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Power systems are not likely to remain unscathed by natural disasters such as earthquake,

hurricanes, ice storms, as evident from the recent Hurricane Harvey and Hurricane Irma. The

outages will last days or even weeks because of the amount of damaged components. And

the impacts are affecting the economies, public health and communities especially those that

are already facing challenges. This motivates us to study methods of improving resilience in

both operational stage and planning stage. We believe this is an interdisciplinary research

from several aspects,

1. There has been no consensus on the definition of power system resilience under natural

disasters. And in fact, this research direction only becomes hot in recent 4 or 5 years.

However, the concept of infrastructure resilience has been prevailing and well-studied

in civil engineering. After summarizing previous efforts on defining and quantifying of

resilience including those adapted to power systems, we base our work on the resilient

measure derived from operability trajectory and develop an equivalent measure of harm

that has clearer power system meanings.

2. The knowledge of power systems guides us to focus on electricity distribution systems,



where we believe the resilience has more potential for improvement. We start with the

case of fully automated radial distribution network, and then move on to partially au-

tomated radial distribution network and finally find a way to handle the uncertainties

in repair time. After consulting with industry experts, we relax certain operational

constraints to make the problems (slightly but enough) easier to solve without com-

promising their practicality in field. Built upon the operation problems, we formulate

the quantification and assessment of resilience in the planning stage, which will help

electric utilities decide how best to spread the budget to improve the resilience.

3. Unfortunately, none of the problems described above are easy to solve in terms of the

computational complexity. In particular, the operational problems might need to be

solved in real time repeatedly and MILP formulations, though straightforward, are too

slow in practice. We adopt the settings of scheduling theory and propose the first of

its kind, soft precedence constraints, to model the relaxed load flow equations in radial

distribution networks. And for the assessment of resilience in the planning stage, we

simplify the operational problem by using a single crew approximation with only a

constant away from optimal. This allows us to reformulate the distribution systems

hardening problem into a combinatorial optimization with the flavor of the multiple

knapsack problem.

To summarize, this research aims to develop good algorithms and heuristics for problems

under the framework of power system resilience adapted from the concept of infrastructure

resilience.
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Chapter 1

INTRODUCTION

1.1 Impact of Natural Disasters on Power Systems

Natural disasters, such as Hurricane Sandy in November 2012, the Christchurch Earthquake

of February 2011 or the June 2012 Mid-Atlantic and Midwest Derecho, caused major damage

to the electricity distribution networks and deprived homes and businesses of electricity for

prolonged periods. Such power outages carry heavy social and economic costs. Estimates

of the annual cost of power outages caused by severe weather between 2003 and 2012 range

from $18 billion to $33 billion on average (Executive Office of the President 2013).

Hurricanes often cause storm surges that flood substations and corrode metal, electrical

components and wiring (The City of New York 2013). Earthquake can trigger ground lique-

faction that damage buried cables and dislodge transformers (Kwasinski et al. 2014). Wind

and ice storms bring down trees, breaking overhead cables and utility poles (Infrastructure

Security and Energy Restoration, Office of Electricity Delivery and Energy Reliability, U.S.

Department of Energy 2012). As the duration of an outage increases, its economic and social

costs rise exponentially. We summarize the impacts of different natural disasters on power

systems in Table 1.1, modified upon the work by Breiding (2015). See also (Wang et al.

2015, Reed et al. 2009) for discussions of the impacts of natural disasters on power grids

and (Vugrin et al. 2011, Reinhorn et al. 2010) for its impact on other infrastructures.

Finally, we want to take the example of Hurricane Harvey to illustrate an almost worst

cases scenario for impacts on power systems. Hurricane Harvey made landfall at peak in-

tensity on San Jose Island, just east of Rockport, with winds of 130 mph (215 km/h) at

approximately 10 p.m. on August 25, 2017. The storm gradually weakened to a tropical

storm by the evening of August 26, 2017. Based on the report by Electric Reliability Council
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Table 1.1: Natural Disaster Impacts on Power Systems

Natural Disaster Effect

Wind Storms
Downed transmission lines due to strong winds and or trees tripping

Damaged distribution poles due to strong winds and or trees tripping

Ice Storms
Downed transmission lines due to ice loading and/or strong winds

Damaged distribution poles due to ice loading and/or strong winds

Hurricanes
Downed transmission lines due to airborne debris and/or strong winds

Damaged distribution poles due to airborne debris and/or strong winds

Floods
Damaged substations, transformers, and/or underground distribution lines

due to water seepage

Tornados
Downed transmission lines due to ice loading and/or strong winds

Damaged distribution poles due to ice loading and/or strong winds

Earthquakes

Damaged transformers due to inadequate anchorage during shaking

Damaged underground lines due to ground liquefaction

Damaged overhead lines due to poles shaking in opposite directions

Damaged overhead lines due high weight loading of distribution poles
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of Texas (2017), since the hurricane first made landfall, six 345kV transmission lines in the

ERCOT system have experienced storm-related Forced Outages. Approximately 52% of the

138kV facilities and 34% of the 69kV facilities remain outaged as of the morning of August

30th. In addition to transmission outages, approximately 8,000 MW of generation is outaged

and approximately 3,000 MW is derated due to storm-related causes as of the morning of

August 30th. On the distribution side, we take the local utility company CenterPoint En-

ergy 2.4 million metered customers across 5,000 square miles in and around Houston, Texas.

Based on the presentation by Kenny Mercado, Senior Vice President, Electric Operations

(2017), Hurricane Harvey leads to a 755 million total minutes outage over 10 days and a 308

SAIDI minutes. 8 substations were out of service and 9 substations were inaccessible due

to high water. Thoughout the restoration process, 293 total electric circuits were locked out

and 4,494 total electric fuses were out.

When the natural phenomenon is in the upper range or beyond what is expected, as

in the case of Hurricane Harvey, power systems may not be able to survive such events

relatively unscathed. Physical damage to grid components must be repaired before power

can be restored (The GridWise Alliance 2013, NERC 2014). Therefore in these cases, the

ability to repair the damage quickly to restore at least a basic service that helps communities

return to a more normal life becomes the crucial aspect.

1.2 Defining Power System Resilience

The concept of power system resilience stems from the context of civil and industrial engi-

neering, which has been well studied since the publication of (on Critical Infrastructure Pro-

tection 1997). As pointed out by Reed et al. (2009), our approach only focuses on engineering

resilience, although more comprehensive definitions of resilience considers social, economic

and environmental factors. After about 20 years, there are still various definitions of re-

silience. Consider, among others (Mili & Center 2011, Bruneau et al. 2003, O’Rourke 2007),

the three definitions from the electrical engineering literature, government advisory report

and policy directives:
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• The resilience of the distribution system is based on three elements: prevention, re-

covery, and survivability. System recovery refers to the use of tools and techniques to

quickly restore service to as many affected customers as practical. Survivability refers

to the use of innovative technologies to aid consumers, communities, and institutions in

continuing some level of normal function without complete access to the grid. (Electric

Power Research Institute 2013)

• Infrastructure resilience is the ability to reduce the magnitude and/or duration of dis-

ruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon

its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially

disruptive event. And they also organized the main features into a sequence of events

named by the NIAC resilience construct, which we reproduce in Figure 1.1. (National

Infrastructure Advisory Council 2010)

• Resilience is the ability to anticipate, prepare for, and adapt to changing climate condi-

tions and withstand, respond to, and recover rapidly from disruptions. (Obama 2013)

Robustness Resourcefulness

Figure 1.1: Interactions between the four aspects of resilience

Specific definitions of resilience are less important than the fundamental concepts of re-

silience (National Infrastructure Advisory Council 2010). Although the definitions are not

exactly the same, all such definitions contain more or less the following four aspects or

features of resilience in our points of view:
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Preparedness refers to the application of engineering designs and advanced technologies

that harden the distribution system to limit damage (Electric Power Research Institute

2013) or re-design the systems and components to a higher standard (Ton & Wang

2015);

Robustness is the ability to absorb shocks (National Infrastructure Advisory Council 2010)

and aid customers in continuing some level of normal function (Electric Power Research

Institute 2013);

Resourcefulness the ability to skillfully manage the crisis, including but not limited to

identifying problems, establishing restoration plans, mobilizing resources and com-

municating decisions to the people who will implement them after the event takes

place (National Infrastructure Advisory Council 2010, Bruneau et al. 2003). Resource-

fulness mainly depends on people, instead of technology.

Recovery is the capacity to bring services back as quickly as possible (National Infrastruc-

ture Advisory Council 2010).

These aspects might not cover all facets of concept of resilience, but they turns out to be in-

structive for utilities to manage and practice and also contains most of the recent researches

regarding resilience. Although the definition and the four aspects is applicable to all critical

infrastructures, we feel no need to restate them in the power system context but instead we

will list some corresponding utility practices and power system researches in the following

sections.

Here we want to distinguish the concept of resilience with other similar concepts in power

systems. Electric utilities normally declare that ensuring the reliability of their systems, i.e.,

satisfying the customer load requirements is the primary mission. Theoretically, reliability

is defined as the probability of the system performing its function adequately, for the period

of time intended, under the operation conditions intended (Prada 1999). To accommodate

the characteristics and requirements of power systems, power system reliability normally
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refers to the related concepts, indices and evaluation techniques. The North America Elec-

tric Reliability Corporation (NERC) enforces reliability standards on utility companies. An

detailed review on deterministic and probabilistic approaches for operations and planning

considering reliability standards could be seen by Strbac et al. (2016). These techniques

assume that only a small number of components will fail at the same time and that most

part of the system should operate undisturbed. However, both aspects do not apply to the

case with natural disasters. In essence, the fact that tens of hundreds of components could

be destroyed and that customers will be left without power for days is the very reason that

power system resilience has drawn much attention recently.

Another concept to compare is self-healing, for which there is no formal or unanimous defini-

tion. However, since its introduction into power systems (Amin 2001), self-healing capability

involves two parts, monitoring and controlling unforeseen events, with an emphasis on utiliz-

ing the advanced information, sensing, control and communication technologies and without

human intervention. Self-healing is related to the robustness aspect of resilience in terms

of the objective of minimizing the adverse impact. But self-healing is applicable not only

to natural disasters but also minor disturbances. In most current framework of self-healing

grids, the adverse impact could be reduced, but not literally ‘healed’, since repairs and re-

placement of damages would require involvement of crew.

