed that only one state transition occurs in that
time, a state diagram of a system comprising a number of components may be drawn showing
appropriate system state transition probabilities and the probability of the system being in any
one state may be derived.

8.2 Power system reliability indices

Various indices have been used in the engineering literature to measure adequacy. Most of them
are expected values of random variables (though some give a p.d.f.). Among these are [52]

Loss of load expectation ( ª�«iª�¬ ) in days/year or hours/year:ª�«iª�¬®¯°�±�²8³ °µ´ (8.20)

where ³ ° is the probability of system state ¶ , ´ is the time unit of the index (i.e. either
one day or one hour) and · is the set of all possible system states associated with loss of
load. The index gives the expected (or mean) number of days or hours in a given period
(usually one year) in which the daily peak load or hourly load is exceeds the available
generating capacity.

Note that neither the severity of the generation deficiency nor the frequency or duration
of the loss of load are indicated.

Loss of energy expectation ( ª�«i¬¸¬ ) in MWh/year:ª�«i¬¸¬® ¯°q±�²º¹K»�¼�½¿¾ ° ³ ° (8.21)

where ³ ° and · are as above and ¾ ° is the number of MWs of load lost for system state ¶ . It
gives the expected energy not supplied by the generating system due to the load exceeding
the available generating capacity. When the energy actually supplied is divided by the
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total energy demanded, a normalized index known as the energy index of reliability (EIR)
is found.

Loss of load frequency ( ª�«Àª�Á ) in number of occurences per year:ª�«iª�ÁÂ ¯°q±�²�Ã�Á °ÅÄÇÆ�°|È (8.22)

where Á ° is the “frequency of departing system state ¶ ” and
Æ�°

is the “portion of Á ° which
does not change from being part of the ‘loss-of-load state set’ to being part of ‘no-loss-
of-load state set’ ”.

Loss of load duration ( ªÉ«iª�Ê ) in hours per occurrence:ª�«iªGÊË ª�«iª�¬ª�«iª�ÁxÌ (8.23)

This represents the duration of each state in which load had been lost.

The term load curtailment is sometimes used in the context of system states in which some load
has been lost. Some authors seem to use it distinguish “composite system adequacy” (in which
transmission outages are considered along with generation outages or deratings) from “genera-
tion adequacy” (where transmission system effects are not considered).

8.3 Simulation approaches in reliability evaluation

There are three main simulation approaches in reliability evaluation and another introduced in
[52].

8.3.1 State sampling

The system state depends on the combination of all component states while each component
state can be determined by sampling the probability that the component appears in that state.
The p.d.f. of each component is usually modelled by a uniform distribution between Í2½�Î`Ï4Ð with
two possible states - “success” and “failure” - and a probability of failure ³ ° .
If the state of a system Ñ is described by a vector comprising the states of the Ò componentsÓiÔ Î ÓiÕ Î Ì_Ì`Ì Î ÓhÖ such that ÑË)Í ÓiÔ Î ÓiÕ Î Ì`Ì_Ì Î ÓhÖ Ð�Î (8.24)

then the expected value of some index ª×ÃXÑ È will be¬ØÃ�ª È  ¯Ù ±�²ÚªlÃQÑ È?Û ÃQÑ È (8.25)
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where · is the set of all possible system states. In a simulation, this can be estimated by¬ÜÃ�ª È  ÏÝ ¯Ù ±n²ÞªlÃXÑ È Ý#ß ÃXÑ È (8.26)

where Ý ß ÃXÑ È is the number of occurrences of state Ñ and Ý is the total number of trials.

Advantages of the “state sampling” approach includeà simplicity - only necessary to generate random numbers on a uniform distribution.à only the component state probabilities are required.

The disadvantage is that dependency of a component’s state or a system state on previous states
as behaviour develops through time cannot be represented.

8.3.2 State duration sampling

This is based on sampling the p.d.f. of the duration of a component state. Each component has
an initial state and the duration of each remaining in that state is sampled, for example from
an exponential distribution. If the state of a component changes within the time span of the
simulation, how long it remains in the next state is sampled repeatedly until the time span is
reached. Thus descriptions of the system state for the whole time span are obtained and the
desired index is calculated.

The advantages of this approach areà it can easily be used to calculate a frequency index.à any state duration p.d.f. can be considered.à the p.d.f. of a desired reliability index can be calculated.à the “history” and trend of a state can be taken into account.

Disadvantages are that more computation and storage are required (not least in the computation
of each random variate2) and more parameters are needed to define the variates.

8.3.3 Sequential sampling

In common with state duration sampling, sequential simulation [67] allows the history of a state
to be taken into account. Unlike state duration sampling where the history of each component’s

2A random variate is a random variable which follows a given p.d.f.
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state is assembled independently and different system states must then be identified and evalu-
ated, in sequential sampling, the period of interest is divided into time intervals and each one is
simulated in sequence with the state of each component at the start of each time interval gener-
ated randomly depending on the component’s state at the start of the previous interval and the
duration of the interval.

Conventional sequential Monte Carlo simulation is generally what may be called a “synchronous”
sequential simulation [68] in that successive time slots are simulated with constant time inter-
vals. The interval length may be chosen to be so short that a maximum one component state
will have changed, or to track significant changes in particular variable (say the load in a power
system reliability analysis).

Advantages of the method are that the evolution of both individual component states and the
system state can be tracked and that any form of state duration distribution can be modelled.
Disadvantages are the computational demand, the need to choose a suitable length of time in-
terval, and the need to generate many random numbers at the start of each interval.

8.3.4 State transition sampling

This follows the transition of system state rather than of individual component states [69, 4] and
is similar to sequential sampling.

It is assumed that the system starts with state Ñâá ÔXã and moves successively to states Ñ+á ÕXã Î Ì`Ì`Ì ÎCÑ+á�ä ã .The transition of the system state depends randomly on the state duration of the component
which departs earliest from its present state. The duration of each state Ñ+áæå ã can be described
in terms of the random variable

´ áæå ã which is the minimum of the state durations of each com-
ponent

´ °
for ¶Þ�ÏçÎ Ì`Ì_Ì Î�Ò .

Since the state duration of each component follows an exponential distribution, it can be proved
that each

´ áèå ã follows an exponential distribution. Further, each depends on a conditional prob-
ability. For example, if the transition from Ñ áèå ã to Ñ áèåEé ÔXã takes place at time © å , the probability
that this transition is caused by the ê th component isÛ áèå ãë  ÛíìE´ áèå ãë Z© åKî ´ áèå ã �© å�ï Ì (8.27)

The state transition appraoch may be described as an “asynchronous” sequential simulation method
[68] in that simulations of successive states are carried out but the time of the event which changes
the system state varies.

The advantages of this approach areà exact frequency index information can be calculated without the need to sample the dis-
tribution function and store chronological data.à only one random number is required to produce the next system state unlike in the state
sampling approach which requires one random number for each component.
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à the “history” and trend of a state can be taken into account.

The disadvantages are that it is computationally expensive and it applies only to exponentially
distributed component state durations.

8.3.5 Hybrids

It has already been noted that the three methods outlined above, state duration sampling, se-
quential simulation and state transition sampling, which deal with the evolution of system states,
necessary when a system state depends on what happened before, have the significant disadvan-
tage of being highly computationally intensive. This has led researchers to adopt simplifying
assumptions and implement hybrids of the various sampling approaches.

A hybrid of state sampling and sequential simulation is reported in [70]. The basic premise of
the work is that the generation of states is not computationally demanding, but the analysis of
their effects is. The duration of load interruptions is, however, required, something which is not
available from simple state sampling but only from some sampling approach that represents se-
quences of events. A large set of sequences of states is sampled but not simulated. Let this set
of sequences be called · . Since only states where loss-of-load are of interest, simple sampling
of sequences from within · is carried out. If there are Ý ² sequences in the set, this involves
partitioning the [0,1] interval in Ý ² sub-intervals and generating a random number from a uni-
form distribution. If the random number falls in the ¶ th sub-interval, the ¶ th sequence is taken
(with replacement). One time interval, say the ê th, from that sequence is then sampled and sim-
ulated. If the ê th snap-shot contains a loss of load, then the time intervals after it are simulated
in sequence until the loss of load condition has gone, and simulated before it until the start of
the loss of load condition. If, on the other hand, the ê th interval of the ¶ th sequence does not
contain a loss of load, another sequence from · is sampled. Sampling from · then continues
until sufficient precision in the estimate has been obtained.

A hybrid of state transition and the pseudo-sequential sampling described in [70] is reported in
[71]. The method is essntially the same as in [70] but the paper describes the additional use of
a variance reduction technique known as “conditional Monte Carlo” [72, 73].

8.4 Example of the “state sampling” method

The following is a description of a simple example given in [52].

The objective is to find the expected value of some reliability index from equation (8.26). As
outlined above, the reliability index is invariably concerned with loss of load or “load curtail-
ment”. The index need only be worked out for those states in which curtailment occurs and
experience shows that they are relatively few in number. The key, then, is to identify them.

The complete set of states may be sub-divided in the manner shown in figure 8.3.
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Figure 8.3: Classifications of system state in reliability evaluation

A system state is obtained by sampling the state of each individual component, transmission and
generation. Where any component is in the “down” state, the resulting system state is denoted
a “contingency state” and is a member of · contig.

If a generating unit has been lost or derated, the capacity of the remaining generating units at
the bus where it was lost is first worked out. This is done for each generator derating or loss. If
there are Ý ° generating units at bus ¶ , the initial (normal) active power outputs are

Ûð° å ÎCñÜò Ý ° and
the maximum outputs in contingency system state are

Û ÖôóQõ° å ÎCñ�ò Ý ° , the truth of the following
inequality is found: ¯å ± ä`ö Ã Û ÖôóQõ° å ÄÇÛð° å È¦÷ ½ (8.28)

If (8.28) is satisfied for all buses where generator loss or derating has taken place, whether any
load curtailment will take place will depend on the effects of any transmission outages. If, how-
ever, (8.28) fails to be satisfied for at least one bus, the system state will belong to set · contig maybe.
Further analysis will be necessary to determine if the state is a member of · contig resched no or· contig resched yes.

If a transmission component has been lost, it must be determined if any overloads have been cre-
ated. If there are no overloads and equation (8.28) has been satisfied for all generator buses, the
system state belongs to · contig no. Otherwise, the state belongs to · contig maybe and reschedul-
ing of generation must take place.

For any system state in set · contig maybe, generation must rescheduled to meet demand and re-
move overloads while minimising load curtailment. This is often achieved by means of a linear
program. Then, if any load has been curtailed, the system state belongs to · contig resched yes

and the appropriate index should be worked out. Otherwise, the state belongs to · contig resched no.
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8.5 Solution by “state enumeration”

This method is the traditional one of carrying out reliability analysis and is the main alternative
to using Monte Carlo simulation. A brief description is offered here so that the reasons for using
Monte Carlo can be better understood.

State enumeration involves explicitly evaluating every case in a pre-defined sequence until a
certain level of accuracy is judged to have been obtained. Its effect is to determine according to
some rule which subset of the whole set of possible states is worthy of study.

The rule used often depends on use of so-called capacity outage probability tables [4]. A prob-
ability cut-off is defined such that any contingencies deemed to be less likely than the cut-off
are also deemed to be not worthy of study having insignificant impact on the reliability index
being used.

If a state is termed a “level 1 state” when one fault has occurred causing one component to go
out of service, a “level 2 state” when 2 faults have occurred and so on, where the probability
of each fault is the same, the probability of a trial having a particular level will be given by the
binomial distribution

Æ�ø Ã�ù È whereÆ�ø Ã�ù È ûú Ýùýü ³ õ Ã�Ï Ä ³ È ä�þ õ (8.29)

and Ý is the number of components, ù is the level of a particular trial and ³ is the probability of
a component being out of service.

When the number of possible levels (i.e. number of components which may be faulted) is large,
the binomial distribution may be approximated by the normal distribution. A graph may be
drawn of the form shown in figure 8.4 of the cumulative probability ÁÞÿhÃ�� È of being in particular
state level � against the state level i.e. of the probability of being at that level or below.

y

F(y)
1.0

Cut-off

0

Figure 8.4: Cumulative distribution function of level probability

It can be seen that a cumulative cut-off probability may be fixed on the figure so that state levels
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where the cumulative probability is greater than the cumulative cut-off are neglected. Implicit in
this approach, however, is the assumption that the contributions of each state level to the overall
reliability index follow the shape of Ï Ä ÁÞÿhÃ�� È i.e. the characteristic shown in figure 8.5 since
the number of possible contingency scenarios at each state level follows that shape.

y
0

I(y)

Figure 8.5: Contribution of state levels to reliability index

It will be recalled that these characteristics, derived from a binomial distribution, are based on
the assumption that all faults have the same probability. While this may be approximately true
for a transmission system, it is not true for a real power system comprising both transmission
and generation where generator failure rates are generally significantly higher than branch fail-
ure rates. Add in the phenomenon of cascade tripping and the possibility of protection failures
meaning that one fault can lead to the failures of many branches and it can be seen that the prob-
abilities of each possible scenario must be evaluated explicitly. Further, consideration of the
characteristics of a large power system reveals that the concurrent outage of, say, 5 lines due to
the (not very probable) concurrence of 5 separate faults may lead to no unreliability if all the
lines are remote from each other. Use of the enumeration approach when the system has 500
items of plant would make the binomial distribution of state level greatest at level 5 (and the
c.d.f. steepest), implying that this would make most contribution to the reliability index. On
the other hand, the concurrent outage of two lines in close proximity may lead to, for example,
a great deal of load being shed.

