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The power outage of the distribution networks resulting from natural disasters could bring catas-

trophic damage to the system as well as millions of financial loss to the people. Restoring dis-

tribution networks after these events can help reduce the consequences and therefore have been

drawing much attention since 1980s. This thesis focuses on the load pickup problem and the

feeder reconfiguration problem in the restoration process. For a single feeder distribution network,

system operators try to pick up as many loads as possible after a distribution network power out-

age. However, the load pickup problem is a combinatorial optimization problem, the computing

time of which could be very long for large scale distribution networks. We model it with an ILP

formulation and propose an approximation algorithm by casting it into a variant of knapsack prob-

lem. Both algorithms are tested and compared intensively with many cases on standard IEEE test

feeders. For the multiple feeders interconnected with normally open switches, system operators

can alter the system topology by opening and closing switches and shift the loads to pick up them.

In this thesis, we formulate the feeder reconfiguration problem as an ILP problem and then perform

tests to find out different corner cases that would help us to examine the performance of the ILP

solution approach.
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Chapter 1

INTRODUCTION

1.1 Harm of Power Outages in Distribution System

Distribution networks are of significant importance to the power system nowadays since they are

the very pivot connecting the transmission system and the consumers. One of the popular research

subjects about distribution networks is the restoration of the distribution networks after power out-

ages. Most of the power system outages result from natural disasters [55]. They are rare but could

result in severe damage to the system and millions of financial loss to nations. The cost for restora-

tion of the damage caused by Hurricane Katrina in 2005 is estimated to be in the range of $ 750

million to $ 1.1 billion [32]. In 2012, the distribution networks were extremely damaged by Hurri-

cane Sandy and approximately 8.351 million electric customers suffered from power outages [36].

Hurricane Maria, which hit United States on September 20th 2017, caused 75% of the electricity

system still out of service even one month after its landfall and it took about one year for the area

to completely recover from the disaster [38]. According to [39], between 2003 and 2012, about

679 widespread power outages occurred because of severe weather and the average annual cost of

restoration varied from $ 18 billion to $ 33 billion [51]. Therefore an efficient restoration strategy

to supply power to those un-faulted part of the system during the outage period is essential [55].

Distribution system restoration has been extensively studied in many aspects [9], involving

expert systems [29], [8], fuzzy logic [27], [24], load restoration [44], network reconfiguration [5]

and multiagent systems [37], [48]. This thesis focuses on the load pickup problem and the feeder

reconfiguration problem in the restoration process.

1This consists of 4.78 million customers in PJM, 2.22 million in NYISO, and 1.37 million in ISO-NE.
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1.2 Load Pickup

The load pickup problem is also referred as load curtailment problem. After the fault is isolated

from the distribution network, the system operators would try to find out how many loads could

be picked up by the system or how many loads need to be curtailed from the system while the

repairing crew are trying to fix the damaged part. The system operators would like to keep as many

loads connected to the network as possible. However, there are many operational constraints that

need to be kept in mind. It is well known to us that distribution networks tend to be overdesigned

in order to supply more loads in the future [54]. So in most cases, the line capacity will not be the

binding constraints. Based on this assumption, the constraints do matters are the capacity of the

feeder and the voltage of nodes. Another aspect which also need to be emphasized is that different

load has different priority. For example, the hospital is of higher priority than a citizen’s house. So

the system operators cannot simply use the number of picked up load as their objective.

The load pickup problem has been studied since 1985. Mario V. F. Pereira [41] proposed

ranking algorithm based on sensitivity analysis of loss-of-load. Since then, the load pickup problem

has been extensively studied in many aspects. A novel modified Viterbi algorithm is proposed in

[55], by which the load pickup problem is converted into a shortest path problem. A competitive

randomized online algorithm is described in [19]. An algorithm is carried out in [22] which is

able to transform the load pickup problem into a knapsack problem. And the author also proposes

an approximation algorithm to attain a feasible solution with less time. The algorithms have been

tested using IEEE 38-node system and IEEE 123-node system. This gives us a hint that knapsack

algorithm would be an efficient method to solve the load pickup problem. After converting load

pickup problem into knapsack problem, it could be solved as an optimization problem using integer

linear programming (ILP). The objective function of the optimization problem is able to contain

both the weight/priority of the loads and the value of the loads. And it is flexible to add constraints

or different objectives. However, the shortcoming of the ILP is also obvious. The computing

time would be a concern we need to pay attention. As we know, integer programming will not

be as fast as linear-programming (LP). Therefore, approximation algorithms which could give out
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feasible solutions faster than ILP attract many researchers’ interest. In this thesis, we use knapsack

algorithm to solve the load pickup problem and propose a new approximation algorithm. The

algorithm is applied to 38-node system [22], IEEE 123-node system [42] and IEEE 8500-node

system [43] and the performance of the approximation algorithm are assessed in chapter 2.

1.3 Feeder Reconfiguration

The definition of feeder reconfiguration was proposed by S. Civanlar [10] in 1988. She referred

it as changing the topological structure of distribution feeders by opening or closing the section-

alizing and tie switches. The goal of reconfiguration of distribution networks is to figure out the

best structure of the system regarding to power loss and operational performance [12]. So far, the

reconfiguration problem has been comprehensively researched in many aspects with various meth-

ods. Among them, heuristic methods and direct mathematical methods are two methods mainly

used when solving the reconfiguration problems. In most of the mathematical methods, the recon-

figuration problem is formulated as a concrete optimization problem and we can obtain the solution

directly after we run the program. Previously people would like to use mixed-integer programming

(MIP) algorithms to solve the problem since these methods have the following advantages:

• The problems can be solved by MIP solvers

• The robustness and reliability are guaranteed

• It is flexible to add constraints or different objectives

However, the shortcoming of MIP is also obvious: high computational burden. This drawback lim-

its the application of MIP. The heuristic methods stand out for the reduced computational complex-

ity [2]. The heuristic methods tend to solve the problem in several steps [28], [58], [50], [34], [16], [47].

The heuristic algorithms could show us explicit structure of the solving process, however, they

bring us the trouble of finding suboptimal solutions. Recently, more and more people use MILP to

solve the reconfiguration problem. MILP algorithm covers all MIP’s advantages and could get the
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solution faster than MIP. Rabih A. Jabr [17] and A. Ajaja [4] use MILP to solve the reconfigura-

tion problem in order to reduce the network loss. B. Moradzadeh [35] uses MILP reconfiguration

algorithm to solve battery storage problem of distribution system. Ali Khodabakhsh [21] proposes

a submodular approach to find out the optimal spanning structure to reduce the system loss. After

traversing many correlated papers, we find out that most of the researches about feeder reconfigu-

ration are carried out using heuristic methods. Although some people used mathematical method,

most of them aiming at curtailing the system loss. Very few people use mathematical method to

solve feeder reconfiguration problem which targets on system restoration. Therefore we use Integer

Linear Programming (ILP) to solve the reconfiguration problem of a distribution network including

three different feeders. And the objective is to perform the load shifting from one damaged feeder

to other feeders.