An electric power system broadly consists of two parts, transmission system and distribution

system. Although the topic of this proposal is about power system resilience, we will only

try to model distribution system for several reasons. Transmission systems usually span a

wide area whereas natural disasters mostly happen locally, so distribution systems are more

likely to be severely damaged. Transmission systems are meshed networks, while distribu-

tion systems are mostly radial to reach as many customers as possible. Since the power

flows through transmission systems towards distribution systems, repairs and replacements

in transmission system are prioritized and those in distribution systems are the bottleneck

of restoring power to all consumers.

As we mentioned above, resilience is a general concept for any infrastructure and literatures
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on resilience Miles (2011), Berkeley III et al. (2010) to natural disasters emphasizes the con-

cept of ‘community resilience’ to highlight the fact that the different types of infrastructures

are interdependent. Post-disaster recovery plans must take all these interdependencies into

account. Reed et al. (2009) list the 11 interdependent infrastructures including:

(1) Electric power delivery, with subsystems distribution, transmission, and generation;

(2) Telecommunications, with subsystems of cable, cellular, Internet, landlines, and media;

(3) Transportation, with subsystems air travel, roadways, fueling: gas stations, mass transit,

rail, and water and port facilities;

(4) Utilities, with subsystems water supply, sewage treatment, sanitation, oil delivery and

natural gas delivery;

(5) Building support, with subsystems HVAC, elevators, security and plumbing;

(6) Business, with subsystems computer systems, hotels, insurance, gaming, manufacturing,

marine-maritime, mines, restaurants and retail;

(7) Emergency Services, with subsystems 911, ambulance, fire, police and shelters;

(8) Financial systems, with subsystems ATM, banks, credit cards and stock exchange;

(9) Food supply, with subsystems distribution, storage, preparation, and production;

(10) Government, with subsystems of offices and services;

(11) Health care, with subsystems of hospitals and public health.

And an example of electric power infrastructure dependencies (Rinaldi et al. 2001) is provided

in Figure 1.2.

1.3 Quantifying Resilience

It has been argued by Ton & Wang (2015) that developing resilience metrics would help

the public utility commissions and other regulators to guide decisions for policy, planning,

investments and operations and to manage trade-offs. Many researches have been focusing

on quantifying resilience from various aspects, including graph theory, complex network, civil
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Figure 1.2: An example of electric power infrastructure dependencies

engineering and power systems. We will list some of them including the one we adapted from

the civil engineering context.

Network science based metrics Some network science based resilience metrics in current

literatures are related to centrality. Centrality actually measures the importance of a

vertex or an edge. There are various ways to measure centrality, including but not

limited to degree centrality, closeness centrality, betweenness centrality (Barthelemy

2004) and eigenvector centrality. An electrical centrality measure is proposed by Hines

& Blumsack (2008) and the authors also examine the power system is a scale-free net-

work. As indicated by Chanda & Srivastava (2016), the smaller the value of maximum

centrality measure among all nodes and/or edges, the network is more resilient. In this

sense, centrality is more of an indicator of robustness. Malfunction of any node or edge

will not significantly lower the system performance.
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Percolation based metrics Percolation theory stems from physics. The process of a sec-

tion being dysfunctional is called bond percolation. It describes the behavior of con-

nected clusters when there is a random breakdown in the network. A key metric is

percolation threshold pc, which is defined as the maximum fraction of edges removed

while the network still have a giant component (Cohen & Havlin 2010). In the case of

natural disasters, the average size of the small clusters is also a good indication of how

many generation resources are necessary to maintain the system functionality.

Reliability Indices STAIFI, as defined by where the SAIFI value is evaluated for the du-

ration of the extreme event (Brown et al. 1997), is proposed by Reed et al. (2010)

to analyze system performance for Hurricane Katrina. SAIDI and SAIFI are defined

as (IEEE Guide for Electric Power Distribution Reliability Indices - Redline 2012)

SAIDI =

∑
Customers minutes of interruption

Total number of customers served
(1.1)

SAIFI =

∑
Total number of customer interruptions

Total number of customers served
(1.2)

Trajectory-based metrics In the civil engineering context, resilience can be illustrated

using the “operability trajectory”, Q(t), as shown in Figure 1.3, adopted from (Reed

et al. 2009). This is also the so-called “resilience triangle” (Bruneau et al. 2003). The

trajectory shows the increase in infrastructure functionality over time and is an effective

visual indicator of the ‘goodness of the restoration process’. Robustness is quantified

by the depth of functionality drop at time zero (without any loss of generality, we

assume that the the disaster occurs at time t = 0 and the restoration process com-

mences immediately afterward), while the quality of the recovery process is quantified

by the ramp up time of the operability trajectory to full/satisfactory functionality,

post time zero. Obviously, we desire that an infrastructure system exhibit a relatively

small drop in functionality at time zero and a quick ramp up time to full/satisfactory

functionality, post time zero. Consequently, the ideal operability trajectory is defined

by Qideal(t) = 1, ∀t ≥ 0, assuming that operability is measured in fractional units



10

instead of percentages. These two metrics can naturally be combined into an unifying

measure of resilience (O’Rourke 2007). Letting T be the restoration time horizon, a

resilience measure, R, can be defined as follows (Reed et al. 2009):

R =

∫ T

0

Q(t)dt, (1.3)

The closer Q(t) is to Qideal(t), the greater is the area under Q(t), and therefore the

greater is the resilience measure. It is interesting to note that this definition of resilience

is similar to the notion of ‘area under (RoC) curve’ (AUC), a criterion which is widely

used in signal processing, communications, and machine learning.

Instead of maximizing the resilience measure defined in eqn. 5.1, we could choose to

minimize the quantity
∫ T

0
Qideal(t)dt−

∫ T
0
Q(t)dt, which is the area over the Q(t) curve,

bounded from above by Qideal(t). This area, informally, the ‘other side of resilience’,

can be interpreted as a measure of ‘aggregate harm’ H. In a power system, it can be

shown using the Lebesgue integral that minimizing this area is equivalent to minimizing

the quantity
∑

nwnTn, where wn can be interpreted as the contribution of node n to the

overall loss in functionality of the system or the importance of node n and Tn is the time

to restore node n. Therefore, the objective for operational problems is to minimize the

measure
∑

nwnTn, given a specific disaster scenario, while the objective for planning

problems is to minimize
∑

nwnTn in an expected sense, where the expectation is over

all possible disaster scenarios. We will elaborate the quantification with further details

in Chapter 5. Note that the aggregate harm H can be seen as a weighted version of

SAIDI.

Another approach is to fit the trajectory Q(t) by a function 1−e−bt and the parameter

b governs how rapidly the restoration process occurs (Reed et al. 2010). However, in

some cases, the trajectory is not close to this function (see Fig. 2.4 for example in

Chapter 2) and the error from the fitting itself might affect the accurateness of this

measure.
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Panteli et al. (2017) argue that this approach cannot capture other highly critical re-

silience dimensions of typical power systems, for example, how fast the system function-

ality degrades once the event hits a critical infrastructure or how long the infrastructure

remains in one or more post-event degraded states before restoration is initiated and

while it is fully accomplished. Therefore a resilience quantification framework is pro-

posed, building upon the concept of a resilience trapezoid, as shown in Fig. 1.4, that

depicts all the phases that a critical infrastructure, including power systems, might

reside in during an event, as well as the transition between these states.

Figure 1.4: An illustration of Resilience Trapezoid by Panteli et al. (2017)

Notice that they also propose an operational resilience and infrastructure resilience.
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We will not elaborate the difference here but refer interesting readers to Section II.A

of (Panteli et al. 2017). Instead, as we argue later, we will focus on electricity distri-

bution systems. Therefore the emphasis of this research is about the recovery process,

which is depicted by the resilience construct. And the tree-like topology structure

unifies the two resilience metrics. But we think that the trapezoid approach might

contribute to the resilience assessment of transmission network.

Finally we want to mention with passing that there are several efforts of combining multiple

metrics to quantify resilience from all aspects (Ouyang & Dueñas-Osorio 2014, Willis & Loa

2015, Chanda & Srivastava 2016).

1.4 Literature review on previous research

Many resilience-related publications are conceptual. Only a few seek to resolve the problem

in a technical and reasonable manner. In this section, we try to summarize and classify

previous researches that feature power system resilience in each one of the three aspects,

excluding resourcefulness. Again, this does not undermine the importance of resourcefulness

in any means.

1.4.1 Robustness

Most of the current efforts on resilient (self-healing) distribution systems focus on robustness

and in essence investigate the service restoration problem. Service restoration tackles the

problem of re-energizing a part of the local, low voltage distribution network that has been

disconnected following a fault. This can usually be done by optimal switching actions to

isolate the faulted and healthy parts. With Distributed Generator (DG) and Distributed

Energy Resources (DERs), this idea has become even more attractive. It has been proposed

to incorporate DG at the end of Distribution Networks so that the system can still supply a

majority of customers even with multiple faults (Chen et al. 2015) and the model is expanded

by Wang et al. (2016) by considering line configurations and the fact that DGs cannot supply
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highly three-phase unbalanced power. Moreover, with the accurate and fast measurements

from Phase Measurement Units (PMUs), the state of Distribution Networks can be monitored

and the service restoration can be done autonomously without human involvement. If the

process of fault detection, fault location, service restoration can be automatic, then this is

the so-called Distribution Automation. The level of distribution automation may

Many other researcher may not touch the service restoration problem directly, but the

loss of load at the time of extreme event is treated as the objective of some resilient operation.

All such research may be classified into this aspect.

1.4.2 Rapid Recovery

The earliest effort on this kind of problem, though not necessarily done by the community

of power systems, dates back to 1990s by Nojima & Kameda (1992) and there are a few

publications from earthquake engineering on post-earthquake restorations (Xu et al. 2007,

Çağnan et al. 2006). Several groups of researchers have been working on recovery from dis-

asters in power systems recently. Coffrin & Van Hentenryck (2014) propose a technique to

co-optimize the sequence of repairs, the load pick-ups and the generation dispatch in trans-

mission system as well as their subsequent publication (Van Hentenryck & Coffrin 2015).