Thus it can be seen that for a reasonably realistic model of a large power system, the state enu-
meration approach with a probability cut-off has serious limitations. A Monte Carlo estimation
of system reliability, even with its great computational demands, becomes extremely attractive.
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Chapter 9

Applications of Variance Reduction in
Power Systems

9.1 Application of importance sampling to power system plan-
ning

The National Grid Company has developed a number of tools for assessment of the value of in-
vestment in transmission system plant [74]. The main criterion for the investment is that system
reliability is improved or the operating cost reduced. When assessing the reliability, work has
been done in exploiting importance sampling [75]. The following offers two illustrations of that
work showing the influence of system outage probabilities on the number of trials needed in a
Monte Carlo evaluation of reliability 1.

9.1.1 Outline of method

In common with section 8.2, a power system is considered with Ý�� line components and Ý�� gen-
erator components giving a total of Ò components subject to random failures. The set of all
possible system states is · and an individual state is Ñ ò · comprising the states of each com-
ponent � ÓiÔ Î ÓiÕ Î Ì`Ì_Ì Î ÓhÖ�� .
A system failure index 	#ÃQÑ È is defined such that 	$ÃXÑ È  Ï if any consumer disconnections
occur in state Ñ and ½ otherwise. The system failure probability is thenÆ �¬ Í
	$ÃXÑ È Ð Ì (9.1)

If ³ Ù is the probability that state Ñ will occur,Æ  ¯Ù ±�²#³ Ù 	$ÃXÑ È Ì (9.2)

1Importance sampling is also mentioned in [76] in combination with control variates and in [77] where the issue
of “cascade tripping” in power system disturbances is considered.
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Æ
may be estimated in a Monte Carlo simulation by �Æ such that

�Æ  ÏÝ ä¯ °� Ô 	$ÃXÑ °|È (9.3)

where Ý is the number of trials and Ñ ° is the system state in the ¶ th trial.

The variance of
Æ

is given by2

� Õ�  ¯Ù ±n²�	 Õ ÃXÑ È ³ Ù Ä��� ¯Ù ±�²�	#ÃQÑ È ³ Ù��� Õ Ì (9.4)

Since 	 Õ ÃQÑ °�È �	#ÃQÑ °µÈ as 	 is always either ½ or Ï , this is

� Õ�  ¯Ù ±n² 	#ÃQÑ È ³ Ù Ä �� ¯Ù ±�² 	$ÃXÑ È ³ Ù �� Õ Ì (9.5)

As � Ù ±n² 	#ÃQÑ ° È ³ Ù  Æ and Í�� Ù ±�² 	$ÃXÑ ° È ³ Ù Ð Õ  Æ Õ , this gives� Õ�  Æ ÄÇÆ Õ Ì (9.6)

In a simulation,
Æ

is approximated by �Æ and the variance of the population may be approximated
by � Õ�  ÏÝ ä¯ °� Ô 	 Õ ÃQÑ ° ÈÚÄ�� ÏÝ ä¯ °� Ô 	#ÃQÑ °µÈ�� Õ (9.7) �Æ Ä �Æ Õ Ì (9.8)

Now let state Ñ be sampled with probability ³� Ù .
Æ

now becomesÆ   ¯Ù ±�² 	$ÃXÑ È"! Ù ³  Ù (9.9)

where the weighting
! Ù is ! Ù  ³ Ù³  Ù Ì (9.10)

The variance of
Æ  is then �  �#$  ¯Ù ±n²�	 Õ ÃXÑ È"! ÕÙ ³  Ù ÄÇÆ Õ (9.11) ¯Ù ±n²�	 Õ ÃXÑ È"! Ù ³ Ù ÄÇÆ Õ Ì (9.12)

2A factor of %'& in a summation of all the possible states is equivalent to a factor of (*),+ where + is the popu-
lation size in a summation over all the outcomes in the population.
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Æ  can be approximated in the simulation by

�Æ   ÏÝ ä¯ °� Ô 	#ÃQÑ ° È"! Ù ö (9.13)

of which the variance �  #$.- is �  #�  ÏÝ ä¯ °� Ô 	 Õ ÃQÑ ° È"! ÕÙ ö Ä �Æ  # Ì (9.14)

The aim of the importance sampling strategy is then to choose
! Ù to minimise �  #� .

Suppose that bias factors
! � and

! � are applied to individual line and generator outage probabil-
ities ³ � and ³ � . Applied to a complete system in which all lines have uniform outage probability³ � and all generators ³ � , the probability of sampling a state Ñ with © � ÃQÑ È lines and © � ÃXÑ È gen-
erators tripped is³  Ù �Ãq³ � ! � È0/21 á Ù ã ÃEÏ Ä ³ � ! � È ä 1 þ /21 á Ù ã43 Ãq³ � ! � È0/25 á Ù ã Ã�Ï Ä ³ � ! � È ä 5 þ /25 á Ù ã (9.15)

compared with an intrinsic probability of³ Ù Ç³ / 1 á Ù ã� Ã�Ï Ä ³ � È ä 1 þ / 1 á Ù ã 3 ³ / 5 á Ù ã� Ã�Ï Ä ³ � È ä 5 þ / 5 á Ù ã Ì (9.16)

The sampling weight is then! Ù  Ã�Ï Ä ³ � È ä 1 þ /21 á Ù ã Ã�Ï Ä ³ � È ä 5 þ /25 á Ù ã! /21 á Ù ã� Ã�Ï Ä ³ � ! � È ä 1 þ / 1 á Ù ã 3 ! /25 á Ù ã� Ã�Ï Ä ³ � ! � È ä 5 þ / 5 á Ù ã (9.17)

 ³ /61 á Ù ã� ÃEÏ Ä ³ � È ä 1 þ / 1 á Ù ã 3 ³ / 5 á Ù ã� ÃEÏ Ä ³ � È ä 5 þ / 5 á Ù ã³  87 1:9<;�=� ÃEÏ Ä ³  � È ä 1 þ /21 á Ù ã 3 ³  87 5 9;�=� Ã�Ï Ä ³  � È ä 5 þ / 5 á Ù ã (9.18)

where ³> � is the biased line failure probability and ³> � is the biased generator failure probability.

States where any given line fails are then over-represented in the simulation by a factor
! � while

states in which it does not fail are over-represented by a factor Ã�Ï Ä ³ � ! � È,? ÃEÏ Ä ³ � È or under-
represented by a factor ÃEÏ Ä ³ � È*? ÃEÏ Ä ³ � ! � È .
It can be seen that application of the method to systems with non-uniform outage probabilities
will be straightforward since separate factors from each component are simply multiplied to-
gether.

9.1.2 First illustration of method

Consider the system in figure 9.1 [75]. Let there be uniform outage probabilities such that ³ � 1½
and ³ � A@ . A suitable value of

! � is to be found.

It can be seen that a system failure state 	#ÃQÑ È 
Ï will result if
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Generator

Load

Generator

Figure 9.1: Four bus, three line example system

1. lines A and B fail but not line C. ³ Ù �@ Õ Ã�Ï Ä @ È .
2. lines A and C fail but not line B. ³ Ù �@ Õ Ã�Ï Ä @ È .
3. lines A, B and C all fail. ³ Ù �@�B .

Averaging over all system states givesÆ  ¯Ù ±�²C	$ÃXÑ È ³ Ù (9.19) DE@ Õ Ä @ B Ì (9.20)

When @ is small, ÆGF DE@ Õ Ì (9.21)

The variance of a Monte Carlo estimate3 may be found by making use of equation (5.32) with� Õ� approximated by � Õ� . With
Æ

approximated by �Æ , this gives a coefficient of variation of the
estimate of ¾IH�J$  � J$�Æ  � ��Æ�K Ý (9.22)

 LMMN Ï Ä �ÆÝ �Æ (9.23)F ÏO Ý �Æ F Ï@ K D Ý Ì (9.24)

From this, it can be seen that to obtain an estimate coefficient of variation of 10% when @ �½ Ì ½�Ïand �Æ ADQP Ï`½KþSR would require Ý �TUP Ï_½'V trials.

Performing the same simulation with importance sampling, it may be found that the variance is�  #�  ÏÝ  � @ B! B�XW DE@ Õ Ã�Ï Ä @ È Õ! Õ� Ã�Ï ÄY! � @ È Ä Ã0D'@ Õ Ä @ B È Õ � Ì (9.25)

�  #� is smallest when ! �  DZ @ Ì (9.26)

3Note that this is the variance of the estimate not the variance of the sample.
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For
[

this value of
! � , �  #�  Ï]\'@�RD Ý  (9.27)

and the estimate coefficient of variation is¾^H�J$ `_ Ïa\¹ Ý  Ì (9.28)

It can now be seen that a coefficient of variation of 10% can be achieved with only Ý  ¸bDdcK½
simulations.

9.1.3 Second illustration of method

This illustration is based on that described in [78]. Consider the system shown in figure 9.2.
With Ñ and 	$ÃXÑ È defined as before, it can be seen that failure states result when

1. only line C fails. ³ Ù A@�Ã�Ï Ä @ È Õ .
2. lines A and B fail but not line C. ³ Ù �@ Õ Ã�Ï Ä @ È .
3. lines A and C fail but not line B. ³ Ù �@ Õ Ã�Ï Ä @ È .
4. lines B and C fail but not line A. ³ Ù �@ Õ Ã�Ï Ä @ È .
5. lines A, B and C all fail. ³ Ù �@�B .

A

B

C

Generator

Load

Generator

Figure 9.2: Alternative four bus, three line example system

If ³ � �@ and ³ � �½ , Æ  @�Ã�Ï Ä @ È Õ W Z @ Õ Ã�Ï Ä @ È W @ B (9.29) @�Ã�Ï W @ Ä @ Õ È Ì (9.30)
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This
e

may be approximated to @ .

As in the first example in the preceding section, � Õ�  Æ Ä
Æ Õ
and ¾^H J$  O Ã�Ï ÄÇÆ È*? Ý ÆfFÏ ? K Ý Æ . Let the number of trials Ý be found for which the estimate coefficient of variation is

10% when @ 1½ Ì ½�Ï . With �Æ  Æ �@ , Ý F Ï Ì ½gP Ï_½hR .
Now using importance sampling, it can be seen from equations (9.12) and (9.18) with ³ � b@
that �  #�  ¯Ù ±n²�	$ÃXÑ È @ /21 á Ù ã ÃEÏ Ä @ È ä 1 þ /21 á Ù ã³  87ji 9;�=� Ã�Ï Ä ³  � È ä 1 þ / 1 á Ù ã ³ Ù ÄÇÆ Õ (9.31) ¯Ù ±n²�	$ÃXÑ È @ /21 á Ù ã ÃEÏ Ä @ È ä 1 þ /21 á Ù ã³  87ji 9;�=� Ã�Ï Ä ³  � È ä 1 þ / 1 á Ù ã @ / 1 á Ù ã ÃEÏ Ä @ È ä 1 þ / 1 á Ù ã ÄÇÆ Õ (9.32) ¯Ù ±n²�	$ÃXÑ È @ Õ /21 á Ù ã Ã�Ï Ä @ È Õ á ä 1 þ /21 á Ù ãqã³  87 1j9;�=� ÃEÏ Ä ³  � È ä 1 þ / 1 á Ù ã ÄÇÆ Õ

(9.33)

where Ýk�  Z
for the three-line network under discussion 4.

Since @ is small, the lowest power of @ dominates so�  #� F ¯Ù ±�²C	$ÃXÑ È @ Õ /21 á Ù ã³  7 1 9<;�=� Ã�Ï Ä ³  � È ä 1 þ /61 á Ù ã ÄÇÆ Õ Ì (9.34)

The only one of the three states where © � ÃQÑ È �Ï for which 	$ÃXÑ Èml�½ is the state corresponding
to the tripping of line C with lines A and B still in service. Thus, since

Æ n@ ,�  #� �@ Õ ú Ï³  � ÃEÏ Ä ³  � È Õ Ä Ï ü Ì (9.35)

From here, it can be found that �  #� is minimized when ³  � 
Ï ? Z .
Recalling that ¾IH�J$  � J$ ? �Æ and � Õ J$  � Õ -� ? Ý  ,

¾IH�J$  ÏÆ _ �  #�Ý  Ì (9.36)

With ³� � �Ï ? Z and
Æ �@ , this gives¾^H�J$  Ï@ _ T Ì »dTE@ ÕÝ  Ì (9.37)

Thus, the number of trials using importance sampling Ý  can be found for an estimate coefficient
of variation of 10%. It is found to be independent of @ and equal to T¿».T .

4The term o pSqr q6sut�vxw does not appear as each state with the same
r q sut�v is counted separately in the summation

as y s�t�v may be different for each.
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9.1.4
z

Remarks

A comparison can be made between the relative improvement in the number of trials needed
for a given coefficient of variation between an estimate made with and without importance sam-
pling.