Figure 1.1: 3-feeder 16-node distribution network

Distribution networks are built in meshed structure but normally operated in radial structure

for effective coordination of the protection in emergency situations [17]. The distribution network

shown in Figure 1.1 is a classical model for distribution networks feeder reconfiguration, which
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contains three feeders and 16 nodes. Each bold line has a sectionalizing switch which is com-

monly closed and each dashed line has a tie switch which is commonly open. Let’s say there is

a fault at Feeder 1 causing the capacity of Feeder 1 decreasing to 60% and Feeder 1 cannot hold

all the load previously connected to it. So it is necessary to shift some of the loads from feeder 1

to another two feeders. Meanwhile, we need to make the whole system still obey the voltage con-

straints, feeder capacity constraints, radiality constraints and line capacity constraints after altering

its topological structure. Furthermore, performing the reconfiguration with a minimum number of

switch operation is essential to prolong the life of system components. However, there are three

main difficulties.

• How to define our objective? We need to think of a method to quantify the number of switch

operation.

• How to implement the power flow equations? Since the structure of the distribution network

changes, it is impossible to simply use DistFlow equations to characterize the relationship

between power flow and the node voltage.

• How to keep the radial structure of each feeder after load shifting? It is necessary to think of

a way to implement the radiality constraints.

The detail formulation of this problem is shown in chapter 3. We come up with an ILP algorithm,

which could solve this problem efficiently. The algorithm is applied to the three-feeder 16-node

system first to examine its accuracy. And a three-feeder 375-node system is also used in test, which

is modified from IEEE 123-node system, to examine the algorithm’s reliability. The algorithm real-

izes the function of external reconfiguration between different feeders and internal reconfiguration

inside a single feeder.

1.4 Reader’s Guide

The rest of this thesis is organized as follows.
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• In Chapter 2, the formulation of the load pickup problem and its approximation algorithm

are presented. The case studies of 38-node, IEEE 123-node and 8500-node system are also

shown in this chapter.

• The algorithm to solve feeder reconfiguration problem is presented in detail in Chapter 3,

which is based on some of the work from load pickup problem. Both functions of recon-

figuration between different feeders and the internal reconfiguration of one single feeder

are realized. The test cases of 3-feeder 16-node system and 3-feeder 375-nodes system are

illustrated in detail.

• Chapter 4 concludes the thesis.

• Chapter 5 lays out some possible future work.
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Chapter 2

LOAD PICKUP

2.1 Problem Formulation

As mentioned in previous chapter, we would like to pick up as much load as possible without

breaking the operation constraints of distribution networks. But different loads have different

weight/priority, which means it is not realistic to use the numbers of loads connected to the system

as our objective functions. Therefore it is necessary to think of a way to formulate the prob-

lem as an optimization problem. What is worth mentioning here is that distribution networks are

operated in three phases mode in practice, which makes the formulation of the problem very com-

plicated. So we convert the three-phase systems into single-phase systems and we only consider

about single-phase system in this thesis.

There are three main points need be solved in the formulation process.

• How to quantify the objective? We need to find out a way to denote the value of each load so

that we could correlate it with the decision variable and get our objective function in a usual

optimization problem form.

• How to combine the system constraints with the load pickup problem? As stated previously,

the line capacity is not a concern in the load pickup problem. So we only need to pay

attention to the voltage constraints of the distribution system. Therefore it is essential to find

out a mathematical expression of the node voltage.

• How to formulate unique structure of the distribution networks? Figure 2.1 shows two com-

mon structures of distribution networks. In some of the distribution networks (Structure A),

the curtailment of one load does not affect the consumers downstream. But in most cases



8

(Structure B), the curtailment of upstream consumers means all the consumers downstream

cannot get the power they need.

Figure 2.1: Two structures of distribution network

Let us start from the voltage constraints first.

2.1.1 The Basic Power Flow Equations Model in Distribution Network

In order to get the mathematical expression of node voltages, we need to begin with power flow

equations. The radial distribution network used in this thesis is denoted as an undirected graph

G=(V ,E). V is the set of nodes including the source node/feeder N0. E is the set of edges of the

network. Figure 2.2 is a example of 13 nodes radial distribution network. In such a system, all

the customers’ demand are supplied by the only feeder of the system. There are no distributed

generators (DGs) and compensators in the system. We assume that there are n + 1 nodes in the
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Figure 2.2: 13 nodes radial distribution network

network and we can get some basic power flow equations as follows:

Si,j = ViI
∗
i,j ∀(i, j) ∈ E (1)

Pi.j −
∑

l:(j,l)∈ε

Pj.l = pj + ri,j
P 2
i,j +Q2

i,j

|Vi|2
∀(i, j) ∈ E (2)

Qi.j −
∑

l:(j,l)∈ε

Qj.l = qj + xi,j
P 2
i,j +Q2

i,j

|Vi|2
∀(i, j) ∈ E (3)

Vi − Vj = zi,jIi,j ∀(i, j) ∈ E (4)

|Vi|2 − |Vj|2 = 2(ri,jPi,j + xi,jQi,j)− |Ii,j|2|zi,j|2 ∀(i, j) ∈ E (5)

where Si,j , Pi,j and Qi,j are the apparent power, active power and reactive power transmitted from

node i to node j. pj and qj represents the active load and the reactive load at node j. ri,j , xi,j and

zi,j are the resistance, the reactance and the impedance of line (i, j).
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2.1.2 Linearization of Power Flow Model

We use DistFlow [5] equations to characterize the relationship between voltage and power flow.

However, quadratic terms are included in three equations, which makes solving this problem more

difficult. In order to get rid of the quadratic terms, we make two reasonable assumptions here.

• The loss on line is negligible

• The per unit value of node voltages are close to 1

Therefore we could neglect the quadratic terms in eqn. (3), (4) and (5). Also we could replace

|Vi|2 − |Vj|2 by 2(|Vi| − |Vj|) [59]. As a result, eqn. (3), (4) and (5) can be simplified as:

Pi.j −
∑

l:(j,l)∈ε

Pj.l = pj ∀(i, j) ∈ E (6)

Qi.j −
∑

l:(j,l)∈ε

Qj.l = qj ∀(i, j) ∈ E (7)

|Vi| − |Vj| = ri,jPi,j + xi,jQi,j ∀(i, j) ∈ E (8)

Eqn. (8) shows the linear relationship between node voltages and the power flow on the correspond-

ing line. However, the power flow on each line are unknown to us during the solving process. So it

is necessary to find out a way to denote the node voltages with some given variables. As shown in

[25], we could use the load at each node to express the node voltage. And eqn. (8) can be written

in matrix form:

V −V0 = RP+XQ (9)

V ∈ Rn is the column vector of node voltage magnitude [|V1|, · · · , |Vn|]T . V0 ∈ Rn is the

column vector consisting of duplicated voltage magnitude of feeder node [|V0|, · · · , |V0|]T . P and

Q represent the column vectors of injection power at each node, [P1, · · · , Pn]T and [Q1, · · · , Qn]
T ,

which are the opposite number of load at each node. R, X ∈ Rn×n are matrices and their elements
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Rij and Xij are shown as follows:

Rij =
∑

ε′∈Ri∩Rj

rε′ (10)

Xij =
∑

ε′∈Ri∩Rj

xε′ (11)

where Ri is the route from node 0 to node i. Rij and Xij are the resistance and reactance of the

overlapping route from feeder to these two nodes. With eqn. (9), we are able to denote voltage

constraints in our optimization problem.