They analyzed how different power flow approximation techniques could lead to the practi-

cality of restoration plans. Nurre et al. (2012) and (2014) formulate an integrated network

design and scheduling (INDS) problem, analyze the complexity of problems with different

settings and propose a heuristic dispatch rule. Sharkley et al. Sharkey et al. (2015) consider

the problem of restoration interdependent infrastructures after disasters and evaluate the

benefit of information-sharing among different infrastructure operators. A time-stage MILP

formulation for multiple team repair scheduling is proposed by Ouyang & Fang (2017). How-

ever, as we imply in the abstract and will show in Chapter 2, MILP formulation may not

be efficient for real time disaster relief. Arif et al. (2017) propose a pre-processing strategy

of clustering repair tasks of damaged components based on their distances from the depots

and the availability of resources to reduce the size of MILP.
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The current industry routines for restoration after extreme events, for the example of FirstEn-

ergy Group, Edison Electric Institute, use dispatch rules after finishing those that threaten

life safety and emergency services. We will compare these rules with our developed heuristics

in Chapter 2.

1.4.3 Preparedness

Defending critical infrastructures at the transmission level has been a major research focus

over the past decade (Brown et al. 2006, Bier et al. 2007, Yuan et al. 2014). In general,

this research adopted the setting of Stackelberg game and formulated the problem with a

tri-level defender-attacker-defender model. Such a model, in the case of natural disasters,

assumes that the nature has perfect anticipation of how the defender will optimally operate

the system after the attack. Arguably, this model may be more suitable for malicious attack,

where attackers have a budget to spread the targets. In recent years, several researchers have

investigated different methods for distribution systems hardening, but most focus solely on

the robustness, i.e., worst-case load shedding at the onset of disaster. However, the objective

of all these upgrade strategies are related to robustness. Detailed reviews can be seen in

Chapter 5.

In practice, the utility companies are implementing hardening activities based on obser-

vations of which components failed during past disasters. While such measures will undoubt-

edly be useful, they do not necessarily represent the most effective way to enhance the overall

resilience of the system. Large infrastructure investments may therefore not be targeted at

the most effective solutions. To overcome this problem, electric utilities and government

agencies in all areas that could be affected by a natural disaster need a rigorous method for

assessing the relative value of various investments.

1.5 Scope and outline of this thesis

In this dissertation, we limit ourselves only to electricity distribution networks. While trans-

mission networks can be affected by natural disasters, they are usually built to a higher
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standard than distribution network and thus less likely to be severely damaged. Further-

more, distribution network tend to be more concentrated than transmission networks and

are thus more likely to be seriously degraded by severe weather events. While the utility

companies would obviously repair the transmission system first because that’s where the

power comes from, repairing the distribution network usually takes the largest amount of

time simply due to the fact that there are many more components that are likely to be

damaged. It is thus a bottleneck and really determines how long the customers would lose

power.

By the recent example of Hurricane Harvey, ERCOT was able to meet total electricity

demand in part because of the lower levels of demand despite the significant amount of gen-

eration and transmission outages. This is partially because electricity demand in ERCOT

was significantly lower than usual for the time of year mainly (See Fig. 1.5 by U.S. Energy

Information Administation (2017) for a hourly plot of demands during the restoration pro-

cess) because of the customer outages in storm-affected areas in south Texas and along the

Gulf Coast and cooler temperatures across much of the state. From the perspective of trans-

mission side, the demand was served and the market remain stable and therefore the power

systems worked just fine. This shows that quantifying the resilience on the transmission side

might underestimate the harm caused by the extreme events.

To quantify the aggregate harm defined by the total weighted restoration time adapted

from the trajectory-based resilience metric, we need to develop an optimization problem that

considers the process of repair physical damages with limited resources. And the normally

pro-longed process after extreme events supports this argument.

Finally, we want to provide useful tools for industry by fitting their current practice and

guidelines with minimal changes. This belongs to the future work of this dissertation.

Based on our understanding of power system resilience, a framework of key directions

of researches are shown in Figure 1.6. The basis of all other problems is the post-disaster

restoration covered in Chapter 2. The algorithms are extended to the case with limited

capability of distribution automation (Chapter 3) and the case when the estimates of repair
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Figure 1.5: Hourly demand in ERCOT southern and costal regions byU.S. Energy Informa-

tion Administation (2017)

time are not accurate (Chapter 4). We proposed a hardening strategy for distribution systems

in Chapter 5. The rest of this framework constitutes the ongoing work and potential research

direction, which will be briefly explained in Chapter 6.
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Chapter 2

SCHEDULING POST-DISASTER REPAIRS IN RADIAL
DISTRIBUTION NETWORKS

2.1 Introduction

It is important to distinguish the repair scheduling problem in distribution networks dis-

cussed in this paper from the blackout restoration problem and the service restoration prob-

lem. Blackouts are large scale power outages (such as the 2003 Northeast US and Canada

blackout) caused by an instability in the power generation and the high voltage transmission

systems. This instability is triggered by an electrical fault or failure and is amplified by a

cascade of component disconnections. Restoring power in the aftermath of a blackout is a

different scheduling problem because most system components are not damaged and only

need to be re-energized. See (Adibi & Fink 1994, 2006) for a discussion of the blackout

restoration problem and (Sun et al. 2011) for a mixed-integer programming approach for

the optimal generator start-up strategy. On the other hand, service restoration focuses on

re-energizing a part of the local, low voltage distribution grid that has been automatically

disconnected following a fault on a single component or a very small number of components.

This can usually be done by isolating the faulted components and re-energizing the healthy

parts of the network using switching actions. The service restoration problem thus involves

finding the optimal set of switching actions. The repair of the faulted component is usually

assumed to be taking place at a later time and is not considered in the optimization model.

Several approaches have been proposed for the optimization of service restoration such as

heuristics (Toune et al. 2002, Hou et al. 2011), knowledge based systems (Ma et al. 1992),

and dynamic programming (Pérez-Guerrero et al. 2008).

Unlike the outages caused by system instabilities or localized faults, outages caused by nat-
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ural disasters require the repair of numerous components in the distribution grid before con-

sumers can be reconnected. The research described in this paper therefore aims to schedule

the repair of a significant number of damaged components, so that the distribution network

can be progressively re-energized in a way that minimizes the cumulative harm over the total

restoration horizon. Fast algorithms are needed to solve this problem because it must be

solved immediately after the disaster and may need to be re-solved multiple times as more

detailed information about the damage becomes available. Relatively few papers address this

problem. Coffrin & Van Hentenryck (2014) propose a technique to co-optimize the sequence

of repairs, the load pick-ups and the generation dispatch. However, the sequencing of repair

does not consider the fact that more than one repair crew could work at the same time.

Nurre et al. (2012) formulate an integrated network design and scheduling (INDS) problem

with multiple crews, which focuses on selecting a set of nodes and edges for installation in

general infrastructure systems and scheduling them on work groups. They also propose a

heuristic dispatch rule based on network flows and scheduling.

The rest of the chapter is organized as follows. We first review the basics of scheduing theory

in Section 2.2. In Section 2.3, we define the problem of optimally scheduling multiple repair

crews in a radial electricity distribution network after a natural disaster and model the prob-

lem by machine scheduling with soft precedence constraints. We also show that this problem

is at least strongly NP-hard. We present 4 solution techniques both exact and approximate,

including integer linear programming (2.4), LP-based list scheduling algorithm (2.5) and a

conversion algorithm (2.6) with a heuristic dispatch rule. In Section 2.7, we apply these

methods to several standard test models of distribution networks.

2.2 Preliminaries in Scheduling Theory

Scheduling is a decision-making process that deals with the allocation of resources to tasks

over time to optimize one or more objectives. It is used on a regular basis in many man-

ufacturing and services industries (Pinedo 2012). For example, in a multi-task computer

operating system need to schedule the time that the CPU or CPUs devotes to different pro-
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grams. The actual processing time of each program might not be known exactly in advance

and each task has a priority factor. Then the objective is to minimize the expected sum of

the weighted completion time of all tasks.

There are many models for even deterministic scheduling. A framework and notation origi-

nally proposed by Graham et al. (1979) is adapted to capture the structure of many models

widely considered. We will briefly review the notation along with some basic definitions

related to this problem. A detailed introduction can be seen in the classic book by Pinedo

(2012). Each job has a processing time pj and weight wj. A scheduling problem is described

by a triplet α | β | γ. The α field describes the machine environment. The β field provides

the information of processing constraints and characteristics and may contain zero, one or

more entries. The γ field is the objective.

The machine environments in α fields can be 1, which represents the single machine case

and Pm, which represents the case of m identical parallel machines.

Possible entries in the β fields are:

Preemption(prmp) implies that it is not necessary to keep a job on one machine, once

started, until it completes. So a job can be interrupted when it is still processing.

Only when prmp is included in the β field, preemption is allowed.

Precedence constraints(prec) requires that certain jobs need to completed before another

job is allowed to start. A precedence graph is a directed, acyclic graph where nodes

represent tasks and where arcs, say from node i to node j, imply a precedence relation

between task i and task j, i.e., task i must be completed before task j can start. If

each job has at most one immediate predecessor, then the precedence graph must be

a directed tree and the constraints are named outtree.

Define Cj as the time job j finishes on the last machine on which it requires processing.

Then we consider the following three objectives:

Makespan(Cmax) defined as max(C1, · · · , C2), is the completion time of the last job.
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Total weighted completion time(
∑
wjCj) considers the weights and the totaling hold-

ing of the schedule. It is sometimes referred to the weighted flow time. One special

case is the sum of completion time(
∑
Cj).

Discounted total weighted completion time(
∑
wj(1− e−rCj)) further takes into ac-

count the costs are discounted at a rate of r, 0 < r < 1, per unit time.

Finally, we want to point out the difference between a sequence, a schedule. A sequence

normally denotes the order of jobs to be processed on a given machine. A schedule is an

allocation of jobs under a more complicated setting, most likely on multiple machines. The

concept of a scheduling policy will also be introduced in Chapter 4.