From the first example in section 9.1.2, the ratio of Ý to Ý  isÝÝ   TgP Ï_½'VDdcK½ F D�½ç¹ç½ (9.38)

while for the second example in section 9.1.3 the relative improvement in the number of trials
is ÝÝ   Ï Ì ½gP Ï_½hRT¿».T F Ï�» Ì (9.39)

The fact that the first example gives a better improvement is consistent with the idea that the
importance sampling works better the rarer the failure states are. Consideration of equations
(9.12) and (9.18) shows that for minimum variance,

! Ù should be minimized and, in turn, the
denominator of (9.18) maximized. This occurs for ½g{ ³� � {&Ï when³  �  © � ÃQÑ ÈÝ�� Ì (9.40)

For ³> �x| ³ � (which is necessary to achieve a reduction in variance),³ � { © � ÃQÑ ÈÝk� Ì (9.41)

This can be interpreted as a restriction on the number of lines tripped [78]:© � ÃXÑ È | ³ �èÝ�� Ì (9.42)

For ³ �  ½ Ì ½�Ï , this provides no difficulty on a small network, but for a system with around
500 lines, © � ÃQÑ È should be more than 5. In other words, importance sampling should be used
to bias the Monte Carlo simulation towards the extreme conditions which lead to loss of supply
5. However, even having the number of line trips for a particular trial greater than or equal to
5 does not guarantee the occurrence of a failure state: the tripped lines may be geographically
distributed such that all load can continue to be supplied.

Another important point is that the derivation of the necessary weights for importance sampling
in the above examples depended on analytical knowledge of the estimated quantity. In practice,
of course, this quantity to be estimated is not known.

It is clear, then, that some form of additional knowledge is necessary to find weightings which
give significant improvement to the efficiency of the Monte Carlo algorithm. The information
relevant to the power system reliability problem is: which terms from the series by which the

5For an index that was continuous rather than simply 0 or 1, this may be interpreted as biassing the simulation
to have more trials around the expected estimate to better “confirm” the validity of that estimate.
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expected value is calculated contribute most to the mean probability of failure to supply. In the
two illustrations given above, it has been assumed that certain terms dominate the series making
approximations possible. However, this is only true for small networks. In larger networks,
while individual terms corresponding to outages of single components may be large, there are
many terms corresponding to different combinations of multiple outages.

It may be necessary, as suggested in [75], to run a trial simulation to get a preliminary estimate of
the system failure rate in order to calculate the importance sampling weightings and the number
of trials needed, and then run the full study. More qualitative knowledge gained from operators
may be useful in this context to weight different system components separately according to
empirical knowledge of which ones tend to cause most problems, though it may be difficult to
ensure that this knowledge is “generic” i.e. can be applied similarly to all large power systems,
rather than system specific. Alternatively, some representation of that empirical knowlegde may
be accessible from sensitivity analysis of the intact system - changes in generation or in injec-
tions caused by losses of lines which have greater impact on other system components operating
near to their limits may be weighted in proportion to those sensitivities.

9.2 Application of control variates to power system reliabil-
ity

An application of control variates (or “regression sampling”) is outlined in [79], [80] and [76].

In [79, 80, 76], contributions to “loss of load probability” (LOLP) and “expected power not
supplied” (EPNS) indices are broken down into those caused byà generation outages severe enough to lead to load curtailment even if there were no limi-

tations in transmission capacity.à transmission outages severe enough to lead to load curtailment even if all generation were
available.à composite outages where the effects of generation and transmission alone would not be
enough to cause load curtailment but whose combined effect leads to system problems.

The expected energy not supplied caused solely by generation outages is denoted in [79] as} ÊU~ . The expected energy not supplied caused by outages of either generation or transmis-
sion or both is denoted

} ÊQ~ ´ . The control variate ¾ from equation (7.23) where� Ã�� È  � Ä �#ÃQ¾ Ä ¨�� È (9.43)

is chosen to be
} ÊQ~ .

� Ã�� È is a new function which is an unbiased estimator of ¨ � . ¨ � is
calculated from enumeration of

} ÊQ~ (in general, this enumeration will provide an estimate of¨ � ). Taking �Ø�Ï (an approximation which is often used in power system composite reliability
analysis) and the expected values of equation (9.43) it is found that¬ Í � Ã�� È ÐË ¬ÜÃ � ÈºÄ ¬ØÃQ¾ È W ¨k� (9.44) ¬ÜÃ � È (9.45)
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meaning that an estimate of a “residual”, here ¬ØÃ � È Ä ¬ØÃX¾ È W ¨k� , would give the desired result
when ¬ØÃX¾ È�F ¨k� with, as was shown in section 7.3, a reduced estimate variance.

Calculate E(UDG) by enumeration

Sample generation

Calculate UGD

Sample transmission

Calculate UDGT

Find ‘residual’

Update E(Y) and var(Y)
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vector

vector
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t
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i
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Stop
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Figure 9.3: Illustration of the use of a control variate

In the context of [79], then, the Monte Carlo simluation proceeds in the manner shown in figure
9.3. First ¨�� , here denoted by the expected value of

} ÊQ~ , is found. Then a random generation
vector � ° is sampled and the EPNS caused by this vector of generation states (with the transmis-
sion system intact),

} ÊQ~¸Ã�� ° È , is found. This represents the random variate ¾ from equation
(9.43). A transmission vector © ° is then sampled and the EPNS calculated for the composite
system described by � ° and © ° . Denoted

} ÊU~ ´ Ã�� ° ÎE© ° È here, this represents the random variate�
from (9.43). Finally, the residual is found for the trial in question. If this is the ¶ th trial, this

may be denoted
� °

and represents the random variate
� Ã0� È from (9.43).

Two test systems were used in [80] to find the relative contributions. The first had 465 buses,
679 branches and 104 generating units. This gave the relative contributions to each index being
approximately distributed with between 7 and 12 % caused by generation outages, 25-30% by
transmission and 60% by composite effects. The second system with 519 buses, 706 branches
and 51 generating units gave contributions to LOLP as follows: generation 24%, transmission
62% and composite effects 14%. For the EPNS index, however, this system gave generation
78%, transmission 16% and composite 6%.

The results show that the speed-up gained by use of a particular control variate is likely to de-
pend significantly on the system being analysed. For the first test system above, for example, it
may be useful to adopt two control variates (or “regression variables”): generation and single
circuit transmission outages. The final choice of regression variable should be dictated by the
expected correlation between the composite system index and the candidate regression variable
or by prior numerical tests. It should also be recalled that calculation of the regression variable
itself has a computational overhead.

A speed-up of 12 times for the EPNS index and 30 times for the LOLP index is claimed in [80].
Further speed-up is claimed in [76] due to combination of control variates and importance sam-
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pling schemes. It is also noted in [80] that the effectiveness of load curtailment cuased simply
by generation outages as a control variate will depend on the system being studied and the load-
ing level. For example, if there is plenty of spare generating capacity relative to the load, the
impact of the loss of any one generator will be less.In this circumstance, load curtailment due
solely to transmission outages may be much more correlated to the composite system index of
interest and would make a better choice as control variate.

In [81], it is noted that � in equation (9.43) is very often taken simply as 1 in power system re-
liability studies. It is proposed instead that greater variance reduction can be achieved by using
estimates of �� based on estimates of cov Í � ÎC¾iÐ and var Íæ¾ÀÐ obtained as the Monte Carlo simula-
tion proceeds. It is noted that the estimate for ¨ need not then be unbiased but that the bias may
be expected to decrease as the number of trials increases.

9.3 Application of stratified sampling to power system relia-
bility

It is noted in [52] that in reliability evaluation requiring analysis over a period of time, high load
level points in the daily or annual load curves make greater contributions to unreliability indices
than low load level points.

The work reported in [82] proposes running a full Monte Carlo study for production costing in
one simulation period to estimate the population parameters necessary to define the number of
strata, their boundaries and their weights. Other simulation periods are therefore estimated us-
ing the appropriately applied stratification. A disadvantage of this method, however, as well the
overhead of performing the initial crude Monte Carlo simulation and the possibility the stratifi-
cation found may less than ideal for other simulation periods, is the need for expert knowledge
to interpret the results of the crude simulation. Various papers by Huang and associates, for ex-
ample [83], therefore propose a more automated procedure along the same lines. The method
is, however, only applied to production simulation.

9.3.1 Stratification after sampling

One of the difficulties associated with stratified sampling is the need to be able to choose in
advance of each trial which stratum it should fall into. Having chosen the stratum, the trial is
then randomly generated within it. This permits control over the number of trials in each stra-
tum which can enable considerable reduction in variance. However, it is not always possible
to fix the stratum in advance. Fortunately, as was shown in section 7.5, significant reduction in
variance can still be achieved by stratification after sampling when the number of trials in each
stratum has been determined by the sampling process itself.

This is what was done in [84]. However, the theoretical probabilities of a trial occurring in theñ th stratum must be known in advance, which is possible given the stratification carried out in
[84]: the strata are
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1. those trials with no outages.

2. those trials with only line outages.

3. those trials with only generator outages.

4. those trials with both line and generator outages.

It may also be envisaged that stratification could be carried out on a basis of the “contingency
levels” outlined in section 8.5 i.e.

1. those trials with no outages.

2. those trials with only one outage (“level 1”).

3. those trials with two concurrent outages (“level 2”).

4. those trials with three concurrent outages (“level 3”).

5. those trials with four or more concurrent outages (“level 4 or above”).

The above two stratification schemes could be combined to provide subdivisions of line outage,
generator outage and combined line and generator outage strata.

It can be seen from [84] that the choice of strata is critical as for “extreme emergencies”, an
improvement in efficiency of stratified sampling over a crude Monte Carlo estimation of only
1.056 is reported.

9.4 Application of antithetic variates to power system relia-
bility

Use of antithetic variates has been mentioned in [84]. Little description is offered in [84] of its
use, and certainly no analytical justification. Suffice to say that the method involves generating
one set of random numbers

}��Ô Î Ì`Ì`Ì Î }��ä in the interval Í/½�Î`ÏCÐ and carrying out one simulation using}��Ô Î Ì`Ì`Ì Î }��ä and then another using Ï Ä }x�Ô Î Ì`Ì`Ì Î`Ï Ä }��ä . The results reported show a significantly
improved computational efficiency using antithetic variates over the crude Monte Carlo method.

Use of antithetic variates in [85] is claimed to reduce the number of trials needed by more than
3 times. Antithetic variates were also used in [86]

A simple example is also offered in [87].
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9.5 Application of correlated sampling to power system reli-
ability

An example is reported in [88] of use of correlated sampling. The variance reduction technique
is used to improve the variance of the difference in cost between two operating policies for a
fixed number of trials.
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Chapter 10

Application of Variance Reduction in
Value of Security Assessment

Each variance reduction method discussed in chapter 7 has its own distinctive characteristics.
Quite how they fit with a particular problem largely cannot be known in advance so, in this
project, a number of variance reduction techniques have been implemented for the purposes
of detailed comparison. How they behave also depends on the frequency of underlying events,
so how the random events are generated and used in obtaining an estimate is outlined in the
first section of this chapter. Detailed discussion of each variance reduction method in turn then
follows.

10.1 General estimation model

The Monte Carlo estimation process is used so that, when the sample is large enough, the sample
mean cost can be taken as a good estimate of the expected cost.

Individual trials are created by generating random outages for a specified time interval assuming
that the system state is known at the start of this interval. The set of possible independent failure
events includesà generator failure;à line outage;à double circuit outage;à busbar outage;à SVC failure

Note that transient events are not considered. It may also be noted that double cicuit outages
and busbar outages entail taking out of service more than one line.

111



If
�

the failure rate of each type of failure is known and assumed to be constant, the probability³ ° Ã|© È of the ¶ th plant item going out of service unexpectedly in a time interval of duration © may
be found from [4] ³ ° Ã�© È �Ï Ä��]� ö /�F § ° © (10.1)

where § ° is the failure rate of the ¶ th plant item (see chapter 8 for more on failure rates and outage
probabilities).

If the system contains Ò individual basic events, i.e. line faults, busbar faults, double circuit
faults, generator faults and SVC faults (deration of generation and sudden changes of load have
been neglected in this project to date), the status of the system may be determined for the end
of some time period © by taking a vector of random numbers �  Í }ôÔ Î Ì`Ì`Ì Î }ÞÖ Ð . Each

} ° Î�¶�ÏçÎ Ì`Ì`Ì Î�Ò is taken from a uniform distribution in the interval Í/½�Î`ÏCÐ 1. If a random number
} °

is less
than ³ ° Ã�© È , the ¶ th plant status

Ó °
(where the plant is regarded as a line, busbar, double circuit,

generator or SVC) is deemed to be “out of service”; otherwise, it remains in service. A vector
of plant statuses Ñ�Ã0� È  Í ÓiÔ Ã }ôÔ È Î Ì_Ì`Ì Î Ó Ö Ã }ÞÖ È Ð may thus be obtained and may be called the
contingency state.

Deration of generation and sudden reduction of demand at a given bulk supply point may be
modelled in a similar way with sets of state transition rates describing the number of changes
from one state to another per unit time where a state may be considered to be the generator output
or the demand. The probability of changing from one state to another can then calculated in the
same way as in equation (10.1).

The cost of a given plan at a given time will be a function of the contingency state Ñ and will
comprise the sum of load shedding costs � ÃQÑ È and generation costs � ÃQÑ È so that the total costÆ ÃXÑ È is � ÃXÑ È W � ÃQÑ È . If

Æ ÃQÑ�Ã0� È�È is represented by � Ã�� È , the expected total cost for a given
time and plan may then be estimated by � such that

�¸ ÏÝ ä¯ °� Ô � Ã�� °�È (10.2)

where Ý is the number of trials.