2.1.3 Multidimensional Knapsack Problem

The goal of the formulation process is to convert the load pickup problem into a multidimensional

knapsack (d-KP) problem. The knapsack problem is one kind of decision problem, which is defined

as follows: We are given an item set N with n items and each item has a value of vj and a weight

of wj . The objective is to obtain an optimal subset of N with maximum profit and the total weight

does not exceed the capacity limit c [20]. The d-KP problems is a special form with more than one

capacity constraint. In distribution network, whether the loads are picked up or not are decided by

a single switch connected to the bus. So we could aggregate all the loads connected to one bus as

one large load, which means each node only need one decision variable.

First we need to quantify the load value v, which is illustrated as follows:

vi = wipi ∀i ∈ V/N0 (12)

where pi is the active load at node i. Since only the active load has economic value, the reactive

part is not included in the definition. Then we need to introduce a decision variable for each load.

The binary decision variable yi indicates the pickup status of each node, that yi = 1 means the load

at node i is picked up whereas yi = 0 shows the opposite decision. So far we have obtained the
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optimization problem:

max
{yi}

n∑
i=1

wipiyi (13)

s.t.
n∑
i=1

yipi ≤ Pmax (14)

n∑
i=1

yiqi ≤ Qmax (15)

Vmin ≤ |Vi| ≤ Vmax i = 1, · · · , n (16)

yi ∈
{
0, 1
}

i = 1, · · · , n (17)

Pmax and Qmax are the capacity limit of source generator/feeder. Substitute the node voltage with

eqn. (9) and a new expression of constraint. (16) is shown:

|V0| − Vmax ≤
n∑
j=1

Rijyjpj +
n∑
j=1

Xijyjqj ≤ |V0| − Vmin i = 1, · · · , n. (18)

But constraint. (18) is still not a standard constraint of knapsack problem since it has both lower

bound and upper bound. The standard constraints of knapsack problem have only upper bound. In

order to eliminate the lower bound, we make an assumption that the voltage is decreasing along

each branch and some researchers have illustrated that this assumption is reasonable. In [40], the

APPENDIX-II shows us that r
x
≥ | q

p
| is true in most of the cases. What’s more is that most of

the loads used in [18] and [52] are positive, which means that
∑n

j=1Rijyjpj +
∑n

j=1Xijyjqj is

positive. In [45], it gives out a data sheet of a 33-bus radial disribution system. It is pretty obvious

that the bus voltage is decreasing along distribution line. In [33], the IEEE 33-bus distribution

grid model is also used for analysis. And we can also find out the voltage is decreasing along the

distribution line. [46] and [13] used the same result for analysis and all leads to the conclusion that

voltage tends to decrease along the distribution line. Based on this assumption, it is reasonable to

neglect the lower bound of constraint. (18). Finally we get the multidimensional knapsack problem



13

we need:

max
{yi}

n∑
i=1

wipiyi (19)

s.t.
n∑
i=1

yipi ≤ Pmax (20)

n∑
i=1

yiqi ≤ Qmax (21)

n∑
j=1

yj(Rijpj +Xijqj) ≤ |V0| − Vmin i = 1, · · · , n. (22)

yi ∈
{
0, 1
}

i = 1, · · · , n (23)

However, the formulation above only works for structure A. If the structure of the distribution

network is type B, one more constraint is crucial:

yi ≥ yj i ∈ Rj (24)

which indicates that the load downstream could only be picked up if the load at its parent node is

picked up.

2.2 Approximation Algorithms

The n + 2-dimensional knapsack problem above could be solved as an ILP problem. We could

get the solution easily with appropriate solver. But there is one concern we need to pay attention,

the computing time. D-KP problems are NP-hard problems [26] and usually cost much more time

than linear programming (LP) problems. So it is necessary to find out an approximation algorithm

with good performance and less computing time. However, it is unfortunate that fully polynomial

time approximation schemes (FPTAS) does not exist [20]. So the only hope is polynomial time

approximation schemes(PTAS). Some PTAS are proposed in [6], [7] and [15]. Even though

PTAS have the drawback that the running time increases exponentially due to accuracy, they still

perform much better than ILP. We will useH1/(d+1) algorithm [20] as our approximation algorithm,

a PTAS based on the result from linear programming relaxation. And this algorithm is proved to

be a 1/(d+ 1)-approximation algorithm.
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2.2.1 Linear Programming Relaxation

In order to apply the approximation algorithm, linear programming relaxation (LKP) is indispens-

able. The LKP of the original problem could be derived by removing the integer constraint of each

variable, thus getting the problem

max
{yi}

n∑
i=1

wipiyi (25)

s.t.
n∑
i=1

yipi ≤ Pmax (26)

n∑
i=1

yiqi ≤ Qmax (27)

n∑
i=1

yi(Rjipi +Xjiqi) ≤ |V0| − Vmin j = 1, · · · , n. (28)

0 ≤ yi ≤ 1 i = 1, · · · , n (29)

We denote the objective value in the optimal solution of the original ILP problem as z∗ and that

one of LKP as zLP . Obviously we can get

z∗ ≤ zLP (30)

2.2.2 H1/(d+1) Approximation Algorithm

The detail of the algorithm is described as follows:

Algorithm 1: H1/(d+1)

Compute an optimal basic solution of decision variables yLP of the LKP of d-KP

yLP has no more than d fractional values where d is the number of constraints;

I : =
{
i|yLPi = 1

}
variables with integer values;

F : =
{
i|0 < yLPi < 1

}
variables with fractional values;

zH : = max
{∑

i∈I vi, max
{
vi|i ∈ F

}}
;
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zH is the solution of the H1/(d+1) approximation algorithm. The further detail of this algorithm

is discussed in [14] and [7]. It is not difficult to draw out the conclusion that H1/(d+1) is a

1/(d+ 1)-approximation algorithm, since

z∗ ≤ zLP ≤
∑
i∈I

vi + dFmax ≤ (d+ 1)zH (31)

where Fmax = max
{
vi | i ∈ F

}
.

As the original ILP problem we get is a n+2-KP problem, the algorithm would be a 1/(n+3)-

approximation algorithm. If the algorithm is applied to a large scale system, the value of n would

be very large. In this case, the performance of our approximation algorithm seems to be unac-

ceptable. However, d is actually the number of binding constraints. And based on our assumption

of node voltage, we could only keep the voltage constraints of the leaf nodes, which means many

constraints could be cancelled. Thus, the number of binding constraints decreases dramatically. So

the performance of the approximation algorithm is not that bad.

2.3 Case Studies

We apply the knapsack ILP algorithm andH1/(d+1) approximation algorithm to 38, 123 and 8500

nodes test systems to examine the accuracy of the approximation algorithm and the computing time

with different load settings. The Gurobi 8.1 solver on a 3.1 GHz Intel x64-based processor with

16B of RAM in a Julia 1.0.2 environment is used to solve the problem.