2.3 Problem Formulation

A distribution network can be represented by a graph G with a set of nodes N and a set

of edges (a.k.a, lines) L. We assume that the network topology G is radial, which is a

valid assumption for most electricity distribution networks. Let S ⊂ N represent the set of

source nodes which are initially energized and D = N \ S represent the set of sink nodes

where consumers are located. An edge in G represents a distribution feeder or some other

connecting component. In this chapter, we assume there is a switch on every edge so that

the switch could be closed to energize the load as soon as the edge becomes intact. Results

on the more general case that considers the partially automated radial distribution networks

can be found in Chapter 2.

Severe weather can damage these components, resulting in a widespread disruption of

power supply to the consumers. Let LD and LI = L \ LD denote the sets of damaged

and intact edges, respectively. Each damaged edge l ∈ LD requires a repair time pl which

depends on the extent of the damage and the location of l. We assume that it would take

every crew the same amount of time to repair the same damaged line. Without any loss

of generality, we assume that there is only one source node in G. If an edge is damaged,

all downstream nodes lose power due to lack of electrical connectivity. In this paper, we
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consider the case where multiple crews work simultaneously and independently on the repair

of separate lines, along with the special case where a single crew must carry all the repairs.

Finally, based on conversations with an industry expert, we make the assumption that crew

travel times in a typical distribution network are small compared to actual repair times and

can be ignored as a first order approximation. Therefore, our goal is to find a schedule by

which the damaged lines should be repaired such that the aggregate harm due to loss of

electric energy is minimized. We define this harm as follows:

∑

n∈N

wnTn, (2.1)

where wn is a positive quantity that captures the importance of node n and Tn is the time

required to restore power at node n. The importance of a node depends on multiple factors,

including but not limited to, the amount of load connected to it, the type of load served,

and interdependency with other critical infrastructures. For example, re-energizing a node

supplying a major hospital should receive a higher priority than a node supplying a similar

amount of residential load. Similarly, it is conceivable that a node that provides electricity

to a water sanitation plant would be assigned a higher priority. These priorities need to be

assigned by the utility and their determination is outside the scope of this paper. We simply

assume knowledge of the wn’s in the context of this paper.

The time to restore node n, Tn, is approximated by the energization time En, which is

defined as the time node n first connects to the source node. Voltage and stability issues are

not a major concern in distribution networks because they are progressively restored from

a source with enough generation capacity. Even if a rigorous power flow model were to be

used, the actual demands after re-energization are not known and would be hard to forecast.

As a result, we model network connectivity using a simple network flow model, i.e., as long

as a sink node is connected to the source, we assume that all the load on this node can be

supplied without violating operating constraints. For simplicity, we treat the three-phase

distribution network as if it were a single phase system. Our analysis could be extended to a

three-phase system using a multi-commodity flow model, as similar to the work by Yamangil
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et al. (2015a).

2.3.1 Soft Precedence Constraints

We construct two simplified directed radial graphs to model the effect that the topology

of the distribution network has on scheduling. The first graph, G′, is called the ‘damaged

component graph’. All nodes in G that are connected by intact edges are contracted into

a supernode in G′. The set of edges in G′ is the set of damaged lines in G, LD. From

a computational standpoint, the nodes of G′ can be obtained by treating the edges in G

as undirected, deleting the damaged edges/lines, and finding all the connected components

of the resulting graph. The set of nodes in each such connected component represents a

(super)node in G′. The edges in G′ can then be placed straightforwardly by keeping track

of which nodes in G are mapped to a particular node in G′. The directions to these edges

follow trivially from the network topology. G′ is useful in the ILP formulation introduced in

Section 2.4.

The second graph, P , is called a ‘soft precedence constraint graph’, which is constructed

as follows. The nodes in this graph are the damaged lines in G and an edge exists between

two nodes in this graph if they share the same node in G′. Computationally, the precedence

constraints embodied in P can be obtained by replacing lines in G′ with nodes and the nodes

in G′ with lines. Such a graph enables us to consider the hierarchal relationship between

damaged lines, which we define as soft precedence constraints.

Consider, for example, the IEEE 13-node test feeder (Kersting 2001) shown in Fig. 2.1.

Assume that there are four damaged lines, 650−632, 632−645, 684−611 and 671−692. The

corresponding G′ and P are shown in Fig. 2.2. Following the procedure discussed above and

assuming that node 650 is the source, it can be verified that the precedence constraints are: (i)

(650−632)→ (632−645), using the path from 650 to 646, (ii) (650−632)→ (684−611), using

the path from 650 to 611, and (iii) (650−632)→ (671−692), using the path from 650 to 675.

While these constraints can be concatenated into one tree, as shown in Fig. 2.2 (b), it is quite

possible to end up with multiple disjoint trees (forest). For example, if the damaged lines were
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632−645, 645−646, 671−684, 684−611 and 684−652 instead, the precedence graph would

constitute of two disjoint trees, i.e., P = [T1, T2], where T1 = [(632− 645)→ (645− 646)]

and T2 = [(671− 684)→ (684− 652); (671− 684)→ (684− 611)]. If 645 − 646 is deleted

from the set of damaged lines, P = T2 effectively.

Figure 2.1: IEEE 13 Node Test Feeder

In this graph, the supernode SN1 comprises of the nodes {632, 633, 634, 671, 680, 684, 652},

SN2 = {645, 646}, and SN3 = {692, 675}. The set of edges in this graph is the set of damaged

lines. (b) The corresponding soft precedence graph, P . An edge exists between the nodes

(650 − 632) and (684 − 611) because they share the same node, SN1, in G′. As this graph

shows, line (650, 632) must be repaired first, allowing for node 632 to be energized. The

next three lines that need to be repaired (in any order, since there aren’t any precedence

constraints among them) are the leaf nodes in the graph, before power can be restored to

nodes 645/646, 611 and 692/675.

A substantial body of research exists on scheduling with precedence constraints. In

general, the precedence constraint i ≺ j requires that job i be completed before job j is

started, or equivalently, Cj ≥ Ci, where Cj is the completion time of job j. Such precedence
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(a) G′ graph

(b) P graph

Figure 2.2: (a) The damaged component graph, G′, obtained from Fig. 2.1, assuming that

the damaged lines are 650− 632, 632− 645, 684− 611 and 671− 692. (b) The corresponding

soft precedence graph, P .
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constraints, however, are not applicable in post-disaster restoration. While it is true that a

sink node in an electrical network cannot be energized unless there is an intact path (i.e., all

damaged lines along that path have already been repaired) from the source (feeder) to this

sink node, this does not mean that multiple lines on some path from the source to the sink

cannot be repaired concurrently.

We keep track of two separate time vectors: the completion times of line repairs, denoted

by Cl’s, and the energization times of nodes, denoted by En’s. While we have so far associated

the term ‘energization time’ with nodes in the given network topology, G, it is also possible

to define energization times on the lines. Consider the example in Fig. 2.2. The precedence

graph, P , requires that the line 650−632 be repaired prior to the line 671−692. If this (soft)

precedence constraint is met, as soon as the line 671−692 is repaired, it can be energized, or

equivalently, all nodes in SN3 (nodes 692 and 675) in the damaged component graph, G′, can

be deemed to be energized. The energization time of the line 671− 692 is therefore identical

to the energization times of nodes 692 and 675. Before generalizing the above example, we

need to define some notations. Given a directed edge l, let h(l) and t(l) denote the head

and tail node of l. Let l = h(l) → t(l) be any edge in the damaged component graph G′.

Provided the soft precedence constraints are met, it is easy to see that El = Et(l), where

El is the energization time of line l and Et(l) is the energization time of the node t(l) in

G. Analogously, the weight of node t(l), wt(l), can be interpreted as a weight on the line l,

wl. The soft precedence constraint, i ≺S j, therefore implies that line j cannot be energized

unless line i is energized, or equivalently, Ej ≥ Ei, where Ej is the energization time of line

j.

Proposition 2.1. Given any feasible schedule of post-disaster repairs, the energization time

Ej always satisfies,

Ej = max
i�S j

Ci (2.2)
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Proof. Denote pred(·) as the immediate predecessor of · . When j has no predecessor,

Ej = Cj = max
i�Sj

Ci. Now assume the proposition holds for the jobs with the depth of n in

the precedence graph P . Then for any job j with a depth of n+ 1, it always satisfies that,

Ej = max{Cj, Epred(j)} = max{Cj,max
i≺Sj

Ci} = max
i�S j

Ci (2.3)

So far, we have modeled the problem of scheduling post-disaster repairs in radial distri-

bution networks as a parallel machine scheduling with outtree soft precedence constraints to

minimize the total weighted energization time, or equivalently, P |outtree soft prec|
∑
wjEj,

following Graham’s notation.

2.3.2 Complexity Analysis

In this section, we study the complexity of the scheduling problem P |outtree soft prec|
∑
wjEj

and show that it is at least strongly NP-hard.

Theorem 2.1. The problem of scheduling post-disaster repairs in electricity distribution

networks is at least strongly NP-hard.

Proof. We show this problem is at least strongly NP-hard using a reduction from the well-

known identical parallel machine scheduling problem P ||
∑
wjCj defined as follows,

P ||
∑
wjCj: Given a set of jobs J in which j has processing time pj and weight wj,

find a parallel machine schedule that minimizes the total weighted completion time
∑
wjCj,

where Cj is the time when job j finishes. P ||
∑
wjCj is strongly NP-hard (Pinedo 2012,

Brucker 2007).

Given an instance of P ||
∑
wjCj defined as above, construct a star network GS with

a source and |J | sinks. Each sink j has a weight wj and the line between the source and

sink j has a repair time of pj. Whenever a line is repaired, the corresponding sink can be

energized. Therefore the energization time of sink j is equal to the completion time of line j.

If one could solve the problem of scheduling post-disaster repairs in electricity distribution
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networks to optimality, then one can solve the problem in GS optimally and equivalently

solve P ||
∑
wjCj.

2.4 Integer Linear Programming (ILP) formulation

With an additional assumption in this section that all repair times are integers, we model

the post-disaster repair scheduling problem using time-indexed decision variables, xtl , where

xtl = 1 if line l is being repaired by a crew at time period t. Variable ytl denotes the repair

status of line l where ytl = 1 if the repair is done by the end of time period t− 1 and ready

to energize at time period t. Finally, uti = 1 if node i is energized at time period t. Let

T denote the time horizon for the restoration efforts. Although we cannot know T exactly

until the problem is solved, a conservative estimate should work. Since Ti =
∑T

t=1(1 − uti)

by discretization, the objective function of eqn. 2.1 can be rewritten as:

minimize
T∑

t=1

∑

i∈N

wi(1− uti) (2.4)

This problem is to be solved subject to two sets of constraints: (i) repair constraints and (ii)

network flow constraints, which are discussed next. We mention in passing that the above

time-indexed ILP formulation provides a strong relaxation of the original problem (Nurre

et al. 2012) and allows for modeling of different scheduling objectives without changing the

structure of the model and the underlying algorithm.

