
c©Copyright 2017

Yishen Wang



Energy Storage Operation with Wind Uncertainty

Yishen Wang

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2017

Reading Committee:

Prof. Daniel S. Kirschen, Chair

Prof. Miguel A. Ortega-Vazquez

Prof. Baosen Zhang

Program Authorized to Offer Degree:
Department of Electrical Engineering



University of Washington

Abstract

Energy Storage Operation with Wind Uncertainty

Yishen Wang

Chair of the Supervisory Committee:
Close Professor Prof. Daniel S. Kirschen

Department of Electrical Engineering

With environmentally oriented energy policies, wind power penetration sharply increases

in the recent years. Although operating cost is low, wind power’s intrinsic uncertainty and

variability have brought another layer of operating challenges for the power system operators

and system participants. Since traditional operation is not specially designed for these type of

characteristics, it motivates us to revise the current operating frameworks to better embrace

a more sustainable generation mix.

Other than wind energy, energy storage systems (ESS) are another key players in this

smart grid era. They provide additional operational flexibility to enhance the whole grid op-

eration and planning. Recently, decreasing installation and operation costs for ESS furthers

drives the interests to develop advanced operation decision making processes for grid and

market applications. Therefore, in this dissertation, our work focuses to understand how to

better integrate renewable generation and energy storage with respect to wind uncertainty.

We first improve wind modeling with ensemble approach. The proposed data mining

concept provides not only better point forecast but also scenario set and uncertainty region

for stochastic optimization. To reduce the computation burden, we compare the scenario

reduction techniques and propose a submodular scenario reduction algorithm to further

improve the computational efficiency. By optimally selecting representative scenarios, we

reduce the stochastic programming solution time without sacrificing solution quality.



In terms of ESS, we first stand from the system operator’s perspective and analyze the

benefits of ESS operation in the centralized scheduling with uncertain wind. Stochastic pro-

gramming based operation strategies well balance the trade-off between the system economics

and reliability with the assistance from energy storage. Moreover, we also stand from the

merchant storage owner’s perspective to derive bidding strategies to increase profits through

participating the energy market. A look-ahead strategy fully explores the arbitrage oppor-

tunities across the time and space.
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Chapter 1

INTRODUCTION

1.1 Operation Changes and Opportunities

Historically, reliably serving the electricity demand has been the fundamental task for power

system operation. With various generation resources, system operators also try to run the

system at minimum cost level, and always balance reliability and economics during operation

[1]. Thermal power plants contributed the majority of electrical power generation for nearly

100 years [2]. As the pollution caused by fossil fuels became a concern, the classical minimum

cost generation scheduling problem is being revisited. Sustainability requirements drive the

development of renewable generation technologies, such as wind, solar, geothermal, and

biomass. Although these technologies do bring us more environmental benefits, there are

also difficult operation and policy challenges. Since wind generation is one of the most

widely accepted renewable generation, in this dissertation we will focus on this specific type

of renewable generation technology. However, since wind and solar generation share some

features like uncertainty modeling, our conclusions are not limited to wind generation and

can be generalized to solar as well.

Traditionally, the major uncertainty source for the transmission system has been the

contingencies caused by generator or transmission line outages. However, with a sharply

increasing penetration of wind power, its intrinsic uncertainty and variability have brought

another layer of operating challenges for the independent system operators (ISO) [3]. We

need to distinguish the concepts of uncertainty and variability. Uncertainty refers to the

unpredictability: since a forecast is never perfect, the actual wind realization can never be

exactly known in advance. On the other hand, variability refers to the fluctuations of wind

power within a certain time period. Since traditional operation is not specially designed for
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these type of questions, it motivates us to revise the current operating frameworks to better

embrace a more environmental-friendly generation mix. Numerous work have contributed

to a better understanding of how to integrate renewable generation. These efforts can be

divided into three directions, improved wind modeling [4, 5, 6, 7], advanced operation decision

making processes [3, 8, 9, 10, 11, 12, 13] and the application of energy storage systems (ESS)

in the grid [14, 15, 16, 17, 18, 19].

First, researchers have developed advanced wind modeling and forecasting algorithms to

better predict wind generation. Many of these prediction algorithms have been successfully

deployed in the field. These methods include neural networks (NN), support vector machines

(SVM), multiple linear regressions, time series, random forest, gradient boosting tree [4].

These algorithms provide a point-forecast i.e. the best single-value possible result of wind

realization. Recently, probabilistic forecasting [5] has become more popular due to its ability

to provide the full distribution of potential generation. Scenario generation is another widely

accepted approach that provides the input needed by stochastic programming methods [6].

Nevertheless, how to best utilize the results from forecasting services still requires a well-

designed operation framework. In this dissertation, we will present two schemes to generate

wind profiles to assist decision-making processes.

Second, traditional deterministic generation scheduling is not adequate to fully capture

the uncertainty on renewable generation, and more advanced formulations have been pro-

posed to improve the economics and reliability of system operation. In deterministic for-

mulations, reserve is co-optimized with unit commitment decisions. Less scheduled reserve

lowers the operating cost but may affect reliability. This may also result in higher real-time

re-dispatch cost to compensate for wind forecast errors. If the scheduled reserve is larger

than the amount that is actually needed, the day-ahead scheduling is too conservative and

the cost is unnecessarily high. Ortega-Vazquez [3] proposes to co-optimize the unit schedule

and spinning reserve amount assuming that the wind generation follows a certain parametric

distribution. Also following the idea of improving the reserve quantification, Zhou et al. [9]

schedule a dynamic reserve to hedge against wind shortage from probabilistic wind forecast
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results and an operating reserve demand curve. For the deterministic formulation, the major

wind profile used is still a deterministic wind forecast.

Due to forecast errors, a single trajectory is not enough to describe the potential evolu-

tion of wind generation, scenarios and scenarios tree are used for stochastic programming

formulations [11]. Wind scenarios are mainly used for a two-stage formulation [10], and a tree

structure can be further applied to a multi-stage formulation [12]. Scenario reduction [13] is

widely adopted to reduce the problem dimension. However, due to physical computational

resource constraints, the number of scenarios used in the formulation is always limited, and

some extreme cases could be overlooked.

To prevent neglecting extreme scenarios, robust optimization is used to immunize against

worst case scenarios [20]. It ensures system feasibility under the worst case as well as mini-

mizes such worst-case cost. Since the worst case scenario can be hard to identify, Wang et al.

[21] proposed an interval optimization approach to define extreme scenarios as the ramping

requirements among the net load upper bound, central forecast and lower bound. Dvorkin

[22] suggested a hybrid approach to combine stochastic formulation and interval formulation

together for a better computational and economic performance trade-off. Pandžić [23] modi-

fied the original interval approach to use more realistic, data-driven ramping constraints. All

proposed formulations try to reduce the system cost and maintain system reliability within

an affordable computational time. In this dissertation, we will focus on the stochastic unit

commitment approach and describe a scenario reduction technique to limit the problem size.

Power systems must always maintain a real-time balance between the generation and

load. Pumped hydro is one option for storing surplus energy and inject it back into the grid

later. However, due to the limitations of geography, pumped hydro is not a universal solution

for this power balance requirements. Thanks to advances in material science and chemical

engineering, battery energy storage systems (BESS) technologies are becoming viable options

for system operation [15].

ESS can participate multiple services in the system, such as energy arbitrage [14], reserve

market [24], peak shaving, frequency support [16], voltage support, congestion management
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as well as contingency support [17]. Generic storage and pumped hydro have been success-

fully incorporated in stochastic and robust formulations of the unit commitment problem

[18], [19]. However, there are still several questions to be answered, such as the cost-benefit

analysis of ESS among different UC formulations, the ESS setpoint ranges to ensure max-

imum system reliability as well as minimum cost, and the ESS profitability under a pool

market environment. In this dissertation, we will investigate the applications of ESS from

the system operators’ and the storage aggregator’s perspectives separately to determine the

best operation strategies. BESS applications are natural extensions for our work after prop-

erly accounting for the degradation costs.

1.2 Organization

The rest of this dissertation is organized as follows.

• Chapter 2 consists of three sections. Section 2.1 summarizes the objectives of construct-

ing renewable generation scenarios and provides a literature review of state-of-the-art

approaches. Section 2.2 presents the time-series based ARMA scenario generation

method. Section 2.3 describes the ensemble based scenario generation approach.

• Chapter 3 includes three sections. Section 3.1 describes current power system oper-

ation formulations with different renewable uncertainty models. The necessity and

motivation for scenario reduction is also discussed. Section 3.2 compares different

state-of-the-art scenario reduction techniques applied to stochastic unit commitment

and interval unit commitment. Section 3.3 describes the proposed submodular scenario

reduction technique.

• Chapter 4 includes two sections. Section 4.1 illustrates the motivation for energy

storage applications in a centralized ISO environment. Section 4.2 evaluates the effect

of energy storage systems in the day-ahead market and real-time adjustments with

different UC formulations.
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• Chapter 5 includes four sections. Section 5.1 discusses the importance of analyzing

energy storage profitability from the storage owner’s perspective. Section 5.2 discusses

a bilevel formulation to optimize the energy storage bidding and offering price-quantity

pair with local network congestion. Section 5.3 extends this work and presents a look-

ahead risk-constrained bidding strategy to better allocate stored energy for arbitrage

opportunities.

• Chapter 6 concludes the whole dissertation works and suggests some future research

directions.
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Chapter 2

SCENARIO GENERATION

Increasing penetration of renewable energy adds more uncertainty to the operation of the

grid. Since wind energy is the largest source of renewable energy, wind integration needs to

be characterized properly. To handle this issue, stochastic optimization is an adequate tool

but it requires accurate probabilistic profiles. Monte Carlo Simulation is the traditional way

to generate these scenarios, but it is not detailed enough to capture the nature of the source

of uncertainty. Moreover, the geographic correlation between wind sites also affects the

result of the scenarios. In this section, we propose a time-series approach and a data-mining

approach to consider the spatial and temporal correlations to generate wind scenarios.

2.1 Motivation and Literature Review

2.1.1 Motivation

With increasing penetration of uncertain source in power systems, renewable generation,

storage devices, electric vehicles and other uncertain components take a more important

role in the system operation. Traditional operation is based on a deterministic optimization

procedure, which does not explicitly quantify uncertainties [2]. The operators manage the

markets and schedules hourly productions according to the results from the unit commitment

(UC), economic dispatch (ED) and optimal power flow (OPF). In the classical model, the

load is deterministic and given, and the generation dispatch is computed considering all the

technology and operation constraints. Unlike thermal units, wind generators are usually not

considered as fully dispatchable resources. Instead, we treat it as a negative part of the load

using a forecast of wind generation. In this sense, the wind generation is not uncertain and

unknown. With this trick, we can then use a solver to handle the complex optimization
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problem. The operators can then determine their generation schedule based on the result

from the optimization.

However, with stochastic random variables as wind output, this treatment cannot reflect

all possible wind realizations, and must be revised. Introducing dynamic reserve moves a

step forward for considering uncertainty within a deterministic formulation. However, the

amount of reserve is either pre-defined which is generally conservative, or co-optimized which

again requires a well-calibrated uncertainty formulation.

Since the short-term load forecast is generally very accurate compared to the renewable

forecast [20], we will treat it as a deterministic input and not as a random variable. The

results from a wind point forecast is a deterministic wind time series, which indicates the

exact wind output at a given time period. However, as an intermittent source, the wind has

an intrinsic stochastic nature. It might behave as the forecast suggests, or it might not. To

capture its true uncertainty and variability, we should consider all the possibilities, not only

the most probable one, but also some of the rare ones. Then, we can establish an upper and

lower prediction interval bound for all the scenarios.

Each wind generation scenario represents an operation case. Applying proper algorithms,

we can solve the optimization problem and get a cost-effective generation schedule. There-

fore, it is important to build these scenarios carefully to ensure their accuracy, otherwise the

results will not be optimal. Stochastic optimization should thus be considered for the whole

operation processes [25].

Since stochastic optimization is a general optimization term, different models require dif-

ferent features for the input data. Stochastic programming methods (SP) aims at minimizing

the expected objective value from a scenario set that contains most possible situations. Gen-

erally, SP models the uncertainty with a two-stage or a multi-stage formulation [25]. For

a multi-stage formulation, a tree-structured scenario set is desired to capture all the uncer-

tainty dependencies among multiple stages with non-anticipativity constraints. A two-stage

formulation is a special case which optimizes “here-and-now” decisions (first-stage decisions)

and “wait-and-see” decisions (second stage decisions) with a given scenario set without ex-
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plicitly demanding a tree-structure or fan-structure. Similar to the two-stage SP methods,

a chance-constrained formulation also requires a large number of scenario samples to model

the associated random variables.

Recently, robust optimization [26] and interval optimization [27] have been proposed to

solve the stochastic optimization problem. For these two methods, an uncertainty set, rather

than a scenario set, is prerequisite. As discussed in [28], the uncertainty set can have different

forms, and the most common one is a polyhedral set. This polyhedral uncertainty set has

been widely used in unit commitment problems [20], [19]. Since the confidence interval can

be efficiently extracted from the scenario set, generating valid probability scenario profiles is

therefore essential to the accuracy of solving this optimization problem.

In addition, it is well known that wind is not static and changes differently in different

areas. The scale of these changes is affected by the distance. Thus, if we want to describe

wind at one location, we should consider the influence of other nearby or faraway regions.

The spatial correlations and how they affect our wind scenarios must therefore be analyzed

carefully. To be more specific, what we focus on here is not a single wind farm or a single

region. Our target is the wind output scenarios in different places considering the spatial

correlation with other wind farms.

An adequate representation of the random wind data is thus needed for any SP formula-

tion. It should reflect the underlying probability assumptions and the existing historic data,

as well as connected to the purpose of the application, which often requires a compromise

between the problem size and the accuracy of the results.

2.1.2 Literature Review

Wind scenario generation techniques can be divided into wind modeling approaches and wind

forecast approaches. Both approaches can be further divided into modeling (forecasting)

wind power directly, or first modeling (forecasting) wind speed and then converting wind

speed to wind power.

For wind modeling approaches, many algorithms have been proposed. Hoyland [29] sug-
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gests a moment matching technique which generates synthetic scenarios with respect to

historic wind statistics. A nonlinear optimization problem is formulated to minimize the

Euclidean distance between the true realizations and expected value of synthetic scenarios.

Hoyland [30] also presents a method to construct single- and multi-period scenario tree. As

part of the WILMAR project, Lowery [31] further proposes a moment-matching technique

to generate a scenario tree with defined scenario mean, variance, skewness and kurtosis for

a rolling stochastic unit commitment problem.

Time series models are also widely used for wind scenario generation. Morales et al.

[32] propose to generate spatially correlated wind scenarios using an Auto Regressive and

Moving Average (ARMA) method. Wind speeds are transformed into a Gaussian distributed

space with Nataf transformation for better Gaussian-shaped. A univariate ARMA model is

trained for each wind farm. A covariance matrix for multiple wind farms training residuals

is estimated, and a Cholesky decomposition is then applied to generate spatially correlated

errors for sampling by the ARMA models. The ARMA model generates the desired number

of scenarios in this Gaussian feature space. Then an inverse Nataf transformation is applied

to reverse these pre-processing steps to construct wind speed scenarios. A wind power turbine

curve is used later to produce wind power scenarios. Papavasiliou [6], [10] generates wind

scenarios with a similar approach.

Billinton et al. [33] propose to sequentially sample wind speed data with an ARMA

model. Similarly, Karki et al. [34] extend this technique by fitting a common wind speed

model for all wind farms, then each farm provides individually mean and variance statistics

to sample multiple scenarios. Stuart [35] propose to use AR(2) to model a scenario tree for

a stochastic unit commitment. An ARIMA model has also been applied. Miranda et al. [36]

use a vector AR model to capture the spatial correlation of the wind.

Markovian Chain Monte Carlo (MCMC) has also been applied in this field. Papaefthymiou

[37] uses a Markov chain model to characterize the temporal dependencies with a higher or-

der transition matrix. Then Monte Carlo sampling is applied to generate multiple scenarios.

Some authors [38] improve the method by using a copula to model the stochastic depen-
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dency of wind power uncertainty. Zhang [39] also proposes to model the spatial-temporal

wind data with a copula. Inspired by this modeling framework, Pinson et al. [40] and Pa-

paefthymiou et al. [41] generate wind scenarios from a temporal covariance matrix and a

spatial-temporal covariance matrix with a probabilistic forecast input. Similarly, Ma et al.

[42] sample scenarios with an exponential covariance function.

Another common yet simplified approach would be to fit a certain parametric distribu-

tion over wind speed or wind power. Then, Monte Carlo sample are generated over this

distribution to construct multiple scenarios [43]. However, temporal correlations might not

be preserved with such an approach.

As an ensemble version of wind forecast, wind scenarios can be constructed with wind

forecasting techniques [44]. Therefore, many wind forecasting techniques can be applied to

this context. These forecasting methods are generally categorized into three groups, the

physical approach, the statistical approach and the intelligent system approach [4].

For the physical approach, the most state-of-art technique is numerical weather prediction

(NWP) [7]. A NWP model uses weather information from a Geographical Information

System (GIS). Partial differential equations are used to characterize weather motions. Wind

speed data can be extracted from the NWP solutions. By perturbing the initial conditions, an

NWP forecast ensemble is generated, which can serve as the scenario set [45, 46]. Although

the computation is relatively expensive and complicated, we can directly download NWP

results from publicly available NWP datasets. The European wind forecast project ANEMOS

[4] and two American wind integration project EWITS [47] and WWSIS [48] used NWP as

their forecasting tool. Gaussian Processes have been proposed as input to NWP to produce

wind ensemble [49].

Many intelligent algorithms have also been suggested to generate wind scenarios. The

most common one is the artificial neural network (ANN) [50]. As ANN training is a non-

convex optimization, ANN can produce different results with different initial conditions.

ANNs are thus able to produce multiple scenario trajectories. ANNs have been widely used

in wind power forecasting as well due to their strong ability to model the nonlinearities
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among between the input features and the output [51, 52, 53]. Likewise, particle swarm

optimization [54] and fuzzy logic have both been implemented to predict wind. A lack of

mathematical proof for these methods makes these algorithms more like a black-box solver.

The performance is highly dependent on the engineering design and tuning of the problem.

Statistical techniques thus seem to be the more general. Since time series models have

been introduced previously [33, 34, 55, 56] , we omitted this discussion here. As wind pre-

diction is essentially a regression problem, numerous successful machine learning algorithms

can be applied in this field. Historic wind power, wind speed and other external features

such as temperatures, humidity, and date and time can be used as input feature to train

these algorithms. These algorithms include, but are not limited to, support vector machine

(SVM) [57], random forest [58], gradient boosted tree [59], K-nearest-neighbors (KNN) [60].

With these algorithms, we can generate wind scenarios in two ways. One, we perturb

the initial conditions. For example, since we only use a subset of the input features to train

the model, we can generate multiple scenarios by different feature randomization. Second,

we can combine the results of different forecasting algorithms to obtain scenarios. We will

explore these two approaches in section 2.3.

The previous discussion is mainly based on point forecasting. Recently, probabilistic

forecasting has attracted a lot of attention both from academia and industry [5, 61]. Rather

than producing single or multiple trajectories, the full distribution over every time step

is computed. This information gives a better understanding of wind intervals. Quantile

regression is one of the most applicable algorithms [44, 62, 63]. In addition, kernel density

estimation also performs well in this task [64, 65]. More algorithms and techniques are

expected in this field. After obtaining the distribution, the covariance matrix or copula can

be used to obtain the scenarios as in [40].

Figure 2.1 shows a probabilistic forecasting prediction results with gradient boosting

method. The training and testing data is from Global Energy Forecasting Competition 2014

wind track [61].
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Figure 2.1: Probabilistic forecasts with Gradient Boosting Machines (GBM)

2.2 Time-series Based Approach

In this section, we introduce an efficient time series based scenario generation method. Time

series model can capture the temporal and spatial correlation in short-term wind modeling

quite well, and therefore it is suitable for this task [4]. Similarly to methods presented in

[6, 32], our method captures the stochastic wind dependencies using a covariance matrix.

Figure 2.2 provides a detailed flowchart of this approach. Wind data is collected from the

NREL Western Wind Dataset [48].

The whole process can be divided into three groups, pre-processing, scenario generation

and inverse transformation. In the pre-processing, we first compute the probabilistic speed

power curve. Then, wind speed data is normalized and transformed into stationary time

series for the ARMA model. Next, in the scenario generation, these series are used to estimate

the model parameters, and then to generate time series scenarios repeatedly based on spatial-

correlated random errors. Finally, the time series scenarios are inversely transformed into
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Figure 2.2: Flowchart for time series scenario generation
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the wind power data which reverses the pre-processing steps.

2.2.1 Input Historic Data

In order to produce wind power scenarios, we first collect wind speed and wind power data

from the NREL Western dataset [48]. This data is a synthetic dataset developed by 3Tier for

the NREL renewable integration study. In the dataset, wind power and wind speed in 5-min

resolution are provided from 2004 to 2006 for every 30 MW location, i.e. a total of 32,043

locations. We group multiple locations together to obtain 19 aggregated wind farms. Then,

we average wind speed and power values to generate data with an hourly resolution. Years

2004 and 2005 are used as historic input, and year 2006 is used to update the parameters as

we can recast the whole process with a rolling moving window.

2.2.2 Estimate Power Curve

Wind speed data is more suitable than wind power data for time series models [4]. Therefore,

we will base our modeling on wind speed data. In order to have a relatively accurate wind

power model, we estimate the speed power curve with a least square fit. In addition, we

compute the upper and lower bounds to allow flexibility to model more conservative or

aggressive wind positions. The bound can be determined with confidence interval. Normally,

we choose 99.5 % and 0.5 % to cover 99 % of the data points. A power curve example can

be seen in Figure 2.3.

2.2.3 Normalize Wind Speed

Since ARMA model requires a stationary and normally distributed time series, we need

to normalize the wind speed data before training the model. A two-step normalization is

applied here.

First, we use a mean-variance normalization to de-trend the diurnal component from the

data. The daily mean and variance of wind speed are calculated for each season and each
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Figure 2.4: Wind speed seasonal mean

hour. In Equation (2.1), w and t denote wind farm w at hour t in season m. ws is the

wind speed, and µ, σ are the mean and standard deviation of the wind speed. dws is the

de-trended new series.

dwsw,t,m =
wsw,t,m − µws

i,t,m

σws
i,t,m

(2.1)

The number of seasons can be 12 for monthly or 4 for quarterly. Strong quarterly seasonal

variations are shown in Figure 2.4. The distinct seasonal wind speed patterns are very clear.