10.2 Antithetic variates

This technique is based on finding two unbiased estimators for the unknown parameter
Æ ÃQÑ È

which have strong negative correlation [50]. If the two estimators are � Ô and � Õ , the estimator
of
Æ ÃQÑ È will be

ÔÕ Ã8� Ô W � Õ È with

var � ÏD Ã8� Ô W � Õ È��  (10.3)Ïc var Ã8� Ô È W Ïc var Ã�� Õ È W ÏD cov Ã8� Ô Î�� Õ È Ì
1Random numbers may be generated by any suitable random number generator such as that included in the

NAG library [6] (random number generation algorithms are discussed in [51]).
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Clearly, from equation (10.3), if cov Ã�� Ô Î�� Õ È is strongly negative, the overall variance can be
reduced.

To estimate the expected value of
Æ ÃXÑ È , ¬ Í Æ ÃQÑ È Ð , a sample of Ý trials is taken with Ñ deter-

mined by a vector of random numbers � taken from the uniform distribution. The two estima-
tors may be taken as � Ô  Æ Í Ñ�Ã0� È Ð8�� Ã�� È and � Õ  Æ ÍæÑ�ÃEÏ Ä � È Ð8�� ÃEÏ Ä � È . The antithetic
variates estimator � ó is then

� ó  ÏD Ý ä¯°� Ô Í:�8Ã0� °�È W � Ã�Ï Ä � °�È Ð Ì (10.4)

When sampling, the effect is to have pairs of trials where the first trial has its contingency con-
dition Ñ ë determined by � ë and the second one has Ñ ë é Ô given by � ë é Ô �Ï Ä � ë . The two
trials are negatively correlated so that if one trial returns a large outcome, the other will be likely
to return a small one. It would be hoped that the average cost of the two,

ÔÕ Í<� Ã�� ë È W � Ã�� ë é Ô È Ð ,
will be near to the population mean. Thus, if many such pairs of trials are performed, the spread
(or variance) of the averages of the pairs will be low.

Since the average of pairs of trials is tallied, it should be clear that the computation time required
by equation (10.4) is twice that required by the simple Monte carlo sampling (since two trials
are required to provide one independent tallied ‘data point’) so the estimator of (10.4) is more
efficient only when its variance is less than half that of the simple approach.

10.3 Dagger sampling

In the context of power system value of security assessment, the application of dagger sampling
requires an appropriate choice of system dagger cycle length. This means that any item of plant
that, according to its own outage probability, would have a dagger cycle longer than the sys-
tem one would have its cycle truncated. Items of plant with shorter cycles would have repeated
cycles contained within system cycles. Any cycle that is incomplete when the system cycle is
finished will also be truncated. An illustration of this will now be given.

Suppose component � has an outage probability of 0.1 so that the dagger cycle length � ó is 10;
component � has an outage probability of ½ Ì Z'Z so that �d�× Z

; and component � has an outage
probability of ½ Ì Ï]T so that �d�� ¼ . Choosing the system dagger cycle length as �I ¼ would
mean that two cycles could be completed for component � for each one for component � . This
means that for every single random number which must be generated to determine the status of �
in each of a cycle of �d�º�¼ trials, two random numbers must be generated for � . For component� , however, one random number would determine its status in each of � ó  Ï_½ trials. If the
system cycle length is 6, a new random number will be generated for component � after 6 trials
regardless of the dagger number for � determined before. This will fix the next 10 trials, only
the first 6 of which will be modelled according to that (new) random number.

As was seen in section 7.6, where different components in a system have different outage prob-
abilities, a choice must be made as to what the system dagger cycle should be.
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If
�

a minimum number of tallied data points needed for a reasonable estimate of the sample vari-
ance is taken arbitrarily as 10, the minimum number of trials needed to be simulated is Ï`½'� . With
an absolute maximum number of trials set as Ý ÖôóQõ in order to prevent excessive solution times,
it can be seen that a limit will be imposed on � such that��� Ý ÖºóXõÏ`½ Ì (10.5)

In general, a longer dagger cycle will give a greater reduction in variance although, as � trials
are needed for each data point, this may imply a large number of trials. Which dagger method is
best then depends on the system being evaluated, the outage probabilities and the relative gain
in variance reduction for a particular � .
In order to remove this system dependence, then, two refinements of dagger sampling have been
developed. These have been called “automatic dagger sampling” and “alternative dagger sam-
pling”.

In the first of these, the system dagger cycle length is initially set equal to the shortest cycle in the
system. After some minimum number of tallied points have been collected (say, 10), the sample
variance is calculated. Based on the assumption that the calculated sample variance will not
change significantly as sampling continues, a judgment is then made as to how many more data
points need to be collected for variance of the sample mean to reach the required level. This in
turn, since the system dagger cycle length is known, implies a prediction of the required number
of simulated trials. If this number is greater than the minimum number of trials that would need
to be simulated were the system dagger cycle length to be equal to the greatest component cycle
lenght (this is based on an arbitrary choice of a minimum number of tallied data points, such as
10 above), it would appear that a result could be reached more quickly using the longer dagger
cycle. The system dagger cycle length is then switched to equal the longest component cycle
length in the system and the costs of the trials already simulated are included in the calculation
of the next tallied outcome.

Since the outage probability of the rarest type of component failure may so long as to make
the switching described above very inadvantageous, another method, “alternative cycling”, has
been offered. This follows the same principle as the “automatic cycling” but the user of the
software chooses which plant type the initial system dagger cycle should be fixed to, and which
plant type to switch to where possible. Clearly, the outage probability of the first plant type
should be higher than the second2.

10.4 Stratification by change in MVA

Stratification is carried out after sampling (or, more precisely, as sampling proceeds) on a basis
of the change in MVA capacity. This enables line and generator outages to be treated on the same
basis (unlike the work in [84]) and also takes into account MVArs as well as MWs. As well as

2Further variations of the “automatic” and “alternative” cycles could clearly be thought of where the system
dager cycle length steps up in order of component cycle lenghts wherever it is estimated to be useful to do so.

114



giving some account of voltage problems, this means that SVC outages can also be included.
It has the further advantage of being simple to implement as the range of possible changes in
MVA is known in advance allowing the stratum boundaries to be determined before sampling
commences.

While extensive analysis could be carried out to find the correct stratum weights, this is likely
to be almost as computationally demanding as the estimation of the expected cost itself. Thus,
it was felt that each stratum weight (which is the probability of an individual trial falling into
the stratum) would be better approximated by the ratio of the number of trials in the stratum
to the total number of trials. As was noted by Kleijnen [3], this makes each stratum weight
stochastic since the number of trials in each stratum is stochastic, and implies that the confidence
interval is more approximate. Cochran [55] goes further to suggest that errors in stratum weights
can introduce bias to the estimate. This is not felt by the author of this report to be the case
in stratification after sampling as the estimate is not a function of the number of trials in each
stratum (with other stratification methods, it is).

10.5 “Adaptive” stratification by cost

For this method, it was noted that the ideal stratification variable would be the trial outcome
itself. However, this cannot be known a priori. Further, it was noted that certain rules exist
for optimum determination of stratum boundaries. Of these rules, the best established is the
so-called “cum

K Æ
” rule [55].

The method exploits the fact that as sampling proceeds, more knowledge of the problem is con-
tinually gained in the form of the frequency distribution of the outcomes (costs). Given that
when the number of trials per stratum is “large”, say greater than 20, stratification after sampling
is nearly as precise as proportionally stratified sampling, this knowledge is used “adaptively” to
determine stratum boundaries whenever the sample is so large that at least 20 trials would be in
each stratum.

At the start of sampling, there is just one stratum. By monitoring the cost frequency distribution,
the “cum

K Æ
” rule is used to split the stratum in such a way that the cum

O Æ Ã cost
È
interval is the

same in each half and each half has at least 20 trials. As each new trial is evaluated, its outcome
is added to the appropriate stratum. The frequency distribution of each stratum is continually
monitored until it, too, can be split, creating a new stratum until a maximum number of strata
has been obtained. This maximum number of strata has been set at 8 since it lends itself well to
such “binary” splitting and is close to the figure of 6 suggested by Cochran [55].

Such adaptive stratification allows the most appropriate stratification to be carried out at the ear-
liest possible moment so that a minimum number of trials needed for a given estimate variance
can be obtained as nearly as is practicable. However, a stratification carried out early on in the
sampling, ideal according to the the knowledge at the time, i.e. the frequency distribution of the
sample to date, may be seen to be less than ideal as new knowledge is gained. Hence, the entire
sample is restratified periodically, say every 1000 or Ý4� trials.
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Figure 10.1: Flow chart of “adaptive” stratification

The method is illustrated in figure 10.1.

The main disadvantage of the method is that while the theory regarding the confidence inter-
val requires the use the population variance of each stratum, only the sample variance of each
stratum is available. In addition, the theoretical weights of each stratum are not known and are
approximated by the ratios of the number of trials in each stratum to the total number of trials.
These circumstances make the confidence interval approximate meaning that sampling may stop
earlier than necessary leading to imprecision in the estimate. (No bias is introduced as can be
seen from the results shown chapter ??. The mean of the sample means is equal to population
mean.)

Experiments have shown that fewer strata than 8 lead to less imprecision (according to [55], 6
is an ideal number of strata) but, inevitably, as the benefit of stratification is reduced by reduc-
ing the number of strata, more trials are needed. This was felt to indicate the dependence of the
stopping criterion on the estimates of population variances. With fewer strata, the error accruing
from the error in each stratum variance is less, and there are more trials in each stratum making
each estimate more reliable. Further, with more trials, the central limit theorem which states
that when a sample is large, the sampling distribution may be approximated by a normal dis-
tribution regardless of the underlying population distribution, holds with greater certainty than
with smaller samples.
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Figure 10.2: Flow chart of “adaptive” stratification with convergence checking for estimates of
stratum variances

Theory has shown that confidence intervals can be set not only for means, but also for variances.
Since the maximum number of strata must be set in advance of sampling, this has been exploited
to ensure more reliable estimates of the stratum variances by forcing sampling to continue while
pre-set confidence limits are not met by any one stratum sample variance, so giving less aproxi-
mate confidence limits for the mean cost. This approach is illustrated in figure 10.2. What tends
to happen, in this case, is that the stratum with largest costs will have the greatest within-stratum
variance and hence the least reliable estimate of the stratum population variance. Where alloca-
tion of trials in advance is possible, this would be the stratum which would have proportionally
more trials. With stratification after sampling, sampling must simply continue until sufficient
precision in the estimate of the stratum variance is obtained.

Even in the case where sampling is forced to continue until certain confidence limits on stratum
variances have been reached, sampling can stop inappropriately due to error in the variance of
the estimate. It is already been noted that the underlying distribution in each stratum is not nor-
mal and that this leads to imprecision in the confidence limits. One means tried to voercome
this has been to split a stratum only at the minimum turning point in the stratum’s frequency
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distribution that is nearest to the break-piint suggested by the cum
K Æ

rule, though this still has
limited effectiveness in the presence of extreme outliers.

It has been noted in the literature that resampling methods such as the jackknife or bootstrap (see
section 7.8) can derive better estimates of the variance of the estimate under such conditions.
Some investigation of application of both the jackknife and the bootstrap has therefore been
carried out. This is described in the next two sections.

10.5.1 Use of the jackknife in stratified sampling

The weights,
Û ° Î�¶G)ÏçÎ Ì_Ì`Ì Î~Ò where Ò is the number of strata, are kept equal to the empirical

weights found in the original sample, i.e.
Ûð°  Ý °u? Ý where Ý ° is the number of trials in the ¶ th

stratum and Ý is the number of trials in the whole sample. (If the weights were allowed to vary
with the deletion of each observation, the statistic would reduce to the simple average and the
advantage of the stratification would be lost.)

In the conventional approach, the estimates of the variances of the weighted stratum means are
summed to give the variance of the final estimate. With the jackknife, the variance of the final
estimate is found directly since the statistic evaluated by the jackknife method is the sum of the
weighted stratum means where the weights

Û °
are given by Ý ° ? Ý .

The estimated cost before the jackknife is

�¸ ´ ä  Ö¯ °� Ô Ûð° � ° (10.6) Ö¯ °� Ô Ý °Ý � ° (10.7)

where � °  ÏÝ ° ä_ö¯ë � Ô � °:� Ì (10.8)

If the deleted observation ñ falls in the � th stratum, the jackknife statistic,
´ ä�þ Ô � å , is then´ ä�þ Ô,� å  ¡¢ Ö¯°� Ô,� °u£��¤ Ý °Ý � °6¥¦ W Ý ¤Ý 3 ÏÝ ¤hÄ Ï 3 ä]§¯ë � Ô,� ë £� ëu¨ � ¤�� (10.9)

 ÏÝ �� ¡¢ Ö¯°� Ô ä`ö¯ë � Ô � °:� ¥¦ Ä ä §¯ë � Ô � ¤�� �� W Ý ¤Ý 3 ÏÝ ¤hÄ Ï �� ¡¢ ä §¯ë � Ô � ¤�� ¥¦ Ä � å �� (10.10)

 ÏÝ �� ¡¢ Ö¯°� Ô ä`ö¯ë � Ô � °:� ¥¦ W ÏÝ ¤lÄ Ï ¡¢ äa§¯ë � Ô � ¤�� ¥¦ Ä Ý ¤Ý ¤hÄ Ï � å �� (10.11)

where the ê å th observation of the � th stratum corresponds to the ñ th observation of the sample.
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All
©

the
´ ä�þ Ô,� å ÎCñUcÏçÎ Ì`Ì`Ì Î Ý are then used to obtain ª ë ó � å , the jacknife estimate of the variance

of the final estimated mean which is then used in conjunction with the classical normal model
of the sampling distribution to ascertain confidence limits.