2.3.1 38-Node Test System

We first test ILP algorithm and H1/(d+1) algorithm on a 38-node test system. The system is shown

as Figure 2.3. Node 1 is the feeder and no load is connected to it. So there are 37 loads in this

system and we use random number to set the active load, reactive load and weight at each node.

We first tried 10 different random seeds and compared the performance of these two algorithms.

According to the result of ten times tests shown in Table 2.1, we find out that the objective value

in the solution of H1/(d+1) algorithm is less than but very close to that of ILP and perform better
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Figure 2.3: 38-node radial distribution network

Table 2.1: Performance of two algorithms on 38-node system

Case Objective value of ILP Objective value of H1/(d+1) Computing time of ILP/s Computing time of H1/(d+1)/s

1 31.3937 27.0112 0.0323 0.0063

2 38.8709 35.7887 0.0087 0.0058

3 50.1112 49.1009 0.0083 0.0061

4 46.5120 46.0184 0.0214 0.0058

5 41.0864 35.6971 0.0156 0.0145

6 36.3676 32.6767 0.0109 0.0058

7 46.8337 44.7128 0.0109 0.0060

8 48.2205 47.7839 0.0075 0.0059

9 41.7107 34.8491 0.0229 0.0055

10 37.9873 35.3640 0.0229 0.0060
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in computing time. Then we tried 10000 times and the comparison results are illustrated in Figure

2.4 and Figure 2.5. Both figures are in histogram format and the Y-axis is number of cases
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Figure 2.4: The accuracy distribution of 38-node system

among the 10000 tests corresponding to each X-axis value. The X-axis of Figure 2.4 represents

the quotient of the objective value of two algorithms and the X-axis of Figure 2.5 represents the

ratio of the computing time of two algorithms. The 10000 times results illustrate that the accuracy

of the approximation algorithm is very good. However, in some cases the computing time of

H1/(d+1) algorithm is longer than that of ILP. Another issue is that the longest computing time of

ILP algorithm among the 10000 times test is only 0.1720s. This means that the ILP algorithm

could get the accurate solution very fast and the application of approximation algorithm in this

case is trivial.

2.3.2 123-Node Test System

Next step we applied our algorithms to IEEE 123-node test system in order to find out whether a

more complex system will make the performance of approximation algorithm better. The distribu-

tion network is shown in Figure 2.6. Node 150 is the feeder. Switch (150, 149), (13, 152), (18,
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Figure 2.5: The computing time ratio distribution of 38-node system

Figure 2.6: 123-node radial distribution network
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135), (60, 160), (61, 610) and (97, 197) are closed in normal operation in order to keep the radial

structure of the system. We compare the performance of two algorithms as the same process in

38-node system. Table 2.2 displays the ten times test results. We can see that the computing time

Table 2.2: Performance of two algorithms on 123-node system

Case Objective value of ILP Objective value of H1/(d+1) Computing time of ILP/s Computing time of H1/(d+1)/s

1 54.3326 43.4454 0.3353 0.0186

2 67.1716 59.0258 0.1455 0.0184

3 67.3135 61.1385 0.1422 0.0186

4 85.1487 75.4262 0.2267 0.0185

5 61.8342 47.0094 0.2849 0.0183

6 67.5476 55.0579 0.1699 0.0164

7 71.4997 67.8918 0.1737 0.0190

8 74.0108 59.2718 0.2699 0.0178

9 69.15745 61.4732 0.2534 0.0306

10 65.6802 52.8126 0.0517 0.0176

of H1/(d+1) algorithm is much shorter than that of ILP and the objective value is close. Also the

10000 times tests were tried out and the comparison results are shown in Figure 2.7 and Figure 2.8.

As shown in the results, the approximation algorithm still has a good performance. But the main

concern still is that the longest computing time of ILP is very short, which is only 0.5736s, making

the approximation algorithm unnecessary.

2.3.3 8500-Node Test System

The IEEE 8500-node test system is used to test our algorithms for the final step. Since the accuracy

has already been sufficiently tested in previous experiments, we will aim at the performance of

computing time in this case. We will carry out experiments with different load settings to find out

the computing time of ILP in the worst case. In other words, we are trying to find out the longest

computing time of ILP algorithm. If the computing time of the worst case is sufficiently long, the

approximation algorithm is still helpful. However, if the longest computing time is still within our
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Figure 2.7: The accuracy distribution of 123-node system
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Figure 2.8: The computing time ratio distribution of 123-node system
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worst expectation, the application of the approximation algorithm still needs further consideration.

This time we consider both structures of distribution system as mentioned previously. We keep

changing the load settings and the total active power constraints to find out the worst computing

time of ILP algorithm. Figure 2.9 and Figure 2.10 depict our first attempt. We keep the same
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Figure 2.9: The computing time of ILP in an 8500-node system with structure A(0.002 0.020)

random seed for load generator and multiply the load values with different constants so that there

are 10 different cases illustrated as the labels on the right side of each figure. The test is to find out

the variation tendency of the ILP computing time when the active power constraint is increasing.

The X-axis is the value of active power constraint, which is represented by the ratio of active power

constraint and the sum of total loads. According to these two figures, we could find out that the

longest computing time appears when the constant is very small in both network structures cases.

Therefore, we replaced the constants we used in previous cases with smaller value and decreased

the interval of each constant to find out the longest computing time in our cases. As a result, we

obtained Figure 2.11 and Figure 2.12.

From the results, we obtain the longest computing time of ILP in our tests, which is 694.1637s.

And we can get the computing time of our approximation algorithm in the same case, which is

252s. In conclusion, the H1/(d+1) algorithm does decrease the computing time obviously.
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Figure 2.10: The computing time of ILP in an 8500-node system with structure B(0.002 0.020)
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Figure 2.11: The computing time of ILP in an 8500-node system with structure A(0.0005-0.006)



23

Pm

0.0 0.5 1.0

0.0005 structure B
0.0010 structure B
0.0015 structure B
0.0020 structure B
0.0025 structure B
0.0030 structure B
0.0035 structure B
0.0040 structure B
0.0045 structure B
0.0050 structure B
0.0055 structure B
0.0060 structure B

label

0

200

400

600

800

co
m

pu
tin

g 
tim

e/
s

Figure 2.12: The computing time of ILP in an 8500-node system with structure B(0.0005-0.006)

2.4 Summary

Based on the results obtained from so many tests, we find out that the H1/(d+1) approximation

algorithm could get a good solution close to the accurate one obtained by ILP algorithm with much

less time. But the main problem is that the computing time of ILP is not very slow. In fact, the

computing time 694s in the 8500-node test is somehow within our expectation. There are two

possible reasons to explain why the performance of the ILP algorithm is better than our prediction.