Figure 2.5 shows monthly wind speed variations. The differences are more subtle though
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still with a pattern. Quarterly mean can better represent the general trend in the season,

whereas the monthly mean can better capture the detailed variations. In our simulation,

the total number of season is chosen as 12, which is monthly de-trended. This selection

enables us to remove the monthly trend for a better normalization effect. We can also use

other clustering algorithms like K-Means to cluster seasons; however, this clustering does

not provide significant improvements over the standard definition of months.

Figure 2.5: Wind speed monthly mean

After seasonal de-trending, we transform the current distribution to the normal distribu-

tion because time series models require the series to follow a normal distribution. A Nataf

transformation [32], equivalent to normal copula [66], is thus necessary. If we had an in-

finitely large dataset, we could model the data for each season separately. However, due to

the limited size of the data, we no longer distinguish different seasons.

Let Cw(x) represents the empirical cumulative distribution function (CDF) for the de-

trended wind data tsw,t, N(x) the CDF of the normal distribution, and Mw(x) the Nataf
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transformation. C−1w (x), N−1(x) and M−1
w (x) represents the inverse of these distributions

and transformations. Then, we have following equations for this transformation:

Mw(x) = N−1(Cw(x)) (2.2)

M−1
w (x) = C−1w (N−1(x)) (2.3)

tsw,t = M(dwsw,t) (2.4)

With this transformation, all the series are changed into a more normally distributed

series ts. After de-trending and normalization, the time series satisfies the basic Box and

Jenkins conditions [67]. We have completed the first pre-processing stage with our data.

2.2.4 Train Multiple ARMA Models

The following multivariate ARMA model is used to represent the time series tsw,t after Nataf

transformation. The noise term ε has a zero-mean with covariance matrix G.

tsw,t =

p∑
j=1

αw,jtsw,t−j + εw,t +

q∑
k=1

βw,kεw,t−k (2.5)

Since the full multivariate model can be hard to train, we adopt the simplification sug-

gested in [32] to decouple Equation (2.5) into a number of univariate ARMA models as in

Equation (2.6).

tsw,t =

p∑
j=1

αw
j tsw,t−j + εwt +

q∑
k=1

βw
k ε

w
t−k (2.6)

To retain spatial correlations among wind farms, G needs to be computed and used to

generate cross-correlated random errors. For properly estimating from noise residuals, we

first need to fit the ARMA models. Motivated by ensemble methods, multiple ARMA model

can be tested here. As presented in Figure 2.7, AR (2) could be a good model choice, and
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Figure 2.6: Nataf transformation

ARMA (2, 3) can also be explored. Here, we can choose the best two or three models rather

than a single one. Akaike information criteria (AIC) and Bayesian information criteria (BIC)

are used to select representative models. Readers can refer to [67] for more details.

After fitting ARMA models for each individual wind farms, we can obtain and calculate

the residual covariance matrix G. This G matrix should be symmetric or even semidefinite.

Then, we compute the orthogonal transformation L by Cholesky decomposition. By varying
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Figure 2.7: Sample ACF and PACF function for Wind Farm 1
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ARMA models, we can obtain different G and corresponding L. L is later used to generate

cross-correlated random errors.

G = LLT (2.7)

2.2.5 Generate Scenarios

We use the following steps to generate scenarios:

Step 1: Generate Nw ×Nt independent standard normally distributed white noise ξ

as the error component. Nw is the total number of the wind sites and Nt is the total

number of time periods.

Step 2: Apply orthogonal transformation L to produce cross-correlated random errors

ζ as in (2.8).

Step 3: Estimate time series with trained ARMA model and cross-correlated random

errors ζ as in (2.9).

Step 4: Repeat Step 1 – 3 until desired number of scenarios is reached.

ζ = Lξ (2.8)

tsw,t =

p∑
j=1

αw
j tsw,t−j + ζwt +

q∑
k=1

βw
k ζ

w
t−k (2.9)

2.2.6 Recover Wind Speed Scenarios

By reversing the pre-processing steps, we can recover wind speed scenarios from generated

time series scenarios tsw,t. Inverse Nataf transformation and mean-variance transformation

are applied as in (2.10) and (2.11).



22

dwsw,t = M−1
w (tsw,t) (2.10)

wsw,t,m = dwsw,t,mσ
ws
i,t,m + µws

i,t,m (2.11)

2.2.7 Compute Wind Power Scenarios

Using the fitted wind speed power curve as discussed in Section 2.2.2, we obtain the wind

power scenarios as desired. Figure 2.8 provides an example of generated wind scenarios and

shows that the model captures the associated uncertainty. The spatial-temporal correlation

can be clearly observed at wind farm 1, 10, 11. Wind farm 19 has different wind shapes,

and the model can preserves it reasonably well. Due to the way randomness is modeled

in the ARMA model, and the fact that three steps are required to transform the normally

distributed numbers into wind power, additional errors are introduced for the wind power

scenarios. This might lead to spikes being over-estimated. This may causes issues as the

related scenarios are quite wide-spread, and sometimes the ARMA model tend to over-

estimate large ramps.

2.3 Ensemble-based Approach

Although the wind speed ARMA model provides a well-calibrated wind scenario uncertainty

set, they are limited to the very short-term wind series modeling. In addition, the nonlinear

relationships among the wind power time series, wind speed time series and other explanatory

variables is not been fully explored.

In NWP, a weather prediction ensemble is generated by perturbing the initial starting

conditions, which results in a collection of weather scenarios representing different conditions

to represent weather uncertainty [7]. Likewise, Breiman [68] proposed his famous Random

Forest algorithm to generate a strong predictor by combining several weak predictors through

bootstrap sampling and random feature selection.



23

Figure 2.8: Wind power scenarios with ARMA
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Motivated by these works, we present in this subsection an ensemble-based approach

to directly generate wind power scenarios. ARMA models belong to the wind modeling

category, while the proposed ensemble approach belongs to wind forecast approach. Since

the forecasting approach is essentially the regression task from the machine learning field,

several well-known regression algorithms are applied here to generate scenarios, including

support vector machine (SVM), artificial neural network (ANN), bagging and Random Forest

(RF). As our ensemble approach can be separated into different modules, future advanced

algorithms could be added as a natural extension. The flowchart is presented in Figure 2.9.

2.3.1 Input Historic Data

As in Section 2.2.1, the NREL Western Dataset is used to construct the scenario set. In the

dataset, the wind power series and the wind speed series are provided to feed the machine

learning algorithms as input features.

2.3.2 Design Spatial-Temporal Features

Wind power series are firstly normalized based on its nameplate capacity. Every wind power

is therefore in per unit. Since the target variable is wind power, it is not necessary to over-

complicate the processing for wind speed. Therefore, we use mean-variance normalization

as introduced in Section 2.2.3. After we normalize these values, we can construct the input

feature set for every prediction target or response variable.

A time-lag hlead has to be pre-defined, which indicates how many hours ahead is the

prediction algorithm. A smaller hlead leads to a more accurate modeling, whereas a larger

hlead results in larger deviation errors. Since the NREL Western Dataset does not include

wind forecast information, for the sake of a better calibration effect, we set hlead = 1 or

hlead = 6 depending on the level of uncertainty we want to reach. If forecast data is provided,

hlead can be set to a large value (such as 24 or 48) to truly perform a short-term forecast with

the proposed ensemble approach. In our simulation, we mainly model wind power behavior
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Figure 2.9: Flowchart for ensemble scenario generation
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with such an approach. It is a middle ground between pure wind series modeling and pure

wind forecast.

After defining the time lag hlead, the temporal features from each site can be determined

by choosing N local
hist , number of local historical hours, to include the effect of recent information

[69]. As wind patterns are relatively volatile, it is not necessary to set N local
hist too large. On

the other hand, to fully capture wind uncertainty, this value should not be too small either.

Therefore, we choose 7 days or 168 hours as a compromise. Experiments show that this

number is adequate to represent the wind.

As previously mentioned, it is also crucial to consider the spatial correlation. Therefore,

additional spatial features are introduced as well. Ideally, the wind movement along the whole

area is related, so we need to take all other wind farm information into consideration. In this

simulation, 19 wind farms are included. If all other 18 farms are considered for Nnear
hist = 168h,

we introduce 3024 additional features. Increasing the size of the feature set increases the

training time without necessarily introducing significant modeling improvements.

Figure 2.10 presents graphical illustrations of these correlation coefficients. The more red

area indicates stronger correlations whereas the more blue area suggests weaker correlations.

This data shows that wind farm 1 is not very correlated with the other wind farms because

all correlation coefficients are below 0.7. On the contrary, wind farms 12 – 16 and 19 are

quite correlated with all coefficients over 0.85. These observations suggest to reduce the

spatial feature range. For example, include only the 4 nearest sites information for spatial

correlation with Nnear = 4. This filtering step greatly reduces the size of the feature set and

reduces the computational time required for the later training stage.

Both wind speed and wind power at nearby sites can be used for feature construction. As

wind power spatial features already provide necessary information, the wind speed spatial

features are not included. We set Nnear
hist = 4 to further limit the feature size. As mentioned

above, it is not always good to have large feature set as feature redundancy reduce compu-

tational performances without necessarily improving accuracy. Since feature selection is not

the focus here, interested readers can refer to [70] and [71] for more details.
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After the feature construction step, for notation simplicity, we use xinputw,t and ytargetw,t to

represent the input features and responsive target. wpw,t and wsw,t are the normalized wind

power and wind speed at location w at time t. The goal now is to find a good function f(x)

to represent their relationship as in (2.12) – (2.14).

xinputw,t = [wpw,t−hlead , wpw,t−hlead−1, · · · , wpw,t−N lead
hist−1

,

wsw,t−hlead , wsw,t−hlead−1, · · · , wsw,t−N lead
hist−1

,

wpj1,t−hlead , wpj1,t−hlead−1, · · · , wpj1,t−Nnear
hist −1,

· · ·

wpjNnear ,t−hlead , wpjNnear ,t−hlead−1, · · · , wpjNnear ,t−Nnear
hist −1]

(2.12)

ytargetw,t = wpw,t (2.13)

ytargetw,t = fw(xinputw,t ) (2.14)

2.3.3 Build Training, Cross Validation and Testing Sets

In order to successfully apply existing machine learning algorithms, we formulate the whole

process as a regression problem. It is therefore vital to construct the training, cross validation

(CV) and testing sets. The testing set is straightforward to build as it includes all ytargetw,t .

During simulation, we use the last 90 days (or 2160 hours) for the full training set. Because

wind is highly influenced by recent weather conditions, this number is adequate to model

wind uncertainty. This 2160 hour data set is used to construct the actual training and cross

validation set.

There are some hyper-parameters that must be tuned for the adopted algorithms, and

cross validation is effective to improve modeling generality by avoiding overfitting. The K-

fold method is generally adopted for validation [72]. In this method, the whole training set is

randomly split into k parts, and every time we train k-1 out of k parts and use the remaining

part for validation. Therefore, we train models k times, and the hyper-parameters with the
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best average validation results will be used for testing purpose. 2-fold is commonly used as

well. Due to the strong statistical nature of time series, we follow a special version of 2-fold.

The last 3 days of full training data are used for cross validation, and the remaining 2088

hours data are used for actual training. In this way, we ensure that the trained models have

the best possible predictive adaptability for recent wind fluctuations.

2.3.4 Training Multiple Models

The key concept for our proposed ensemble approach is not to generate the single best

scenario, but to generate multiple scenarios to cover the possible randomness of the wind. It

is important to ensure that the whole scenario set represents wind uncertainty. Therefore,

three techniques to create reasonable randomness are adopted, bootstrap sampling [73],

random feature selection [68] and model ensemble [72].

To obtain a large number of scenarios, using a single training set is not ideal. Bootstrap

sampling, i.e. sampling with replacement, serves well for providing confidence interval esti-

mation in statistics. By generating multiple bootstrap training set, we are able to explore

the randomness of training data without significantly breaking the original statistics.

As mentioned in the previous section, not every feature is necessarily indispensable.

Therefore, We randomly sample a feature subset from the full feature set to train a weak

predictor. This weak predictor is not as accurate as the one trained with the full feature

set, but it does not lose a lot of accuracy either. In addition, by collecting a group of weak

predictors, we actually form a strong predictor to better represent the data. We typically

use 70 % of the total number of original features.

Forecasting and regression have been discussed for years [7], but there is still no conclusion

regarding which algorithm performs consistently the best. Because performance is highly

dependent on the data and different algorithms have different capabilities to model the

data. By applying the model ensemble, we use several algorithms to the same dataset,

and it has a higher chance of capturing the uncertainty when we use the results from all

these algorithms together. Here, we explore SVM [74, 75], ANN , Random Forest [68]
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and Bagging [76] algorithms for their strong capabilities to model the nonlinearity from the

data. With the development from machine learning community, other established algorithms,

including LASSO [77], gradient boosting machine [78, 79], additive models [80] and deep

neural networks [81], worth investigating in the future work as well. Interested readers can

refer to the references for more details.

Each wind farm is trained individually for each model. However, in order to retain the

spatial relationship, all wind farms share the same random sampling sequence (seeded from

random number generator) for every generated scenario. Different scenarios are seeded with

different random number.

In the procedure, N boost
sce and Nhyper

sce denote the number of bootstrap sampling and number

of hyper-parameter to be tuned. The following steps are used for training each algorithm for

wind farms:

Step 1: Generate random number sequence for sampling.

Step 2: Create a bootstrap training set with current random sequence for every wind

farm.

Step 3: Sample random features from the full feature set with current random number

sequence.

Step 4: Train each wind farm individually to obtain algorithm parameters.

Step 5: Repeat Step 2 – 4 until N boost
sce is reached.

Step 6: Update hyper-parameters to be tuned.

Step 7: Repeat Step 2 – 5 until Nhyper
sce is reached.
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2.3.5 Select Models from Cross Validation

There are multiple hyper-parameters to be determined during training. These include the

tree depth for RF and Bagging, `2 penalty factor for ANN and γ for kernel function in

SVM. In addition, there are randomness caused by bootstrap sampling and random feature

selection. We select Nsce out of N boost
sce ×Nhyper

sce to reach the best performance for each model.

Take RF for example, the tree depth is a hyper-parameter to be tuned. If there are 3 tree

depth options to select, then Nhyper
sce = 3. The bootstrap sampling is with N boost

sce = 100;

therefore, we have initially N boost
sce ×Nhyper

sce = 300 scenarios in total. For 50 desired scenarios

Nsce = 50, we pick the best Nsce models out from cross validation.

The cross validation is performed system wide to retain spatial correlation to its maximum

extent as each model use the same parameters. The best single scenarios at each farm might

not be the most correlated scenarios.

Selection is performed for each algorithm to avoid discriminating. Therefore, we will

have 50 scenarios for RF, 50 scenarios for Bagging, 50 scenarios for ANN and 50 scenarios

for SVM. So there would be 200 scenarios in total in this specific example.

2.3.6 Generate Scenarios with Selection Models

With Nsce selected models, we generate scenarios with the testing set to get the wind power

scenarios desired. Some results are presented below.

In Figure 2.11, the correlation histogram indicates that the spatial correlation between

wind farms can be well captured by spatially correlated scenarios. Not only highly correlated

case can be captured, less correlated or negatively correlated cases can also be well presented.

Although the presented histogram does not have a perfect Gaussian shape, the tail length is

reasonable.

In Figure 2.12, we can observe that the ensemble approach produces a much more com-

pact scenarios uncertainty set compared to the ARMA approach. The realizations are well

captured by the algorithms. The bound obtained with the set can be used for the Interval
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Figure 2.11: Correlation histogram among different wind farms

UC or Robust UC.

Figure 2.13 and Figure 2.14 present two examples. In general, all four algorithms perform

well to model the trend of the whole series. Random Forest and Bagging are especially well

behaved in capturing the data without introducing a large range of uncertainty. On the

contrary, SVM and ANN sometimes may not calibrate well enough to model sharp ramps.

There is a small time lag. In addition, they also provide a larger uncertainty range.

In Table 2.1, the Root Mean Square Error (RMSE) for different algorithms and persis-

tence benchmark are presented. It is clear that RF and Bagging perform best, which follows
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Figure 2.12: Wind scenarios with ensemble approach
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Figure 2.13: Comparison 1 of different algorithms
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Figure 2.14: Comparison 2 of different algorithms
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the pattern of Figure 2.13 and Figure 2.14. The performance of SVM and ANN are not

as good as RF and Bagging, but they are still able to beat persistence most of the times.

With more explanatory variables like wind forecast, it is expected that SVM and ANN would

improve their accuracy.

Noted, there are other metrics to evaluate the quality of scenarios, e.g. reliability, skill,

sharpness, brie score [40].

2.4 Summary

This section has presented both an ARMA-based time series scenario generation technique

and an ensemble-based data mining scenario generation technique. Both approaches capture

the spatial temporal correlation between the wind farms to represent a realistic coupling

effect. and provide useful uncertainty information to the system operators.

With the fast growing development of machine learning field, the ensemble approach

has a better potential to be further improved. As our approach is modular, new advanced

algorithms can easily fit in this framework. For example, if SVM, ANN, RF and Bagging

are replaced with quantile regression, quantile forecast, or cubic splines, our ensemble ap-

proach can produce a probabilistic forecast ensemble. Using copula and covariance matrices,

scenarios can be extracted as well.
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Table 2.1: Comparison of Algorithms

RMSE SVM RF Bagging ANN Persistence

Farm 1 0.032 0.024 0.023 0.027 0.049

Farm 2 0.029 0.007 0.007 0.033 0.037

Farm 3 0.055 0.018 0.019 0.055 0.060

Farm 4 0.089 0.018 0.018 0.089 0.129

Farm 5 0.051 0.013 0.013 0.052 0.057

Farm 6 0.152 0.015 0.014 0.135 0.184

Farm 7 0.025 0.009 0.008 0.029 0.045

Farm 8 0.117 0.026 0.028 0.110 0.145

Farm 9 0.038 0.008 0.008 0.045 0.062

Farm 10 0.033 0.011 0.011 0.033 0.053

Farm 11 0.032 0.010 0.010 0.038 0.050

Farm 12 0.073 0.009 0.010 0.080 0.058

Farm 13 0.121 0.010 0.012 0.109 0.096

Farm 14 0.189 0.079 0.081 0.171 0.108

Farm 15 0.120 0.017 0.016 0.112 0.077

Farm 16 0.183 0.054 0.050 0.169 0.135

Farm 17 0.015 0.004 0.003 0.028 0.021

Farm 18 0.035 0.007 0.006 0.042 0.046

Farm 19 0.083 0.016 0.017 0.073 0.062
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Chapter 3

SCENARIO REDUCTION

3.1 Motivation

Power system operation is a decision-making processes, and it is important to specify our

target and analyze the tools that we have to reach this target. In this dissertation, our focus

is on short-term operation planning, and we put our major focus on the unit commitment

(UC) applications.

As discussed in Chapter 2, a set of scenarios provides system operators with more insight

on the possible wind uncertainty in the day-ahead (DA) and real-time (RT) markets. The

question now is how to use this information more effectively. A lot of papers have addressed

this problem from various perspectives, including power system, optimization, statistics and

computer science.

From the power system perspective, the power system can be protected from wind uncer-

tainty through the provision of additional reserve. Matos [82] determine the system dynamic

reserve amount through the probabilistic forecast results. The forecasted median generation

minus a lower quantile computes the amount required when a wind generation shortage hap-

pens. Botterud et al. [83], and Zhou [84] use a similar reserve sizing rule and find that it

can produce cost-effective schedules even when compared to a stochastic unit commitment.

Zhou [9] further proposes to optimally determine the reserve amount based on the demand

curve. Wind uncertainty, load uncertainty and generation outages are considered to con-

struct the demand curve. Then, the optimal amount of reserve can be determined through

co-optimization of energy and reserve with this reserve demand curve offer. Similarly, Brun-

inx [85] proposes to use a lower quantile from the wind forecast error to determine the reserve

amount. The same authors further extend their work to probabilistically determine both the
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up and down reserve amount with energy and reserve co-optimization [86]. Papavasiliou [10]

shows that the “3+5” reserve rule is a good approximation of the results of a stochastic pro-

gramming scheduling. As suggested in [87], zonal reserve rule can further reduce potential

transmission congestion when calling the reserve. MISO implements a performance-based

regulating reserve rules as in [88]. Motivated with works in [89], Dvorkin et al. [90] proposes

a metric to evaluate the system flexibility requirements with wind variability. Same authors

also consider to use wind itself to provide reserve products [91]. In addition, system economic

and reliability performances are further improved with FACTS devices, PMU and flexible

system topology with microgrid connection-mode [92, 93, 94, 95, 96].

A natural way to use scenarios is to apply stochastic programming methods (SP) to do

a stochastic optimization for the scheduling. Indeed, SP based stochastic unit commitment

(SUC) usually produces a more cost-effective schedule than a deterministic unit commitment

(DUC) with reserve rules. Especially when the reserve requirement is excessive, the DUC

schedule is much more conservative compared to the schedule produced by a SUC. This topic

has been well addressed in the literature [10, 11, 43, 97, 98, 99, 100, 101, 102]. In theory, the

more scenarios used in the SP, the better approximation SP can reach to quantify the full

distribution of scenarios. However, in reality, due to the limited computational resources, the

number of scenarios applied to SUC is restricted. Therefore, a scenario reduction technique

is needed to sample scenarios out of the large initial scenario set. Many algorithms have

been proposed, including fast forward selection (FFS) [13], simultaneous backward reduc-

tion (SBR) [13], K-means clustering [103], importance sampling [6], and other fast forward

selection variants as in [104, 105, 106].

Traditional scenario reduction formulates the problem as a transportation problem to

minimize the Kantorovic Distance. A continuous probability distribution function is dis-

cretized for each scenario. The goal is to preserve the maximum distribution information

from the original scenario set in the reduced scenario set. A forward selection and a backward

reduction greedy algorithms were first introduced in [107]. Then, modified greedy algorithms

were proposed to improve computational efficiency in [13] with fast forward selection and
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simultaneous backward reduction. Since they were introduced in the GAMS environment

[108], these methods have been widely applied in the literature.

In FFS, the Euclidean distance is commonly used as the metric to quantify the pairwise

scenario distance. This metric respects the natural distance between the physical wind

energy amounts. However, in power systems, it is not the wind energy uncertainty itself,

but the impact caused by this wind uncertainty that really matters to the system operators.