2.4.1 Repair Constraints

Repair constraints model the behavior of repair crews and how they affect the status of the

damaged lines and the sink nodes that must be re-energized. The three constraints below

are used to initialize the binary status variables ytl and uti. Eqn. 2.5 forces ytl = 0 for all lines

which are damaged initially (i.e., at time t = 0) while eqn. 2.6 sets ytl = 1 for all lines which

are intact. Eqn. 2.7 forces the status of all source nodes, which are initially energized, to be
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equal to 1 for all time periods.

y1
l = 0, ∀l ∈ LD (2.5)

ytl = 1, ∀l ∈ LI , ∀t ∈ [1, T ] (2.6)

uti = 1, ∀i ∈ S, ∀t ∈ [1, T ] (2.7)

where T is the restoration time horizon. The next set of constraints is associated with the

binary variables xtl . Eqn. 2.8 constrains the maximum number of crews working on damaged

lines at any time period t to be equal to m, where m is the number of crews available.

∑

l∈LD

xtl ≤ m, ∀t ∈ [1, T ] (2.8)

Observe that, compared to the formulation by Nurre et al. (2012), there are no crew indices in

our model. Since these indices are completely arbitrary, the number of feasible solutions can

increase in crew indexed formulations, leading to enhanced computation time. For example,

consider the simple network i→ j → k → l, where node i is the source and all edges require

a repair time of 5 time units. If 2 crews are available, suppose the optimal repair schedule

is: ‘assign team 1 to i → j at time t = 0, team 2 to j → k at t = 0, and team 1 to k → l’

at t = 5. Clearly, one possible equivalent solution conveying the same repair schedule and

yielding the same cost, is: ‘assign team 2 to i → j at t = 0, team 1 to j → k at t = 0,

and team 1 to k → l at t = 5’. In general, formulations without explicit crew indices may

lead to a reduction in the size of the feasible solution set. Although the optimal repair

sequences obtained from such formulations do not natively produce the work assignments

to the different crews, this is not an issue in practice because operators can choose to let a

crew work on a line until the job is complete and assign the next repair job in the sequence

to the next available crew (the first m jobs in the optimal repair schedule can be assigned

arbitrarily to the m crews).

Finally, constraint eqn. 2.9 formalizes the relationship between variables xtl and ytl . It

mandates that ytl cannot be set to 1 unless at least pl number of xτl ’s, τ ∈ [1, t− 1], are equal
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to 1, where pl is the repair time of line l.

ytl ≤
1

pl

t−1∑

τ=1

xτl , ∀l ∈ LD, ∀t ∈ [1, T ] (2.9)

While we do not explicitly require that a crew may not leave its current job unfinished and

take up a different job, it is obvious that such a scenario cannot be part of an optimal repair

schedule.

2.4.2 Network flow constraints

We use a modified form of standard flow equations to simplify power flow constraints. Specif-

ically, we require that the flows, originating from the source nodes (eqn. 2.10), travel through

lines which have already been repaired (eqn. 2.11). Once a sink node receives a flow, it can

be energized (eqn. 2.12).

∑

l∈δ−G(i)

f tl ≥ 0, ∀t ∈ [1, T ], ∀i ∈ S (2.10)

−M × ytl ≤ f tl ≤M × ytl , ∀t ∈ [1, T ], ∀l ∈ L (2.11)

uti ≤
∑

l∈δ+G(i)

f tl −
∑

l∈δ−G(i)

f tl , ∀t ∈ [1, T ],∀i ∈ D (2.12)

In eqn. 2.11, M is a suitably large constant, which, in practice, can be set equal to the

number of sink nodes, M = |D|. In eqn. 2.12, δ+
G(i) and δ−G(i) denote the sets of lines on

which power flows into and out of node i in G respectively.

2.4.3 Valid inequalities

Valid inequalities typically reduce the computing time and strengthen the bounds provided by

the LP relaxation of an ILP formulation. We present the following shortest repair time path

inequalities, which resemble the ones by Nurre et al. (2012). A node i cannot be energized

until all the lines between the source s and node i are repaired. Since the lower bound

to finish all the associated repairs is bSRTPi/mc, where m denotes the number of crews
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available and SRTPi denotes the shortest repair time path between s and i, the following

inequality is valid:
bSRTPi/mc−1∑

t=1

uti = 0, ∀i ∈ N (2.13)

To summarize, the multi-crew distribution system post-disaster repair problem can be for-

mulated as:

minimize eqn. 2.4

subject to eqns. 2.5 ∼ 2.13 (2.14)

2.5 List scheduling algorithms based on linear relaxation

A majority of the approximation algorithms used for scheduling is derived from linear re-

laxations of ILP models, based on the scheduling polyhedra of completion vectors developed

by Queyranne (1993), Schulz et al. (1996). We briefly restate the definition of scheduling

polyhedra and then introduce a linear relaxation based list scheduling algorithm followed by

a worst case analysis of the algorithm.

2.5.1 Linear relaxation of scheduling with soft precedence constraints

A set of valid inequalities for m identical parallel machine scheduling was presented by Schulz

et al. (1996):

∑

j∈A

pjCj ≥ f(A) :=
1

2m

(∑

j∈A

pj

)2

+
1

2

∑

j∈A

p2
j ∀A ⊂ N (2.15)

Theorem 2.2 (Schulz et al. (1996)). The completion time vector C of every feasible schedule

on m identical parallel machines satisfies inequalities (2.15).

The objective of the post-disaster repair and restoration is to minimize the harm, quan-

tified as the total weighted energization time. With the previously defined soft precedence
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constraints and the valid inequalities for parallel machine scheduling, we propose the follow-

ing LP relaxation:

minimize
C,E

∑

j∈LD

wjEj (2.16)

subject to Cj ≥ pj, ∀j ∈ LD (2.17)

Ej ≥ Cj, ∀j ∈ LD (2.18)

Ej ≥ Ei, ∀(i→ j) ∈ P (2.19)

∑

j∈A

pjCj ≥
1

2m

(∑

j∈A

pj

)2

+
1

2

∑

j∈A

p2
j , ∀A ⊂ LD (2.20)

where P is the soft precedence graph discussed in Section 2.3 (see also Fig. 2.2). Eqn. 2.17

constrains the completion time of any damaged line to be lower bounded by its repair time;

eqn. 2.18 ensures that any line cannot be energized until it has been repaired; eqn. 2.19 models

the soft precedence constraints and eqn. 2.20 characterizes the scheduling polyhedron.

The above formulation can be simplified by recognizing that the Cj’s are redundant

intermediate variables. Combining eqns. 2.18 and 2.20, we have:

∑

j∈A

pjEj ≥
∑

j∈A

pjCj ≥
1

2m

(∑

j∈A

pj

)2

+
1

2

∑

j∈A

p2
j , ∀A ⊂ LD (2.21)

which indicates that the vector of Ej’s satisfies the same valid inequalities as the vector of

Cj’s. After some simple algebra, the LP-relaxation can be reduced to:

minimize
E

∑

j∈LD

wjEj (2.22)

subject to Ej ≥ pj, ∀j ∈ LD (2.23)

Ej ≥ Ei, ∀(i→ j) ∈ P (2.24)

∑

j∈A

pjEj ≥
1

2m

(∑

j∈A

pj

)2

+
1

2

∑

j∈A

p2
j , ∀A ⊂ LD (2.25)

We note that although there are exponentially many constraints in the above model, the

separation problem for these inequalities can be solved in polynomial time using the ellipsoid

method as shown by Schulz et al. (1996).
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2.5.2 LP-based approximation algorithm

List scheduling algorithms, which are among the simplest and most commonly used approxi-

mate solution methods for parallel machine scheduling problems (Queyranne & Schulz 2006),

assign the job at the top of a priority list to whichever machine is idle first. An LP relaxation

provides a good insight into the priorities of jobs and has been widely applied to scheduling

with hard precedence constraints. We adopt a similar approach in this paper. Algorithm

1, based on a sorted list of the LP midpoints, summarizes our proposed approach. We now

develop an approximation bound for Algorithm 1.

Algorithm 1 Algorithm for single/multiple crew repair scheduling in distribution networks,

based on LP midpoints

Let ELP denote any feasible solution to the constraint eqns. 4.4b - 4.4d. Define the LP

mid points to be MLP
j := ELP

j − pj/2, ∀j ∈ LD. Create a job priority list by sorting the

MLP
j ’s in an ascending order. Whenever a crew is free, assign to it the next job from the

priority list. The first m jobs in the list are assigned arbitrarily to the m crews.

Proposition 2.2. Let EH
j denote the energization time respectively of line j in the schedule

constructed by Algorithm 1. Then the following must hold,

EH
j ≤ 2ELP

j , ∀j ∈ LD (2.26)

Proof. Let SHj , CH
j and EH

j denote the start time, completion time respectively of some line

j in the schedule constructed by Algorithm 1. Define M :=
[
MLP

j : j = 1, 2, . . . ,
∣∣LD

∣∣]. Let

M̃ denote M sorted in ascending order, Ĩj denote the position of some line j ∈ LD in M̃ , and{
k : Ĩk ≤ Ĩj, k 6= j

}
:= R denote the set of jobs whose LP midpoints are upper bounded by

MLP
j . First, we claim that SHj ≤ 1

m

∑
i∈R pi. To see why, split the set R into m subsets,

corresponding to the schedules of the m crews, i.e., R =
⋃m
k=1 R

k. Since job j is assigned to
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the first idle crew and repairs commence immediately, we have:

SHj = min

{∑

i∈Rk

pi : k = 1, 2, . . .m

}
≤ 1

m

m∑

k=1

∑

i∈Rk

pi =
1

m

∑

i∈R

pi , (2.27)

where the inequality follows from the fact that the minimum of a set of positive numbers is

upper bounded by the mean. Next, noting that MLP
j = ELP

j − pj/2, we rewrite eqn. 4.4d as

follows:
∑

j∈A

pjM
LP
j ≥ 1

2m

(∑

j∈A

pj

)2

, ∀A ⊂ LD (2.28)

Now, letting A = R, we have:

(∑

i∈R

pi

)
MLP

j ≥
∑

i∈R

piM
LP
i ≥ 1

2m

(∑

i∈R

pi

)2

, (2.29)

where the first inequality follows from the fact that MLP
j ≥MLP

i for any i ∈ R. Combining

eqns. 3.6 and 3.9, it follows that SHj ≤ 2MLP
j . Consequently, CH

j = SHj + pj ≤ 2MLP
j + pj =

2ELP
j . Then,

EH
j = max

i�Sj
CH
i ≤ max

i�Sj
2ELP

i = 2ELP
j , (2.30)

where the last equality follows trivially from the definition of a soft precedence constraint.