The first one is the presolve function of the Gurobi solver. The Gurobi solve could cancel some

redundant constraints when it starts to solve the ILP problem. The second one is that the actual

number of binding constraints is not very large, which enhances the solving speed of the solver. As

a result, whether it is helpful to apply the approximation algorithm in our cases still needs further

discussion. However, the load pickup problem could be upgraded to demand response problem [22]

in some practical cases. The demand response problem could involve more customers’ demands at

one node. And even the elastic demand could be included, making the computing process amply

complicated when solving the problem. TheH1/(d+1) approximation algorithm would have a better

performance then.
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Chapter 3

FEEDER RECONFIGURATION

3.1 Problem Description

As stated in Secton 1.3, the goal of feeder reconfiguration is to find the best topological structure of

the distribution system in order to decrease the power loss or to enhance the system performance.

We aim to solve the load shifting problem during the fault period using feeder reconfiguration in

this thesis. In a distribution system, there are several feeders and each of them has a radial network

connected to them. If a fault happens to one of the feeders causing the capacity decrease, then

the system operators need to shift some of the loads connected to the faulty feeder previously

to other feeders. In this process, we still cannot the break the voltage constraints, line capacity

constraints or feeder capacity constraints. Also the system after the reconfiguration process still

need to obey the radiality constraints, which means the system connected to each of the feeders are

still in radial structure. We are trying to come up with a mathematical method to solve the feeder

reconfiguration problem in this thesis and the formulation of load pickup problem has given us an

intuition of using ILP algorithm to solve the reconfiguration problem. The experiment result of

load pickup problem shows that Gurobi solver could solve ILP problem pretty fast. Therefore the

approximation algorithm is not necessary in this case. The systems used in this chapter are still

single-phase system and some of the system data used in tests is modified from that of three-phase

systems.

There are several problems when we are formulating the feeder reconfiguration problem.

• How to define our objective? Our purpose is to keep all the loads connected to the system

during the reconfiguration process. Meanwhile, we would like to shift the loads with a

minimum number of switch operation. So it is essential to come up with a way to quantify

this objective. For convenience, we assume that all the loads could be connected to feeders
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after the reconfiguration, which means there is no load shedding.

• How to use the DistFlow equations in this problem? As we know, in order to correlate

the node voltages with the power flow, the DistFlow equation would be a appropriate tool.

However, various from the load pickup problem, the topological structure of the distribution

system changes during the reconfiguration process. As a result, it is impossible to use the

DistFlow equations directly unless we know the system structure in the solution.

• How to attach the radiality constraints to the optimization problem? A method to realize the

function of the radiality constraints with a minimum number of formulas is fundamental to

the formulation, since adding too many constraints would reduce the efficiency of the solver

3.2 Problem Formulation of 16-node system

Figure 3.1: 3-feeder 16-node distribution network

Let us start from the classical three-feeder 16-node distribution network model [10]. The data

is shown in Table 3.1. The apparent power base is 100 MVA and the voltage base is 23 kV in this
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case. There are three feeders and three independent radial subsystems in this distribution system.

Table 3.1: Data of the three-feeder 16-node system

Bus to Bus Resistance/P.U Reactance/P.U End Bus Load/MW End Bus Load/MVAR

1-4 0.075 0.1 2.0 1.6

4-5 0.08 0.11 3.0 1.5

4-6 0.09 0.18 2.0 0.8

6-7 0.04 0.04 1.5 1.2

2-8 0.11 0.11 4.0 2.7

8-9 0.08 0.11 5.0 3.0

8-10 0.11 0.11 1.0 0.9

9-11 0.11 0.11 0.6 0.1

9-12 0.08 0.11 4.5 2.0

3-13 0.11 0.11 1.0 0.9

13-14 0.09 0.12 1.0 0.7

13-15 0.08 0.11 1.0 0.9

15-16 0.04 0.04 2.1 1.0

5-11 0.04 0.04 - -

10-14 0.04 0.04 - -

7-16 0.09 0.12 - -

And we assume that each bold line has a sectionalizing switch which is normally closed and each

dashed line has a tie switch which is normally open. There are 16 switches in total. And 13 of them

are sectionalizing switches and 3 of them are tie switches. The fault is set at Feeder 1, causing the

capacity of Feeder 1 decrease. In order to eliminate the load shedding on Feeder 1, we need to shift

some of the loads connected to Feeder 1 to another two feeders.
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3.2.1 Objective Function

We are going to use ILP to solve the reconfiguration problem. Therefore, the first step is to define

the objective function in the optimization problem. Two binary variables, yi and zj are used to

indicate the status of the closed switches and the tie switches [58].

yi =

1, closed switch i is closed.

0, closed switch i is open.
i = 1, 2, ..., 13 (1)

zj =

1, tie switch j is closed.

0, tie switch j is open.
j = 1, 2, 3 (2)

Our objective is to keep all the loads connected to the system with the minimum number of switch-

ing operations. So we can get the objective function:

min
{yi,zj}

13∑
i=1

(1− yi) +
3∑
j=1

zj (3)

Thus, we are able to express our objective with mathematical formula.

3.2.2 Line Capacity Constraints

The power flow on each line cannot exceed its own capacity. Normally, the line capacity is denoted

by current. But in order to use ILP, we assume that the line capacity is characterized by the active

power and the reactive power. The line capacity constraints are illustrated as follows:

−ωijPcap ≤ Pi,j ≤ ωijPcap ∀(i, j) ∈ E (4)

−ωijQcap ≤ Qi,j ≤ ωijQcap ∀(i, j) ∈ E (5)

E is the set of all the lines in the system, including the disconnected lines with tie switches. Pij

and Qij are the active power and the reactive power on line (i, j). Pcap and Qcap represent the line

capacity. ωij indicates the connecting status of line (i, j).
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Let

ωij =

1, line (i, j) is connected.

0, line (i, j) is disconnected.
(6)

By introducing the binary variable ω, we are able to enforce that the power flow on a disconnected

line is zero. Also we assume that the capacity of each line does not vary too much from each other1.

So it is credible to propose the assumption that all the lines in the distribution network share the

same capacity.

3.2.3 Feeder Capacity Constraint

Pk ≤ Pmk ∀k ∈ VF (7)

Qk ≤ Qmk ∀k ∈ VF (8)

The total loads Pk and Qk connected to each feeder should be no more than its capacity limit

Pmk and Qmk. VF is the set of feeders in the system. In normal cases, the capacity of feeder

is denoted by apparent power. But using apparent power would involves quadratic terms in our

optimization problem. So we divide the feeder capacity into two terms, the active power capacity

and the reactive power capacity.

3.2.4 Voltage Magnitude Constraint

Vmin ≤ Vi ≤ Vmax ∀i ∈ VN (9)

VN represents the set of all the nodes, including the feeders and the buses. Since we assume that

there is no load shedding in the system, so all the node voltages should be restricted to this range.

For convenience, we assume the voltage of the feeder is Vmax.