The jackknife procedure also permits the final mean itself to be calculated with some compen-
sation for any error incurred by the ratios Ý °u? Ý not being, in general, equal to

Û °
.

Since the model of convergence based on a jackknife estimate of the mean will generally im-
ply a need to generate more trials than the conventional model, the computational burden of the
jackknife procedure is reduced by not carrying out the jackknife to calculate more accurate vari-
ances until the confidence limits determined by the conventional model have already been met.
This is illustrated in figure 10.3.
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NoYes
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Figure 10.3: Use of the jackknife

10.5.2 Use of the bootstrap in stratified sampling

The bootstrap may be exploited to model the confidence interval better, being based, as it is, on
an “empirical distribution”.

The decision must be made as to whether to apply the bootstrap to the whole sample, or to treat
each stratum as a separate i.i.d. sample. The effect of this difference is that in the latter case
the number of trials in each stratum is the same as in the original sample, while in the former it
need not be. In common with the application of the jackknife, the weights are taken as the Ý °�? Ý
from the original sample.

As was noted in section 7.8, a major difficulty with the bootstrap is the large amount of extra
computation needed to generate the bootstrap samples. It is also not clear from the literature how
many bootstrap samples are needed, though it is asserted in [66, 65] that at least 1000 are needed.
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One possible approach may be to perform the bootstrap itself by a Monte Carlo estimation, apply
classical confidence limits for the upper and and lower bounds being calculated by the bootstrap
to ascertain when to stop the simulation.

The large computational overhead effectively precludes the bootstrap from use as a test for con-
vergence of a Monte Carlo simulation to a given precision and degree of confidence. However,
it can be used to quantify the confidence interval of a fixed, given sample where the statistic
has a non-normal distribution, such the sample mean worked out by stratification. As such, it
confirms that considerable reduction in variance may be achieved by the “adaptive stratified
sampling” method and indicates that relatively few additional trials would be needed in addi-
tion to those suggested by classical confidence intervals for the degree of confidence specified
to be met.

10.6 Stratification by outage type

This is similar to the method used in [84], but achieves greater reduction in variance by group-
ing together more similar outages in the two-way stratification shown in figure 10.4 where the
numbers in italics are the stratum numbers. It has the advantage over the other stratification
methods described above of having the theoretical stratum weights available. Its disadvantage
is that the stratification variables may not be particularly straongly correlated with the outcome
of a trial.

Number of
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of line
outages

0 1
2
or

more
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1

2 or more

1 2 3

4 5 6

7 8 9

Figure 10.4: Two-way stratification by outage type

10.7 Control variates

Two variations on the method have been implemented thus far in this project and are based on
the work in [79, 80]. One uses the expected cost of contingencies comprising only generation
outages as the regression (or control) variable (figure 10.5) while the other uses the expected
cost of transmission outages (figure 10.6).

The expected cost of the regression variable is first evaluated by enumeration up to a given “out-
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Figure 10.5: The use of the expected cost of generation outages as a control variable

age level”3. Monte Carlo simulation then proceeds. If a randomly generated vector of regression
variable plant statuses was evaluated in the enumeration, its cost is either calculated or looked
up from previously stored values, i.e. for enumeration up to level 3, any vector comprising 1,
2 or 3 outages will have its cost found. Otherwise, since the scenario was not covered in the
enumeration, it must be taken as having cost ½ . Random statuses are then taken for all the other
plant and cost of all the plant outages is found. The “residual” is then found and tallied.

The average residual gives an unbiased estimate of the expected outage cost for all plant outages.
The variance reduction can be seen through the tallied values being the average of the regression
variable’s expected value plus the costs incurred by the other variables. Thus, since the element
of variability due to the regression variable (in the two cases studied, either generation outages
or transmission outages) has been removed, the overall spread of tallied costs should be less.

10.8 Correlated sampling

This is a simple method in which the variance of the difference in a statistic calculated from
two similar distributions can be reduced by performing Monte Carlo sampling of each using the
same set of random numbers [50]. Although it has few theoretical difficulties, its implementa-
tion in this project has required considerable re-writing of the software to enable the necessary
comparison between different initial scenarios.

3The outage level is the number of concurrent independent outages. Evaluation of generation outages up to level
of 3, for example, would entail calculating the cost times the probability of every possible single generator outage
and all combinations of pairs of generator outages and of 3 concurrent outages. The expected value is then the sum
of all these products. The accuracy of the enumeration depends on the assumption that the costs of scenarios above
the given level are insignificant.
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Figure 10.6: The use of the expected cost of transmission outages as a control variable

The action of correlated sampling in the context of the assessment of the value of security is
illustrated in figure 10.7. In the figure, two pairs of power system scenarios are shown. The
scenarios on the left concern a part of a system where the only generator is generating 1000
MW. In those on the right, the same generator is generating 1270 MW. Let it be supposed that
the cheapest scenario is to be found - that with the illustrated generator generating 1270 MWs,
or that where it is generating 1000 MWs and some other generator is generating an extra 270
MWs. All other plant statuses may be assumed to be the same in each case.
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Figure 10.7: Illustration of correlated sampling in comparing scenarios

In estimating the value of the security afforded by the different levels of generation at the gen-
erator in question, random outages may applied to the system and the resulting costs and cost
differences tallied. In the pair of situations at the top of the figure, the same outage has been
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applied to each case. In the bottom pair, there are different outages. Another way of expressing
the aim of the simulation is to discover the effect of the change in generation on the expected
outage cost. It should be clear that the cost difference «Øù between the top pair of situations is
due solely to the difference in generation patterns, while the cost difference between the bottom
pair is Ã�� W «¬� ÈºÄ � and is due both to the different outage in each case and the difference in
generation.

The effect of correlated sampling is to tally the differences «Üù for similar outage scenarios.
Variations due to factors other than the difference in initial condition are removed and the vari-
ance of the tallied cost differences is reduced so that a decision on which of two scenarios is
cheaper can be made quickly.

The software has been written so that correlated sampling can be exploited to make comparisons
between scenarios in one of two ways:

1. by forcing sampling to continue until a degree of confidence specified by the user has been
obtained for the sign of the difference in cost between two scenarios.

2. by forcing sampling to continue until a given degree of confidence in the sign of the dif-
ference has been obtained, and an estimate of each individual scenario’s cost has been
obtained within a pre-specified confidence interval.

The necessary degree of confidence in the sign of the cost difference is detected quite simply.
With knowledge of the sample variance (of the cost difference), the sample size and an assump-
tion that the sampling distribution is normal, the standard expressions relating degree of confi-
dence and confidence interval can be used:ª  ©*h® Õ �K Ý (10.12)¯  Ï Ä @ (10.13)

where ª is the confidence interval, � is the sample variance, Ý is the sample size and ¯ is the
desired degree of confidence. ©*d® Õ is found from the t-distribution with Ý Ä Ï degrees of freedom.
(Note that ª is always positive.)

If ° Ô Î,° Õ Î Ì_Ì`Ì Î*° ä are the tallied cost differences, the expected cost difference can be estimated
by

°  ÏÝ ä¯ °� Ô ° ° Ì (10.14)

Since the meaning of the confidence interval is that the true population mean lies within ±�ª of
the estimated mean with Ï`½�½ ¯ % confidence, only when î ° î ÷ ª can there be Ï`½�½ ¯ % confidence
in the sign of the actual cost difference. This is because, if î ° î {�ª and ° is, say, negative, the
confidence interval describing the possible range of the true mean (with Ï`½ç½ ¯ % confidence) is° Ä ª , which is clearly negative, to ° W ª , which is positive when î ° î {Ëª , meaning that
the true population mean could be positive rather than negative implying a different answer to
the question “which scenario is cheaper?” This is illustrated in figure 10.8. When the sample is
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still quite small, the sample mean ° Ô is found and the confidence interval ª Ô calculated. It can
be seen that ª Ô | î ° Ô î . Sampling is then continued and at some later point the sample mean
and confidence interval are recalculated. These are denoted ° Õ and ª Õ . Now, ª Õ { î ° Õ î so
sufficient precision has been obtained and sampling can stop.

0 cost
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Figure 10.8: Illustration of confidence limits in correlated sampling

In general, there will be a need to compare more than 2 scenarios. The method for doing this
adopted here resembles a “knock-out” competition. The first two scenarios are compared, gener-
ating one trial set of random outages which is applied to both scenarios, simulating the outcome
of those outages on each and tallying the individual costs and the difference in cost before gen-
erating another set of outages until sufficient precision has been achieved. The outage set asso-
ciated with each trial is recorded. The cheapest scenario is then regarded as the “winner” and is
compared to the next scenario. The same outages from the first “contest” are applied to the new
scenario and the costs of those outages on that scenario tallied. The winner from the previous
contest does not need to be simulated again since all the costs have already been tallied, which
enables the cost differences between the new scenario and the previous “winner” to be tallied.
The recorded outages are applied until sufficient precision has been obtained. If, however, the
precision is not yet sufficient when the record of outage sets is exhausted, new sets of random
outages must be generated and simulated on both the new scenario and the previous “winner”.
A winner will then be found for this “contest” (which may be the same as the previous winner),
and another new scenario simulated for the same common outage sets. In this way, any number
of scenarios may be compared in order to find the single cheapest one. The process is illustrated
in figure 10.9.
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Figure 10.9: Comparison of scenarios in correlated sampling
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10.9 Importance sampling

Work on importance sampling has focused on biasing not only individual plant outages but also
the expected number of outages per trial of each plant type.

It may further be found after a simluation that the average number of outages per trial for dif-
ferent plant types for trials with outcomes close to the mean is something else. Thus, in order
that there be more trials with costs around the expected cost, in further simulations of similar
scenarios, the outage probabilties may be biased to achieve the expected number of outages for
outcomes close to the mean.

A further investigation has been based on the observation that over-biasing may cause there to
be too many trials in a simulation with very high cost. In particular, it was previously felt that
individual plant items which are associated with high cost should be weighted more highly than
others. This has the effect of moving the cost frequency distribution too far to the right and may
result in a higher rather than lower variance. Instead, individual plant items whose outages are
associated with costs that are found afterwards to be close to the mean (or expected) cost are
weighted more heavily in subsequent simulations of similar scenarios.

Early findings indicate that these approaches to importance sampling do not significantly reduce
the number of trials needed for a given precision of estimate. While importance sampling may
still, in theory, yield large reductions in variance, on the basis of the results found so far, it is felt
by the author that for significant rewards, too much time would need to be spent in the course
of this project to warrant further investigation. It should be noted, however, that an opportunity
may present itself in the course of some other project to return to the subject, and that such an
opportunity may well be worth taking.
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Appendix A

Static Analysis in the Value of Security
Assessor

Two basic tools included in the “Value of Security” assessor package are described here for
static analysis of power systems (i.e. concerned with the algebraic rather than differential equa-
tions). The first is the load flow tool which solves the non-linear equations concerned with com-
plex nodal voltages, power injections and power flows. The second is sensitivity analysis in
which the algebraic load flow equations are linearised to show changes in dependent variables
for changes in control variables. The equations are introduced in the first section.

A.1 Basics

A power system can be described by a set of differential equations and a set of algebraic equa-
tions to form a differential-algebraic system which can be written²ù  ÁÜÃ�ùðÎ´³ðÎ�³ È (A.1)½  ~NÃ�ù Î ³ Î�³ È (A.2)

where ù is the vector of power system state (dependent) variables, ³ is the vector of indepen-
dent variables and ³ is a vector of system parameters. Alternatively, the system can be described
in terms of differential equations, algebraic equations and difference equations describing dis-
crete time events such as changes to on-load tap changing transformer tap ratios and changes in
switchable shunt susceptances. In this case, the system can be written²ù  ÁÜÃ�ùðÎ´³ðÎ´�,Î�³ È (A.3)½  ~NÃ�ù Î ³ Î �,Î�³ È (A.4)�,ÃXñ W Ï È  µ Ã�ùðÎ´³ðÎ´�,ÃXñ È Î�³ È (A.5)

where � is the vector of variables which can be changed in discrete steps at time ñ .
In this study, only static controls and their algebraic constraints are being considered as even
when constraints are originally defined according to dynamic criteria, standard practice in op-
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eration of large power systems determines that the constraints are expressed in terms of static
quantities. Hence, only equation A.2 is of interest.

The function ~ is the sum of the set of power injection equations. These equations are functions
of the complex nodal voltages and complex branch currents. The total complex power · should
be zero for each node. For a node ¶ it is · ° �H ° 	  ° (A.6)

where H ° is the complex voltage at node ¶ and 	 ° is the current at node ¶ . For every branch from
node ¶ to a node ê , êØ�Ï Ì`Ì_Ì´¶ Î�ê l�¶ ,· °  Û W¸·´¹ »º � ë £��°¯ë � Ô H ° 	  ° ë (A.7)

where
Û

is the active power and ¹ is the reactive power. If the complex admittance of the branch
connecting nodes ¶ and ê is � ° ë ,· °  º � ë £��°¯ë � Ô H ° Ã�� ° ë Ã8H °#Ä H ë È�È  (A.8)

A.2 Load Flow

Load flow routines have been used to solve the algebraic power flow equations in analysis of
static power system conditions for many years and have taken many different forms [89]. In the
late 1970s and early 1980s, fast decoupled routines became popular [90], although trends now
again favour fully coupled implementations for analysis of systems run under a wider variety
of conditions.