Theorem 2.3. Algorithm 1 is a 2-approximation.

Proof. Let E∗j denote the energization time of line j in the optimal schedule. Then, with

ELP
j being the solution of the linear relaxation,

∑

j∈LD

wjE
LP
j ≤

∑

j∈LD

wjE
∗
j (2.31)

Finally, from eqns. 2.26 and 2.31, we have:

∑

j∈LD

wjE
H
j ≤ 2

∑

j∈LD

wjE
LP
j ≤ 2

∑

j∈LD

wjE
∗
j (2.32)
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2.6 An algorithm for converting the optimal single crew repair sequence to a
multi-crew schedule

In practice, many utilities schedule repairs using a priority list (Xu et al. 2007), which leaves

much space for improvement. We analyze the repair and restoration process as it would be

done with a single crew because this provides important insights into the general structure of

the multi-crew scheduling problem. Subsequently, we provide an algorithm for converting the

single crew repair sequence to a multi-crew schedule, which is inspired by similar previous

work by Chekuri & Khanna (2004), and analyze its worst case performance. Finally, we

develop a multi-crew dispatch rule and compare it with the current practices of FirstEnergy

Group and Edison Electric Institute.

2.6.1 Single crew restoration in distribution networks

We show that this problem is equivalent to 1 | outtree |
∑
wjCj, which stands for scheduling

to minimize the total weighted completion time of N jobs with a single machine under

‘outtree’ precedence constraints. Outtree precedence constraints require that each job may

have at most one predecessor. Given the manner in which we derive the soft precedence, it

is easy to see that P will indeed follow outtree precedence requirements, i.e. each node in

P will have at most one predecessor, as long as the network topology G does not have any

cycles. We will show by the following lemma that the soft precedence constraints degenerate

to the precedence constraints with one repair team.

Proposition 2.3. Given one repair crew, the optimal schedule in a radial distribution system

must follow outtree precedence constraints, the topology of which follows the soft precedence

graph P .

Proof. Given one repair crew, each schedule can be represented by a sequence of damaged

lines. Let i − j and j − k be two damaged lines such that the node (j, k) is the immediate

successor of node (i, j) in the soft precedence graph P . Let π be the optimal sequence and

π′ another sequence derived from π by swapping i − j and j − k. Denote the energization
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times of nodes j and k in π by Ej and Ek respectively. Similarly, let E ′j and E ′k denote the

energization times of nodes j and k in π′. Define f :=
∑

n∈N wnEn.

Since node k cannot be energized unless node j is energized and until the line between

it and its immediate predecessor is repaired, we have E ′k = E ′j in π′ and Ek > Ej in π.

Comparing π and π′, we see that node k is energized at the same time, i.e., E ′k = Ek, and

therefore, E ′j > Ej. Thus:

f(π′)− f(π) = (wjE
′
j + wkE

′
k)− (wjEj + wkEk)

= wj(E
′
j − Ej) + wk(E

′
k − Ek) > 0

(2.33)

Therefore, any job swap that violates the outtree precedence constraints will strictly increase

the objective function. Consequently, the optimal sequence must follow these constraints.

It follows immediately from Proposition 2.3 that:

Lemma 2.1. Single crew repair scheduling in distribution networks is equivalent to 1 |

outtree |
∑

j wjCj, where the outtree precedences are given in the soft precedence constraint

graph P .

2.6.2 Recursive scheduling algorithm for single crew restoration scheduling

As shown above, the single crew repair scheduling problem in distribution networks is equiv-

alent to 1 | outtree |
∑
wjCj, for which an optimal algorithm exists (Adolphson & Hu 1973).

We will briefly discuss this algorithm and the reasoning behind it. Details and proofs can

be found by (Brucker 2007). Let JD ⊆ LD denote any subset of damaged lines. Define:

w
(
JD
)

:=
∑

j∈JD

wj, p
(
JD
)

:=
∑

j∈JD

pj, q
(
JD
)

:=
w
(
JD
)

p (JD)

Algorithm 2, adapted from (Brucker 2007) with a change of notation, finds the optimal repair

sequence by recursively merging the nodes in the soft precedence graph P . The input to this

algorithm is the precedence graph P . Let N(P ) = {1, 2, . . . |N(P )|} denote the set of nodes

in P (representing the set of damaged lines, LD), with node 1 being the designated root.
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The predecessor of any node n ∈ P is denoted by pred(n). Lines 1 − 7 initialize different

variables. In particular, we note that the predecessor of the root is arbitrarily initialized to

be 0 and its weight is initialized to −∞ to ensure that the root node is the first job in the

optimal repair sequence. Broadly speaking, at each iteration, a node j ∈ N(P ) (j could

also be a group of nodes) is chosen to be merged into its immediate predecessor i ∈ N(P )

if q(j) is the largest. The algorithm terminates when all nodes have been merged into the

root. Upon termination, the optimal single crew repair sequence can be recovered from the

predecessor vector and the element A(1), which indicates the last job finished.

We conclude this section by noting that Algorithm 2 requires the precedence graph P to

have a defined root. However, as illustrated in Section 2.3, it is quite possible for P to be a

forest, i.e., a set of disjoint trees. In such a situation, P can be modified by introducing a

dummy root node with a repair time of 0 and inserting directed edges from this dummy root

to the roots of each individual tree in the forest. This fictitious root will be the first job in

the repair sequence returned by the algorithm, which can then be stripped off.

2.6.3 Conversion algorithm and an approximation bound

A greedy procedure for converting the optimal single crew sequence to a multiple crew

schedule is given in Algorithm 3. We now prove that it is a
(
2− 1

m

)
approximation algorithm.

We start with two lemmas that provide lower bounds on the minimal harm for an m-crew

schedule, in terms of the minimal harms for single crew and ∞-crew schedules. Let H1,∗,

Hm,∗ and H∞,∗ denote the minimal harms when the number of repair crews is 1, some

arbitrary m (2 ≤ m <∞), and ∞ respectively.

Proposition 2.4. Hm,∗ ≥ 1
m
H1,∗

Proof. Given an arbitrary m-crew schedule Sm with harm Hm, we first construct a 1-crew

repair sequence, S1. We do so by sorting the energization times of the damaged lines in

Sm in ascending order and assigning the corresponding sorted sequence of lines to S1. Ties,

if any, are broken according to precedence constraints or arbitrarily if there is none. By
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Algorithm 2 Optimal algorithm for single crew repair and restoration in distribution net-

works.

1: w(1)← −∞; pred(1)← 0;

2: for n = 1 to |N(P )| do

3: A(n)← n; Bn ← {n}; q(n)← w(n)/p(n);

4: end for

5: for n = 2 to |N(P )| do

6: pred(n)← parent of n in P ;

7: end for

8: nodeSet← {1, 2, · · · , |N(P )|};

9: while nodeSet 6= {1} do

10: Find j ∈ nodeSet such that q(j) is largest; % ties can be broken arbitrarily

11: Find i such that pred(j) ∈ Bi, i = 1, 2, . . . |N(P )|;

12: w(i)← w(i) + w(j);

13: p(i)← p(i) + p(j);

14: q(i)← w(i)/p(i);

15: pred(j)← A(i);

16: A(i)← A(j);

17: Bi ← {Bi, Bj}; % ‘,’ denotes concatenation

18: nodeSet← nodeSet \ {j};

19: end while

Algorithm 3 Algorithm for converting the optimal single crew schedule to an m-crew

schedule

Treat the optimal single crew repair sequence as a priority list, and, whenever a crew is

free, assign to it the next job from the list. The first m jobs in the single crew repair

sequence are assigned arbitrarily to the m crews.
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construction, for any two damaged lines i and j with precedence constraint i ≺ j, the

completion time of line i must be strictly smaller than the completion time of line j in S1,

i.e., C1
i < C1

j . Additionally, C1
i = E1

i because the completion and energization times of lines

are identical for a 1-crew repair sequence which also meets the precedence constraints of P .

Next, we claim that E1
i ≤ mEm

i , where E1
i and Em

i are the energization times of line i in

S1 and Sm respectively. In order to prove it, we first observe that:

E1
i = C1

i =
∑

{j: Em
j ≤Em

i }

pj ≤
∑

{j: Cm
j ≤Em

i }

pj , (2.34)

where the second equality follows from the manner we constructed S1 from Sm and the

inequality follows from the fact that Cm
j ≤ Em

j ⇒ {j : Em
j ≤ Em

i } ⊆ {j : Cm
j ≤ Em

i } for

any m-crew schedule. In other words, the number of lines that have been energized before

line i is energized is a subset of the number of lines on which repairs have been completed

before line i is energized. Next, we split the set {j : Cm
j ≤ Em

i } := R into m subsets,

corresponding to the schedules of the m crews in Sm, i.e., R =
⋃m
k=1R

k, where Rk is a subset

of the jobs in R that appear in the kth crew’s schedule. It is obvious that the sum of the

repair times of the lines in each Rk can be no greater than Em
i . Therefore,

E1
i ≤

∑

{j: Cm
j ≤Em

i }

pj :=
∑

j∈R

pj =
m∑

k=1


∑

j∈Rk

pj


 ≤ mEm

i (2.35)

Proceeding with the optimal m-crew schedule Sm,∗ instead of an arbitrary one, it is easy to

see that E1
i ≤ mEm,∗

i , where Em,∗
i is the energization time of line i in Sm,∗. The lemma then

follows straightforwardly.