1This will be further proved in the 375-node system in section 3.4.
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3.2.5 DistFlow Equations using Big M Approach

Due to the topological structure change of the distribution network, using the DistFlow equations

as what we have done in the load pickup problem is impossible. So we need to think of a new way

to implement the DistFlow equations. [30] gives us a hint of using big M method. Then power

flow constraints can be formulated as follows:∑
j|(i.j)∈E

Pi,j = −pi ∀i ∈ VB (10)

∑
j|(i.j)∈E

Qi,j = −qi ∀i ∈ VB (11)

Vi − (ri,jPi,j + xi,jQi,j)− (1− ωij)M ≤ Vj ≤ Vi − (ri,jPij + xi,jQi,j) + (1− ωij)M ∀(i, j) ∈ E

(12)

Constraint. (10)- (11) are the power balance equations at each bus. VB is the set of buses in the

system. We neglect the power loss on the lines in the reconfiguration problem. The big M approach

is used in constraint. (12). By introducing a sufficiently large constant M, the previous equality

constraint is converted into an inequality constraint. If the two nodes i and j are connected, which

means ωij is 1, constraint. (12) would be a normal DistFlow equation in this case. If these two

nodes are not connected, the sufficiently large constant M would also keep this constraint satisfied.

In this way, we could still use the DistFlow equations to correlate the node voltage with power

flow.

3.2.6 Radiality Constraint

After we manage to implement the DistFlow equations, only one difficulty is left. It is essential

to keep the radiality structure of the system after the reconfiguration process, which means that

there are still three independent radial distribution networks connecting to each feeder and no loop

circuit exists in the system. As we know that a necessary condition for network radiality is∑
(i,j)∈E

ωij = Nn −Nf (13)
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Nn and Nf are the numbers of total nodes and feeders. But this condition is not enough, since loop

circuit may appear in the system without breaking this constraint. We introduced two new binary

variables βij and βji, corresponding to each line, to construct the radiality constraint [17]. The

radiality constraints are

βij + βji = ωij ∀(i, j) ∈ E (14)

βkj = 0 ∀k ∈ VF (15)∑
(i,j)∈E

βij = 1 ∀i ∈ VB (16)

βij ∈ {0, 1} (17)

βij indicates that node j is the parent of node i when its value is 1. Constraint. (14) shows that

node i and node j are connected to each other if and only if line (i, j) is connected. Constraint. (15)

means that the feeders have no parents. Constraint. (16) indicates that each bus has only one parent.

Actually reference [3] shows that the constraints above still cannot guarantee the radial structure of

the distribution and gives out an approach based on planar-dual graph [53]. However, the radiality

constraints constraint. (14)- (16) still work with the help of power flow equations. The infeasible

network structure, such as the loop circuit and unreasonable load shedding, leads to infeasible

power flow solution [23]. So we can still get the right solution with the radiality constraints above.

3.3 Case Studies of Three-feeder 16-node System

The Gurobi 8.1 solver on a 3.1 GHz Intel x64-based processor with 16B of RAM in a Julia 1.0.2

environment is used to solve the problem. In order to examine the performance of the algorithm, we

have carried out many test cases on the three-feeder distribution system to test if all the constraints

work as we design and if the algorithm would give us a feasible solution even in some complicated

cases. We will only show some corner test cases. The fault is located at Feeder 1 in all the following

cases.



31

Table 3.2: Settings of Case 1 for three-feeder networks

Pcap=0.2 Qcap=0.11

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.02 0.016

Pm1=0.07225 Qm1=0.04335
5 0.03 0.015

6 0.02 0.008

7 0.015 0.012

8 0.04 0.027

Pm2=0.2718 Qm2=0.1566

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.01 0.009

Pm3=0.0918 Qm3=0.063
14 0.01 0.007

15 0.01 0.009

16 0.021 0.01
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Figure 3.2: Solution of Case 1

3.3.1 Case 1

First, we carry out an easy case to make sure that the algorithm is working. Table 3.2 shows the

setting of this case and Figure 3.2 illustrates the solution. It indicates that load 7 is shifted from

Feeder 1 to Feeder 3. Switch (6, 7) is open and switch (7, 16) is closed. So the objective value is 2.

Actually there is another feasible solution with an objective value of 2, in which load 5 is shifted

from Feeder 1 to Feeder 2. The Gurobi solver could only gives out one of these feasible solutions.

3.3.2 Case 2

In order to examine if the feeder capacity constraint is working or not, we adjust the capacity of

Feeder 3 in this case, making it smaller than that of case 2 shown as Table 3.3. And the solution

is shown as Figure 3.3. In this case, we get the another solution we mentioned in case 1. Since

shifting load 7 to Feeder 3 will break the capacity constraint of Feeder 3, there is only one feasible

solution in this case and the objective value is 2. The feeder capacity of Feeder 3 is a binding
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Table 3.3: Settings of Case 2 for three-feeder networks

Pcap=0.2 Qcap=0.11

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.02 0.016

Pm1=0.07225 Qm1=0.04335
5 0.03 0.015

6 0.02 0.008

7 0.015 0.012

8 0.04 0.027

Pm2=0.2718 Qm2=0.1566

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.01 0.009

Pm3=0.06 Qm3=0.063
14 0.01 0.007

15 0.01 0.009

16 0.021 0.01
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Figure 3.3: Solution of Case 2

constraint in this case.

3.3.3 Case 3

In this case, we try to assess the performance of the algorithm when the line capacity is a binding

constraint. Table 3.4 gives out the settings. The only possible solution in this case is shifting load

4 and load 5 to Feeder 2 and shifting load 6 and load 7 to Feeder 3. However, doing this would

break the line capacity constraint. So there is no feasible solution in this case. And the algorithm

cannot give out a solution either in this case, which means the algorithm works well in this case.

3.3.4 Case 4

In this case, we try to find out if the voltage constraints are working or not. Table 3.5 shows the

settings of this case. If we only consider the line capacity and the feeder capacity constraints, either

shifting load 7 to Feeder 3 or shifting load 5 to Feeder 2 would work. But shifting load 7 will break

the voltage constraint of node 7, which is a wrong solution. The solution given by the solver is the
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Table 3.4: Settings of Case 3 for three-feeder networks

Pcap=0.2 Qcap=0.11

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.02 0.016

Pm1=0.01 Qm1=0.03
5 0.03 0.015

6 0.02 0.008

7 0.015 0.012

8 0.04 0.027

Pm2=0.21 Qm2=0.121

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.01 0.009

Pm3=0.087 Qm3=0.056
14 0.01 0.007

15 0.01 0.009

16 0.021 0.01
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Table 3.5: Settings of Case 4 for three-feeder networks

Pcap=0.9 Qcap=0.5

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.2 0.16

Pm1=0.71 Qm1=0.5
5 0.3 0.15

6 0.2 0.08

7 0.15 0.12

8 0.04 0.027

Pm2=0.5 Qm2=0.3

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.1 0.09

Pm3=0.7 Qm3=0.5
14 0.1 0.07

15 0.1 0.09

16 0.21 0.1



37

same as Figure 3.3 and the objective value is 2 in this case.

3.3.5 Case 5

After making sure that all the constraints work well in the optimization problem, we would like to

try out some complicated cases involving more switch operations. The setting of case is shown in

Table 3.6. And the solution is given by Figure 3.4. In this case, load 5 is shifted from Feeder 1 to

Table 3.6: Settings of Case 5 for three-feeder networks

Pcap=0.2 Qcap=0.11

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.02 0.016

Pm1=0.045 Qm1=0.03
5 0.03 0.015

6 0.02 0.008

7 0.015 0.012

8 0.04 0.027

Pm2=0.19 Qm2=0.105

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.01 0.009

Pm3=0.07 Qm3=0.048
14 0.01 0.007

15 0.01 0.009

16 0.021 0.01

Feeder 2 and load 7 is shifted from Feeder 1 to Feeder 3. This is the only feasible solution for this

case with an objective value of 4.