Therefore, some FFS variants have been proposed. Morales [104] proposed to compute the

Euclidean distance of the system wide market results rather than of the wind energy as the

scenario distance for FFS. Feng [109] proposed to first cluster the scenarios and then sample

each cluster centroid with FFS. Bruninx [106] proposed to use the absolute difference in the

total system costs for FFS. Gomez-Martinez [110] also indicated the benefits with FFS in a

UK study.

Papavasiliou [6] proposed a scenario selection algorithm motivated by importance sam-

pling. A deterministic UC is first solved to find the first-stage UC decisions. These decisions

are then fixed. For every scenario, a deterministic economic dispatch is run to find their

its operating cost. These costs actually represent their probability contribution during the

scenario sampling.

Essentially, the scenario reduction problem can be viewed as a clustering problem. The

centroid of each cluster can be used as the core scenarios to be selected. In [111], Sumali

et al. propose an information theoretic learning (ITL) mean shift algorithm to cluster and

find scenarios. K-means is a most widely accepted clustering technique that can serve this

purpose easily [112]. As a K-means centroid is actually a synthetic average of the data points

of the cluster, a K-Medoids version [72] is more appropriate in SUC applications. Due to

the nonconvex optimization used in the clustering process, the initialization has a big impact

on the results. A K-means++ initialization step [113] is used for the K-Medoids version

scenario selection.

Although different decomposition algorithms have been applied in this field, such as

Benders decomposition [114] and progressive hedging [99, 115], the number of scenarios
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Figure 3.1: Schematic representation of a scenario set in the (a) scenario-based with five

scenarios, and (b) interval stochastic UC with three scenarios. The gray lines represent

scenarios and the blue lines represent the deterministic constraints on ramping [103].

actually used is still relatively limited compared to the size of the original full set.

Recently, interval optimization [21, 23] has been successfully applied to the UC prob-

lem. For these formulations, the uncertainty set is represented by polyhedral uncertainty

boundaries or a “box set”. This approach can be thought of as a particular case of scenario

reduction.

Figure 3.1 illustrates the difference between the uncertainty models in the scenario-based

and in the interval UC. In the interval formulation, the scenario set contains only three

scenarios: the central forecast, an upper bound and a lower bound. The bounds for each

hour are set in such a way that a given percentage of scenario magnitudes remains within

the bounds. Additionally, the inter-hour ramps, depicted by blue lines in Figure 3.1(b),

are enforced using additional constraints. The objective function of the interval stochastic

UC minimizes the operating cost for the central forecast, while only the feasibility of the

solution is guaranteed for the upper and lower bounds. In contrast with the scenario-based
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formulation, the interval stochastic UC does not account for the likelihood of the upper and

lower bounds. Therefore it produces a schedule that is more expensive but also more robust

than the scenario-based UC. In addition, the interval stochastic UC is computationally less

demanding than the scenario-based formulation since it considers fewer scenarios. The upper

and lower limits for the wind and ramping requirements can be efficiently extracted by finding

the confidence interval of the full scenario set. This can be seen as an extreme way to reduce

scenario size. Robust optimization [20, 28, 116] can similarly obtain the wind bounds.

Although these techniques have been successfully implemented, some questions remain.

Which technique performs best from an operation viewpoint is yet to be ascertained. The

proper number of scenarios that needs to be fed to the stochastic UC remains an externally

defined parameter.

In this chapter, we first present our comparison of the current scenario reduction tech-

niques for scenario-based SUC and interval UC. The DA costs and the corresponding Monte-

Carlo costs are evaluated. The computational performance of the different algorithms are

also presented. The interval UC is also included in the evaluation. In the second part of

the chapter, a submodular scenario reduction technique is introduced to efficiently select

scenarios as well as determine the optimal number of scenarios based on a defined tolerance.

3.2 Comparison of State-of-art Techniques

3.2.1 Scenario-based Stochastic Unit Commitment Formulation

In this subsection, we present the two-stage stochastic scenario-based UC formulation used

for simulation. Numerous papers describe computationally efficient or tight and compact

formulations for the deterministic unit commitment problem. Here, we adopt a formulation

based on the work presented in [117, 101, 118].

3.2.1.1 Objective Function

min
∑
i,t

csui,t +
∑
t

PROBs(
∑
i,t

cpgi,t,s + V oLL
∑
b,t

ensb,t,s + V oWS
∑
w,t

curtw,t,s) (3.1)
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qi,j,t ≤
TMAX
i,j∑

tt=TMIN
i,j

yi,t−tt, ∀i, j, t (3.2)

∑
j

qi,j,t = zi,t, ∀i, t (3.3)

csui,t =
∑
j

SUCi,jqi,j,t, ∀i, t (3.4)

cpgi,t,s = NLCixi,t +
∑
k

MCi,kgi,k,t,s, ∀i, t, s (3.5)

As shown in equation (3.1), the SUC model minimizes the sum of the stepwise startup cost

and expected sum of the fuel costs and the penalty for load shedding and wind curtailment.

In the DUC settings, there is only one scenario and its probability is 1. Equations (3.2) —

(3.5) describe the calculation of the startup and fuel costs.

3.2.1.2 System-wide Operating Constraints

Power Balance Constraint:∑
i∈r(b)

pi,t,s+
∑

w∈r(b)

(WFw,t,s−curtw,t,s)−
∑
b∈f(l)

pfl,t,s+
∑
b∈t(l)

pfl,t,s = Db,t−ensb,t,s, ∀b, t, s (3.6)

Power Flow Constraints:

pfl,t,s =
1

Xl

(θf(l),t,s − θt(l),t,s), ∀l, t, s (3.7)

− FLcap
l ≤ pfl,t,s ≤ FLcap

l , ∀l, t, s (3.8)

Voltage Angle Constraints:

− π ≤ θb,t,s ≤ π, ∀b, t, s (3.9)

θb,t,s = 0, b = slackbus, ∀t, s (3.10)

Load Shedding Constraint:

ensb,t,s ≤ Db,t,∀b, t, s (3.11)

Equations (3.6) – (3.11) represent the constraints related to the system operating con-

straints, including the power balance constraints, the power flow constraints and the voltage

angle constraints.
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3.2.1.3 Conventional Generation Constraints

Generator Logical Constraint:

xi,t − xi,t−1 = zi,t − yi,t, ∀i, t (3.12)

Minimum Up and Down Time Constraints:

t∑
tt=t−MUTi+1

zi,tt ≤ xi,t, ∀i, t (3.13)

t∑
tt=t−MDTi+1

yi,tt ≤ 1− xi,t, ∀i, t (3.14)

Generation Block Constraints:

pi,t,s = PMIN
i xi,t +

∑
k

gi,k,t,s, ∀i, t, s (3.15)

gi,k,t,s ≤ PRi,k, ∀i, k, t, s (3.16)

PMIN
i xi,t ≤ pi,t,s ≤ PMAX

i xi,t, ∀i, t, s (3.17)

Ramp Rate Constraints:

pi,t,s − pi,t−1,s ≤ RUi, ∀t > 1, ∀i, s (3.18)

pi,t−1,s − pi,t,s ≤ RDi, ∀t > 1, ∀i, s (3.19)

pi,t,s − POi ≤ RUi, ∀t = 1, ∀i, s (3.20)

POi − pi,t,s ≤ RDi, ∀t = 1, ∀i, s (3.21)

Equations (3.12) – (3.21) represent all the generation constraints in the UC model, in-

cluding the minimum and maximum generation limits, the ramping constraints, the UC

logic, and the minimum up and down time constraints.

3.2.1.4 Wind Constraints

Wind Curtailment Constraint:

curtw,t,s ≤ WFw,t,s, ∀w, t, s (3.22)
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3.2.2 Interval Unit Commitment Formulation

In this subsection, we present the Interval UC formulation. Since the upper bound, the lower

bound and the central forecast are explicitly modeled in the IUC, its formulation is similar

to the scenario-based SUC formulation of Section 3.2.1 with only 3 scenarios. In addition,

transition ramping constraints are included to ensure that enough system ramping capability

is available for extreme events. Here, we follow the formulations presented in [21, 43, 103].

Objective Function:

min
∑
i,t

csui,t +
∑
i,t

cpgi,t,0 + V oWS
∑
w,t

curtw,t,0) (3.23)

(3.2) – (3.5) (3.24)

Equation (3.23) shows that the IUC minimizes the total operating cost for the central

forecast (denoted with a 0 scenario index). Since no load shedding is allowed in the IUC

formulation, we omitted the penalty cost in the objective function.

System Wide Operating Constraints:

(3.6) – (3.10) (3.25)

ensb,t,0 = 0 (3.26)

The original load shedding constraint is modified for the IUC setup as in (3.26). Other

constraints remain the same as in the SUC formulation.

The wind generation constraints are the same as in (3.22).

Thermal Generation Constraints:

(3.12)) – (3.21) (3.27)

pi,t+1,lb − pi,t,0 ≤ RUi, ∀t < T, ∀i (3.28)
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pi,t,0 − pi,t+1,ub ≤ RDi, ∀t < T, ∀i (3.29)

pi,t+1,lb − pi,t,ub ≤ RUi, ∀t < T, ∀i (3.30)

pi,t,lb − pi,t+1,ub ≤ RDi, ∀t < T, ∀i (3.31)

In addition to the technological constraints in (3.27), the IUC adds ramping transition

feasibility constraints as in (3.28) – (3.31). Equations (3.28) and (3.29) model the transition

between base case scenario 0 to upper bound ub and lower bound lb. Similarly, Equation

(3.30) and (3.31) model the transition between the upper bound ub and the lower bound lb

cases. Every time a lower wind case moves to a higher one (base case to upper bound or

lower bound to upper bound) possibly requires generation ramp down due to the decreased

net load as in (3.29) and (3.31). Conversely, when a higher wind case moves to a lower one

(base case to lower bound or upper bound to lower bound), the remaining generation must

ramp up due to the increased net load as in (3.28) and (3.30). This trend is in the opposite

direction as the bound movement because the wind is treated as a negative load.

3.2.3 Simulation Setup

Four scenario reduction techniques using the UC formulations described above have been

tested on a modified version of the 24-bus IEEE RTS [119]. The installed capacity of the test

system is 3405 MW. The cost curves of the generating units in this system are approximated

as three-segment piece-wise linear functions with equally spaced elbow points. Similarly, the

start-up cost of each generator is modeled as a piece-wise linear function of the generator’s

down time. Other details of this system, including the minimum up and down time of

generators, ramp rates, the configuration of the transmission network and its power flow

limits, can be found in [120]. The wind penetration is assumed to be 20 % in terms of the

energy consumed daily system-wide. The value of wind spillage is set to $ 35 /MWh [121]

and the value of lost load is set to $ 5000 /MWh [122].

The wind and load forecasts are based on BPA data [123]. Wind scenarios are obtained

using an ensemble approach as in Section 2.3. Two sets of 1000 wind generation scenarios
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Figure 3.2: Wind profiles with positive and negative correlation with load

were generated with positive and negative correlation between the central wind forecast and

the load. The central forecast for each scenario set was calculated as the average of the 1000

scenarios. Figure 3.2 illustrates these central wind forecasts. For positively correlated wind

and load forecasts, the peak wind production occurs during daytime hours, and during the

night for the negatively correlated wind and load forecasts.

To reflect standard practice in power system operation, the stochastic UC is solved based

on the day-ahead load and wind scenarios to produce the optimal day ahead schedule. The

value of the objective function for this schedule gives the day-ahead cost (DAC) of operating

the power system for the set of scenarios considered. Since these day-ahead scenarios are by

definition uncertain, the DAC is a projected or expected cost, rather than an actual cost.

A Monte Carlo simulation is required to estimate the actual operating cost (AOC) i.e. the

cost that would be incurred on the day, when the realization of load and wind uncertainty
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is known and the day-ahead schedule must be adjusted to keep the system in balance. The

difference between the DAC and the AOC is the cost of corrective dispatch, i.e. the cost

of the adjustments to the day-ahead schedules that are required in real time to meet the

load and wind realizations. Changes in the commitment decisions made in the day ahead

schedule are allowed in the Monte-Carlo simulation if constraints on the minimum up- and

down- time limits are not violated.

For each Monte-Carlo trial, the day-ahead schedule produced using a given stochastic

formulation and scenario reduction technique is dispatched to meet a particular realization

of wind and load uncertainty. Realizations of load uncertainty are modeled using a normal

distribution, as explained in [8]. Wind power forecast errors are modeled using the skew-

Laplace distribution [124]. The cost of this dispatch represents the AOC for a particular

realization of uncertainties. This cost includes the start-up cost of the day-ahead and real-

time commitments, the cost of dispatch of generators under known realizations of wind and

load uncertainties, as well as the wind spillage and load shedding costs. The number of trials

required for each schedule is max(1000, NMC) where NMC is the number of trials required

to achieve 95 % confidence [125].

3.2.4 Case Study Results

3.2.4.1 Day-Ahead Schedules and Costs

At the day-ahead stage, the scenario-based stochastic UC is solved for 5, 10, 20, and 40

scenarios, obtained using the K-means [113], Simultaneous Backward Reduction (SBR) [13],

Fast Forward Selection (FFS) [13] and Importance Sampling (IS) [6] scenario reduction

techniques. The interval stochastic UC is solved for the range of uncertainty between bounds

that discard 30, 20, 10, and 1 % of the extreme values at each time period. Figure 3.3 shows

the range of uncertainty obtained with different numbers of scenarios produced by the four

techniques and compares them to the range of uncertainty obtained when the 10 % largest

and smallest values are discarded. The range of uncertainty increases with the number of
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Figure 3.3: Comparison of the range of uncertainty obtained for different techniques

scenarios considered. Note that during some operating hours the ranges of uncertainty of

the scenario-based stochastic UC with 40 scenarios and of the interval UC are equal.

Table 3.1 and Table 3.2 show that the Day Ahead Cost (DAC) for the scenario-based UC

depends on the number of scenarios considered and increases with the number of scenarios.

This increase is explained by the larger range of uncertainty captured by a greater number of

scenarios. For a given number of scenarios, the DAC also depends on the scenario reduction

techniques but no scenario reduction technique appears to be significantly better than the
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others. These variations in DAC remain in the range [0.37, 0.93] % and [0.44, 0.79] % for

positively and negatively correlated wind and load forecasts, respectively.

Table 3.1: Day Ahead Cost (In 103 $) of the Scenario-Based schedule with positively corre-

lated wind and load

Scenarios FFS SBR K-means IS

5 566.7 568.8 567.0 567.7

10 570.6 571.2 570.5* 575.2

20 573.0 572.4* 577.5 577.8

40 576.0* 576.6 578.1 578.2

* - minimum DAC for a given number of scenarios

Table 3.2: Day Ahead Cost (In 103 $) of the Scenario-Based Schedule with negatively corre-

lated wind and load

Scenarios FFS SBR K-means IS

5 657.1* 657.6 656.7 652.4

10 657.1 659.1 656.9* 660.3

20 658.9 658.5* 659.7 662.1

40 660.6* 662.6 663.5 663.2

* - minimum DAC for a given number of scenarios

Table 3.3 and Table 3.4 show that the DAC of the interval UC increases as the range

of uncertainty increases. If the range of uncertainty is relatively small (30 %), the interval

UC has a smaller DAC cost than the scenario-based UC with any number of scenarios and

any scenario reduction technique. As the range of uncertainty increases, the DAC of the

interval formulation also increases. The difference between the DAC of the scenario-based
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formulation with 40 scenarios and the interval formulation is in the range [0.15, 0.53] % and

[0.73, 1.1] % for positively and negatively correlated wind and load forecasts, respectively.

Table 3.3: Key statistics for the Day-Ahead Interval UC schedules with positively correlated

wind and load

30% 20% 10% 1%

CPU time (s) 61.8 42.42 94.3 49.3

DAC (103 $) 565.2 568.2 572.4 579.3

Table 3.4: Key statistics for the Day-Ahead Interval UC schedules with negatively correlated

wind and load

30% 20% 10% 1%

CPU time (s) 48.7 41.9 37.3 31.4

DAC (103 $) 658.1 658.5 659.3 668.1

Table 3.5 and Table 3.6 present the computation time for the scenario-based stochastic

UC. As long as the number of scenarios in the scenario-based approach remains relatively

low, there are no significant differences in the scenarios generated by different scenario re-

duction techniques and, therefore, the computation time is weakly dependent on the scenario

reduction technique used. As the number of scenarios increases, scenarios generated by dif-

ferent scenario reduction techniques become more varied and require different amounts of

computation time. The FFS scenario selection technique produces scenarios that result in

the fastest solution of the scenario-based stochastic UC. On the other hand, the IS scenario

reduction technique produces scenarios that require the largest computation time. Table 3.3

and Table 3.4 have already shown that the interval UC usually requires less computing time

than the scenario-based stochastic UC and that this computing time does not have a simple
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relation to the range of uncertainty considered.

Table 3.5: Computational time (s) for the Scenario-based SUC schedules with positively

correlated wind and load

Scenarios FFS SBS K-means IS

5 53.8 54.101 58.9 59.0

10 168.0 156.6 290.8 271.6

20 864.3 1027.7 1142.5 1942.6

40 2207.9 3516.2 4097 4801

Table 3.6: Computational time (s) for the Scenario-based SUC schedules with negatively

correlated wind and load

Scenarios FFS SBR K-means IS

5 45.5 42.7 52.8 55.8

10 108.0 115.7 101.9 111.9

20 433.2 407.1 384.8 554.0

40 2635 1645 3797 7890

The day-ahead results obtained for the scenario-based and the interval UC indicate that

the scenario reduction technique is a factor that significantly affects the computation time

of the stochastic UC. On the other hand, if the scenario-based UC is solved with different

scenario reduction techniques the DAC variations would be of the same order of magnitude

as the DAC difference between the scenario-based and interval formulations.
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3.2.4.2 Real-Time Re-dispatch and Actual Operating Cost

Table 3.7 and Table 3.8 show the expected value of the actual operating cost, E(AOC), its

standard deviation, σ(AOC), the expected cost of corrective dispatch, E(∆), the expected

start-up cost, E(SC), and its standard deviation, σ(SC), for the scenario-based schedules

obtained with different scenario reduction techniques and for different numbers of scenarios.

The expected value of the start-up cost includes the day-ahead start-up cost and the expected

start-up cost of real-time changes to the commitment decisions. The FFS technique results in

the least expensive AOC and, therefore, produces the most cost-effective day-ahead schedule.

On the other hand, the schedules produced by the FFS technique also result in the largest

standard deviation for the AOC. This indicates that the least expensive solution is also less

adaptable to worst-case realizations of uncertainty than more expensive schedules obtained

with the other scenario-reduction techniques.

The AOC also depends on the number of scenarios considered in the scenario-based

stochastic UC. If the number of scenarios is 5, the generation schedule is based on an in-

accurate representation of the uncertainty and, therefore, this schedule requires expensive

adjustments in real-time. On the other hand, if the number of scenarios is 40, the sched-

ule accommodates scenarios with low probabilities and is therefore unnecessarily robust and

expensive. The minimum AOC occurs for 10 or 20 scenarios for all the scenario reduction

techniques considered. The standard deviation of the AOC monotonically decreases as the

number of scenarios increases. This trend indicates that a larger number of scenario im-

proves the adaptability of the schedule. Although, the expected start-up cost does not vary

significantly for different numbers of scenarios or scenario reduction techniques, its stan-

dard deviation decreases as the number of scenarios increases. Therefore, a more robust

representation of uncertainty causes less cycling of generators.

Table 3.9 and Table 3.10 summarize key statistics of the Monte-Carlo simulations for the

interval UC using the same notations as in Table 3.7 and Table 3.8. The AOC increases as

the range of uncertainty increases and is very sensitive to the bounds. If the 30 % bounds
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Table 3.7: Actual Operating Cost (In 103 $) of the Scenario-based SUC schedules with

positively correlated wind and load

scenarios Parameter FFS SBR K-means IS

5

E(AOC) 593.0* 593.1 593.1 596.2

σ(AOC) 17.7 17.7 16.2 16.1

E(∆) 26.3 24.3 26.1 28.5

E(SC) 21.3 21.1 21.3 22.9

σ(SC) 0.719 0.728 0.715 0.708

10

E(AOC) 590.4* 591.0 590.8 592.2

σ(AOC) 17.3 17.3 17.3 15.8

E(∆) 19.8 19.8 20.3 17

E(SC) 19.5 21.1 21.3 10.8

σ(SC) 0.188 0.186 0.182 0.204

20

E(AOC) 590.5* 591.5 590.9 593.1

σ(AOC) 16.1 16.0 15.7 15.7

E(∆) 17.5 19.1 13.4 15.3

E(SC) 21.4 21.1 23.1 23.1

σ(SC) 0.167 0.157 0.193 0.150

40

E(AOC) 593.3* 593.5 594.2 596.7

σ(AOC) 15.7 15.8 15.5 15.7

E(∆) 17.3 16.9 16.1 18.5

E(SC) 22.9 22.9 22.8 22.8

σ(SC) 0.155 0.191 0.138 0.138

* - minimum AOC for a given number of scenarios

are used, the schedule is not robust enough and results in the largest cost of corrective
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Table 3.8: Actual Operating Cost (In 103 $) of the Scenario-based SUC schedules with

negatively correlated wind and load

scenarios Parameter FFS SBR K-means IS

5

E(AOC) 666.6* 669.0 668.4 667.6

σ(AOC) 13.9 13.8 13.9 13.0

E(∆) 9.5 11.4 11.7 15.2

E(SC) 12.0 12.2 12.1 12.5

σ(SC) 0.693 0.754 0.605 0.229

10

E(AOC) 667.4* 669.1 668.7 668.1

σ(AOC) 13.2 13.0 13.1 12.6

E(∆) 10.7 10.0 10.6 7.8

E(SC) 12.1 12.3 12.2 12.1

σ(SC) 0.656 0.646 0.584 0.161

20

E(AOC) 665.5* 665.7 665.7 670.6

σ(AOC) 12.9 12.9 13.0 12.7

E(∆) 6.6 6.2 6.0 8.5

E(SC) 12.3 12.1 12.3 12.2

σ(SC) 0.596 0.619 0.214 0.129

40

E(AOC) 669.1* 671.9 671.7 671.0

σ(AOC) 12.6 12.4 12.3 12.4

E(∆) 8.5 9.3 8.2 7.8

E(SC) 12.3 12.1 12.2 12.6

σ(SC) 0.133 .119 0.136 0.111

* - minimum AOC for a given number of scenarios

actions. On the other hand, the schedule with the 1 % bounds is more expensive than any
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Table 3.9: Actual Operating Cost (In 103 $) of the Interval UC schedules with positively

correlated wind and load

Parameter 30% 20% 10% 1%

E(AOC) 587.8* 590.1 591.2 596.3

σ(AOC) 18.1 16.8 15.6 1.5

E(∆) 22.3 21.9 18.8 17.0

E(SC) 12.3 12.5 12.2 12.2

σ(SC) 0.200 0.185 0.207 0.123

* - minimum AOC for a given number of scenarios

scenario-based stochastic UC in Table 3.7 and Table 3.8. In addition, it requires the least

costly corrective actions. The AOC of the interval solution is larger than the cost of the

scenario-based solution for the positively correlated wind and load profiles and the difference

is in the range [0.13, 0.35] % for different numbers of scenarios. On the other hand, for the

negatively correlated wind and load profiles, this range is [-0.48, 0.06] %. This indicates that

the cost of the interval approach can be lower than the cost of the scenario-based approach

(e.g. the cost for 5 scenarios) if scenarios do not represent uncertainty accurately and require

expensive corrective dispatch.
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Table 3.10: Actual Operating Cost (In 103 $) of the Interval UC schedules with negatively

correlated wind and load

Parameter 30% 20% 10% 1%

E(AOC) 685.3 668.9 665.9* 669.7

σ(AOC) 21.3 20.9 1.30 0.891

E(∆) 27.2 10.4 6.6 1.6

E(SC) 21.2 21.1 21.2 22.7

σ(SC) 0.825 0.697 0.570 0.113

* - minimum AOC for a given number of scenarios
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3.3 Scenario Reduction with Submodular Optmization

Stochastic programming methods have been proven to deal effectively with the uncertainty

and variability of renewable generation resources. However, as shown in the previous section,

the quality of the solution that they provide (as measured by cost and reliability metrics)

depends on the accuracy and the number of scenarios used to model this uncertainty and

variability. Scenario reduction techniques are used to manage the computational burden

by selecting representative scenarios. The common drawback of existing scenario reduction

techniques is that the number of representative scenarios is a user-defined parameter. In this

subsection, we propose a new and efficient Submodularity-based Scenario Reduction (SSR)

to endogenously optimize the number of scenarios as well as rank these scenarios. This

algorithm is compared, both qualitatively and quantitatively, with the state-of-the-art fast

forward selection (FFS) algorithm. Numerical results demonstrate that the proposed SSR is

related to the FFS but is significantly faster.