Hm,∗ =
∑

i∈LD

wiE
m,∗
i ≥

∑

i∈LD

wi
1

m
E1
i =

1

m

∑

i∈LD

wiE
1
i =

1

m
H1 ≥ 1

m
H1,∗ (2.36)

Before stating the next lemma, we provide an example which illustrates some of the

ideas in the proof of the previous lemma. Consider the graph G = (a − b − c − d − e),
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where node a is the source. From left to right, the lines are numbered 1, 2, 3, and 4, with

repair times 10, 40, 20 and 30 respectively. Assume that all lines are damaged and m = 2.

Suppose S2 = [(crew-1) : 1, 3; (crew-2) : 2, 4]. The energization and completion times of the

four lines are: (i) C2
1 = E2

1 = 10, (ii) C2
2 = 40, E2

2 = 40, (iii) C2
3 = 30, E2

3 = 40, and

(iv) C2
4 = E2

4 = 70. Notice that even though line 3 (c − d) is completed at time t = 30,

it can only be energized at time t = 40 since that’s when repairs on line 2 (b − c) are

completed. In fact, repairs on two lines (a − b and c − d) have been completed before time

t = E2
2 = 40, but only one (a−b) has been energized. The precedence graph for this example

is P = (a−b)→ (b−c)→ (c−d)→ (d−e). Sorting the energization times in S2 in ascending

order, the 1-crew sequence is: S1 = [1, 2, 3, 4], where we used P to break a tie between lines 2

and 3. It can be verified that the completion and energization times of the lines are identical

in S1.

Proposition 2.5. Hm,∗ ≥ H∞,∗

Proof. This is intuitive, since the harm is minimized when the number of repair crews is at

least equal to the number of damaged lines. In the ∞-crew case, every job can be assigned

to one crew. For any damaged line j ∈ LD, C∞j = pj and E∞j = maxi�j C
∞
i = maxi�j pi.

Also, Cm,∗
j ≥ pj = C∞j and Em,∗

j = maxi�j C
m,∗
i ≥ maxi�j pi = E∞j . Therefore:

Hm,∗ =
∑

j∈LD

wjE
m,∗
j ≥

∑

j∈LD

wjE
∞
j = H∞,∗ (2.37)

Proposition 2.6. Let Em
j be the energization time of line j after the conversion algorithm is

applied to the optimal single crew repair schedule. Then, ∀j ∈ LD, Em
j ≤ 1

m
E1,∗
j + m−1

m
E∞,∗j .

Proof. Let Smj and Cm
J denote respectively the start and energization times of some line

j ∈ LD in the m-crew repair schedule, Sm, obtained by applying the conversion algorithm

to the optimal 1-crew sequence, S1,∗. Also, let Ij denote the position of line j in S1,∗ and
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{k : Ik < Ij} := R denote the set of all lines completed before j in S1,∗. First, we claim

that: Smj ≤ 1
m

∑
i∈R pi. A proof can be constructed by following the approach taken in the

proof of Proposition 2.2 and is therefore omitted. Now:

Cm
j = Smj + pj (2.38)

≤ 1

m

∑

i∈R

pi + pj (2.39)

=
1

m

∑

i∈R∪ j

pi +
m− 1

m
pj (2.40)

=
1

m
C1,∗
j +

m− 1

m
pj (2.41)

and

Em
j = max

i�Sj
Cm
i (2.42)

≤ max
i�j

1

m
C1,∗
i + max

i�j

m− 1

m
pi (2.43)

=
1

m
C1,∗
j +

m− 1

m
max
i�j

pi (2.44)

=
1

m
E1,∗
j +

m− 1

m
E∞,∗j (2.45)

Theorem 2.4. The conversion algorithm is a
(
2− 1

m

)
-approximation.
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Proof.

Hm =
∑

j∈LD

wjE
m
j (2.46)

≤
∑

j∈LD

wj

(
1

m
E1,∗
j +

m− 1

m
E∞j

)
· · · using Proposition 2.6 (2.47)

=
1

m

∑

j∈LD

wjE
1,∗
j +

m− 1

m

∑

j∈LD

wjE
∞
j (2.48)

=
1

m
H1,∗ +

m− 1

m
H∞,∗ (2.49)

≤ 1

m
(mHm,∗) +

m− 1

m
Hm,∗ · · · using Propositions 2.4 - 2.5 (2.50)

=

(
2− 1

m

)
Hm,∗ (2.51)

2.6.4 A Dispatch Rule

We now develop a multi-crew dispatch rule from a slightly different perspective, and show

that it is equivalent to the conversion algorithm. In the process, we define a parameter,

ρ(l), ∀l ∈ LD, which can be interpreted as a ‘component importance measure’ (CIM) in the

context of reliability engineering. This allows us to easily compare our conversion algorithm

to standard utility practices. Towards that goal, we revisit the single crew repair problem,

in conjunction with the algorithm proposed by Horn (1972).

Let Sl denote the set of all trees rooted at node l in P and s∗l ∈ Sl denote the minimal

subtree which satisfies:

ρ(l) :=

∑
j∈N(s∗l ) wj∑
j∈N(s∗l ) pj

= max
sl∈Sl

(∑
j∈N(sl)

wj∑
j∈N(sl)

pj

)
, (2.52)

where N(sl) is the set of nodes in sl. We define the ratio on the left-hand side of the equality

in eqn. 2.52 to be the ρ-factor of line l, denoted by ρ(l). We refer to the tree s∗l as the

minimal ρ-maximal tree rooted at l, which resembles the definitions discussed in Sidney

(1975). With ρ-factors calculated for all damaged lines, the repair scheduling with single
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crew can be solved optimally, as stated in Algorithm 4 below, adopted from (Horn 1972).

Note that ρ-factors are defined based on the soft precedence graph P , whereas the following

dispatch rules are stated in terms of the original network G to be more in line with industry

practices.

Algorithm 4 Algorithm for single crew repair scheduling in distribution networks

Whenever the crew is free, say at time t, select among the candidate lines the one with

the highest ρ-factor. The candidate set comprises all the damaged lines, one of whose end

points is within the set of energized nodes at time t.

It has been proven by Adolphson & Hu (1973) that Algorithms 2 and 4 are equivalent.

The ρ-factors can be calculated in multiple ways: (1) following the method proposed by Horn

(1972), (2) as a byproduct of Algorithm 2, and (3) using a more general method based on

parametric minimum cuts in an associated directed precedence graph by Lawler (1978).

Algorithm 4 can be extended straightforwardly to accommodate multiple crews. However,

in this case, it could happen that the number of damaged lines that are connected to energized

nodes is smaller than the number of available repair crews. To cope with this issue, we also

consider the lines which are connected to the lines currently being repaired, as described in

Algorithm 5 below.

Algorithm 5 Algorithm for multi-crew repair scheduling in distribution networks

Whenever a crew is free, say at time t, select among the remaining candidate lines the

one with the highest ρ-factor. The candidate set consists of all the damaged lines that are

connected to already energized nodes, as well as the lines that are being repaired at time t.

Theorem 2.5. Algorithm 5 is equivalent to Algorithm 3 discussed in Section 2.6.

Proof. As stated above, Algorithms 2 and 4 are both optimal algorithms and we assume

that, without loss of generality, they produce the same optimal sequences. Then it suffices
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to show that Algorithm 5 converts the sequence generated by Algorithm 4 in the same way

that Algorithm 3 does to Algorithm 2.

The proof is by induction on the order of lines being selected. In iteration 1, it is obvious

that Algorithms 4 and 5 choose the same line for repair. Suppose this is also the case for

iterations 2 to t−1, with the lines chosen for repair being l1, l2, l3, · · · , and lt−1 respectively.

Then, in iteration t, the set of candidate lines for both algorithms is the set of immediate

successors of the supernode {l1, l2, · · · , lt−1}. Both algorithms will choose the job with the

largest ρ-factor in iteration t, thereby completing the induction process.

2.6.5 Comparison with current industry practices

According to FirstEnergy Group’s recommendation for its operating companies, repair crews

will “address outages that restore the largest number of customers before moving to more

isolated problems”. This policy can be interpreted as a priority-based scheduling algorithm

and fits within the scheme of the dispatch rule discussed above, the difference being that,

instead of selecting the line with the largest ρ-factor, FirstEnergy chooses the one with the

largest weight (which turns out to be the number of customers). Additionally, according to

Step 5 of a recent report by Edison Electric Institute, crews should be dispatched to “repair

lines that will return service to the largest number of customers in the least amount of

time”. This policy is analogous to Smith’s ratio rule (Smith 1956) where jobs are sequenced

in descending order of the ratios wl/pl, ensuring that jobs with a larger weight and a smaller

repair time have a higher priority. The parameter, ρ(l), can be viewed as a generalization of

the ratio wl/pl and characterizes the repair priority of some damaged line l in terms of its own

importance as well as the importance of its succeeding nodes in P . Stated differently, ρ(l) can

be interpreted as a broad component importance measure for line l. Intuitively, we expect

a dispatch rule based on ρ(l) to work better than current industry practice since it takes

a more holistic view of the importance of a line and, additionally, has a proven theoretical

performance bound. Simulation results presented later confirm that a dispatch rule based on

our proposed ρ-factors indeed results in a better restoration trajectory compared to standard
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industry practices.

2.7 Case Studies

In this section, we apply our proposed methods to three IEEE standard test feeders of

different sizes. We consider the worst case, where all lines are assumed to be damaged. In

each case, the importance factor w of each node is a random number between 0 and 1, with

the exception of a randomly selected extremely important node with w = 5. The repair times

are uniformly distributed on integers from 1 to 10. We compare the performances of the three

methods, with computational time being of critical concern since restoration activities, in

the event of a disaster, typically need to be performed in real time or near real time. All

experiments were performed on a desktop with a 3.10 GHz Intel Xeon processor and 16 GB

RAM. The ILP formulation was solved using Julia for Mathematical Programming (JuMP)

with Gurobi 6.0.

2.7.1 IEEE 13-Node Test Feeder

The first case study is performed on the IEEE 13 Node Test Feeder shown in Fig. 2.1,

assuming that the number of repair crews is m = 2. Since this distribution network is small,

an optimal solution could be obtained by solving the ILP model. We ran 1000 experiments in

order to compare the performances of the two heuristic algorithms w.r.t the ILP formulation.