The load flow routine implemented as part of this project is based on a standard formulation such
as that described in [91]. It has been further developed to provide an interactive shell through
which the user can easily change parameters such as transformer tap ratios, generator

Û
and H

set points and ¹ generation limits, and line switched in/out status. Network sensitivity matrices
can be calculated from each new system condition (see section A.3).

The operating state of an interconnected power system can be described in terms of four sets of
quantities which relate to each node of the system. These are the nodal voltage magnitude H ,
voltage angle � , active power injection

Û
and reactive power injection ¹ . The load flow allows

two of these quantities to be found for each node once the others have been defined.

Three different bus conditions are defined depending on which two of the four parameters are
pre-defined. These areÛ H or voltage-controlled (regulated) bus. Such a bus has the facility to maintain a fixed

voltage magnitude H which is specified and as such will be a variable source of reactive
power. The active power injected is also specified. In practice, this represents a genera-
tor or compensator bus, and maximum or minimum limits on the reactive power injected¹ ÖºóXõ and ¹ Ö ° ä may be set.
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Û ¹ or unregulated bus. The total injection
Û W j ¹ is specified corresponding to the load at a

load bus.

Slack or swing bus. This bus defines the voltage angle reference and also has the voltage
magnitude defined.

Û
and ¹ are allowed to vary since all powers cannot be defined in

advance as system losses are unknown. The slack bus can be regarded as analogous to a
generator responsible for maintenance of system frequency.

The set of simultaneous power equations which defines the system’s state is non-linear. It is
therefore solved via a set of successive linear approximations based on first order Taylor expan-
sions of the power equations. The most common method is that of Newton which is what has
been used in this study.

The solution routine requires the assignment of some initial estimate to all the busbar voltage
magnitudes and angles (the slack bus angle is typically assigned to 0.0 degrees and the calcu-
lation of the initial real and reactive power mismatches. Should any of these be above the set
tolerance, the Jacobian is formed and solved for updates of voltages and angles upon which new
estimates of the power mismatches are obtained. While convergence is not obtained, the Jaco-
bian is again formed and new updates of H and � are found.

The power equation for bus ñ is· å  Û å W ê ¹ å  H å 	  å (A.9) H å ¯Ö½¼ å �  å Ö H  Ö (A.10)

where H å is the voltage at bus ñ and¬ å �H �"¾å W ê�H ° Öå A¿xÀ £ � å Î (A.11)� å Ö is the admittance between buses ñ and Ò and 	 å is the current injected at bus ñ . In polar
co-ordinates,

Û å and ¹ å areÛ å  ¯Ö ± å ¿xÀÁ¿xÂÃ�d~ å ÖÃÄ�ÅSÆ Ã�� å Ä � Ö È WYÇ å ÖÈÆ�É2Ê Ã�� å Ä � Ö È � (A.12)

¹ å  ¯Ö ± å ¿xÀ]¿xÂÈ�'~ å ÖÈÆ�É2Ê Ã�� å Ä � Ö ÈÚÄ Ç å ÖUÄ�ÅSÆ Ã�� å Ä � Ö È � (A.13)

where � å Ö Ë~ å Ö W ê Ç å Ö Ì (A.14)

Linear relationships for small changes in H and � are found so that for a
Û ¹ bus

« Û å  ¯Ö ± å�Ì Û åÌ �
Ö «¬� Ö W ¯Ö ± åÍÌ Û åÌ ¿ Â

«�¿xÂ (A.15)

« ¹ å  ¯Ö ± å½Ì ¹ åÌ �
Ö «¬� Ö W ¯Ö ± åxÌ ¹ åÌ ¿xÂ

«Í¿xÂ (A.16)
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For
Î

a
Û H bus, only equation A.15 is used since ¹ å is not specified, and there are no equations

for the slack bus.

With the voltages in rectangular form, the partial derivatives areµ å Ö  ÏÑÐ ¨Ï�ÒuÓ �~ å Ö Ã8H ° Öå H �8¾Ö Ä H �8¾å H ° ÖÖ ÈÚÄ Ç å Ö Ã8H �8¾å H ° ÖÖ W H ° Öå H �"¾Ö È (A.17)¶ å Ö  ¿xÂ Ï´Ð ¨ÏÑÔ�Õ �~ å Ö Ã8H �8¾å H ° ÖÖ Ä H ° Öå H �8¾Ö ÈÚÄ Ç å Ö Ã8H ° Öå H �8¾Ö W H �8¾å H ° ÖÖ È
(A.18)Ö å Ö  Ï´× ¨Ï�Ò Ó  Ä ¶ å Ö (A.19)ª å Ö  ¿xÂ Ï´× ¨ÏÑÔ�Õ nµ å Ö (A.20)µ åEå  ÏÑÐ ¨Ï�Ò ¨  Ä ¹ å Ä Ç å�å ¿ À Õ (A.21)¶ åEå  ¿xÀkÏ´Ð ¨Ï´ÔÙØ  Û å W ~ åEå ¿xÀ Õ (A.22)Ö åEå  Ï´× ¨Ï�Ò ¨  Û å Ä ~ å�å ¿xÀ Õ (A.23)ª åEå  ¿xÀ Ï´× ¨Ï�Ú ¨  ¹ å Ä Ç å�å ¿xÀ Õ (A.24)

These are assembled in a matrix equation of the form� « ÛxÛ þ Ô« ¹ Û þ Ô �  � µ Û þ Ô ¶ Û þ ÔÖ Û þ Ô ª Û þ Ô �Ã� «¬� ÛÜ ÔSÝÔ Ý,Þ.ß � (A.25)

which is solved for «¬� Û and «Í¿ Û at the ³ th iteration where « ÛxÛ þ Ô are the
Û

mismatches for
all
Û ¹ and

Û H busbars, « ¹ Û þ Ô are the ¹ mismatches for the
Û ¹ busbars, «¬� Û are the � cor-

rections for all
Û ¹ and

Û H busbars and «�¿ Û are the ¿ corrections for all
Û ¹ buses.

A.2.1 àâá bus reactive limits

Maximum and minimum limits on reactive generation are often defined for ãIä buses. Once the
maximum mismatch is less than some pre-defined quantity (meaning that the solution is being
approached), the å injections at all the ãIä buses are compared with their limits. When a limit
is exceeded, å at that bus is fixed to the limiting value and the bus type is switched to ãIå withæ

to be found. The effect is then for
æ

to ‘float’ to meet the required system conditions.

If, at subsequent iterations, the bus voltage magnitude
æ

is higher than its target value and å is at
its maximum value (meaning that too many MVArs are being generated when there is freedom
to generate fewer) or

æ
is below its target and å is at its minimum value (meaning that too many

MVArs are being absorbed when there is freedom to absorb fewer), the type is switched back
to ãçä with

æ
set to its target value.

Only enforcing the å limits once the biggest mismatch becomes less than a certain value pre-
vents early divergence of the iterative process due to excessively large changes.
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A.2.2
è

Distributed slack bus

The slack bus is conventionally used to provide a reference voltage angle and to take up the
system losses which cannot be predicted prior to running the study. It could also be thought of
compensating any difference between load and generation and in this way is a like a generator
with governor control. It is often chosen as the “largest” ãIä node on the system.

In practice, there will not be only one generator operating with governor control. The effect of
modelling more can be represented by a “distributed slack” where one bus is retained as pro-
viding a reference, but adjustments to active power generation due to differences between the
total load (including losses) and total generation are divided among a number of ãçä buses in
proportion to the maximum generation at the bus since this can be taken to be proportional to
the inertia of the machine(s).

Once the maxmimum mismatch becomes less than some pre-defined threshold, the difference
between the reference bus active generation and its scheduled generation is distributed among
all the “free governor” buses changing the scheduled ã setting at the start of the next iteration.
Any subsequent changes in reference bus active generation from one iteration to the next are
similarly distributed. While this might be expected to increase the number of iterations required,
it is found that only one extra iteration is needed. (“Free governor buses” are indicated in the
input study file and the bus type is set accordingly. See section A.2.6 for details of bus types.)

A.2.3 Modelling of SVCs

An SVC (static VAr compensator—so-called as it provides inductive or capacitve VArs but, un-
like a synchronous compensator, does not rotate) can be modelled like a PV bus with a given
voltage and limits set for reactive power. In such a model, the äêéAë characteristic would be
like that in figure A.1. However, in reality, some droop is present in the SVC characteristic, es-
sentially for reasons of stability. This is to ensure that the switching characteristic of the SVC
controller is such that a stable voltage is found. This can be understood by reference to figure
A.2. Curve ì represents the voltage at the SVC bus as the reactive load changes and can be
thought of as the characteristic of the system. If the SVC characteristic were to be as flat as that
in A.1, it can be seen that the cross-over between the “system curve” and the SVC curve is less
well-defined. The result is that for any given ä�í8îuï to the SVC, some error between ä�í8îuï and the
final ä�ðdñkò will be present.

The operating area of the SVC will be given by the design of its components and is shown in
A.2 by the shaded area. By varying a gain in the controller, the slope of the characteristic can be
varied.

æ í"î�ï can also be varied and with a slope given, one line is defined for operation. This line
can be defined in terms of points ó�ô and ó�õ with pairs of values ö8åø÷Cùjú�û æ ÷CùjúSü and ö8åø÷½ý�þSû æ ÷�ý8þhü .
In the load flow implementation, the SVC characteristic is defined by ö8åø÷Cùjú�û æ ÷�ùjúSü and ö8åø÷½ý�þSû æ ÷�ý8þhü
in the input study file since it is assumed that

æ í8îuï will not be changed by the operator. The SVC
node is then modelled as a ãIå bus as follows.
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Figure A.1: Terminal voltage ä against current magnitude ë for ãIä bus
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Figure A.2: Terminal voltage ä against current magnitude ë for SVC

For
æ ðdñ4ò ÿ æ ÷Cùjú ,

å ðdñ ò � æ õðdñ4òæ õ÷Cùjú å ÷�ý8þ�� (A.26)

For
æ ÷Cùjú ÿ æ ðdñ ò ÿ æ ÷�ý8þ ,

å ðdñ�ò � æ ðdñ4òæ ÷CùjúXé æ ÷�ý8þ � åø÷½ý�þæ ÷Cùjú ö æ ðdñ4ò é æ ÷�ý8þ ü�� åø÷Cùjúæ ÷�ý8þ ö æ ÷�ù ú é æ ðdñ�ò ü��	� (A.27)

For
æ ðdñ4ò�
 æ ÷½ý�þ ,

åXðdñ4ò � æ õðhñ4òæ õ÷�ý8þ å ÷�ùjú (A.28)

where

131



åXðdñ4ò = reactive power generation of the SVC;åø÷½ý�þ = maximum reactive power generation of the SVC;åø÷Cùjú = minimum reactive power generation of the SVC;æ ðdñ4ò = terminal voltage of the SVC;æ ÷½ý�þ = maximum control voltage of the SVC;æ ÷Cùjú = minimum control voltage of the SVC.

The following ��� terms in the Jacobian corresponding to the SVC bus are modified with extra
derivative terms added for the changes due to the SVC.

For
æ ðdñ4ò ÿ æ ÷Cùjú , æ ðdñ�ò	� åXðdñ4ò� æ ðdñ ò � � æ õðdñ4òæ õ÷Cùjú å ÷½ý�þ � (A.29)

For
æ ÷CùjúÍÿ æ ðdñ ò ÿ æ ÷�ý8þ ,æ ðdñ4ò � å ðdñ ò� æ ðdñ4ò � æ ðdñ�òæ ÷�ùjú é æ ÷½ý�þ � å ÷�ý8þæ ÷�ù ú ö � æ ðdñ�òÈé æ ÷�ý8þ'ü�� åø÷Cùjúæ ÷½ý�þ ö æ ÷�ùjúXé � æ ðdñkò�ü � �(A.30)

For
æ ðdñ4ò 
 æ ÷½ý�þ æ ðdñ ò � å ðdñ4ò� æ ðhñ4ò � � æ õðdñkòæ õ÷½ý�þ åø÷Cùjú�� (A.31)

Further discussion of the SVC model can be found in [92].