3.3.1 Background

Over the last few years, scenario-based Stochastic Programming (SP) has been used to

compute generation schedules that take into account the uncertainty on the net load which

must be served by conventional generators. Ideally, this optimization should be based on

a substantial number of wind generation scenarios. However, to reduce the computational

burden, a large initial set of scenarios must be reduced to a smaller subset of representative

scenarios. As discussed in the previous subsection, the quality of the SP solution decreases

if this reduced set is too small, and the SP solution time increases if it is too large. Among

these scenario reduction techniques, FFS has been shown to be the most efficient. However,

this technique requires that the reduced number of scenarios be predefined. Furthermore, the

scalability of the FFS algorithm to large initial sets of scenarios has not been demonstrated.

Submodular function optimization has recently been shown to provide theoretically-

bounded and computationally efficient solutions to feature selection [126, 70, 127, 128], train-
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ing data selection [129, 130, 131] and other machine learning applications [132, 133, 134].

Nemhauser [135] showed that if a submodular function is monotone non-decreasing, the

problem of maximizing such a function can be approximately solved using a simple greedy

algorithm, which is guaranteed to yield a solution within a constant factor of the optimum.

Diminishing return property is one of most important properties for submodular function

optimization. It states that the incremental gain from selecting one more member is always

non-increasing. Therefore, this gain upper bound for incremental helps to derive efficient

algorithms.

Definition : For every X, Y ⊆ Ω with X ⊆ Y and every x ∈ Ω \ Y , we have that

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

3.3.2 Method

We first compute the similarity matrix wij for each scenario pair using a radial basis kernel

function (RBF) and an `2-norm:

wij = e−
dij
λ = e−

||si−sj ||2
λ (3.32)

where si and sj are the time series of scenarios i and j. λ is a parameter controlling similarity

scaling. Typically we tune λ from empirical values obtained from the pairwise scenario `2-

norm distribution.

A cardinality-constrained version of the SSR (ccSSR) can be formulated as a facility

location problem:

max
R

f1(R) = max
R

(∑
i∈O

max
j∈R

wij

)
(3.33)

s.t. : card(R) ≤ K (3.34)

where O, R are the initial and reduced scenario sets and K is the maximum size of the

reduced set. This formulation assumes that each scenario is equiprobable with a uniform
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probability distribution p. However, a non-uniform distribution can be easily embedded

within the similarity matrix. The probability distribution q of the reduced set R can be

computed using the rule proposed in [13].

This type of combinatorial problem is in general NP-hard. Fortunately, our ccSSR max-

imizes a monotonic non-decreasing submodular function under a cardinality constraint. We

can therefore apply an accelerated greedy algorithm [126, 136], as described in Algorithm 1.

This accelerated greedy algorithm achieves orders of magnitude performance speedups and

scales up well when the initial scenario set is large.

The order of selection represents the relative importance of the contribution of each

scenario to the objective function, which can be used as the rank. If K is set to a very large

value, we can use this algorithm to rank the scenarios, examine the incremental improvements

in the objective function and select the cut-off point on the number of scenarios where the

benefit saturate.

Alternatively, we can also formulate the following cardinality-unconstrained SSR (cuSSR)

problem:

max
R

f2(R) = max
R

[(
∑
i∈O

max
j∈R

wij)− βcard(R)] (3.35)

where β controls the weight of the cardinality penalty added to the objective function. A

large β tends to select fewer scenarios but reduces the SP solution accuracy, while a small β

yields more scenarios but increases the SP computational burden. In our tests, we set β = 1

because values of the elements of wij range between 0 and 1. As the objective function is no

longer monotone increasing, the bounded optimality condition does not hold. However, the

problem in (3.35) can still be solved using Algorithm 1. Testing shows that the solution is

still sufficiently fast, and in the ccSSR the parameter β can be used to set the cut-off point

for selecting the optimal number of scenarios, which results in same scenario selections as in

cuSSR.
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Algorithm 1 Submodular scenario reduction algorithm
1: Initialize R← ∅, f(R)← 0,

2: for i = 1, 2, · · · , N do

3: vi ← f(i)

4: end for

5: while card(R) ≤ K do

6: j ← arg maxi∈O\R vi

7: vj ← f(R ∪ {j})− f(R) (Calculate incremental benefits)

8: if vj > maxi∈O\(R∪j) vi then

9: R← R ∪ {j} {Diminishing return property}

10: vj ← 0

11: else if vj ≤ 0 then

12: Break {Solution is (locally) optimal}

13: end if

14: end while

15: for i = 1, 2, · · · , card(R) do

16: qi ← pi +
∑

j∈O(i) pj , where O(i) ← {j ∈ O \ R : i = arg maxi∈R wij} {Re-distribute

probability}

17: end for

18: return R, q

3.3.3 Comparison to Fast Forward Selection (FFS) Technique

The FFS technique [13] essentially optimizes minR(
∑

i∈O minj∈R dij) with the cardinality

constraint (3.34), and solves the above discrete optimization with a forward greedy heuristics.

Our proposed formulation is in max max form. The FFS and ccSSR techniques thus solve the

same problem but with different pairwise scenario distance scaling. As the results presented

in the next section show, these two algorithms indeed select very similar scenarios, but

SSR does it much faster than FFS. Furthermore, while FFS can only select a given number

scenarios, SSR efficiently ranks these scenarios and cuSSR optimizes the number of scenarios.
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3.3.4 Numerical Results

Using neural network as in Section 2.3, we generated an initial set of 10,000 wind scenarios

for three wind farms based on the NREL dataset. The upper part of Table 3.11 compares the

FFS with the ccSSR in terms of selection speed for various sizes of the initial set of scenarios

and different values of the cardinality K of the reduced set. The lower part of this table gives

the optimal value of K as calculated by the cuSSR and the corresponding computing time

for β = 1. Except for small scale selections, the ccSSR is consistently faster than the FFS.

Moreover, compared to the FFS, the computing time of the ccSSR increases slowly with the

initial number of scenarios. The diminishing return property and priority queue motivate

the accelerated greedy algorithm [126], which greatly reduces the search space.

Table 3.11: Solution time comparison

N = 1000 N = 2000 N = 5000 N = 10000

Time (s) FFS ccSSR FFS ccSSR FFS ccSSR FFS ccSSR

K = 20 0.10 0.15 0.38 0.45 2.34 2.01 9.77 8.02

K = 100 0.42 0.23 1.64 0.64 9.96 2.75 40.6 10.7

K = 1000 6.46 0.33 20.1 0.94 105 4.20 408 16.0

cuSSR Optimal K∗ 19 34 73 136

Time (s) 0.20 0.68 3.54 15.7

Table 3.12 shows that, starting from an initial set of 5,000 scenarios, the FFS and ccSSR

select mostly the same scenarios. The scenarios obtained by the ccSSR yield similar values

of the FFS objective function as those obtained by the FFS. These reductions were carried

out for three values of the scaling parameter λ. The overlap between the selections is higher

for larger λ because a larger λ results in similar scalings in SSR and in FFS.

Figure 3.4 shows the incremental change in the objective function after each scenario

selection. A smaller cardinality penalty β selects more scenarios closer to the saturation
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Table 3.12: Number of scenarios selected by both FFS and ccSSR

K 10 20 50 100 500 1000 2500 K∗

λ = 0.5 8 18 42 90 433 887 2405 240

λ = 2.5 9 18 49 97 484 961 2449 73

λ = 10 9 20 50 100 498 986 2472 22

point. By varying the cardinality penalty β, we can therefore achieve a tradeoff between the

accuracy and speed of the SP.

The cuSSR cardinality-unconstrained formulation selects about 1.4% of the initial set of

scenarios for λ = 10. These small values of K∗ support the observation from [103, 97] that

a good enough stochastic unit commitment solution does not necessarily require a large set

of scenarios.

In the Table 3.13, we present the selection results in terms of the FFS objective

(
∑

i∈O minj∈R dij) (recall that the FFS tries to optimize minR(
∑

i∈O minj∈R dij)), where dij

is the euclidean distance between two scenarios. The calculation is based on the scenarios

selected in the Table 3.12.

Table 3.13: Selection results in terms of FFS objectives

K 10 20 50 100 500 1000 2500

λ = 0.5 9688.2 9484.6 9237.1 9020.8 8072.4 7066.4 4252.3

λ = 2.5 9667.6 9482.0 9235.0 9019.4 8071.2 7066.7 4254.0

λ = 10 9667.6 9482.7 9234.9 9019.4 8071.3 7067.1 4254.8

FFS 9667.5 9482.7 9234.9 9019.3 8071.1 7067.2 4255.1

From Table 3.13, we can observe that our proposed SSR indeed selects scenarios with

similar FFS objectives. As explained in section 3.3.3, the FFS and SSR are strongly con-

nected. This table demonstrates this as well. Since our problem is a maximization, it does
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not guarantee that the selection is smaller than what the FFS produces. However, from these

empirical results, it is not surprising to see that our results are very close to those of FFS

most of the time and even better in some cases. Since FFS is a forward greedy algorithm,

there is no guarantee that it produces the global optimal solution.

Table 3.14: Selection results in terms of SSR objectives λ = 0.5

K 10 20 50 100 500 1000 2500

λ = 0.5 119.10 135.98 173.94 228.59 628.44 1119.58 2584.32

FFS 118.92 135.89 173.85 228.52 628.26 1119.41 2584.11

Table 3.15: Selection results in terms of SSR objectives λ = 2.5

K 10 20 50 100 500 1000 2500

λ = 2.5 2313.77 2349.76 2401.10 2450.43 2698.86 2974.85 3766.32

FFS 2313.68 2349.60 2401.10 2450.43 2698.60 2974.75 3766.11

Table 3.16: Selection results in terms of SSR objectives λ = 10

K 10 20 50 100 500 1000 2500

λ = 10 4121.66 4137.04 4157.99 4176.62 4261.40 4352.38 4608.82

FFS 4121.65 4137.04 4157.99 4176.62 4261.40 4352.38 4608.79

In addition, we also present the results in terms of ccSSR objectives

f1(R) = (
∑

i∈O maxj∈R wij). As wij is determined with λ, Table 3.14 – 3.16 present three

different cases. In general, FFS and ccSSR result in similar results, and our ccSSR is always

no worse than FFS, empirically showing the advantage of our method.
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3.3.5 Discussions

The intrinsic uncertainty level of scenarios is not infinite, and the high-dimensional scenario

distribution can be captured by a limited number of key scenarios. In this case, similar with

the shape in Figure 3.4, the AOC from Monte-Carlo testing with increasing selected scenarios

should converge to a saturation level. After the ”sweet point”, selecting more scenarios does

not necessarily bring more economic benefits for modeling the scenario distribution.

Infinite number of scenarios in DA and Monte-Carlo should produce the ideal DA schedule

and true AOC results. However, when the scenarios used in Monte-Carlo is not infinite, this

saturation level should not be a constant value. As long as the numbers are within the

optimality gap from original MILP problem, we should be confident that the sweet point has

been found. Since more scenarios bring more computational burden rather than economic

savings, this specific scenario size number should be recognized as the optimal scenario

number.

Also noted that this optimal scenario number should be case by case. A larger initial

dataset is very likely to require a larger reduced set to fully capture the necessary distribution

information. Without carefully analyzing the data, it is not correct to simply select a fixed

number of scenarios only based on the reference number from the literature.

3.4 Summary

This section compares the scenario-based stochastic UC with different scenario reduction

technique and with the interval UC. Results demonstrate that different scenario reduction

techniques affect the operating cost and the computation time of the stochastic UC. The fast

forward selection technique generates scenarios, which result in the least expensive actual

operating cost for the scenario-based stochastic UC formulation. This scenario selection

technique is also shown to produce scenarios that cause the lowest computation burden.

Although this computation time is relatively small, it is an order of magnitude larger than

the computation time of the interval formulation. The results show that the difference
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between the cost of the interval and stochastic-based UC can be kept at a minimum if the

bounds of the interval method are chosen carefully. Further studies are needed to optimally

determine the bounds of the interval formulation and thereby to minimize the cost difference

between the interval and scenario-based stochastic UC.

Based on previous results, the proposed SSR optimizes the cardinality of the set of reduced

scenarios and outperforms the fast forward selection algorithm in terms of computational

speed, while selecting mostly the same scenarios. Because of the submodular property of

the objective function and the use of an accelerated greedy algorithm, SSR can be solved

much faster than FFS on large dataset. It is thus able to handle the very large initial set

of scenarios needed to reflect uncorrelated uncertainties on demand, wind generation, solar

generation and prices.
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Chapter 4

ENERGY STORAGE OPERATION IN A CENTRALIZED ISO
ENVIRONMENT

4.1 Motivation

Energy storage systems (ESS) have attracted significant interests for applications in the elec-

tric grid. The International Energy Agency reports that the total installed storage capacity

in the US is projected to grow from 22 GW in 2014 to 103 — 152 GW in 2050 [137]. This

huge amount of energy and power capacity has the potential to significantly improve grid

operation. Due to the capability of storing energy, ESS is a very flexible tool, and can pro-

vide multiple services to the grid, including energy arbitrage [14], frequency regulation [138],

voltage support [139], emergency support [140, 141], congestion relief [142], demand shifting

[143], renewable integration [144], as well as spinning and non-spinning reserve [145]. More-

over, BESS equipped on the electric vehicles (EV) are capable of providing multiple services

to the grid as well [146, 147, 148, 149, 150].

In this chapter, we focus on the application of ESS on day-ahead energy markets. In these

markets, energy arbitrage is a particularly important service that ESS can provide. When

an ISO has full control over the ESS, it can significantly reduce the system operating costs

through energy arbitrage. During low-priced periods, energy can be purchased to charge the

ESS, and during high-priced time interval, this energy can be discharged back into the grid

to lower the operating cost.

A number of papers discuss various formulations for the incorporation of energy storage

in the day-ahead market. Pandžić et al. [14] formulated a deterministic unit commitment

with distributed energy storage, and the DA results are used to make near-optimal storage

siting and sizing decisions. O’Dwyer [151] extended the hourly formulation to a sub-hourly
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one and showed that this change further reduces system costs.

In addition to this deterministic formulation, stochastic programming scenario-based for-

mulations have also been shown to be effective in dealing with renewable uncertainty. Li

[152] evaluated the stochastic unit commitment with energy storage and achieved reduced

system constraints violations in an the N-1 analysis. Pozo [18] proposed a stochastic for-

mulation to incorporate ideal storage considering multiple timescales. Das [143] presented

a unit commitment and economic dispatch framework to assess storage participation during

high wind penetration scenarios.

Based on developments in operations research, robust optimization has gained much

popularity in day-ahead scheduling. Jiang [19] formulated a robust unit commitment with

pumped hydro units to protect the system against the worst case net injections. Li [153]

proposed a storage operation framework based on an improved stochastic optimization frame-

work, which groups scenarios in the same time interval buckets [154]. This achieves a com-

putational and economic trade-off between a two-stage formulation and a multi-stage formu-

lation. In addition, interval formulation were shown to be effective by Wen [16] and Bruninx

[145].

Although various formulations have been proposed, no complete comparison has been

made between these formulations. With an increasing level of renewable penetration, deter-

ministic models are no longer adequate, and stochastic optimization methods are necessary.

The storage planning problem is essential to the future deployment of storage, and an ef-

fective base operation model can better reflect its true potential operating advantages and

disadvantages.

Storage operating cost is another component during scheduling and operation. For

pumped hydro energy storage (PHES) and compress air energy storage (CAES), the op-

erating costs are relatively low [155, 156]. On the contrary, BESS degradation costs can be

very expensive. A cycle-based degradation costs are modeled in [157]. At the power elec-

tronics level, battery energy management systems are also dicussed in [158, 159, 160, 161,

162, 163, 164].
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In this chapter, we formulate different unit commitment models with energy storage

and compare their performance in terms of day-ahead energy costs, day-ahead computing

time, real-time expected operating costs, expected operating cost distribution, operating cost

reduction and wind utilization.

4.2 Analysis of the Benefits of Energy Storage in UC

In this subsection, a cost-benefit analysis of energy storage operation is conducted with

various UC formations. We compare deterministic UC with reserve rule (DUC), stochastic

UC (SUC), interval UC (IUC) and robust UC (RUC) under different penetration levels. As

in Chapter 3, both day-ahead (DA) and Monte-Carlo simulation results will be presented to

produce a rigorous comparison.

4.2.1 Unit Commitment Formulations with Energy Storage

4.2.1.1 Stochastic Unit Commitment Formulation with Energy Storage

The SUC formulation without energy storage is exactly the same as in Section 3.2.1. With

energy storage, the power balance constraints must be modified, and additional storage

operating constraints must be added.

Revised power balance constraints to include storage components:∑
i∈r(b)

pi,t,s +
∑

w∈r(b)

(WFw,t,s − curtw,t,s) +
∑
h∈r(b)

(qdish,t,s − qchsh,t,s)

−
∑
b∈f(l)

pfl,t,s +
∑
b∈t(l)

pfl,t,s = Db,t − ensb,t,s, ∀b, t, s
(4.1)

Storage Operating Constraints:

SoCh,t,s = SoCh,t−1,s + qchsh,t,s η
chs
h − qdish,t,s/η

dis
h , ∀t > 1,∀h, s (4.2)

SoCh,t,s = SoCinit
h + qchsh,t,s η

chs
h − qdish,t,s/η

dis
h , t = 1, ∀h, s (4.3)

SoCmin
h ≤ SoCh,t,s ≤ SoCmax

h , ∀h, t, s (4.4)
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SoCh,t,s = SoCinit
h , t = NT , ∀h, s (4.5)

0 ≤ qdish,t,s ≤ Discaph , ∀h, t, s (4.6)

0 ≤ qchsh,t,s ≤ Chscaph , ∀h, t, s (4.7)

Equations (4.2) – (4.7) implement energy storage state-of-charge (SoC) transitions and

impose charging/discharging power limits are imposed. In (4.5), the ESS are required to get

back to its initial SoC setpoints. In this formulation, the ESS do not participate in reserve,

which would be a future extension.

4.2.1.2 Deterministic Unit Commitment with Reserve

The DUC formulation is similar to the formulation presented in Section 3.2.1. Most con-

straints are indeed the same. Since only one scenario is used in this formulation, the scenario

subscript has been removed.

Objective Function:

min
∑
i,t

(csui,t + cpgi,t) + V oLL
∑
b,t

ensb,t + V oWS
∑
w,t

curtw,t (4.8)

The DUC minimizes the operating cost and violation penalties, including startup cost,

production cost, load shedding penalty and renewable spillage penalty.

System-wide Constraints:

(3.6)) – (3.11) (4.9)∑
i

ri,t,s ≥ αload
∑
b

Db,t + αwind
∑
w

(WFw,t − curtw,t), ∀t (4.10)

The reserve constraint (4.10) is added to ensure that the system has enough reserve to

handle the potential wind uncertainty. The “3+5” rule is applied as the reserve requirement

[10].

Generation Constraints:

(3.12) – (3.16), (3.19), (3.21) (4.11)
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PMIN
i xi,t ≤ pi,t, ∀i, t (4.12)

pi,t + ri,t ≤ PMAX
i xi,t, ∀i, t (4.13)

pi,t − pi,t−1 + ri,t ≤ RUi, ∀t > 1,∀i (4.14)

pi,t − POi + ri,t ≤ RUi, ∀t = 1,∀i (4.15)

ri,t ≤MSRi∆T, ∀i, t (4.16)

Wind Constraint and storage operation constraints are the same as (3.22) and (4.2) –

(4.7).

4.2.1.3 Interval Unit Commitment

Without energy storage, the formulation is exactly as the same as the one presented in

Section 3.2.2. With energy storage, in addition to the revised power balance (4.1), storage

operation constraints (4.2) – (4.7), additional ramp transitional constraints must be added for

the energy storage. These constraints ensure that every storage operating target is reachable

during the bound transitions.