38

Figure 3.4: Solution of Case 5

3.3.6 Case 6

Table 3.7 shows the setting and the solution is illustrated by Figure 3.5. In this case, Feeder 1 has

to shift all its load. As a result, load 4 and 5 are shifted to Feeder 2 and load 6 and 7 are shifted to

Feeder 3. This is the only solution and the objective value is 4 in this case.

3.3.7 Case 7

This is the most complicated case of the three-feeder network with a maximum objective value.

Table 3.8 displays the settings and the solution is shown as Figure 3.6. First, Feeder 1 tends to shift

load at its leaf node. So load 7 is shifted to Feeder 3. But the total load connected to Feeder 1 still

exceeds its capacity limit in this case. Meanwhile, shifting any more load from Feeder 1 to Feeder

3 would break the capacity constraints of Feeder 3. So Feeder 1 shifts load 5 to Feeder 2. However,

this action breaks the capacity constraint of Feeder 2. Then Feeder 2 has to shift load 10 to Feeder

3. In the end, we get a feasible solution without breaking any constraints. The objective value is 6
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Table 3.7: Settings of Case 6 for three-feeder networks

Pcap=0.21 Qcap=0.15

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.02 0.016

Pm1=0.01 Qm1=0.03
5 0.03 0.015

6 0.02 0.008

7 0.015 0.012

8 0.04 0.027

Pm2=0.21 Qm2=0.121

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.01 0.009

Pm3=0.087 Qm3=0.056
14 0.01 0.007

15 0.01 0.009

16 0.021 0.01
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Figure 3.5: Solution of Case 6

Figure 3.6: Solution of Case 7
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Table 3.8: Settings of Case 7 for three-feeder networks

Pcap=0.2 Qcap=0.11

Node P /P.U Q/P.U Pm/P.U Qm/P.U

4 0.02 0.016

Pm1=0.045 Qm1=0.025
5 0.03 0.015

6 0.02 0.008

7 0.015 0.012

8 0.04 0.027

Pm2=0.172 Qm2=0.102

9 0.05 0.03

10 0.01 0.009

11 0.006 0.001

12 0.045 0.02

13 0.01 0.009

Pm3=0.08 Qm3=0.057
14 0.01 0.007

15 0.01 0.009

16 0.021 0.01
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and this is the maximum objective value in the three-feeder 16-node distribution network.

3.4 Scale Up

In order to further examine the performance our algorithm, we need to apply it to a larger scale

distribution system. We try to refer to some large scale distribution networks used by others.

Debapriya [11] gives out the data of a four-feeder 70-node system and Ching-Tzong [49] gives

out the data of an 11-feeder 83-node. The example of 415-node and 830-node system are proposed

by Rabih [17], which are obtained by duplicating the 83 nodes system 5 times and 10 times. Dong

[56] carries out his own test on an one-feeder 119-node system. The data of an eight-feeder 136-

nodes system is shown in [31]. In the distribution networks above, it is assumed that each line

has a switch which could isolate the faulted lines. However, it is not realistic to install switches

on every line in a distribution network because of the high expense [1], [57]. Therefore we come

up with a three-feeder 375-node distribution system, in which not all lines have switches. This

distribution system consists of three identical independent radial distribution networks, each of

which is modified from IEEE 123-node test system. Unlike the three-feeder 16-node system, we

cannot disconnect a line without a switch attached. So some more constraints are essential, which

are shown as follows:

1− ωij ≤ swij (18)

swij ∈ {0, 1} (19)

The binary variable swij indicates that the line (i, j) has a switch when its value is 1. With these

constraints, only the lines with switches could be disconnected. The formulation of other con-

straints are similar to those of three-feeder 16-node case. The benefit of formulating in this way

instead of aggregating the loads without switches into one big load is that we could impose the

voltage constraint to each node and the line capacity constraint to each line.

About the line capacity assumption we have made in the 16-node system, we will show its

rationality here. The line configuration data of the IEEE 123-node system is shown in Table 3.9.

We can see in the table that the multi-phase lines share the same configuration and most of the
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Table 3.9: Overhead Line Configurations of IEEE 123-node system

Config. Phasing Phase Cond. Neutral Cond. Spacing

ACSR ACSR ID

1 ABCN 336,400 26/7 4/0 6/1 500

2 CABN 336,400 26/7 4/0 6/1 500

3 BCAN 336,400 26/7 4/0 6/1 500

4 CBAN 336,400 26/7 4/0 6/1 500

5 BACN 336,400 26/7 4/0 6/1 500

6 ACBN 336,400 26/7 4/0 6/1 500

7 ACN 336,400 26/7 4/0 6/1 505

8 ABN 336,400 26/7 4/0 6/1 505

9 AN 1/0 1/0 510

10 BN 1/0 1/0 510

11 CN 1/0 1/0 510
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lines in the previous 123-node system are multi-phase lines. In addition, we modified the previous

123-node system into a single-phase system. Therefore we could assume that all the lines share

the same line capacity.

3.5 Case Studies of Three-feeder 375-node System

We think of two possible structures of the 375-node distribution network, which are shown in

Figure 3.7 and Figure 3.8. The sectionalizing switches and the tie switches are all shown in

the figures and the tie switches are highlighted. There are four tie switches in the parallel structure

system, in which only Feeder-II has connections with both Feeder-I and Feeder-III. There are six tie

switches in the triangle structure system and any feeder has connections with another two feeders.

We carry out many tests on both systems and even a special case where the system could change

its internal structure for reconfiguration. The fault is located at Feeder-I in all the following test

cases. The Gurobi 8.1 solver on a 3.1 GHz Intel x64-based processor with 16B of RAM in a Julia

1.0.2 environment is used to solve the problem.

3.5.1 Parallel Structure System

Case 1

The constraint settings are shown in Table 3.10. And the solution is shown as Figure 3.9. The

Table 3.10: Constraint Settings of Case 1 Parallel Structure System

Pm1/P.U Pm2/P.U Pm3/P.U Qm1/P.U Qm2/P.U Qm3/P.U Pcap/P.U Qcap/P.U

6.432 9.648 9.648 3.616 5.424 5.424 10.67 6

switches (13-I, 18-I), (76-II, 77-II) and (97-II, 197-II) are open and tie switches (250-I, 250-II),

(300-I, 300-II) and (83-II, 83-III) are closed. After accepting the load from Feeder-I, the total load

connected to Feeder-II exceeds its capacity. So Feeder-II has to shift some of its load to another two
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Figure 3.7: 375-node system in parallel structure
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Figure 3.8: 375-node system in triangle structure



47

Figure 3.9: Solution of case 1 parallel structure
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feeders without breaking the constraints. The objective value is 6 in this case. And the computing

time is 0.1599s.