A.2.4 Treatment of transformers

Figure A.3 shows the basic equivalent circuit of a transformer with the currents ë��÷ and ëÁ÷� ,
voltages ä� , ä�÷ and ä�� , admittance ���÷ and turns ratio � shown.
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Figure A.3: Transformer equivalent circuit

With � ��� , ë�8÷ � ��8÷�ö�ä� é�äÙ÷ ü (A.32)ë ÷� � � 8÷ ö�ä ÷ é�ä  ü (A.33)

i.e. ë�8÷ � é ë�÷� .
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W
�

ith ������ , ä � � ��ä  (A.34)ë�÷� � ���÷ ö�ä�÷ é�ä��6ü (A.35)ë 8÷ � é��Ùë ÷� (A.36)

Eliminating ä � from (A.35) and replacing ë�÷� in (A.36),ë��÷ � � õ ��8÷xä� é!����8÷ ä�÷ (A.37)ë�÷� � é��Ù���÷ ä�"�Y���÷�äÙ÷ (A.38)

or in admittance matrix form,# ë 8÷ë ÷�%$ �
# � õ � �÷ é��Ù� �÷é��Ù� �÷ � �÷ $

# ä ä ÷&$ (A.39)

This corresponds to equivalent circuit shown in figure A.4.
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Figure A.4: Transformer equivalent circuit with winding removed

On-load tap changing transformers

On-load tap changing transformers (OLTCs) automatically change their tap ratios in discrete
steps while under load. The changes take place in order to try to attain a target voltage on either
the HV or LV side. If the voltage error on the side of the transformer that is scheduled is

æ(' é æ
at time ) , a function *Cö,+ æ ü [93] can be used to determine the new tap ratio �-/.�ô where� �.�ô � �  é0*Cö,+ æ ü1+2� (A.40)*�ö,+ æ ü � 345 46 � if

æ(' é æ 
879
if : æ;' é æ :�<=7é � if
æ(' é æ ÿ�é>7 (A.41)

and +2� is the maximum tap step size,
æ;'

is the scheduled voltage magnitude, and 7 is a dead-
band.

Such a function *Cö,+ æ ü can be implemented in a load-flow routine at the end of each iteration
so that a new tap ratio can be found and the solution adjusted. However, the solution can tend to
zig-zag around due to the discrete nature of the change. Instead, either adjustment of tap ratios
can be delayed until beyond the first iteration of the load flow, or a continuous model should
be implemented in which

æ
is kept constant and is replaced as the state variable by � , and the
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partial derivatives corresponding to the tap-controlled bus are taken with respect to � . When
the bus being controlled is bus ) i.e. � replaces

æ  and the transformer is as in figure A.3, the
relevant partial derivatives are then [94]� ã?� � � � @ � � é �BA �÷ æDC õ � õ �Aö1EÁ÷ ä í8î �F*h÷�ä ùj÷ ü1� (A.42)� å � � � � �G� � ��H �÷ æDC õ � õ �Aö1EÁ÷ ä ùj÷ é0*d÷ ä í8î ü1� (A.43)� ã�÷� � � � @ ÷� � ö1E�aä í8î÷ �0*�aä ùj÷÷ ü1� (A.44)� ã�÷� � � � ��÷� � ö1E�aä ùj÷÷ é0*�aä í8î÷ ü1� (A.45)

where ��8÷ � A �÷!�JI H �÷ (A.46)ä� � ä í"î ��I�ä ùj÷ (A.47)ä�÷ � ä í"î÷ ��I�ä ùj÷÷ (A.48)æ  � ::ä�K: (A.49)E�G�JIK*� � ä�a��8÷>� (A.50)

In order to avoid excessive interaction with other variables, taps are regarded as fixed until the
maximum mismatch falls below some given level. The tap-controlled voltage is then set to the
target voltage and the state to solved for becomes the tap ratio. In addition, oscillation of the load
flow solution is prevented by updating the tap ratio only when the change exceeds the minimum
tap step.

If the tap ratio � reaches an upper or lower limit, � is replaced by
æ  as the state variable and

updates of
æ  are obtained from subsequent iterations of the load flow with � fixed.

A.2.5 Treatment of quadrature boosters

The basic equivalent circuit for a quadrature booster or phase-shifting transformer is similar to
that shown in figure A.3, but the turns ratio � is replaced by the complex turns ratio L , as in
figure A.5, where L � �(�JINM (A.51)

and ä � � L ä� (A.52)

Since power loss in the ideal transformer is negligible,äN]ëKO � éXä � ë � O (A.53)
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Figure A.5: Quadrature booster equivalent circuit

From (A.52) and (A.53), ë O � é^ö,� ��INMÁü8ë � O (A.54)

or ë� � éøë � ö,�^é�IPMÁü � é ë � LQO (A.55)

Thus it can be seen that there are two different turns ratios, one for voltage, LSR � �T�!INM , and
one for current, L ù � �Xé�INM .
Solving for terminal currents,ë� � L ù ëB� � L�ù�ö8ä � é ä�÷�ü8��8÷ � L�ù�ö8ä � é�ä�÷xü8���÷ (A.56)� L ù öUL R ä  é�ä ÷ ü8� 8÷ � L ù L R � �÷ ä  é0L ù � �÷ ä ÷éøë�÷ � ëB� � L�RÁ��8÷ äN éY���÷ ä�÷ (A.57)

or in admittance matrix form,# ë�ë�÷V$ �
# L�RWL ù ��8÷ é L�ù���8÷é L�RÁ��8÷ ��8÷ $

# ä�ä�÷&$ (A.58)

It can be seen that, unlike for a standard transformer whose admittance matrix is described by
(A.39), the admittance matrix for a quadrature booster is non-symmetric and the equivalent cir-
cuit is not readily available. The expression for the active power entering the booster, however,
can be easily found. Considering the power at node ) , XY � ä�aë O orXY � ä�'ö�ä�WZ[�"��ä�÷\Z]�÷�ü1O (A.59)

If the complex tap ratio L is written as L � �^�=INM �`_�a b and the voltages ä� and äÙ÷ asä� � æDC a c hûÁäÙ÷ � æDd a c ÷ , then from equations A.58 and A.59XY � ä�De _ õ ��8÷xä� é _ ��8÷ äÙ÷ a é bGf O (A.60)� � O8÷ e _ õ æ C õ é _ æ C æ d a ö c  é c ÷ � b ü f (A.61)

With � 8÷ �8g ��INM , the active power ã  is the real part of X  and isãQ �8g e _ õ æDC õ é _ æDCÁæDdihkjml[n f é _ M æ>C´æDdil1oqp n (A.62)

where
n � c  é c ÷r� b .
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A.2.6
s

Summary of sub-categories of busbar types

In the code, different busbar types are denoted by an integer in which bits are set denoting prop-
erties or combinations of properties. All the busbar types are one oft slack (reference) bus;t ãIä bus;t ãIå bus.

Some buses have on-load tap-changing transformers (OLTCs). While most of these will be ãIå
buses, some are ãIä buses. For these, the tap is not moved until the reactive generation reaches
a limit and the bus type switches to ãIå . When an OLTC is “active” i.e. the tap-changing is
moving to meet a target voltage, the voltage magnitude at the bus is assumed constant and is
replaced as the variable for which an update is found in the load flow solution by the tap ratio.
If the tap ratio hits an upper or lower limit, the tap ratio becomes fixed (the “tap limited” bit in
the type integer is set) and the voltage magnitude once again becomes the state variable so that
it is updated at each iteration.

The bus types are summarised in table A.1.

Description Bit set Type
slack Free gov. u\v u\w SVC OLTC w limited tap limited

Slack x slack
Free governor x x u\v
PV x u\v
PV + OLTC x x u\v
Free gov., wzy limit x x x u\w
PV, w8y limit x x u\w
PV + OLTC, w8y limit x x x ? u\w
PQ x u\w
PQ + OLTC x x ? u\w
SVC x x u\w

Table A.1: Summary of bus types. “?” signifies bit is sometimes set

A.2.7 Summary of categories of line/branch types

The types of lines or branches that are modelled aret A transmission line.t A transformer with a fixed tap ratio.
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t A transformer with a tap ratio that is fixed in each load flow study but which can never-
theless be varied between solutions.t An on-load tap-changing transformer (OLTC) for which a target voltage may be set for
one terminal of the transformer implying that the load flow state variable is the tap ratio
while it remains within the upper and lower bounds.t A quadrature booster (phase-shifting transformer) where the phase shift is fixed in each
load flow study but may be changed between studies.t A shunt compensator, usually a capacitor with fixed susceptance.

A.3 Power System Sensitivity Analysis

Consider a power system with @ interconnected nodes. If the total power injected into the sys-
tem is described by the vector A of nodal power injections and is a function of the vector of @
dependent complex variables { , | control variables } and the vector of power system param-
eters such as line impendances and shunt susceptances ó , then for balanced operation [26],A öU{ û~} û0ó ü � 9 (A.63)

If a small change to the control vector +�} is applied then a small change in the vector of depen-
dent variables +�{ will result. For balanced operation to continueA ö,{��0+2{ û~}��F+�}�û�ó4ü � 9 (A.64)

Using a Taylor series expansion and neglecting higher order terms, A.64 can be re-expressed asA öU{ ' û~} ' û�ó ü�� A þÙöU{ ' û�} ' û0ó ü1+2{%� A>� öU{ ' û�} ' û�ó4ü1+2} � 9 (A.65)

where { ' and } ' are the original { and } vectors before the change and A þ and A>� are the Jaco-
bians of A with respect to { and } respectively. If the system was balanced before the change,
the first term vanishes leavingA þSöU{ ' û�} ' û�ó4ü1+2{�� A>� öU{ ' û�} ' û�ó4ü1+2} � 9 (A.66)

From this, the change +2{ resulting from +�} can be found+�{ � é A þ ö,{ ' û�} ' û�ó4ü/� ô A � ö,{ ' û�} ' û�ó ü�+�} (A.67)

so that the sensitivity matrix X relating +2{ to +2} isX � é A þSöU{ ' û~} ' û�ó ü � ô AD� öU{ ' û�} ' û�ó4ü (A.68)

Once X is known, the change +�{�ù resulting from the change in control +2}K� can be estimated
simply as X4ù��~+2}K� .
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A.3.1
s

Relation of reactive power controls to voltage magnitudes

If the well-known principle of decoupling the active and reactive power equations of a power
system is utilised, equation A.66 can be re-expressed for the reactive subsystem asA>� þ�� öU{ �[� û�} �]� û�ó4ü1+2{ � � A>� � � ö,{ �]� û�} �]� û0ó ü1+2} � � 9 (A.69)

where the Jacobians A>� þ and A>� � areA � þ � � � A �� { ������� þW�Ùþ � � (A.70)

A � � � � � A>�� } � ����� � � � � � (A.71)

and A � comprises only the reactive power equations. { � contains dependent voltage magni-
tudes äN� and reactive powers å>� . } � contains controllable voltage magnitudes at generators,
synchronous compensators or SVCs ä�� , adjustable transformer tap ratios _ and adjustable shunt
susceptances H .

The @�� | reactive sensitivity matrix X � is found byX � � é A � þ � ö,{ �]� û�} �]� û�ó4ü/� ô A � � � öU{ �[� û�} �]� û0ó ü (A.72)

In practice, X � is found by re-expressing equation A.72 asA � þ � ö,{ �]� û~} �]� û�ó ü�X � � é A � � � ö,{ �]� û~} �]� û�ó ü (A.73)

and factorising A � þ � into lower and upper triangular factors so that�"�;X � � é A � � � ö,{ �]� û�} �]� û�ó4ü (A.74)

If the matrices X � and A � � � are described in terms of column vectors �dô���������� and g ô������ g �
where X � � � �dô������~����� (A.75)A � � � � � g ôQ����� g ��� (A.76)

then each equation �"� �aù � é g ù (A.77)

for � ��� �����~| can be solved for �aù by forward and backward substitution.

Finally, X � can be represented as# +Uä��+QåD��$ �
# XkñN��XkñN� Xkñ4ñX � ��X � � X � ñz$���� + _+ H+Uä��

 ¢¡£ (A.78)

where äN� is the vector of @ � load bus voltage bus magnitudes, å>� is the vector of @ � reactive
injections at generator or compensation buses, ä�� is the vector of @ � generator or static voltage
compensator (SVC) voltage set-points, H is the vector of @T¤ shunt susceptances and _ is the
vector of @ � transformer tap ratios.
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A.3.2
s

Relation of active power controls to active power flows

Most references describing the formulation of a matrix of sensitivities of active power flows to
active controls have required some pseudo-inverse matrix to be found, for example [95]. The
approach adopted in this study and described in this section, however, avoids that and allows
fast sparse matrix techniques to be used. This is achieved by finding the (sparse) Jacobian of
derivatives of active power flow with respect to voltage angles and pre-multiplying it with an
inverted square matrix.

If }N¥ is defined as the ��� | vector of controllable active power injections and quadrature
booster angles, bus 1 is the slack bus, buses 2 to � are load buses and buses �¦� � to @ are
generation buses, a sensitivity matrix ìD¥ can be found relating small changes in }P¥ to small
changes in the active state vector {N¥ comprising the active power generation at the slack bus
and the nodal voltage angles c at all the others. ìD¥ is such that+2{N¥ � ìD¥�+2}N¥ (A.79)

and ì>¥ � é A � ô¥�þW§ A ¥ � § (A.80)

where }N¥ � ¨ ã�©�.�ôdû�������û´ã�ªøû n ôaû�������û n � �N« ª � ©�¬,�® (A.81){N¥ � ¨ ãCôhû c õÁû������Áû c ª �® (A.82)A ¥�þ § � � A ¥� {P¥ ����� þ § �Ùþ § � (A.83)

A ¥ � § � � A ¥� } ¥ ����� � §�� � § � (A.84)

A ¥ comprises only the active power equations.