SoCh,t,0 − SoCh,t+1,lb ≤ Discaph , ∀t < T, ∀h (4.17)

SoCh,t+1,ub − SoCh,t,0 ≤ Chscaph , ∀t < T, ∀h (4.18)

SoCh,t,ub − SoCh,t+1,lb ≤ Discaph , ∀t < T, ∀h (4.19)

SoCh,t,lb − SoCh,t+1,ub ≤ Chscaph , ∀t < T, ∀h (4.20)

4.2.1.4 Robust Unit Commitment

In the RUC formulation, the objective is to minimize the operating cost under the worst

case scenario. The problem is in a min max min form. The middle and lower levels are trans-

formed into a single level equivalent using strong duality or KKT conditions [20]. Benders

decomposition with outer approximation [19] and Column & Constraint-Generation (CCG)
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[116] are widely used to solve this problem. Here, we present the basic formulation, and a

detailed derivation for the dual forms and solution techniques can be found in the [116].

Objective Function:

min
∑
i,t

csui,t + max
ww,t

min
pi,t

(
∑
i,t

cpgi,t + V oWS
∑
w,t

curtw,t) (4.21)

The generation constraints related to binary variables are included in the upper level.

The middle and lower levels solve a worst case scenario dispatch problem with given first-

stage schedules. The other dispatch related constraints are the same as in the deterministic

case without reserve. The wind uncertainty constraints are defined in (4.22) – (4.25). In

equations (4.22) – (4.23), uncertain wind should stay within the lower and upper bounds from

the forecast. In order to control the conservative level, Γw and Γt are defined in (4.24) and

(4.25) as spatial and temporal uncertainty budgets to limit wind variations. Through these

constraints, we separate the original RUC problem into a master problem and a subproblem.

Master problem is optimized to determine the optimal generation commitment, and the

subproblem to find the worst case scenario candidates. These candidates generate feasibility

and optimality cuts back to the master problem at each iteration until it converges.

ww,t ≤ WFUB
w,t , ∀w, t (4.22)

ww,t ≥ WFLB
w,t , ∀w, t (4.23)∑

w

|ww,t −WFw,t,0|
WFw,t,0

≤ Γw, ∀t (4.24)

∑
t

|ww,t −WFw,t,0|
WFw,t,0

≤ Γt, ∀w (4.25)

4.2.2 Simulation Setup

The four UC formulations (DUC, SUC, IUC and RUC) described above have been tested on

a modified version of the 73-bus three-area IEEE RTS system [119]. This system includes

a total of 96 conventional generators with 10,215 MW of installed capacity. The generator
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configurations and cost curves are as in Section 3.2.3 and reference [120]. There are also 19

wind farms with 6,900 MW of nameplate capacity. Detailed location and capacity informa-

tion can be found in [14]. The value of wind spillage is set at $ 0/MWh and the value of lost

load is set at $ 7500/MWh.

To present the value of energy storage in operation, near-optimal ESS siting and sizing

decisions are based on [14] and listed in Table 4.2. These storage configurations are deter-

mined through a greedy selection algorithm where the increased number of storage affects

the power and energy rating decisions. Therefore, ESS at the same bus have different ratings

when the number of storage changes. The case without energy storage serves as a benchmark

to evaluate the cost savings from ESS.

Five typical days were selected to represent different wind penetration levels with 10 %,

16 %, 26 %, 35 % and 45 % as shown in Table 4.1. The wind scenarios were obtained using

the ensemble approach discussed in Section 2.3. A total of 2000 scenarios were generated for

each typical day, 1000 scenarios for DA scheduling, and the remaining 1000 for Monte-Carlo

testing purposes.

Adopting the same operating structure as in Section 3.2.3, the day-ahead procedure

determines the optimal unit schedules. For the deterministic unit commitment, the “3+5”

rule is applied for the reserve as in [10]. For the stochastic unit commitment, 10 scenarios

are used to minimize the expected costs [103, 165]. For the interval unit commitment, a 90 %

confidence interval from the full scenario set was adopted. The robust unit commitment used

the same bounds as the IUC with a budget of uncertainty of 4 for both time and space. The

cost calculated with the SUC is the expected DA operating cost, while the cost calculated

with the RUC is the worst case operating cost. The day-ahead costs are thus projected DA

costs. Monte-Carlo simulations are used to assess the actual operating costs and the schedule

performances based on these various DA schedules.
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Table 4.1: Representative day wind generation

Day 1 2 3 4 5

Wind Penetration Level 10 % 16 % 26 % 35 % 45 %

Table 4.2: Energy storage installation in the system

Storage

Total Total Itemized Itemized

Location
Power Energy Power Energy

Rating Rating Ratings Ratings

(MW) (MWh) (MW) (MWh)

1 84 457 84 457 Bus-325

2 231 1500
171 1146 Bus-121

60 354 Bus-325

3 262 1719

150 1014 Bus-121

60 403 Bus-202

52 302 Bus-325

4 290 1915

85 597 Bus-116

104 698 Bus-121

49 318 Bus-202

52 302 Bus-325

4.2.3 Case Study Results

4.2.3.1 Day-Ahead Operation

Table 4.3 – Table 4.7 present the day-ahead total operating cost for 5 representative days for

the different UC formulations and system storage installations. As would be expected, when

the system is equipped with more storage, the operating cost decreases for all formulations
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and most cases. However, different UC formulations produce different reductions. The

Interval UC with [0.31, 1.70] % and the Stochastic UC with [0.21, 1.60] % achieve the best

daily cost savings. On average they obtain around 0.50 % daily savings most of the time. For

higher wind generations, higher cost savings are expected from the storage as shown in Day

3 and Day 5. In Day 4, although the wind generation is high, the high energy prices at the

end of the optimization period result in a larger cost to recover the storage stage-of-charge

and a smaller cost saving. In general, these four formulations are all effective in achieving

spatial-temporal energy arbitrage using storage. IUC and SUC perform especially well.

Comparing these four formulations, the scenario-based stochastic formulation consistently

provides the lowest operating cost. The robust formulation schedules against the worst case

scenario and its cost is thus higher. However this DAC is just a projection. The interval

formulation performance is between those of the deterministic and stochastic formulations.

Table 4.3: Day-Ahead Cost (DAC) in $ 106 for Day 1 with 10 % wind generation

Number of Storage DUC IUC SUC RUC

0 2.2868 2.2813 2.2788* 2.3035

1 2.2837 2.2764 2.2750* 2.2995

2 2.2780 2.2708 2.2690* 2.2946

3 2.2784 2.2698 2.2673* 2.2939

4 2.2765 2.2695 2.2679* 2.2923

Maximum Cost Savings 0.45 % 0.52 % 0.50 % 0.49 %

* - minimum DAC for a given number of storages
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Table 4.4: Day-Ahead Cost (DAC) in $ 106 for Day 2 with 16 % wind generation

Number of Storage DUC IUC SUC RUC

0 2.5957 2.5862 2.5864* 2.6248

1 2.5925 2.5829 2.5831* 2.6210

2 2.5819 2.5732 2.5735* 2.6138

3 2.5812 2.5724 2.5718* 2.6118

4 2.5807 2.5713 2.5693* 2.6108

Maximum Cost Savings 0.58 % 0.58 % 0.66 % 0.53 %

* - minimum DAC for a given number of storage

Table 4.5: Day-Ahead Cost (DAC) in $ 106 for Day 3 with 26 % wind generation

Number of Storage DUC IUC SUC RUC

0 1.3613 1.3605 1.3585* 1.3955

1 1.3601 1.3587 1.3571* 1.3946

2 1.3491 1.3464 1.3460* 1.3916

3 1.3488 1.3460 1.3458* 1.3909

4 1.3472 1.3445 1.3443* 1.3971

Maximum Cost Savings 1.04 % 1.18 % 1.04 % 0.33 %

* - minimum DAC for a given number of storage
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Table 4.6: Day-Ahead Cost (DAC) in $ 106 for Day 4 with 35 % wind generation

Number of Storage DUC IUC SUC RUC

0 1.3148 1.3160 1.3120* 1.3807

1 1.3138 1.3141 1.3105* 1.3803

2 1.3131 1.3119 1.3092* 1.3797

3 1.3129 1.3124 1.3093* 1.3799

4 1.3134 1.3120 1.3092* 1.3798

Maximum Cost Savings 0.14 % 0.31 % 0.21 % 0.07 %

* - minimum DAC for a given number of storage

Table 4.7: Day-Ahead Cost (DAC) in $ 106 for Day 5 with 45 % wind generation

Number of Storage DUC IUC SUC RUC

0 1.3355 1.3346 1.3308* 1.3881

1 1.3319 1.3292 1.3254* 1.3843

2 1.3189 1.3166 1.3136* 1.3715

3 1.3166 1.3141 1.3114* 1.3695

4 1.3145 1.3120 1.3095* 1.3673

Maximum Cost Savings 1.57 % 1.70 % 1.60 % 1.50 %

* - minimum DAC for a given number of storage



79

Table 4.8 – Table 4.12 give the computing time for five representative days and different

system configurations. Since the stochastic formulation uses a set of uncertainty scenarios, it

requires the longest computing time among the four UC formulations. The UC formulation

with deterministic reserve tends to be the fastest because only the central forecast is used in

the decision-making processes. The IUC and RUC perform similarly well and in a consistent

manner. Another interesting finding is that the energy storage can significantly reduce the

computing time especially for the IUC and SUC formulations. The reason is probably that

the energy storage provides more flexibility to the system and helps the MILP solver find

an integer solution faster. Although the SUC computing time is relatively high, using a

computer with more cores and memory would reduce the computing time. In addition,

the development of optimization theory and decomposition algorithms also contributes to

solution time reductions for stochastic formulations. In the future, the computational gap

between these formulations is expected to be smaller. However, under current computational

resources, stochastic programming still takes longer than other formulations.

Table 4.8: Day-Ahead computing time (seconds) for Day 1 with 10 % wind generation

Number of Storage DUC IUC SUC RUC

0 67 1112 9018 181

1 68 73 1578 88

2 37 110 1004 66

3 21 61 1845 67

4 23 65 485 62

4.2.3.2 Real-Time Re-dispatch and Actual Operating Cost

Table 4.13 – Table 4.17 present the expected actual operating cost under different system

configurations. Similarly to the conclusions drawn in the previous section, the installation
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Table 4.9: Day-Ahead computing time (seconds) for Day 2 with 16 % wind generation

Number of Storage DUC IUC SUC RUC

0 342 53 1796 156

1 52 145 792 182

2 30 157 552 719

3 18 290 310 139

4 23 211 891 112

Table 4.10: Day-Ahead computing time (seconds) for Day 3 with 26 % wind generation

Number of Storage DUC IUC SUC RUC

0 72005 64843 72011 518

1 127 422 582 143

2 36 70 489 100

3 2154 118 395 130

4 33 105 332 157

Table 4.11: Day-Ahead computing time (seconds) for Day 4 with 35 % wind generation

Number of Storage DUC IUC SUC RUC

0 709 475 1084 715

1 16 40 683 731

2 10 63 1056 731

3 13 42 338 162

4 10 129 514 201
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Table 4.12: Day-Ahead computing time (seconds) for Day 5 with 45 % wind generation

Number of Storage DUC IUC SUC RUC

0 1327 8377 10099 273

1 151 184 752 802

2 57 43 766 54

3 30 129 338 223

4 156 95 804 50

of energy storage significantly reduces the operating cost in all cases. The cost savings is

similar at the DA stage, which shows the consistency of the results. High cost savings are

obtained for high wind generation (Day 3 and Day 5), moderate cost savings at low wind

generation (Day 1 and Day 2), small cost savings at moderate wind generation (Day 3).

Since the cost savings not only depends on the wind generation level, but also on the load

profile and the locational marginal prices (LMP), the cost savings are satisfactory because

millions of dollars could be saved through this arbitrage annually, on top of potential revenue

gained through participation in the ancillary services markets.

The IUC and DUC formulations optimize the central forecast operating cost at the DA

stage, and these storage siting and sizing decisions are selected based on the optimized av-

erage daily operating cost from the central forecast. Therefore, this comparison is slightly

biased in favor of the IUC and DUC results. Even so, the SUC performs best among all

cases, and always produces the lowest operating costs. This demonstrates the importance

of properly constructed uncertainty sets and the value of stochastic programming in UC

applications. The performance of the RUC falls between those of the IUC and DUC. Re-

cently proposed advances in RUC formulations [166] might further reduced the AOC for this

formulation.
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Table 4.13: Expected Actual Operating Cost (AOC) in $ 106 for Day 1 with 10 % wind

generation

Number of Storage DUC IUC SUC RUC

0 2.2864 2.2811 2.2759* 2.2792

1 2.2832 2.2762 2.2717* 2.2749

2 2.2775 2.2705 2.2670* 2.2706

3 2.2777 2.2696 2.2659* 2.2695

4 2.2760 2.2693 2.2651* 2.2683

Maximum Cost Savings 0.45 % 0.52 % 0.48 % 0.48 %

* - minimum AOC for a given number of storage

Table 4.14: Expected Actual Operating Cost (AOC) in $ 106 for Day 2 with 16 % wind

generation

Number of Storage DUC IUC SUC RUC

0 2.5952 2.5864 2.5841* 2.5886

1 2.5917 2.5829 2.5807* 2.5839

2 2.5812 2.5731 2.5717* 2.5753

3 2.5800 2.5720 2.5697* 2.5732

4 2.5792 2.5708 2.5680* 2.5728

Maximum Cost Savings 0.61 % 0.60 % 0.62 % 0.61 %

* - minimum AOC for a given number of storage
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Table 4.15: Expected Actual Operating Cost (AOC) in $ 106 for Day 3 with 26 % wind

generation

Number of Storage DUC IUC SUC RUC

0 1.3616 1.3612 1.3569* 1.3604

1 1.3601 1.3592 1.3562* 1.3595

2 1.3484 1.3474 1.3455* 1.3566

3 1.3481 1.3462 1.3451* 1.3551

4 1.3473 1.3451 1.3437* 1.3610

Maximum Cost Savings 1.05 % 1.19 % 0.97 % 0.39 %

* - minimum AOC for a given number of storage

Table 4.16: Expected Actual Operating Cost (AOC) in $ 106 for Day 4 with 35 % wind

generation

Number of Storage DUC IUC SUC RUC

0 1.3160 1.3170 1.3107* 1.3188

1 1.3146 1.3151 1.3099* 1.3183

2 1.3133 1.3125 1.3086* 1.3158

3 1.3134 1.3130 1.3086* 1.3152

4 1.3131 1.3125 1.3086* 1.3150

Maximum Cost Savings 0.22 % 0.35 % 0.16 % 0.29 %

* - minimum AOC for a given number of storage
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Table 4.17: Expected Actual Operating Cost (AOC) in $ 106 for Day 5 with 45 % wind

generation

Number of Storage DUC IUC SUC RUC

0 1.3359 1.3348 1.3294* 1.3363

1 1.3321 1.3295 1.3247* 1.3320

2 1.3190 1.3170 1.3131* 1.3194

3 1.3166 1.3144 1.3109* 1.3173

4 1.3145 1.3122 1.3089* 1.3150

Maximum Cost Savings 1.60 % 1.69 % 1.54 % 1.60 %

* - minimum AOC for a given number of storage
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Figure 4.1: Comparison of the AOC cost distribution at Day 1

Figure 4.1 – Figure 4.5 present the AOC distribution under different system configura-

tions. The trend of cost reduction is clear, but the variance does not change much with more

storage. In addition, the SUC causes the largest span of cost, whereas the RUC results in

the least span. This confirms the findings of reference [23].
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Figure 4.2: Comparison of the AOC cost distribution at Day 2
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Figure 4.3: Comparison of the AOC cost distribution at Day 3
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Figure 4.4: Comparison of the AOC cost distribution at Day 4
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Figure 4.5: Comparison of the AOC cost distribution at Day 5
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Table 4.18 presents the expected daily wind spillage for Day 5. The different UC for-

mulations have almost the same effect on the utilization of wind. It is really the amount

of storage that promotes the wind utilization. Wind curtailment was reduced by nearly 33

% from the reference cases without any energy storage. For other representative days, little

wind spillage occurs in the reference case, and the installation of storage reduces it to zero.

Table 4.18: Expected daily wind spillage (MWh) for Day 5 with 45 % wind generation

Number of Storage DUC IUC SUC RUC

0 2748 2748 2747 2748

1 2704 2704 2704 2704

2 2038 2038 2038 2038

3 1933 1932 1934 1933

4 1831 1831 1831 1831

4.3 Summary

In this section, we presented a an analysis of the benefits of integrating energy storage in the

power system. The deterministic unit commitment with reserve, interval unit commitment,

stochastic scenario-based unit commitment and robust unit commitment are compared in

terms of their day-ahead projected cost, day-ahead computing time, expected actual oper-

ating cost and wind utilization. Energy storage devices effectively reduce the system cost

as well promote more wind utilization. The stochastic scenario-based unit commitment for-

mulation consistently produces the least cost schedule but with the highest computational

burden. The IUC and RUC require less computational resources yet do not achieve the

same economic benefits. The deterministic UC serves as the benchmark, and “3+5” rule is

over-conservative especially for a system with energy storage.
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Chapter 5

ENERGY STORAGE OPERATION FROM MERCHANT
OWNER PERSPECTIVE

5.1 Motivation

Due to its declining installation and operation cost, energy storage systems are likely to play

an increasing role not only in power system operation but also in electricity markets. Because

of its flexibility, storage can be used for energy arbitrage [14], transmission congestion relief

[167], reserves [18], frequency regulation [16], post-contingency corrective actions [141] and

other services. In order to encourage the deployment of energy storage, market rules are being

revised to support products and pricing schemes better suited to the technical characteristics

and constraints of storage systems [138].

In a vertically-integrated environment, energy storage is used to minimize the system

operating cost. For example, Pandžić et al. [14], Qiu et al. [168] and Fernández-Blanco

et al. [169] investigated the optimal siting and sizing of storage systems used for spatio-

temporal arbitrage. The authors of [170] proposed a bilevel storage planning strategy that

guarantees the recovery of the investment costs. Wogrin et al. [171] proposed to allocate

storage for load-shifting and regulation services. Wen et al. [16] demonstrated the effective-

ness of storage for post-contingency corrective actions. However, minimizing the operating

cost, or more generally maximizing the benefits to the system, typically does not lead to a

charging/discharging schedule that maximizes the profits of a merchant storage owner.

Instead of being fully controlled by the ISO, energy storage could participate actively

in the wholesale electricity market. Private entities could buy and install their own storage

devices to capture their revenue potential [137]. For these entities, reducing system cost is

not the primary concerns. Instead, their goal is to earn as much profit as possible from
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the market. In this sense, letting the ISO fully control the storage is probably not the

best approach to maximize profits. Storage owners have two additional options to avoid

centralized ISO mode, operating storage on their own or finding an aggregator to coordinate

privately-owned storage. This aggregator is responsible for providing bidding and offering

price/quantity pairs to the system, and the market cleared schedule is used to guide the

storage state-of-charge movements.

Operation and planning of storage in a competitive market environment is therefore gain-

ing increasing attention. Mohsenian-Rad [172] schedules the storage based on the demand

and supply bidding optimization which takes the price uncertainty into account. Outer

and inner problems are solved to obtain a globally optimal solution. The same authors

extend their work by considering the energy and reserve market together with stochastic

programming methods [173]. Xu [174] considers the participation of storage in the frequency

regulation market including its degradation cost. Similarly, He et al. [175] determined the

participation of storage in regulation services considering the storage performance score and

the degradation from the storage cycling. Shafiee [156] proposed to use information gap

decision theory (IGDT) to optimize compressed air energy storage (CAES). Mohsenian-Rad

[176], Pandžić [177] and Hartwig [178] all proposed to use bilevel programming to model

storage operation.

ESS can also coordinate with other resources in the market. Ding [179] proposed to

bid and offer storage and a wind farm together with probabilistic forecast information in a

rolling real-time market. A modified gradient descent is developed to solve the optimization

problem. In the same authors’ extended work [180], linear decision rules are applied to

formulate the problem, and solved efficiently with commercial solvers. Thatte [181] proposed

to use robust optimization to control the risk when storage is bidding together with wind

farms. In addition to coordination with wind, virtual power plants (VPP), which aggregate

demand response, small gas turbines, diesel generators, enter the market [182]. There is an

abundant literature on the bidding strategies for electric vehicles (EV) which can be viewed

as another storage resource [183]. Due to their special characteristics, EVs are excluded from
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this discussion.

Information about rival generators’ offers are also vital in optimizing storage bids and

offers. In [184], strategic power producers calculated optimal offers considering the competing

generators’ participation. An inverse optimization was used to reveal the marginal offers from

rival generators in [185]. Kazemi et al. [186] proposed a robust bidding model considering

the uncertainty on competing generators’ price and quantity offers. Equilibrium problems

with equilibrium constraints (EPEC) have also been used to assess the interactions between

multiple competing energy companies in [187, 188, 189].

Although many papers have discussed the operation storage, there are still some areas not

covered in the literature. In this chapter, we first present a deterministic bilevel formulation

to determine the optimal storage bidding and offering price/quantity pair. Then, we extends

this strategy by a look-ahead setting with stochastic future information. The final stage

of charge is also optimized, which is commonly neglected in the literature. The impacts of

thermal generator ramping constraints on storage profitability are also evaluated.

5.2 Impact of Local Transmission Congestion on Energy Storage Arbitrage
Opportunities

5.2.1 Introduction

Castillo et al. [190], Shafiee et al. [156], and Mohsenian-Rad [172] proposed techniques to

maximize the operating profits of storage in a decentralized environment. Ding et al. [191,

192] coordinated the operation of storage and wind farms in a rolling real-time market. Xu

et al. [138] analyzed the batteries’ profits for regulation services considering its degradation

costs [193]. Khani et al. [142] proposed to perform arbitrage while relieving transmission

congestion. Relative to these works, this sections models impacts of local and system-wide

transmission congestion and bidding of other market participants.

Several authors [194, 195] have shown that complementarity modeling is an effective tool

to analyze the interactions between two or more market participants. In power systems,

bilevel programming has been applied in vulnerability analysis [196], price-based market
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clearing [197], robust unit commitment [166], trading wind power in futures market [198],

generation investment [199], investments in wind power [200], bidding strategies for wind

power [201], operation of storage [176] and investments in storage [170].

A large number of papers discuss how network constraints and transmission congestion

affect electricity markets and influence the bidding strategy of market participants, e.g.

[202, 203, 204]. However, previous work focused on system-wide transmission congestion,

while this sections examines how storage can affect or be affected by local transmission

congestion.