Case 2

Table 3.11 displays the settings of this case. And the solution of this case is illustrated in Figure

Table 3.11: Constraint Settings of Case 2 Parallel Structure System

Pm1/P.U Pm2/P.U Pm3/P.U Qm1/P.U Qm2/P.U Qm3/P.U Pcap/P.U Qcap/P.U

6.432 8.8 9.5 3.616 5.1 5.5 10.67 6

3.10. In this case, we get a solution with objective value of 8. All the tie switches are closed and

the switches (13-I, 18-I), (76-II, 77-II), (86-II, 87-II) and (97-II, 197-II) are open. This is the most

complicated case of the parallel structure system with a maximum objective value. The computing

time is 0.1532s in this case.

3.5.2 Triangle Structure System

Case 1

The constraints setting are shown in Table 3.12. The solution is shown as Figure 3.11. In this case,

Table 3.12: Constraint Settings of Case 1 Triangle Structure System

Pm1/P.U Pm2/P.U Pm3/P.U Qm1/P.U Qm2/P.U Qm3/P.U Pcap/P.U Qcap/P.U

6 10 10 3.2 6 6 10.67 6

we get a solution with objective value of 6. The tie switches (250-I, 95-II), (250-II, 95-III) and

(250-III, 95-I) are closed and sectionalizing switches (23-I, 25-I), (67-I, 72-I) and (86-III, 87-III)

are open. Feeder-I shifts load in the green circle to Feeder-II and load in the blue circle to Feeder-
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Figure 3.10: Solution of case 2 parallel structure
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Figure 3.11: Solution of case 1 triangle structure
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III. But it breaks the capacity of Feeder-III. So Feeder-III shifts the load in the orange circle to

Feeder-II. The computing time is 0.2451s in this case.

Case 2

The constraints settings are demonstrated in Table 3.13. Figure 3.12 shows the solution of this

Table 3.13: Constraint Settings of Case 2 Triangle Structure System

Pm1/P.U Pm2/P.U Pm3/P.U Qm1/P.U Qm2/P.U Qm3/P.U Pcap/P.U Qcap/P.U

5 9.5 10 3 5.4 6 10.67 6

case. This is a very complicated case. The tie switches (250-I, 95-II), (300-I, 450-II), (250-II, 95-

III), (300-II, 450-III), (250-III, 95-I) are closed and the sectionalizing switches (23-I, 25-I), (67-I,

72-I), (97-I, 197-I), (105-II, 108-II) and (86-III, 87-III) are open. The objective value is 10 in this

case. The computing time is 0.3074s in case 2.

3.5.3 Internal Reconfiguration Case

For the next step, we perform some modifications to the parallel structure network. Six more

sectionalizing switches, (54-I, 94-I), (151-I, 300-I), (54-II, 94-II), (151-II, 300-II), (54-III, 94-III)

and (151-III, 300-III) are added. But these six switches are open in normal operation. We carry out

a test to find out if the internal structure could be changed during the reconfiguration process. The

constraint settings are shown in Table 3.14. The solution is shown as Figure 3.13. The objective

Table 3.14: Constraint Settings of Internal Structure Reconfiguration

Pm1/P.U Pm2/P.U Pm3/P.U Qm1/P.U Qm2/P.U Qm3/P.U Pcap/P.U Qcap/P.U

7 10 10 3.8 7 7 10.67 6

value is 6 in this case. The tie switches (250-I, 250-II) and (300-I, 300-II) are closed. The switches
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Figure 3.12: Solution of case 2 triangle structure
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(23-I, 25-I), (67-I, 72-I) and (60-I, 160-I) are open and the switch (54-I, 94-I) is closed. By closing

the switch (54-I, 94-I), we could change the internal structure of Feeder-I to keep the voltage

constraints so that we are able to avoid shifting more loads to Feeder-II, which results in a higher

objective value. The computing time is 0.2199s in this case.

3.6 Summary

With so many test cases above, the performance of our algorithm proves to be very good. Each

feeder tends to shift loads at its leaf node to avoid unnecessary switch operation. And it is pretty

fast to solve the problem. But the load shedding is not considered in our case, which could be

studied in future work.
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Figure 3.13: Solution of internal structure reconfiguration
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Chapter 4

CONCLUSIONS

This thesis focuses on the load pickup problem and the feeder reconfiguration problem in the

distribution network restoration process. For the load pickup problem, we formulate the problem

as a multidimensional knapsack problem and solve it with Gurobi 8.1 solver in a Julia 1.0.2 en-

vironment. Also the H1/(d+1) approximation algorithm is proposed, which could get a not bad

approximate solution with less time. Many test cases have been performed on 38-node, 123-node

and 8500-node system to assess the performance of these two algorithms. Based on the case stud-

ies, we could find out that the original knapsack ILP algorithm could give out the accurate solution

but it could take a long time to solve the problem. The approximation algorithm could solve the

problem with much less time and the accuracy of the approximate solution is not worse than 50%

of the accurate solution got by ILP. So the approximation algorithm does decrease the computing

time. However, the performance of computing time of the ILP algorithm is not that bad. Therefore,

whether it is necessary to use the approximation algorithm in our cases still needs further research.

In the feeder reconfiguration problem, we formulate it as an ILP problem as well. In order

to do this, we think of an objective function, use big M method and introduce many variables to

implement the functions of system constraints. By performing many tests on the three-feeder 16-

node system, the accuracy of our algorithm is proved. Then we apply our algorithm to a larger

scale distribution system, a three-feeder 375-node system, which is modified from IEEE 123-node

test system. In the 375-node system case, the algorithm could make out whether there is a switch

attached to one line and the solution given out by the algorithm is accurate even in some very

complicated cases. What is more intriguing is that even the internal topological structure change

is realized by our algorithm. In conclusion, our algorithm to solve the feeder reconfiguration

problem has a very good performance and it could gives out the accurate solution with a very short
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computing time.
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Chapter 5

FUTURE WORK

A plenty of future work could be done with this thesis. For the load pickup problem, firstly,

further research needs to be done to show the accuracy guarantee of the approximation algorithm

in a mathematical way. We can only show that theH1/(d+1) algorithm is a 1/(d+1)-approximation

algorithm but the actual performance is much better than this. In addition, we could try some more

complicated distribution systems for case studies. For example, we could add DGs and reactive

power compensators to the system so that the ILP algorithm could have a very long computing

time, which could show the necessity of using approximation algorithm.

When it comes to the feeder reconfiguration problem, although the performance of our algo-

rithm is very good, the load shedding is not considered in this thesis. We assume that the other

feeders could supply the power to all the shifted loads from the faulted feeder. However, in a se-

rious distribution system power outage, load shedding could be an usual way to protect the whole

network. If the load shedding situation is considered in the algorithm, the formulation of this prob-

lem could be more complicated since we need more constraints and more variables to keep the

functions of our constraints. Another aspect which needs further research is the expression of the

capacity constraints. For both the feeder capacity constraints and the line capacity constraints, we

all used active power and reactive power to denote the constraints. However, these constraints are

characterized by apparent power and current in practice. For the next step, we could try to find out

if we can use current and apparent power to formulate these constraints. And maybe we need to

think of some new formulations for this problem since the apparent power and the current would

bring in the quadratic term, making the linear programming unable to use.
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