The changes in slack bus power and nodal voltage angles can be related to changes in active
power transmitted along each transmision line or through each transformer ãQ�÷ from general
node ) to node ¯ by +¬ã?8÷ � � ãQ�÷� {N¥ +2{P¥ (A.85)

Hence, a matrix directly relating change in active power generation and quadrature booster an-
gles (the vector of quantities which can be set) and change in active power flow (which is to be
controlled) is found from +¬ãQ�÷ � � ã �÷� {N¥ ìD¥°+�}N¥ (A.86)

It is denoted X ¥ such that X]¥ � � ãQ�÷� {N¥ ì>¥ (A.87)
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If
±

equation A.80 is re-expressed as � A ¥� {P¥ ì>¥ � é^� A ¥� }N¥ (A.88)

then ìD¥ can be found and pre-multiplied by � ã?8÷\² � {N¥ to obtain X]¥ . Since +¬ãQ�÷ � é�+gã�÷� ,X]¥ can then be used to determine the effects of changes in active power generation and quadra-
ture booster angles on active power flows measured at each end of items of transmission plant.
Note that change in slack bus power is not available as a control variable.

A.3.3 Relation of active power controls to voltage magnitudes

Whenever it has been found that movement of conventional reactive controls such as generator
terminal voltages, transformer tap ratios, SVC set points and switchable shunt susceptances has
been insuficient to remove violations of load bus voltage magnitude limits, it becomes apparent
that the contribution of the transmission system itself to reactive demand must be altered. This
can only be achieved by moving MW controls (active generation and quadrature booster angles)
to alter flows. However, that such measures are necessary suggests that the system is highly
stressed and use of load shedding to amend MW and MVAr demand as well as to change power
flows on the system should be considered too.

In order to make use of these controls effectively, some sensitivity of the quantities to be con-
trolled to movements in MW generation, quadrature booster angles and shedding of load should
be found. The load shedding will be achieved by shedding both active and reactive load in equal
proportions since it may in general be assumed that load power factors will remain constant.

As in sections A.3.1 and A.3.2, it is convenient to describe the power balance equation in terms
of control vector } and state vector { partitioned into active and reactive components. In this
case, however, }P¥ will comprise active generation, quadrature booster angles and active load
while } � will comprise only reactive loads. {N¥ consists of busbar voltage angles and slack bus
active power, and { � includes busbar voltage magnitudes for PQ buses and reactive generation
for PV buses.

The power balance equation is thenA ö,{ � û�{ ¥ û~} � û�} ¥ û�ó4ü � 9 (A.89)

If }N¥ is changed by +2}P¥ and } � by +�} � , for balance to be maintained, there will be small
changes in the states +�{ � and +�{N¥ such thatA öU{ � �0+2{ � û�{N¥^�F+�{N¥�û~} � �F+�} � û�}N¥^�0+2}P¥½û�ó ü � 9 (A.90)

Taking the Taylor series expansion of this expression and neglecting higher order terms,A ö,{ �]� û~{P¥ � û�} �]� û�}N¥ � û�ó üQ� A þ � ö,{ �]� û~{P¥ � û�} �]� û�}N¥ � û�ó ü�+�{ � � A þW§�ö,{ �]� û�{N¥ � û�} �]� û�}N¥ � û�ó ü�+�{N¥� A>� � ö,{ �]� û~{P¥ � û�} �[� û�}N¥ � û0ó ü1+2} � � A>� §�öU{ �[� û�{N¥ � û~} �]� û�}N¥ � û�ó4ü1+2}N¥ � 9 (A.91)
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where A þ�� � � A� { � (A.92)A þW§ � � A� {N¥ (A.93)A � � � � A� } � (A.94)A>� § � � A� }N¥ (A.95)

Since the system was initially in balance, the first term, A ö,{ �]� û�{N¥ � û�} �]� û~}P¥ � û�ó4ü , is zero leaving� A� { � +2{ � � é � A� {P¥ +2{ ¥ é � A� } � +2} � é � A� }N¥ +�} ¥ (A.96)

If, now, A is also partitioned into active and reactive equations it can be seen that

���³ ¥³ þ �³ �³ þ �
 £ +�{ � � é

#
³ ¥³ þW§³ �³ þW§ $ +�{N¥Èé ���³ ¥³ � �³ �³ � �

 £ +2} � é
#
³ ¥³ � §³ �³ � § $ +2}P¥ (A.97)

This represents two equations:� ã� { � +�{ � � é � ã� {N¥ +�{N¥Èé � ã� } � +�} � é � ã� }N¥ +�}N¥ (A.98)� å� { � +�{ � � é � å� { ¥ +�{N¥Èé � å� } � +�} � é � å� } ¥ +�}N¥ (A.99)

Equation (A.98) can be re-arranged to give� ã� {P¥ +2{N¥ � é � ã� { � +�{ � é � ã� } � +�} � é � ã� }N¥ +�}N¥ (A.100)

and then +2{N¥ � é
# � ã� {N¥ $ � ô?´ � ã� { � +2{ � � � ã� } � +�} � � � ã� }N¥ +2}N¥�µ (A.101)

Substituting (A.101) into (A.99),� å� { � +2{ � � é � å� } � +�} � � � å� {N¥
# � ã� {P¥ $ � ô ´ � ã� { � +2{ � � � ã� } � +�} � � � ã� }N¥ +2}P¥¶µé � å� }N¥ +�}N¥ (A.102)

Grouping terms involving +2{ � , +�} � and +�}N¥ together,35 6 � å� { � é � å� { ¥
# � ã� { ¥ $ � ô � ã� { ��· ¸¹ +2{ � � 35 6 � å� { ¥

# � ã� { ¥ $ � ô � ã� } � é � å� } ��· ¸¹ +�} �� 35 6 � å� {N¥
# � ã� {N¥ $ � ô � ã� }N¥ é`� å� }N¥ · ¸¹ +2}N¥(A.103)
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Since +�} � consists only of changes to reactive load and these are in proportion to the changes
in active load, +�} � can be represented by+�} � � L ® +�}N¥ (A.104)

where L is a column vector where the terms corresponding to changes in active generation and
quadrature booster angles in } ¥ are zero and the others, as load power factors are assumed to
be constant, are º~» p n ù where

n ù is the power factor angle of the load at the � th bus. Further, ³ ¥³ � �under this circumstance is zero. Hence, equation (A.103) reduces to35 6 � å� { � é � å� {P¥
# � ã� {N¥ $ � ô � ã� { � · ¸¹ +�{ � �35 6 � å� { ¥

# � ã� { ¥ $ � ô � ã� } ¥ é � å� } ¥ é � å� } � L�® · ¸¹ +2}N¥ (A.105)

From equation (A.105), it can be seen that a sensitivity matrix relating changes in MW controls
and load shedding to load bus voltage magnitudes and PV bus reactive generation can be found
such that +2{ � � X � ¥�+2}P¥ (A.106)

whereX � ¥ � 35 6 � å� { � é � å� {N¥
# � ã� {P¥ $ � ô � ã� { � · ¸¹ � ô 35 6 � å� {P¥

# � ã� {N¥ $ � ô � ã� }N¥ é � å� }P¥ é � å� } � L ® · ¸¹ (A.107)

In practice, X � ¥ is found by solving ì;X � ¥ � H (A.108)

where ì � 35 6 � å� { � é � å� {P¥
# � ã� {N¥ $ � ô � ã� { � · ¸¹ (A.109)

H � 35 6 � å� {N¥
# � ã� {N¥ $ � ô � ã� }N¥ é � å� }N¥ é � å� } � L ® · ¸¹ (A.110)

by triangular factorisation of ì and repeated forward and backward substitution for each column
of X � ¥ .

Under certain circumstances, likely to be when the transmission system is not very heavily loaded,

an approximation may be possible by considering that the term ³ �³ þW§½¼ ³ ¥³ þW§¿¾ � ô ³ ¥³ þ � has two cross-
coupling terms between the active and reactive subsystems and is therefore likely to be insignif-
icant [28]. ì will then be simply ³ �³ þ�� . This speeds the finding of the sensitivity matrix consider-

ably since the triangular factors of ³ �³ þ � will have already been found in the use of reactive con-
trols for voltage control which preceeds the invocation of any MW controls for voltage. Care
must be taken, though, to ensure that the approximation is valid under the system conditions
being investigated.
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A.3.4
s

Example of Jacobians for voltage control

Consider the small test power system shown in figure A.6 with @��ÁÀ nodes, Â '�ÃÄÃÄÃ Å where there
is generation at Â]Æ and Â Å , static compensation at Â[Ç and a tap-changing transformer betweenÂ ' and Â]Ç so that | �ÉÈ . Using standard loadflow analysis, Â[Æ and Â Å are designated as ‘PV’
nodes, i.e. nodes with controllable active power injection ã and voltage magnitude ä . Load
nodes Â '�ÃÄÃÄÃ õ are designated ‘PQ’ nodes with fixed ã and å injections and have voltage magni-
tudes which are to be controlled. Node Â Ç can be regarded in one of two ways, either as a load
‘PQ’ node with a shunt capacitor, or a ‘PV’ node with variable set voltage magnitude ä [91].
These will be considered in turn.

0 1

23

4

5

Figure A.6: Example 6 bus system

Static compensator node treated as a ‘PV’ node

For the test system described and node Â Ç treated as a ‘PV’ node, { � is a column vector of order@ and } � is a column vector of order | such that,{ � � ¨ ä ' û�ä>ôaû�ä>õaû�å Ç û�å Æ û�å Å  ® (A.111)} � � ¨�_ ' Ç û�ä Ç û�ä Æ û�ä Å  ® (A.112)

where _ ' Ç is the tap ratio of the transformer between nodes Â ' and Â Ç .

A � þ � ����������
� å ' ² � ä ' � å ôÊ² � ä>ô � åXô�² � ä>õ� å õÊ² � ä>ô � åXõ�² � ä>õ� å Ç ² � ä ' � å Ç ² � ä>ô � å Ç ² � ä>õ é �� å Æ ² � ä>ô � å Æ ² � ä>õ é �� å Å ² � ä>õ é �

 ¢¡¡¡¡¡¡¡¡£ (A.113)
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A � � � ����������
� å ' ² � _ ' Ç � å ' ² � ä Ç� åXôÊ² � ä Ç � åXô�² � ä Æ� åXõÊ² � ä Ç � åXõ�² � ä Æ � å õÊ² � ä Å� å Ç ² � _ ' Ç � å Ç ² � ä Ç � å Ç ² � ä Å� å Æ ² � ä Æ � å Æ ² � ä Å� å Å ² � ä Ç � å Å ² � ä Æ � å Å ² � ä Å

 ¢¡¡¡¡¡¡¡¡£ (A.114)

Static compensator node treated as a ‘PQ’ node

With node Â Ç treated as a ‘PQ’ node, there are two possibilities for the control at bus 3: an
MSC with a variable shunt susceptance H Ë Ç and an SVC modelled as having some “droop” and
a variable ä�í8îuï . The latter case is not considered here since the SVCs on the studied systems are
regarded as having äÙí"î�ï fixed. In the former case i.e. with the control variable regarded as H Ë Ç ,{ � � ¨ ä ' û�ä>ôaû�ä>õaû�ä Ç û�å Æ û�å Å  ® (A.115)} � � ¨�_ ' Çaû H Ë Çdû�ä-Ædû�ä Å  ® (A.116)

and

A � þ � ����������
� å ' ² � ä ' � å ' ² � ä Ç� å ô~² � ä>ô � åXôÊ² � ä>õ � åXô�² � ä Ç� å õ~² � ä>ô � åXõÊ² � ä>õ � åXõ�² � ä Ç� å Ç ² � ä ' � å Ç ² � ä>ô � å Ç ² � ä>õ � å Ç ² � ä Ç� å Æ ² � ä>ô � å Æ ² � ä>õ é �� å Å ² � ä>õ � å Å ² � ä Ç é �

 ¢¡¡¡¡¡¡¡¡£ (A.117)

A � � � ����������
� å ' ² � _ ' Ç � å ô ² � ä-Æ� å õ ² � ä-Æ � å õ ² � ä Å� å�Çk² � _ ' Ç � å ÇW² � H Ç � å Çk² � ä Å� å Æk² � ä-Æ � å Æk² � ä Å� å Å ² � ä Æ � å Å ² � ä Å

 ¢¡¡¡¡¡¡¡¡£ (A.118)

With on-load tap-changing transformer

With the transformer between nodes 0 and 3 regarded as an OLTC with the tap changing to
control the voltage at bus 0 (a ‘PQ’ bus) and bus 3 modelled as a ‘PV’ bus, the state vector{ � and the control vector } � are{ � � ¨�_ ' Ç ûÁä�ôaûÁä�õaûÁå Ç ûÁå Æ ûÁå Å  ® (A.119)} � � ¨ ä ' û�ä Ç û�ä Æ û�ä Å  ® (A.120)
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and the Jacobians are

A � þ � ����������
� å ' ² � _ ' Ç � å ôÊ² � ä>ô � å ôÊ² � ä>õ� å õÊ² � ä>ô � å õÊ² � ä>õ� å Ç ² � _ ' Ç � å Ç ² � ä>ô � å Ç ² � ä>õ é �� å Æ ² � ä>ô � å Æ ² � ä>õ é �� å Å ² � ä>õ é �

 ¢¡¡¡¡¡¡¡¡£ (A.121)

A � � � ����������
� å ' ² � ä ' � å ' ² � äKÇ� å ô ² � äKÇ � å ô ² � äKÆ� åXõ/² � ä Ç � åXõ�² � ä Æ � å õÊ² � ä Å� å Ç ² � ä ' � å Ç ² � ä Ç � å Ç ² � ä Å� å Æ ² � ä Æ � å Æ ² � ä Å� å Å ² � ä Ç � å Å ² � ä Æ � å Å ² � ä Å

 ¢¡¡¡¡¡¡¡¡£ (A.122)
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