A network-constrained market-clearing mechanism with storage participation is analyzed

under perfect and imperfect competition. Perfect competition is modeled as an economic

dispatch problem, while imperfect competition is modeled using a bilevel approach where

the storage owner behaves strategically. The effect of local transmission congestion on the

annual operating profit of storage is quantified to show how it affects the behavior of storage

owners. The importance of optimizing siting and sizing decisions on the storage profitability

is discussed.

5.2.2 Mathematical Formulation

This section provides the mathematical formulation of a network-constrained market clearing

with storage participation under perfect and imperfect competition.

5.2.2.1 Market Clearing under Perfect Competition

Under perfect competition, each market participant bids or offers at its marginal cost because

none of them is assumed to be able to exercise market power. The ISO then clears the market

in a way that maximizes the social welfare. Storage owners participate in the market by

submitting bids and offers that reflect their willingness to charge and discharge. These bids

and offers should take into account how battery cycling affects the life of the battery, i.e.

its incremental degradation cost. Market clearing takes the form of a network-constrained
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economic dispatch problem. Storage owners and other market participants pay or are paid

based on their locational marginal prices (LMPs).

max ObjSO =
∑
b,t

CD
b db,t +

∑
h,t

Cbid
h qchsh,t

−
∑
i,t

CG
i p

G
i,t −

∑
h,t

Cdis
h qdish,t

(5.1)

0 ≤ qchsh,t ≤ chshx
chs
h,t , ∀h,∀t (5.2)

0 ≤ qdish,t ≤ dishx
dis
h,t , ∀h,∀t (5.3)

xdish,t + xchsh,t ≤ 1, ∀h,∀t (5.4)

xdish,t , x
chs
h,t ∈ {0, 1}, ∀h,∀t (5.5)

SoCh,t = SoCh,t−1 + qchsh,t η
chs
h − qdish,t /η

dis
h , ∀t > 1, ∀h (5.6)

SoCh,t = SoCinit
h + qchsh,t η
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dis
h , t = 1,∀h (5.7)

SoCh ≤ SoCh,t ≤ SoCh, ∀h,∀t (5.8)

SoCh,NT = SoCinit
h , ∀h (5.9)

0 ≤ pGi,t ≤ P̄i, ∀i, ∀t (5.10)

0 ≤ pWw,t ≤ WFw,t, ∀w,∀t (5.11)

¯
Db,t ≤ db,t ≤ D̄b,t, ∀b,∀t (5.12)
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Xl

(θf(l),t − θt(l),t), ∀l,∀t (5.14)

− F̄l ≤ pfl,t ≤ F̄l, ∀l,∀t (5.15)

− θ ≤ θb,t ≤ θ∀b 6= ref, ∀t (5.16)

θb,t = 0, b = ref,∀t. (5.17)
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The objective function (5.1) maximizes the social welfare which includes generation and

storage discharging offers as well as the consumers and storage charging bids. Constraints

(5.2)–(5.3) set the limits on the storage bid/offer quantities. Eqs. (5.4)–(5.5) prevent simul-

taneous charging and discharging by enforcing constraints on binary variables. Constraints

(5.6) – (5.8) track the state of charge (SoC) and enforce the limits on their operating range.

Constraint (5.9) forces the final SoC to be identical to the initial SoC. Constraints (5.10)

– (5.12) enforce the lower and upper bounds on the thermal generation, wind farms, and

consumers. Constraint (5.13) is the nodal power balance. Constraint (5.14) calculates the

power flows using a DC load flow model. Constraints (5.15)–(5.17) enforce the limits on the

line flows and the voltage angles.

5.2.2.2 Market Clearing under Imperfect Competition

In an imperfectly competitive market, storage can achieve larger profits through strategic

bidding and offering. This strategic behavior can be modeled as a bilevel program that

captures the interactions between the merchant storage and the ISO. In the upper level,

storage maximizes its operating profits and determines the price/quantity bids and offers to

be submitted to the ISO. The lower level represents a network-constrained market clearing

as described in the previous section. The accepted bids, offers and market-clearing locational

marginal prices are fed back to the upper level where they are used to calculate the profits

of storage.

max ObjESS =
∑
h,t

[λb(h),t(q
dis
h,t − qchsh,t )− Cdis

h qdish,t − Cchs
h qchsh,t ] (5.18)

ρdish,t , ρ
chs
h,t ≥ 0, ∀h,∀t (5.19)

0 ≤ chsh,t ≤ chshx
chs
h,t , ∀h,∀t (5.20)

0 ≤ dish,t ≤ dishx
dis
h,t , ∀h,∀t (5.21)

(5.4) – (5.9) (5.22)
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0 ≤ qchsh,t ≤ chsh,t, ∀h,∀t (5.24)

0 ≤ qdish,t ≤ dish,t, ∀h,∀t (5.25)

(5.10) – (5.17)

}
. (5.26)

The upper-level objective function (5.18) maximizes the storage profits based on the

LMPs and the cleared charging/discharging quantities. Constraint (5.19) enforces the non-

negativity of bid and offer prices submitted by the storage. This constraint could be relaxed

in systems with high renewable penetration where negative electricity prices can occur. Con-

straints (5.20)–(5.21) set the limits on the quantity bids and offers. Other constraints on

storage operation are identical to those described in the previous section. LMPs and cleared

quantities are obtained from the lower-level problem. This lower-level problem maximizes

the social welfare (5.23). Partial-bids and offers for storage charging and discharging are

accepted in constraints (5.24)–(5.25). Other constraints on market clearing (5.26) are again

identical to those described in the previous section.

This bilevel formulation is nonlinear and non-convex. However, under the assumption

of convexity of the lower level, it can be parametrized using the Karush–Kuhn–Tucker op-

timality conditions. The complementary slackness conditions are further linearized using

the Fortuny-Amat and McCarl transformation [196]. The nonlinear terms in the objective

function are also linearized using the strong duality condition. The resulting single-level

equivalent is a mixed-integer linear program that can be solved with commercial solvers.

Interested readers are referred to [205, 206] for further details.

5.2.3 Case Study

The proposed market models have been tested on the modified version of the IEEE Reliability

Test System (RTS) [119]. This test system consists of 24 buses, 32 generators, 38 transmission
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lines, and 5 wind farms. The day-ahead wind power forecasts were generated based on the

NREL Eastern Wind Dataset [47] and allow us to assess the proposed models over a one-

year simulation horizon. We assume one storage with the optimized parameters from [14]:

dish = chsh = 93 MW, SoCh = 629 MWh, ηdish = ηchsh = 0.9, SoCinit
h = 315 MWh,

C
dis/chs
h = 0 $/MWh, Cbid

h = 30 $/MWh.

All simulations were carried out using GAMS 23.7 and CPLEX 12.5 on a Intel Xenon

2.55 GHz processor with 32 GB RAM. The computation time for each single day is less than

or equal to 5 s with the MILP gap set to 0.005 %.

To examine the effect of local congestion on the transmission network, we first scale up

the original line capacities by 50% to ensure that there is no congestion in the network, and

that the LMP is the same at all buses. We then gradually reduce the capacities of the lines

connected to the bus where the storage is located. Other line capacities remain unchanged in

order to avoid congestion across the system. We adopted this approach because we wanted

to focus on what happens when storage is not able to deliver its flexibility. By comparing

operating profits when locating storage at different buses, we show how siting decisions affect

storage profitability.

Figure 5.1 shows how the annual profit collected by the storage changes as the local line

capacities are reduced when this storage is located at four different buses. Decreasing these

line capacities tends to increase the LMP, which in turn tends to improve the profitability

of storage for all four locations. However, these figures show that different patterns are

possible. For example, if the storage is located at buses 2, 18 or 19, at some point the

increase in LMP resulting from a reduction in transmission capacity is offset by a reduction

in the amount of energy that the storage can physically deliver to the rest of the system.

On the other hand, if the storage is located at bus 14, profitability increases monotonically

as the local transmission capacity decreases. Factors such as the location of conventional

and wind generation, the size and location of the loads, the topology of the network as well

as the transmission capacity at nearby buses determine how local congestion affects storage

profitability. While patterns for perfect and imperfect competition are similar, strategic
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Figure 5.1: Typical patterns of annual storage profits.

bidding significantly increases profitability particularly when local congestion is significant.

Figure 5.2 shows the annual profit and social welfare for all possible storage locations

under a 50% line capacity reduction. Imperfect competition enhances storage profitability

for all locations but causes a reduction in the social welfare. Compared with the base case,

storage can collect more or less profits depending on the location. This pattern is relatively

consistent regardless of whether competition is perfect or imperfect. In terms of social

welfare, the shapes of both cases are reasonably similar. For buses 15–19, social welfare

is more sensitive to the congestion level. Strategic behavior actually does not result in a

significant loss of social welfare. These observations motivate the search for the optimal

storage locations because such locations would ensure that storage collects enough revenue
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Figure 5.2: Annual profits at various buses under a 50% reduction in line transmission

capacity.

while being less affected by congestion in the system.

Figure 5.3 shows the LMP duration curve at buses 14 and 19 based on a year-long

simulation for the base case and for a 50% reduction on line capacity. The prices in perfect

and imperfect competition are relatively close, but slightly more favorable for merchant

storage in case of imperfect competition. On the other hand, comparing the prices for the

base case shows that local congestion increases the average nodal price. The top left area of

both plots suggest that high prices happen more frequently than in the base case, while the

bottom right areas show that low prices happen less frequently. Significant penetration of

renewables causes periods of zero or negative prices occur and are made more frequent by
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Figure 5.3: Locational marginal price duration curve with a 50% line capacity reduction.

local congestion as shown in the plot for bus 14.

Figure 5.4 shows a three-day snapshot of LMPs at bus 14. During the first 28 hours of this

period, local congestion does not affect the LMPs and perfect competition actually produces

a slightly higher average LMP. From about hour 28 onwards, strategic bidding can be used

to create arbitrage opportunities by driving the LMPs down and up. Local congestion cases

enhance these opportunities by extending the periods of lower and higher LMPs. Such price

differences are valuable for storage because they make it possible to charge at low prices

and discharge at high prices. Nontrivial profit differences between perfectly and imperfectly

competitive markets stem from such infrequent periods with substantial price differences.

Figure 5.5 shows the histogram of daily profits for a storage located at bus 19. In the
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Figure 5.4: LMP at bus 14 on days 100–102 with a 50% line capacity reduction.

perfect competition case, the histogram does not exhibit a clear pattern. Local congestion

increases the number of higher profit days and, to a lesser extent, the number of lower profit

days, resulting in a higher total annual profit. The histogram for imperfect competition case

is smoother and more evenly distributed. There are much fewer low profit days and many

more high profit days. Here again, congestion increases the number of high profit days.

5.3 Look-Ahead Bidding Strategy for Energy Storage

5.3.1 Introduction

Large-scale deployment of energy storage (ES) is becoming an economically viable option

due to technological advances in chemistry, material science and chemical engineering [15].

NREL [207] projects that about 152 GW of ES capacity will be installed by 2050 in the US.

The California Independent System Operator (CAISO) has published a roadmap for ES,

indicating the revenue potential that ES could reach [208].

ES can be used for spatio-temporal arbitrage [14], to relieve transmission congestion [167],
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Figure 5.5: Histogram of daily storage profits at bus 19.
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and to provide reserves [18] and corrective actions during contingencies [141]. In a vertically

integrated environment, these activities are deployed by the system operator in a way that

minimizes the system operating cost or maximizes the social welfare. These goals typically

do not align with a merchant storage owner’s objective to maximize its profits.

It is commonly assumed that energy storage should return to its initial state-of-charge

(SoC) at the end of the last period of the scheduling horizon. In a vertically integrated

environment, this practice provides system operators with the flexibility that they might

need to deal with an unexpected situation during the next operating period. On the other

hand, a merchant storage operator may want to adjust this final state of charge (fSoC) to

maximize its profits. However, this adjustment should balance profit opportunities during

the current market window against potential opportunities in the subsequent market window.

In this section, we propose a bilevel model that can be used by merchant energy stor-

age operators to determine optimal price and quantity offers and bids in a day-ahead self-

scheduling electricity market. The upper level accounts for future profit opportunities by

considering both the current day-ahead (D0) and the next day-ahead (D1) market windows.

The risk associated with the next day-ahead market is also constrained by co-optimizing the

conditional value-at-risk (CVaR) for D1 to incorporate the forecast uncertainty. This allows

it to adjust the SoC at the end of the first day to optimize arbitrage opportunities over both

days.

The lower level simulates the market clearing using a ramp-constrained DC optimal power

flow and feeds the locational marginal prices (LMP) to the upper-level problem where they

are used to calculate the profits. The uncertainty on the renewable forecast for D1 is modeled

using scenarios to represent different market clearing outcomes under different possible wind

realizations.

The proposed hybrid bilevel approach maximizes the profit that a merchant storage

operator can collect through spatio-temporal arbitrage by optimizing its bidding strategy

not only for the day ahead but also for the following day by adjusting the storage state-of-

charge at the end of the first day. The optimization for the day-ahead uses a deterministic
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forecast, while scenarios are used to emphasize the increase uncertainty on the forecasts for

the following day.

A risk-constrained profit term is added in the objective function to regularize the com-

bined two-day profits and optimize the state-of-charge set points. With CVaR, this approach

not only considers the potential future profits but also the future risks.

The case study shows how the results of this optimization are affected by the discount

factor for the next day profit, by the length of the look-ahead window, by the forecast

uncertainty, by the competing units’ offer price, by the storage operating cost, by the system

transmission capacity and by the ramp rate of the conventional generators.

Rather than conservatively constraining the state of charge at the end of the day ahead

at a fixed value, the proposed approach determines the fSoC that maximizes the merchant

storage’s profits. Our method specifically focus on this storage time-coupling feature, which

is commonly neglected. The way the future profit regularization term takes into account

both the profit expectation and the risk is also novel.

5.3.2 Mathematical Formulation

Figure 5.6 illustrates the proposed bilevel formulation used to optimize the look-ahead bid-

ding strategy of a merchant energy storage operator. The upper-level (UL) problem takes

the perspective of this storage operator who aims to maximize the profits that it can obtain

through spatio-temporal arbitrage [209] in a day-ahead electricity market. We consider the

profit ΠD0 achieved on day D0 using a deterministic forecast as well as the expected profit

from Eω1 ΠD1
ω1

and a risk term CV aRD1 on day D1. Since this profit clearly depends on the

state-of-charge at both the beginning and the end of the optimization horizon, we optimize

the state-of-charge at the end of D0 to maximize the sum of ΠD0 and ΓD1 (a weighted sum

that balances profits and risks on day D1). In essence, we look ahead to the next day to

balance profit opportunities between days D0 and D1. However, because the forecasts upon

which this optimization relies are less accurate for D1 than for D0 and because the optimiza-

tion will be repeated a day later for D1, the anticipated profit for D1 are discounted by a
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Figure 5.7: Time-frame for market-clearing on days D0 and D1.
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factor γD1 .

The UL problem outputs the optimal quantity and price storage bids and offers for

each market interval of days D0 and D1. These quantities are then used in the lower-

level (LL) problem. The UL problem accounts for storage variable operating costs in its

profit calculation. The LL problem clears the market separately for days D0 and D1. Each

market clearing maximizes the daily social welfare and accepts offers from conventional and

renewable generation, bids from elastic loads, and bids and offers from the storage operator.

This storage operator is assumed to be the only market participant that can act strategically

in the day-ahead electricity market. Other market participants bid at their marginal costs.

The LL problem produces the LMPs that the UL problem uses to calculate the profits.

The problem can then be formulated as follows:

max Obj = ΠD0 + γD1ΓD1 (5.27)

subject to:

ΓD1 = γCV aRCV aRD1 + (1− γCV aR)
∑
ω1

(πω1Π
D1
ω1

) (5.28)

lossD1
ω1
≥ V aRD1 − ΠD1

ω1
, ∀ω1 (5.29)

lossD1
ω1
≥ 0, ∀ω1, (5.30)

CV aRD1 = V aRD1 − 1

1− β0

∑
ω1

(πω1loss
D1
ω1

) (5.31)

ΠD0 =
∑
h,t0

[λb(h),t0(q
dis
h,t0
− qchsh,t0

)

−CES
h (qdish,t0

+ qchsh,t0
)]

(5.32)

ΠD1
ω1

=
∑
h,t1

[λb(h),t1,ω1(q
dis
h,t1,ω1

− qchsh,t1,ω1
)

−CES
h (qdish,t1,ω1

+ qchsh,t1,ω1
)]

(5.33)

0 ≤ chsh,t ≤ chsh(1− xdish,t), ∀h,∀t (5.34)

0 ≤ dish,t ≤ dishx
dis
h,t , ∀h,∀t (5.35)
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xdish,t ∈ {0, 1}, ∀h,∀t (5.36)

ρdish,t , ρ
chs
h,t ≥ 0, ∀h,∀t (5.37)

SoCh,t0 =SoCinit
h + qchsh,t0

ηchsh − qdish,t0
/ηdish ,

∀t0 = 1, ∀h
(5.38)

SoCh,t0 =SoCh,t0−1 + qchsh,t0
ηchsh − qdish,t0

/ηdish ,

∀1 < t0 ≤ Nt0 ,∀h
(5.39)

SoCh ≤ SoCh,t0 ≤ SoCh, ∀h,∀t0 (5.40)

SoCh,t1,ω1 =SoCh,Nt0
+ qchsh,t1,ω1

ηchsh

− qdish,t1,ω1
/ηdish , ∀t1 = Nt0 + 1,∀h,∀ω1

(5.41)

SoCh,t1,ω1 = SoCh,t1−1,ω1 + qchsh,t1,ω1
ηchsh

− qdish,t1,ω1
/ηdish , ∀Nt0 + 1 < t1 ≤ Nt1 ,∀h,∀ω1

(5.42)

SoCh ≤ SoCh,t1,ω1 ≤ SoCh, ∀h,∀t1,∀ω1 (5.43)

SoCh,Nt1 ,ω1 ≥ SoCinit
h , ∀h,∀ω1 (5.44)

λb,t,ω, q
dis
h,t,ω, q

chs
h,t,ω ∈ arg max

{
SWω =

∑
b,t

CD
b db,t,ω

+
∑
h,t

ρchsh,t q
chs
h,t,ω −

∑
i,t

CG
i p

G
i,t,ω −

∑
h,t

ρdish,t q
dis
h,t,ω

(5.45)

subject to:

db,t,ω +
∑
f(l)=b

pfl,t,ω −
∑
t(l)=b

pfl,t,ω =
∑
b(i)=b

pGi,t,ω+

∑
b(w)=b

pWw,t,ω +
∑

b(h)=b

(qdish,t,ω − qchsh,t,ω) : λb,t,ω, ∀b,∀t
(5.46)

0 ≤ pGi,t,ω ≤ P̄i :
¯
µG
i,t,ω, µ̄

G
i,t,ω, ∀i, ∀t (5.47)

0 ≤ pWw,t,ω ≤ WFw,t,ω :
¯
µW
w,t,ω, µ̄

W
w,t,ω, ∀w,∀t (5.48)

Db,t ≤ db,t,ω ≤ Db,t :
¯
µD
b,t,ω, µ̄

D
b,t,ω, ∀b, ∀t (5.49)



109

0 ≤ qdish,t,ω ≤ dish,t :
¯
αdis
h,t,ω, ᾱ

dis
h,t,ω, ∀h,∀t (5.50)

0 ≤ qchsh,t,ω ≤ chsh,t :
¯
αchs
h,t,ω, ᾱ

chs
h,t,ω, ∀h,∀t (5.51)

pGi,t,ω − pGi,t−1,ω ≤ RUi : βu
i,t,ω, ∀t > 1,∀i (5.52)

pGi,t−1,ω − pGi,t,ω ≤ RDi : βd
i,t,ω, ∀t > 1,∀i (5.53)

pGi,t,ω − pGi,0 ≤ RUi : βu
i,t,ω, t = 1,∀i (5.54)

pGi,0 − pGi,t,ω ≤ RDi : βd
i,t,ω, t = 1,∀i (5.55)

pfl,t,ω =
1

Xl

(θf(l),t,ω − θt(l),t,ω) : νl,t,ω, ∀l,∀t (5.56)

− F̄l ≤ pfl,t,ω ≤ F̄l :
¯
ϕl,t,ω, ϕ̄l,t,ω, ∀l,∀t (5.57)

− θ̄ ≤ θb,t,ω ≤ θ̄ :
¯
δb,t,ω, δ̄b,t,ω,∀b 6= ref,∀t (5.58)

θb,t,ω = 0 : δreft , b = ref,∀t
}

(5.59)

Equation (5.27) is the objective function of the UL problem which aims to maximize the

total profit of the storage owner over D0 and D1. The discount factor γD1 ∈ [0, 1] reflects

the storage owner’s willingness to balance profits between days D0 and D1, considering that

the market clearing for D1 is more speculative than for D0. Varying γD1 affects the storage

schedule for D0, including the state of charge at the end of that day, as well as the schedule

for D1.

Constraints (5.28)–(5.31) define the look-ahead profit regularization term ΓD1 with ex-

pected profits from ΠD1
ω1

and risk CV aRD1 . γCV aR is used to control the risk positions of

storage owner due to the D1 forecast uncertainty. A larger γCV aR indicates a more risk-averse

position. This profit regularization term ΓD1 determines the optimized risk trade-off based

on a given discount factor and risk-aversion attitude.

Constraints (5.32)–(5.33) define the profits ΠD0 and ΠD1
ω1

as the difference between the

net revenue from spatio-temporal arbitrage and the operating cost. While the variable cost is

negligible for pumped hydro and compressed air energy storage (CAES), cycling degradation

must be taken into account for an accurate assessment of the profitability of batteries [193].
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In this section, we adopt 4 $/MWh from a PNNL report [155], which updates the results

from an EPRI handbook [210]. We will show how these numbers affect storage revenues and

profits in the case study. Locational marginal prices λh(b),t,w in (5.32)–(5.33) and cleared

storage capacity offers and bids qdish,t,w/q
chs
h,t,w are provided by the LL problems. Constraints

(5.34)–(5.36) relate storage bids and offers with the power ratings. The price offers and

bids are defined in (5.37). Constraints (5.38)–(5.43) keep track of the state-of-charge of the

storage and enforce the limits. Constraint (5.44) ensures that the state-of-charge at the end

D1 returns to the level at the beginning of D0. This ensures that the storage cycling is energy

neutral over this two-day horizon.

The LL problems maximize the social welfare as defined by (5.45). The nodal power

balance constraint is enforced by (5.46). Constraints (5.47)–(5.51) impose the minimum and

maximum power limits on bids and offers of conventional generators, wind power producers,

storage, and demand. Note that the market can accept partial bids and offers submitted by

storage as expressed in (5.50) and (5.51). The inter-hour cycling of conventional generators is

constrained by their ramp rate limits in (5.52) – (5.55). Since initial positions of conventional

units are also affected by various markets and signals, we relax constraints (5.54)–(5.55) for

the D1 market for simplicity. We assume that the initial D0 generator positions and marginal

offers are known. The impact of generators’ offers is discussed in Section 5.3.4. Constraints

(5.56)–(5.57) compute the power flows and enforce the power flow limits by using a dc load

flow model. The voltage phase angles are constrained by (5.58) and the phase angle of the

reference bus is set in (5.59).

5.3.3 Solution Technique

5.3.3.1 Single-level Equivalent

The single-level equivalent of the bilevel formulation in Section 5.3.2 can be obtained using

the KKT-based approach [196]. In this approach, the LL problem is replaced by its its primal

and dual feasibility constraints and its complementary slackness conditions. For each market
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clearing process ω0 for D0 and ω1 for D1 markets, we have following Karush-Kahn-Tucker

conditions:

CG
i − λb(i),t,ω −

¯
µG
i,t,ω + µ̄G

i,t,ω + βu
i,t,ω − βd

i,t,ω

+ βd
i,t+1,ω|t<NT1

− βu
i,t+1,ω|t<NT1

= 0, ∀i,∀t
(5.60)

− λb(w),t,ω −
¯
µW
w,t,ω + µ̄W

w,t,ω = 0, ∀w,∀t (5.61)

− CD
b + λb,t,ω −

¯
µD
b,t,ω + µ̄D

b,t,ω = 0, ∀b, ∀t (5.62)

ρdish,t − λb(h),t,ω − ¯
αdis
h,t,ω + ᾱdis

h,t,ω = 0, ∀h,∀t (5.63)

− ρchsh,t + λb(h),t,ω −
¯
αchs
h,t,ω + ᾱchs

h,t,ω = 0, ∀h,∀t (5.64)∑
b

Al,bλb,t,ω −
¯
ϕl,t,ω + ϕ̄l,t,ω − νl,t,ω = 0, ∀l,∀t (5.65)

∑
l

Al,bνl,t,ω
Xl

−
¯
δb,t,ω + δ̄b,t,ω = 0, ∀b 6= ref,∀t (5.66)

∑
l

Al,bνl,t,ω
Xl

− δreft,ω = 0, b = ref,∀t (5.67)

¯
µG
i,t,ωp

G
i,t,ω = 0, ∀i, ∀t (5.68)

µ̄G
i,t,ω(P̄i − pGi,t,ω) = 0, ∀i,∀t (5.69)

¯
µW
w,t,ωp

W
w,t,ω = 0, ∀w,∀t (5.70)

µ̄W
w,t,ω(WFw,t,ω − pWw,t,ω) = 0, ∀w,∀t (5.71)

¯
µD
b,t,ω(db,t,ω −Db,t) = 0, ∀b, ∀t (5.72)

µ̄D
b,t,ω(Db,t − db,t,ω) = 0, ∀b,∀t (5.73)

¯
αdis
h,t,ωq

dis
h,t,ω = 0, ∀h,∀t (5.74)

ᾱdis
h,t,ω(dish,t − qdish,t,ω)0, ∀h,∀t (5.75)

¯
αchs
h,t,ωq

chs
h,t,ω = 0, ∀h,∀t (5.76)

ᾱchs
h,t,ω(chsh,t − qchsh,t,ω) = 0, ∀h,∀t (5.77)

¯
ϕl,t,ω(F̄l + pflt,ω) = 0, ∀l,∀t (5.78)
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ϕ̄l,t,ω(F̄l − pflt,ω) = 0, ∀l,∀t (5.79)

¯
δb,t,ω(θ̄ + θb,t,ω) = 0, ∀b 6= ref,∀t (5.80)

δ̄b,t,ω(θ̄ − θb,t,ω) = 0, ∀b 6= ref,∀t (5.81)

βu
i,t,ω(RUi − (pGi,t,ω − PG

i,0,ω)) = 0, t = 1,∀i (5.82)

βd
i,t,ω(RDi − (PG

i,0,ω − pGi,t,ω)) = 0, t = 1, ∀i (5.83)

βu
i,t,ω(RUi − (pGi,t,ω − pGi,t−1,ω)) = 0, t = 2 . . . NT ,∀i (5.84)

βd
i,t,ω(RDi − (pGi,t−1,ω − pGi,t,ω)) = 0, t = 2 . . . NT ,∀i (5.85)

¯
µG
i,t,ω, µ̄

G
i,t,ω,

¯
µW
w,t,ω, µ̄

W
w,t,ω,

¯
µD
b,t,ω, µ̄

D
b,t,ω,

βu
i,t,ω, β

d
i,t,ω, ¯

αdis
h,t,ω, ᾱ

dis
h,t,ω, ¯

αchs
h,t,ω, ᾱ

chs
h,t,ω,

¯
ϕl,t,ω, ϕ̄l,t,ω,

¯
δb,t,ω, δ̄b,t,ω,≥ 0

(5.86)

λb,t,ω, δ
ref
t,ω , νl,t,ω : free (5.87)

The dual feasibility constraints of the LL problem are given in (5.60) – (5.67). Constraints

(5.68) – (5.85) enforce the complementary slackness conditions of the LL problem. The dual

variables of the LL problem are defined in (5.86) and (5.87).

5.3.3.2 Linearization

The single-level equivalent (5.27)–(5.87) is non-linear due to the products of continuous

decision variables in constraints (5.32) – (5.33) and in the complementary slackness conditions

(5.68) – (5.85).
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5.3.3.3 Linearization of Eqs. (5.32) – (5.33)

Using the complementary slackness conditions in (5.63) – (5.64), the first term of eq. (5.32)

and (5.33) can be reformulated as follows:

R =
∑
h,t

λb(h),t,ω(qdish,t,ω − qchsh,t,ω)

=
∑
h,t

(ρdish,t − ¯
αdis
h,t,ω + ᾱdis

h,t,ω)qdish,t,ω

−
∑
h,t

(ρchsh,t +
¯
αchs
h,t,ω − ᾱchs

h,t,ω)qchsh,t,ω

(5.88)

Next, complementary conditions (5.74) – (5.77) are used to recast (5.88) as follows:

R =
∑
h,t

(ρdish,tq
dis
h,t,ω − ρchsh,t,ωq

chs
h,t,ω

+ ᾱdis
h,t,ωdish,t + ᾱchs

h,t,ωchsh,t)

(5.89)

Since the LL problem is convex, the strong duality theorem can be invoked to equate the

LL primal and dual objective functions:

SWω = −
∑
i,t

µ̄G
i,t,ωP̄i −

∑
w,t

µ̄W
w,t,ωWFw,t,ω

+
∑
b,t

(
¯
µD
b,t,ωDb,t − µ̄D

b,t,ωDb,t)

−
∑
h,t

(ᾱdis
h,t,ωdish,t + ᾱchs

h,t,ωchsh,t)

−
∑
l,t

F̄l(
¯
ϕl,t,ω + ϕ̄l,t,ω)

−
∑

t,b 6=ref

θ̄(
¯
δb,t,ω + δ̄b,t,ω)

−
∑
i,t

(βu
i,t,ωRUi + βd

i,t,ωRDi)

−
∑
i

PG
i,0(β

u
i,1,ω − βd

i,1,ω)

(5.90)

Using (5.89) and (5.90), non-linear constraints (5.32) and (5.33) can be recast as the
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following equivalent linear expressions:

ΠD0
ω0

= −
∑
i,t0

µ̄G
i,t0
P̄i −

∑
w,t0

µ̄W
w,t0

WFw,t0

+
∑
b,t0

(
¯
µD
b,t0
Db,t0

− µ̄D
b,t0
Db,t0)

−
∑
l,t0

F̄l(
¯
ϕl,t0 + ϕ̄l,t0)−

∑
t0,b 6=ref

θ̄(
¯
δb,t0 + δ̄b,t0)

−
∑
i,t0

(βu
i,t0
RUi + βd

i,t0
RDi)

−
∑
i

PG
i,0(β

u
i,1 − βd

i,1)

−
∑
i,t0

CG
i p

G
i,t0

+
∑
b,t0

CD
b db,t0

−
∑
h,t0

CES
h (qdish,t0

+ qchsh,t0
)

(5.91)

ΠD1
ω1

= −
∑
i,t1

µ̄G
i,t1,ω1

P̄i −
∑

w,t1,ω1

µ̄W
w,t1,ω1

WFw,t1,ω1

+
∑
b,t1

(
¯
µD
b,t1,ω1

Db,t1
− µ̄D

b,t1,ω1
Db,t1)

−
∑
l,t1

F̄l(
¯
ϕl,t1,ω1 + ϕ̄l,t1,ω1)

−
∑

t1,b 6=ref

θ̄(
¯
δb,t1,ω1 + δ̄b,t1,ω1)

−
∑

i,t1>NT0+1

(βu
i,t1,ω1

RUi + βd
i,t1,ω1

RDi)

−
∑
i,t1

CG
i p

G
i,t1,ω1

+
∑
b,t1

CD
b db,t1,ω1

−
∑
h,t1

CES
h (qdish,t1,ω1

+ qchsh,t1,ω1
)

(5.92)
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5.3.3.4 Linearization of Eqs. (5.68) – (5.85)

Every non-linear complementary slackness condition (5.68) – (5.85) is linearized using the

Fortuny-Amat and McCarl transformations [211] as described below.

Assume that a ≥ 0 and b ≥ 0 are such that ab = 0. As explained in [211], the product

ab can be replaced using an auxiliary binary variable z constrained as follows:

0 ≤ a ≤Mz (5.93)

0 ≤ b ≤M(1− z), (5.94)

where M is a big enough constant. Thus, if z = 0, eq. (5.93) returns a = 0 and eq.

(5.94) ensures b ≤ M . If z = 1, eq. (5.94) returns b = 0 and eq. (5.93) ensures a ≤ M . If

M is chosen large enough, a and b reach the optimal solution. Given the transformation in

(5.93) and (5.94), the complementary slackness conditions in (5.68) – (5.85) are replaced by

the equivalent constraints given below in matrix form for the sake of compactness:

Ex+ Fy ≤ G, (5.95)

where x is the vector of the LL primal and dual variables, y is the vector of auxiliary

binary variables and E,F,G denote matrices of parameters.

5.3.4 Case Study

5.3.4.1 Test System & Data

The proposed MPEC formulation has been tested on a modified version of the one-area

IEEE RTS, which consists of 24 buses, 32 generators with a total capacity of 3,105 MW,

38 transmission lines and five wind farms with a total installed capacity of 2,100 MW [14].

The day-ahead wind power forecasts for days D0 and D1 were generated based on the NREL

Eastern Wind Dataset [47] sequentially for 7 consecutive days to evaluate the proposed

MPEC model over a week. A deterministic forecast is used for D0. For day D1, we first use

an ensemble approach to generate 1000 training scenarios. Then, we apply a submodular
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Table 5.1: Parameters of the storage devices

Storage chs = dis (MW) SoC (MWh) ηdis = ηch Bus location

1 41 303 0.9 16

2 17 117 0.9 17

3 36 247 0.9 19

4 93 629 0.9 21

scenario reduction to reduce this set to 10 scenarios. Fig. 5.8 shows the wind and load profiles

for this simulated week. Four storage devices with the parameters given in Table 5.1 were

sited and sized using the procedure presented in [14]. The initial state-of-charge on day D0

is set at 50% of SoCh for all storage devices.
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Figure 5.8: Wind and load profiles for the test week

All simulations were carried out using GAMS v.23.7 [212] and CPLEX v.12.5 with opti-

mality gap 0.1% on a Intel Xenon 2.55 GHz processor with at least 32 GB RAM [213].
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5.3.4.2 Inter-day Profit Arbitrage

This section analyzes the inter-day profit arbitrage by the storage devices and its sensitivity

to the final state-of-charge (fSoC) of day D0 and to the discount factor γD1 and γCV aR. Table

5.2 itemizes the optimized fSoC of every storage device for every day of the week studied

and different values of the discount factor γD1 . The economic dispatch (ED) is the reference

case where storage is economically dispatched by the system operator and does not behave

strategically. The benchmark is the case where the fSOC of each storage device at the end of

each day must return to 50% SoCh. Transmission and ramp rate constraints are omitted to

obtain the worst-case profit opportunities for storage. As the discount factor γD1 increases,

the optimization puts more weight on ΓD1 . In particular, if γD1 = 1, the profits terms

ΠD0 and ΓD1 are weighted equally. Compared to the benchmark case, the total ES profit

increases for all values of discount factor γD1 . However, the maximum profit is achieved

when γD1 = 0.75, which demonstrates the usefulness of discounting potential future profits

because of the larger forecast errors that might affect these profits. Overly conservative

discounting, i.e. γD1 < 0.5, overestimates the effect of forecast errors and reduces the total

actual profits collected by the storage devices. On the other hand, underestimating these

forecast errors by setting γD1 > 0.75, reduces this total profit even more. The weight given

to the risk γCV aR affects the amount energy stored at end of the day. For a small γD1 , the

risk impact is less obvious than for the high γD1 cases. Although this risk aversion has a

smaller effect on the total fSoC at the end of D0, it tends to make small adjustments to the

offers submitted by the various storage devices. Fig. 5.9 shows the total profits for the test

week with different γD1 and γCV aR values.

5.3.4.3 Effect of the Level of Forecasting Error

In order to assess its effect on storage profitability, the amount of forecasting error on Day

D1 is progressively increased. We first compute the Day D1 day-ahead forecast errors from

the realizations. Then to reflect a larger forecast error level, these errors are proportionally
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Table 5.2: Final state of charge (MWh) and profits ($) without transmission and ramp rate

constraints

Model ES Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Total Profits

Economic Dispatch

ES1 151 151 151 151 151 151 151

23230
ES2 58 58 58 58 58 58 58

ES3 123 123 123 123 123 123 123

ES4 314 314 314 314 314 314 314

Benchmark

ES1 151 151 151 151 151 151 151

26800
ES2 58 58 58 58 58 58 58

ES3 123 123 123 123 123 123 123

ES4 314 314 314 314 314 314 314

γD1 = 0

ES1 0 0 0 0 0 0 0

39060
ES2 0 0 0 0 0 0 0

ES3 0 0 0 0 0 0 0

ES4 0 0 0 0 0 0 0

γ = 0.50
ES1 2 0 0 0 0 0 0

39379
ES2 8 0 0 0 0 0 0

γCV aR = 0.75
ES3 1 0 0 0 0 0 0

ES4 15 0 0 0 0 0 0

γ = 0.75
ES1 49 48 0 45 24 0 0

41404
ES2 25 15 0 10 10 0 0

γCV aR = 0.75
ES3 44 41 0 20 0 0 0

ES4 69 84 0 43 23 0 0

γ = 0.75
ES1 65 50 0 45 27 0 0

41240
ES2 25 20 0 10 10 0 0

γCV aR = 1
ES3 20 33 0 20 18 0 0

ES4 58 84 0 43 7 0 0

γ = 1
ES1 52 58 0 74 74 0 144

36084
ES2 10 19 0 31 31 0 41

γCV aR = 0
ES3 53 43 0 53 64 0 89

ES4 90 103 0 167 167 0 169

γ = 1
ES1 57 78 0 74 74 0 166

35947
ES2 25 38 0 10 30 0 59

γCV aR = 0.75
ES3 53 39 0 63 63 0 81

ES4 112 128 0 167 167 5 140

γ = 1
ES1 77 119 30 46 74 0 181

33991
ES2 10 25 4 31 31 0 100

γCV aR = 1
ES3 26 44 0 53 64 0 129

ES4 90 171 0 108 167 0 158
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Figure 5.9: Storage profits with different γD1 and γCV aR
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increased to represent larger forecast errors during the ensemble training stage for scenario

generation.

Fig. 5.10 shows how the total profit collected by the storage devices changes as a function

of the wind power forecast error levels for discount factor γD1 = 0.75 with different γCV aR.

The total ES profit decreases as the wind power forecast error increases and this reduction

is less sensitive for large values of γCV aR. This confirms that considering the risk using ΓD1

when the wind power forecast are inaccurate is necessary. Well-tuned γD1 and γCV aR values

ensure higher profits for all cases of wind power forecast errors. In the next subsections, we

will use a value of γCV aR = 0.75.
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Figure 5.10: Profits for different D+1 forecasting error levels for γD1 = 0.75

Fig. 5.11 shows the optimized price and quantity offers that storage device 4 would

submit on day 4 for different forecasting error levels using a discount factor γD1 = 0.75 and

γCV aR = 0.75. Due to the forecast error, the ES owners change their offering strategies

according to the forecast that they have available. The discount factor results in a relatively

consistent offering strategy. While their offer prices do not change much with different
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Figure 5.11: Storage 4 Offer in Day 4

forecast error levels, the offer quantities change a lot because of possible future arbitrage

opportunities. D + 1 serves as a profit estimator, but this estimator must be discounted

unless we have full confidence in the accuracy of the forecast.

5.3.4.4 Effect of the Look-ahead Window Length

Fig. 5.12 shows how storage profits change with different lengths of D1 market. We compare

the 6-, 12-, 24-hour look-ahead window lengths with ED, benchmark and γD1 = 0, which

means no look-ahead. We set γCV aR = 0.75 as it does not affect results as significantly as γD1 .

Two γD1 values 0.75 and 1 are shown to illustrate two distinct patterns. When γD1 = 0.75,

the optimization properly discounts the future. The more information about D1 market is

available, the more profits storage can realize in the future by setting the fSoC accordingly.



122

γ
D1

=0.75 γ
D1

=1

0

1

2

3

4

5
P

ro
ft
s
 $

×10
4

ED

Benchmark

0h

6h

12

24h

Figure 5.12: Storage profits with different look-ahead window lengths

On the contrary, when γD1 = 1, the optimization is over-optimistic about its ability to

predict the future and charges more at the end of the D0 markets. When the look-ahead

window is shortened, the algorithm anticipates less profit opportunities and charges less,

which actually improves the profitability. This figure shows that using a 24-hour look-ahead

window is appropriate for this short-term day-ahead operation. For pumped hydro units

with medium-term (weekly or monthly) schedules, additional constraints could be added in

the upper-level problem to keep enough energy for future use.

5.3.4.5 Effect of the Storage Variable Operating Costs

To illustrate the effect of storage variable costs on their bidding outcomes, we consider 4

typical values:

• $4/MWh represents the base case for the operating cost of relatively large scale storage,

such as pumped hydro or CAES [155].
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• $7/MWh is a typical value for a battery according to [155].

• $9/MWh is a typical value a combustion turbine [155].

• $0/MWh is used as a reference.

Fig. 5.13 shows the total revenue and profits storage collected from temporal arbitrage

where revenue is defined as the income from arbitrage without considering the storage vari-

able operating cost. When this operating cost varies from 0 to 7, we can observe that the

revenue does not change much. Since the storage cost in this range is lower than the offer

from base units, the market clearing results are mostly unchanged. Only when storage is

exposed to a high price, does it changes its bidding strategy to avoid a loss of profit. The

resulting revenue also decrease significantly because storage needs large price differences to

compensate for the operating costs. As expected, storage profits decrease significantly with

higher costs and this rate of change is nonlinear.

5.3.4.6 Effect of the Competing Generators Price Offers

In a perfectly competitive market, every participant is expected to submit its true marginal

cost. Fig. 5.14 shows how the profit of storage operators changes when conventional units

adjust their offers by discrete multipliers [0.25, 0.5, 1.0, 2.0, 3.0, 4.0]. We select 4 generators

out of 32 to represent different generator types (base units, peakers or mid-range genera-

tors). When one unit changes its offer, we assume that the remaining 31 units continue

to submit competitive offers. Gen 22 is the cheapest unit in the system. When it offers

below $14/MWh, the less it offers, the more profits storage achieves. For a system with high

renewable penetration, a lower offer from base units creates more low-LMP time intervals

suitable for storage to charge. When this base unit gradually increase offers, it increases

the LMPs and storage earns more from discharging. By contrast, Gen 18 is the most ex-

pensive unit in the system and rarely generates. As the almost flat line after the multiplier

reaches 1 shows, when Gen 18 increases its offer it does not affect market clearing much, and
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Figure 5.14: Storage profits with competing generators offers

storage profits remain relatively unchanged. When it reduces its price offer, the electricity

market is more competitive as can be observed from the sharp change between multipliers

0.5 and 1, and storage loses profits. When the offer is reduced below $15/MWh, the profits

of storage increases as explained before. For mid-range generators Gen 18 and Gen 30, we

clearly see a mixed behavior when they vary the offer price. We can observe that the most

competitive market for storage occurs when generators offer in the range between $11/MWh

to $23/MWh . Analyze how the generator offer uncertainty affects the profits of storage

when both conventional units’ price and quantity offer are random variables is an interesting

question but is outside the scope of this paper.
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Table 5.3: Total profits ($) with different system conditions

Network Ramp ED Benchmark γ = 0 γ = 0.50 γ = 0.75 γ = 1

Y N 26058 33547 42647 43687 43935 38793

N Y 29072 37209 43976 50067 50238 45075

Y Y 26488 38066 46543 47122 47483 42008

5.3.4.7 Effects of ramp rate and power flow limits on the profitability of storage devices

Tables 5.3 summarizes the effects of the ramp rate limits of the conventional generators and

of the power flow limits on the scheduling of the storage devices and their profits. The

last row gives these results for the case where both types constraints are considered in the

optimization. In general, both types of constraints increase the profit opportunities for the

storage devices. Quantitatively, ramp rate limits have a larger effect on the profits than the

power flow limits, because thermal generation ramping capabilities are limited and congestion

on the lines connected to an ES limits its ability to perform spatio-temporal arbitrage. In all

cases presented, the proposed look-ahead optimization yields greater storage profits than the

ED and benchmark cases where the state of charge is returned to its initial value at the end

of the optimization. Storage profitability remains sensitive to the value of the discount factor

γD1 when ramping and transmission constraints are taken into consideration. However, the

optimal value of γD1 is then in the 0.50–0.75 range. These constraints also affect the optimal

values of the fSOC as shown in Fig. 5.15. As in the case without network and ramp limits,

γCV aR has a smaller impact on the results, and we use a value of 0.75 here for illustration.

Fig. 5.16 shows the total storage profits when the ramping limits of conventional genera-

tors are gradually increased using discrete multipliers [1.0, 1.5, 2.0, 2.5, 3.0]. If the multiplier

is set to 1, the ramp limits are the same as above. Higher multipliers lead to more flexibility

from conventional generators, which in turn leads to lower total profits collected by the stor-

age devices regardless of the value of the discount factor γD1 . When γD1 = 0, the profit term
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ΠD1
ω1

is discarded and the state of charge is not optimized at the end of day D0. However,

tuning γD1 increases storage profitability as shown for γD1 = 0.75. Increasing γD1 decreases

(e.g. γD1 = 1) the storage profitability due to the high charging cost for the fSoC and the

uncertainty on day D1.

Fig. 5.17 shows the storage profits for different power flow limits. In these simulations

the power flow limits were adjusted using multipliers [0.85, 0.95, 1.0, 1.05, 1.15, 1.5] relative

to the base values used above. For any value of the discount factor γD1 , the total storage

profit decreases for the highly constrained cases (i.e. multipliers 0.85, 0.95). This is due

to the inability of the storage devices to perform spatio-temporal arbitrage because of the

congestion. However, if congestion is eliminated (i.e. multiplier 1.5), all ES become available

for providing spatio-temporal arbitrage and they can collect almost as much profit as in the

base case. Even though more congestion may result in higher prices, congestion may also

decrease the quantity that storage gets cleared in the market. The trade-off between these
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two factors determines whether or not it achieves a larger profit. For a merchant storage

owner with several geographically dispersed devices, a moderately constrained case (e.g. a

multiplier of 1.15) is more profitable.

5.4 Summary

In this section, we propose a risk-constrained, look-ahead bilevel technique to determine the

optimal bids and offers for energy storage owners participating in a day-ahead electricity

market. We maximize the total operating profits over two consecutive days. This look-

ahead technique determines the energy state-of-charge at the end of the first day that best

positions the storage device for taking advantage of arbitrage opportunities over the following

day. This bilevel formulations emulates the interactions between the storage owner and the

system operator. The upper-level problem maximizes the profits collected by the storage

devices considering the operating constraints on the storage as well as the market clearing

results from the lower level. In the lower-level problem, the system operator maximizes the
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social welfare to clear the market. The resulting bilevel model is non-linear and non-convex

and thus hard to solve. Karush-Kuhn-Tucker conditions and linearization techniques are

used to transform this model into a single-level, mixed-integer linear equivalent, which can

be solved efficiently with current commercial solvers. Test results demonstrate that this

look-ahead bidding strategy improves the profitability of energy storage by setting a better

initial position for the next market window. We also show that taking into account limits on

the ramping capacity of conventional generators and transmission constraints increases the

profitability of storage.
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Chapter 6

CONCLUSIONS AND SUGGESTION FOR THE FUTURE
WORKS

6.1 Conclusions

To address the operation challenges from wind uncertainty, this dissertation proposed an

ensemble based wind modeling tool to generate wind scenarios. This ensemble provides a

better point forecast and scenario input for the stochastic optimization. Due to limited

computation power, current power system scheduling and market clearing engines cannot

support operation with a large number of scenarios. To relieve such issue, we need to

select a subset of scenarios to represent important operating conditions. By comparing

current scenario reduction techniques, Fast Forward Selection algorithm outperforms other

algorithms. Motivated with FFS, we propose a submodular scenario reduction algorithm to

optimally rank and select scenarios. The scalable performance suggests its strong capabilities

to handle the huge number of scenarios with multiple uncertainty sources.

To investigate the benefits from energy storage systems to the system and merchant par-

ticipants. We first analyze ESS operation strategies from ISO perspective. Stochastic pro-

gramming based strategies demonstrate a better ex-post economic and reliable performances

comparing with deterministic, interval and robust strategies. In addition, the energy storage

also assists the system operator to reach a better operating position to hedge against wind

uncertainty. On the other hand, to incentive ESS investments from merchant participants,

we propose a look-ahead bilevel bidding strategies to exploit energy arbitrage opportunities.

The current intra-day scheme is extended to a inter-day setting with a more efficient energy

allocation for the future usage.
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6.2 Suggestion for the Future Work

Recently, deep learning or deep neural networks (DNN) has shown great progress and success

in the machine learning filed. Many computer vision, natural language processing, speech

recognition benchmarks are led with deep learning methods. Power system itself is a complex

network with huge data processing needs. Naturally, we can improve the system with DNN

in proper applications.

Forecasting is one direct application for DNN. Currently, one specific recurrent neural

network (RNN) structure called Long short-term memory (LSTM) is suitable for time series

predictions. Actually, load/price/wind/solar time series are very structured data. Directly

applying DNN without any domain knowledge adjustments does not necessarily results in

a significant performance improvements over existing ensemble methods. However, DNN is

expected to show the full potentials if we, power system engineers, provide the tools with

power system understandings to carefully select features and design the algorithms.

In addition to regression, DNN would be helpful for sequential decision-making processes

as well with the deep reinforcement learning tools. It is also not surprising to see how recent

progress in semi-supervised learning helps analyzing power systems data dependencies.

Submodular optimization is another nice tool to be further studied in the power systems.

Works have been done with submodular optimization for PMU placement [214, 215], scenario

reduction [165] and voltage control [216]. Since our power systems are full of discrete decisions

to make, submodularity will be a great addition to derive efficient algorithms under big-data

contexts. However, the physical network flows can create problems when defining the problem

submodularity. More progress is expected in this field.

Back to energy storage, in this work, we mainly studied the ESS applications in energy

arbitrage, but ESS can do much more than that. However, when providing multiple services,

it is an interesting question to investigate the optimal portfolios for entering different markets.

Moreover, the nonlinear degradation effects with BESS further complicates this problem

when developing optimization formulations.



133

BIBLIOGRAPHY

[1] Daniel Kirschen and Goran Strbac. Fundamentals of Power System Economics. John
Wiley & Sons, Ltd, Chichester, UK, mar 2004.

[2] Allen J. Wood and Bruce F. Wollenberg. Power Generation, Operation, and Control.
Wiley, 2 edition, 1996.

[3] M.A. Ortega-Vazquez and D.S. Kirschen. Estimating the Spinning Reserve Require-
ments in Systems With Significant Wind Power Generation Penetration. IEEE Trans-
actions on Power Systems, 24(1):114–124, feb 2009.

[4] G Giebel, R Brownsword, G Kariniotakis, Denhard. M, and C Draxl. The State of
the Art in Short-Term Prediction of Wind Power, A Literature Overview, 2nd Edition.
Technical report, ANEMOS.plus, 2011.

[5] Yao Zhang, Jianxue Wang, and Xifan Wang. Review on probabilistic forecasting of
wind power generation. Renewable and Sustainable Energy Reviews, 32:255–270, apr
2014.

[6] Anthony Papavasiliou and Shmuel S. Oren. Multiarea Stochastic Unit Commitment for
High Wind Penetration in a Transmission Constrained Network. Operations Research,
61(3):578–592, jun 2013.

[7] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann, and INESC
Porto. Wind power forecasting : state-of-the-art 2009. Technical report, Argonne
National Laboratory (ANL), nov 2009.

[8] Miguel A. Ortega-Vazquez and Daniel S. Kirschen. Assessing the Impact of Wind
Power Generation on Operating Costs. IEEE Transactions on Smart Grid, 1(3):295–
301, Dec. 2010.

[9] Zhi Zhou and Audun Botterud. Dynamic scheduling of operating reserves in co-
optimized electricity markets with wind power. IEEE Transactions on Power Systems,
29(1):160–171, 2014.

[10] Anthony Papavasiliou, Shmuel S. Oren, and Richard P. O’Neill. Reserve require-
ments for wind power integration: A scenario-based stochastic programming frame-
work. IEEE Transactions on Power Systems, 26(4):2197–2206, nov 2011.



134
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aggregation for {GEFCom2014} probabilistic electric load and electricity price fore-
casting. International Journal of Forecasting, 32(3):1038 – 1050, 2016.

[81] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[82] Manuel a. Matos and R. J. Bessa. Setting the Operating Reserve Using Probabilistic
Wind Power Forecasts. IEEE Transactions on Power Systems, 26(2):594–603, May
2011.

[83] Audun Botterud, Zhi Zhou, Jianhui Wang, Jean Sumaili, Hrvoje Keko, Joana Mendes,
Ricardo J. Bessa, and Vladimiro Miranda. Demand dispatch and probabilistic wind
power forecasting in unit commitment and economic dispatch: A case study of Illinois.
IEEE Transactions on Sustainable Energy, 4(1):250–261, 2013.

[84] Z. Zhou, A. Botterud, J. Wang, R.J. Bessa, H. Keko, J. Sumaili, and V. Miranda. Ap-
plication of probabilistic wind power forecasting in electricity markets. Wind Energy,
16(3):321–338, Apr 2013.

[85] Kenneth Bruninx, Kenneth Van den Bergh, Erik Delarue, and William D’haeseleer.
Optimization and Allocation of Spinning Reserves in a Low-Carbon Framework. IEEE
Transactions on Power Systems, 31(2):872–882, Mar 2016.

[86] K. Bruninx and E. Delarue. Endogenous probabilistic reserve sizing and allocation
in unit commitment models: cost-effective, reliable and fast. IEEE Transactions on
Power Systems, 2016. in press.

[87] Joshua D Lyon, Fengyu Wang, Kory W Hedman, and Muhong Zhang. Market Impli-
cations and Pricing of Dynamic Reserve Policies for Systems With Renewables. IEEE
Transactions on Power Systems, 30(3):1593–1602, May 2015.

[88] Yonghong Chen, Ryan Leonard, Marc Keyser, and Joe Gardner. Development of
Performance-Based Two-Part Regulating Reserve Compensation on MISO Energy and
Ancillary Service Market. IEEE Transactions on Power Systems, 30(1):142–155, jan
2015.



141

[89] Miguel Angel Ortega Vazquez. Optimizing the spinning reserve requirements. PhD
thesis, University of Manchester, 2006.

[90] Y. Dvorkin, D. S. Kirschen, and M. A. Ortega-Vazquez. Assessing flexibility require-
ments in power systems. IET Generation, Transmission Distribution, 8(11):1820–1830,
2014.

[91] Y. Dvorkin, M. A. Ortega-Vazuqez, and D. S. Kirschen. Wind generation as a reserve
provider. IET Generation, Transmission Distribution, 9(8):779–787, 2015.

[92] X. Zhang, K. Tomsovic, and A. Dimitrovski. Security constrained multi-stage trans-
mission expansion planning considering a continuously variable series reactor. IEEE
Transactions on Power Systems, 2017. in press.

[93] G. Liu, M. Starke, Xiaohu Zhang, and K. Tomsovic. A milp-based distribution optimal
power flow model for microgrid operation. In 2016 IEEE Power and Energy Society
General Meeting (PESGM), pages 1–5, July 2016.

[94] X. Zhang, K. Tomsovic, and A. Dimitrovski. Optimal investment on series facts device
considering contingencies. In 2016 North American Power Symposium (NAPS), pages
1–6, Sept 2016.

[95] G. Liu, M. Starke, B. Xiao, X. Zhang, and K. Tomsovic. Microgrid optimal scheduling
with chance-constrained islanding capability. Electric Power Systems Research, 145:197
– 206, 2017.

[96] X. Wang, D. Shi, Z. Wang, C. Xu, Q. Zhang, X. Zhang, and Z. Yu. Online calibration
of phasor measurement unit using density-based spatial clustering. IEEE Transactions
on Power Delivery, 2017. in press.

[97] Anthony Papavasiliou, Shmuel S Oren, and Barry Rountree. Applying High Perfor-
mance Computing to Transmission-Constrained Stochastic Unit Commitment for Re-
newable Energy Integration. IEEE Transactions on Power Systems, 30(3):1109–1120,
May 2015.

[98] Yishen Wang, Zhi Zhou, Cong Liu, and Audun Botterud. Evaluating stochastic meth-
ods in power system operations with wind power. In 2016 IEEE International Energy
Conference (ENERGYCON), pages 1–6. IEEE, Apr 2016.

[99] Kwok Cheung, Dinakar Gade, César Silva-Monroy, Sarah M. Ryan, Jean-Paul Watson,
Roger J.-B. Wets, and David L. Woodruff. Toward scalable stochastic unit commit-
ment. Energy Systems, 6(3):417–438, 2015.



142

[100] P. A. Ruiz and R. Philbrick. Uncertainty management in the unit commitment prob-
lem. IEEE Transactions on Power Systems, 24(2):642–651, 2009.

[101] Lei Wu, Mohammad Shahidehpour, and Tao Li. Stochastic Security-Constrained Unit
Commitment. IEEE Transactions on Power Systems, 22(2):800–811, May 2007.

[102] Qipeng P. Zheng, Jianhui Wang, and Andrew L. Liu. Stochastic Optimization for Unit
Commitment&#x2014;A Review. IEEE Transactions on Power Systems, 30(4):1913–
1924, Jul 2015.

[103] Yury Dvorkin, Yishen Wang, Hrvoje Pandzic, and Daniel Kirschen. Comparison of
scenario reduction techniques for the stochastic unit commitment. In 2014 IEEE PES
General Meeting — Conference & Exposition, pages 1–5. IEEE, Jul 2014.

[104] Juan M. Morales, Salvador Pineda, Antonio J. Conejo, and Miguel Carrión. Scenario
reduction for futures market trading in electricity markets. IEEE Transactions on
Power Systems, 24(2):878–888, 2009.

[105] Yonghan Feng and Sarah M Ryan. Scenario reduction for stochastic unit commit-
ment with wind penetration. In 2014 IEEE PES General Meeting — Conference &
Exposition, pages 1–5. IEEE, Jul 2014.

[106] Kenneth Bruninx and Erik Delarue. Scenario reduction techniques and solution sta-
bility for stochastic unit commitment problems. In 2016 IEEE International Energy
Conference (ENERGYCON), pages 1–7, Apr 2016.
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Appendix A

NOMENCLATURE

A.1 Chapter 3 and Chapter 4

A.1.1 Sets and Indices

B Set of buses, indexed by b.

I Set of conventional generators, indexed by i.

J Set of conventional generator startup cost segments, indexed by j.

K Set of conventional generator production cost blocks, indexed by k.

L Set of transmission lines, indexed by l.

S Set of scenarios, indexed by s.

T Set of time intervals, indexed by t.

W Set of wind generators, indexed by w.

H Set of energy storage devices, indexed by h.

f(l) Indices of sending buses of line l.

t(l) Indices of receiving buses of line l.

r(b) Indices of resources connected at buses b.
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A.1.2 Binary Decision Variables

xi,t Commitment variable for generator i at time t.

yi,t Shut down indicator for generator i at time t.

zi,t Start-up indicator for generator i at time t.

qi,j,t Stepwise start-up cost indicator for generator i segment j at time t.

A.1.3 Continuous Non-negative Decision Variables

csui,t Start-up cost for generator i at time t.

cpgi,t,s Energy production cost for generator i at time t for scenario s.

pi,t,s Dispatched power output for generator i at time t for scenario s.

gi,k,t,s Dispatched power output for generator i block k at time t for scenario s.

ri,t,s Scheduled reserve for generator i at time t for scenario s.

ensb,t,s Amount of not served energy at bus b time t for scenario s.

ww,t Scheduled wind generation output for wind farm w at time t.

curtw,t,s Wind dispatch curtailment for wind farm w at time t for scenario s.

SoCh,t,s Schedule Storage state of charge for storage h at time t for scenario s.

qdish,t,s Scheduled storage discharging power quantity for storage h at time t for

scenario s.

qchsh,t,s Scheduled storage charging power quantity for storage h at time t for

scenario s.
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A.1.4 Continuous Decision Variables

pfl,t,s Power flow on line l at time t for scenario s.

θb,t,s Voltage angle at bus b time t for scenario s.

A.1.5 Parameters

PROBs Probability of scenario s.

V oLL Value of lost load.

V oWS Value of wind spillage.

Db,t Load at bus b time t.

FLcap
l Real power capacity of line l.

Xl Reactance of line l.

SUCi,j Startup cost of generator i cost segment j.

NLCi No-load cost of generator i.

MCi,k Marginal cost of generator i at cost segment k.

MUTi Minimum up time of generator i.

MDTi Minimum down time of generator i.

PMIN
i Minimum generation level of generator i.

PMAX
i Maximum generation level of generator i.

PRi,k Power capacity of generator i on cost segment k.
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TMIN
i,j Lower limit of stepwise start-up cost curve of generator i and segment j.

TMAX
i,j Upper limit of stepwise start-up cost curve of generator i and segment j.

RUi Hourly ramp up limit of generator i.

RDi Hourly ramp down limit of generator i.

POi Initial power generation level of generator i.

WFw,t,s Forecasted wind generation of wind farm w at time t for scenario s (de-

noted as central forecast in DUC case).

WFLB
w,t Lower bound of forecasted wind generation of wind farm w at time t.

WFUB
w,t Upper bound of forecasted wind generation of wind farm w at time t.

ηchsh /ηdish Storage charging / discharging efficiency for storage h.

SoCmin
h /SoCmax

h Minimum / Maximum SoC level for storage h, MWh.

SoCinit
h Initial SoC for storage h, MWh.

Discaph /Chscaph Discharging/charging rate limit for storage h, MW.

αload Percentage of load to be reserved.

αwind Percentage of wind to be reserved.

MSRi Reserve rate per miniute for generator i.

∆T Reserve time requirement.
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A.2 Chapter 5

A.2.1 Sets and Indices

B Set of buses, indexed by b.

I Set of thermal generators, indexed by i.

L Set of transmission lines, indexed by l.

H Set of storage devices, indexed by h.

W Set of wind generators, indexed by w.

Ω1 Set of wind scenarios at D1, indexed by ω1.

Ω Set of wind scenarios, indexed by ω. Note that ω0 stands for D0 deter-

ministic forecast profiles.

TD0 Set of time intervals of the first market window indexed by t0 = 1...NT0

TD1 Set of time intervals of the second market window indexed by t1 = (NT0 +

1)...NT1 .

T Set of all time intervals, indexed by t. Note that T = TD0 ∪ TD1 .

f(l)/t(l) Indices of the from/to buses of line l.

A.2.2 Variables

chsh,t/dish,t Quantity of charging bid/discharging offer of storage h at time t, MW.

ρchsh,t /ρ
dis
h,t Price of charging bid/discharging offer of storage h at time t, $/MWh.
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xdish,t Binary status variable of storage h at time t. Equals to 1 if discharging

and 0 otherwise.

ΠD0/ΠD1
ω1

Profit at D0 / D1 stage.

ΓD1 Risk-constrained look-ahead profits adjustments.

CV aRD1 Conditional value-at-risk of D1 profits.

V aRD1 Value-at-risk of D1 profits.

lossD1
ω1

Auxiliary variables to compute D1 CVaR.

SoCh,t,ω State of charge of storage h at time t and scenario ω, MWh.

db,t,ω Cleared demand at bus b at time t and scenario ω, MW.

pGi,t,ω Cleared power output of conventional generator i at time t and scenario

ω, MW.

pWw,t,ω Cleared power output of wind generator w at time t and scenario ω, MW.

pfl,t,ω Power flow on line l at time t and scenario ω, MW.

q
dis/chs
h,t,ω Cleared discharging/charging rate for storage h at time t and scenario ω,

MW.

θb,t,ω Voltage phase angle at bus b at time t and scenario ω, rad.
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A.2.3 Dual Variables

λb,t,ω Nodal power balance constraint at time t and scenario ω.

¯
µG
i,t,ω/µ̄

G
i,t,ω Min/max power output constraints of generator i at time t and scenario

ω.

¯
µW
w,t,ω/µ̄

W
w,t,ω Min/max power output constraints for wind generator w at time t and

scenario ω.

¯
µD
b,t,ω/µ̄

D
b,t,ω Min/max bounds on demand at bus b time t at scenario ω.

¯
αdis
h,t,ω/ᾱ

dis
h,t,ω Min/max discharging rate constraints of storage h at time t and scenario

ω.

¯
αchs
h,t,ω/ᾱ

chs
h,t,ω Min/max charging rate constraints of storage h at time t and scenario ω.

νl,t,ω Power flow constraints on line l at time t and scenario ω.

¯
ϕl,t,ω/ϕ̄l,t,ω Min/max power flow constraints on line l at time t and scenario ω.

¯
δb,t,ω/δ̄b,t,ω Min/max voltage phase angle constraints at bus b at time t and scenario

ω.

δrefb,t,ω Reference bus voltage angle constraints at bus b at time t and scenario

ω.

βu
i,t,ω/β

d
i,t,ω Up/down ramp limit constraints for generator i at time t and scenario ω.

A.2.4 Parameters

γD1 Discount factor for the profit term of day D1.

γCV aR Weight factor for the risk position of day D1.
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CES
h Variable operating cost for storage h, $/MW.

CG
i /C

W
w Offer price for generator i / wind w, $/MWh.

CD
b Bid price for demand b, $/MWh.

dish/chsh Discharging/charging rate limit for storage h, MW.

ηdish /ηchsh Discharging/charging efficiency for storage h.

Db,t/Db,t Min/max bounds on demand at bus b at time t, MW.

F̄l Power flow limit on line l, MW.

¯
Pi/P̄i Min/max power output limits for generator i, MW.

PG
i,0 Initial power output of generator i, MW.

RUi/RDi Ramp up/down limits for generator i, MW.

SoCh/SoCh Min/max state-of-charge for storage h, MWh.

SoCinit
h Initial state-of-charge level for storage h, MWh.

Xl Reactance of line l.

πω1 Probability for wind scenario ω1 on day D1.

β0 Probability threshold for risk calculation.

Al,b Incidence matrix of transmission lines. 1/-1 indicates bus b is the from/to

bus for line l, and 0 otherwise.

WFw,t,ω Forecast wind w at time t and scenario ω, MW.
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Appendix B

DIAGRAMS OF IEEE RTS TEST SYSTEMS

B.1 One-Area RTS

Figure B.1: One-Area RTS Diagram
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B.2 Three-Area RTS

Figure B.2: Three-Area RTS Diagram
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8. H. Pandžić, Y. Dvorkin, Y. Wang, T. Qiu, D. S. Kirschen, “Effect of Time Resolution

on Unit Commitment Decisions in Systems with High Wind Penetration,” 2014 IEEE

PES General Meeting | Conference & Exposition, National Harbor, MD, 2014, pp. 1-5.

[pdf]

9. D. S. Kirschen, Y. Dvorkin, Y. Wang, T. Qiu, H. Pandžić, “A Comparison of Various
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