Fig. 2.3 shows the density plots of optimality gaps of LP-based list scheduling algorithm

(LP) and the conversion algorithm (CA), along with the better solution from the two (EN).

Fig. 2.3a shows the optimality gaps when all repair times are integers. The density plot in

this case is cut off at 0 since the ILP solves the problem optimally. Non-integer repair times

can be scaled up arbitrarily close to integer values, but at the cost of reduced computational

efficiency of the ILP. Therefore, in the second case, we perturbed the integer valued repair

times by ±0.1, which represents a reasonable compromise between computational accuracy

and efficiency. The optimality gaps in this case are shown in Fig. 2.3b. In this case, we

solved the ILP using rounded off repair times, but the cost function was computed using
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the (sub-optimal) schedules provided by the ILP model and the actual non-integer repair

times. This is why the heuristic algorithms sometimes outperform the ILP model, as is

evident from Fig. 2.3b. In both cases, the two heuristic algorithms can solve most of the

instances with an optimality gap of less than 10%. Comparing the two methods, we see

that the conversion algorithm (CA) has a smaller mean optimality gap, a thinner tail, and a

better worst case performance. However, this does not mean that the conversion algorithm is

universally superior. In approximately 34% of the problem instances, we have found that the

LP-based list scheduling algorithm yields a solution which is no worse than the one provided

by the conversion algorithm.
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Figure 2.3: Density plot of optimality gap with means
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2.7.2 IEEE 123-Node Test Feeder

Next, we ran our algorithms on one instance of the IEEE 123-Node Test Feeder (Kersting

2001) with m = 5. Since solving such problems to optimality using the ILP requires a

prohibitively large computing time, we allocated a time budget of one hour. As shown in

Table 2.1, both LP and HA were able to find a better solution than the ILP, at a fraction of

the computing time.

Harm Time(s)

ILP 3.0788× 103 3600

Conversion Algorithm 2.2751× 103 <1s

Linear Relaxation 2.3127× 103 24s

Table 2.1: Performance comparison for the IEEE 123-node test feeder

2.7.3 IEEE 8500-Node Test Feeder

Finally, we tested the two heuristic algorithms on one instance of the IEEE 8500-Node Test

Feeder medium voltage subsystem (Arritt & Dugan 2010) containing roughly 2500 lines, with

m = 10. We did not attempt to solve the ILP model in this case. As shown in Table 2.2,

it took about more than 60 hours to solve its linear relaxation (which is reasonable since

we used the ellipsoid method to solve the LP with exponentially many constraints) and the

conversion algorithm actually solved the instance in two and a half minutes.

We also compared the performance of our proposed ρ-factor based dispatch rule to stan-

dard industry practices discussed in Section 2.6.5. We assign the same weights to nodes for

all three dispatch rules. The plot of network functionality (fraction restored) as a function

of time in Fig. 2.4 shows the comparison of functionality trajectories. While the time to

full restoration is almost the same for all three approaches, it is clear that our proposed

algorithm results in a greater network functionality at intermediate times. Specifically, an
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additional 10% (approximately) of the network is restored approximately halfway through

the restoration process, compared to standard industry practices.

Harm Time

Conversion Algorithm 7.201× 105 150.64 s

Linear Relaxation 7.440× 105 60.58 h

Table 2.2: Performance comparison for the IEEE 8500-node test feeder

2.7.4 Discussion

From the three test cases above, we conclude that the MILP model, although useful for

benchmarking purposes, is feasible in practice only for small networks due to the immense

computational time required to solve it to optimality or even near optimality. Even though

it can be slow for large problems as shown in the IEEE 8500-Node Test Feeder, the LP-

based list scheduling algorithm can serve as a useful secondary tool for moderately sized

problems. The conversion algorithm has by far the best overall performance in terms of

performance guarantee, solution quality and computational time. Most importantly, we have

demonstrated using the IEEE 8500-Node Test Feeder that our proposed dispatch rule, based

on the conversion algorithm, can lead to a significantly smaller aggregate harm compared to

dispatch rules currently adopted in practice. Stated equivalently, our proposed dispatch rule

can improve the resilience of a typical distribution network significantly.
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Chapter 3

SCHEDULING POST-DISASTER REPAIRS IN PARTIALLY
AUTOMATED RADIAL DISTRIBUTION NETWORKS

3.1 Motivation and Problem Formulation

Distribution automation deployment has been the major strategy of smart grid investment

and grid modernization. In Chapter 2, we implicitly consider the case of “fully automated”

distribution systems where, unlike the usual definition, the level of automation is only de-

termined by the number of switches. However, we did not include the introduction of distri-

bution automation and reasoning of its impact, in order to focus on the problem of repair

scheduling.

3.1.1 Definitions and utilities of switches

According to Office for Eletricity Delivery and Energy Reliability, U.S. Department of Energy

(2016), distribution automation (DA) uses digital sensors and switches with advanced control

and communication technologies to automate feeder switching; voltage and equipment health

monitoring; and outage, voltage, and reactive power management. And it is pointed out as

one of the major findings in the report that DA technologies and systems could improve

distribution system resilience to extreme weather events, mostly because of the ability to

isolate and locate the fault. Such capability is made possible by the utilization of remote

controlled switches (RCS) and communication networks. However, it is always too ideal to

expect the secondary systems working as normal during and immediately after disasters.

The first thing distribution system operators should do in this case would be to open

the (automatic) feeder switch to avoid the danger of electricution by the loose ends in the

downstream. Then after finishing the repairs of some damaged components and confirming
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there is no safety issue, the upperstream switch could be closed, energizing some customers.

Therefore, the benefit of RCS is completely undermined by the potential risk of safety and

the RCS’s is no more than a manual switch. As a result, the level of DA when facing disasters

is determined by the number of switches, no matter remote controlled or manual ones.

Also by Office for Eletricity Delivery and Energy Reliability, U.S. Department of Energy

(2016), the American Recovery and Reinvestment Act (ARRA) of 2009 provided DOE with

$7.9 billion to invest in SGIG projects, with more than a quarter on deployment of DA. Such

an effort upgrades 6,500 distribution circuits out of more than 200,000 in U.S. Despite the

trend towards fully automated distribution networks, it is, as of right now, still practical

to consider the case of partial automated distribution networks. With a limited number of

switches in the radial distribution networks, the systems are divided into several parts. See

a modified IEEE 123 node test feeder in Figure 3.1 as an example. The nodes and lines in

the distribution network are divided into 7 sub-network by 6 switches.

3.1.2 Distribution networks modeling

A distribution network can be modeled by a graph G with a set of nodes N and a set of

edges L. Let S ⊂ N represent the set of source nodes which are initially energized and

D = N \ S represent the set of sink nodes where consumers are located. An edge in G

represents a distribution feeder or some other connecting component. We assume that the

network topology G is radial, which is a valid assumption for many electricity distribution

networks.

3.1.3 Damage modeling

Let LD denote the sets of damaged edges. Without loss of generality, we assume that there

is only one source node in G. If an edge is damaged, all downstream nodes lose power due

to lack of electrical connectivity. Each damaged edge l ∈ LD has a (potentially) unique

repair time pl. At the operational stage, we assume perfect knowledge of the set LD and the

corresponding repair times.
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(a) Before partitioning

(b) After partitioning

Figure 3.1: IEEE 123 node test feeder



54

3.1.4 Distribution power flow modeling

Instead of a rigorous power flow model, we model network connectivity using a simple network

flow model, i.e., as long as a sink node is connected to the source, we assume that all the

loads connected to this node can be supplied without violating any security constraint. For

simplicity, we treat the three-phase distribution network as if it were a single-phase system.

Our analysis could be extended to a three-phase system using a multi-commodity flow model,

as in (Yamangil et al. 2015a).

In a fully automated system, a node can be energized after there is an energization path

from root to it, and therefore the switch could be closed. On the contrary, in this case, the

switch cannot be closed until all the lines in the corresponding sub-network are repaired.

Assume m identical repair teams, we redefine the set of damaged edges LD as the job set

J = {J1, · · · , Jn}, where Jk = {j1, · · · , jnk
} is the composite job k ∈ [1, n]. The composite

job Jk denotes the set of damaged lines that lies within the same sub-network. As a result,

each job j could have its own potentially unique completion time Cj while all the job in the

same sub-network J has the same energization time EJ . Similarly, we could also derive the

relationship between the two.

Proposition 3.1. Given a schedule with m identical repair teams, let EJ be energization

time of group J ∈ J and Cj be the completion time of j ∈ J . Then it always satisfies that,

EJ = max
J ′�J

max
j∈J ′

Cj (3.1)

Proof. This proposition can be shown in a similar manner as Proposition 2.1.

3.2 LP-based List Scheduling Algorithm

We start with the completion time vector linear relaxation, which is based on the following

theorem by Schulz et al. (1996).
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Theorem 3.1 ((Schulz et al. 1996)). The supermodular polyhedron Q = {C ∈ RN :
∑

j∈A pjCj ≥ f(A) ∀A ⊂ N} is the convex hull of the completion time vectors in m parallel

machine scheduling, where

f(A) =
1

2m

(∑

j∈A

pj

)2

+
1

2

∑

j∈A

p2
j (3.2)

Based on the convex hull, we develop the following linear relaxation for this problem,

minimize
C,E

∑

J∈J

ΩJEJ (3.3a)

subject to Cj ≥ pj, ∀j ∈ J (3.3b)

EJ ≥ Cj, ∀j ∈ J ∈ J (3.3c)

EJ ≥ EJ ′ , ∀J ′ → J (3.3d)
∑

j∈A

pjCj ≥ f(A), ∀A ⊂ J (3.3e)

Eqn. (3.3b) constrains the completion time of any damaged line to be lower bounded by its

repair time. Eqn. (3.3c) ensures that the group of lines cannot be energized until all lines

in the group have been repaired. Eqn. (3.3d) models the soft group precedence constraints.

And eqn. (3.3e) characterizes the scheduling polyhedron. And a list scheduling algorithm

based on LP midpoints, similar to that in (Queyranne & Schulz 2006), is proposed as follows.

Algorithm 6

Let CLP denote any feasible solution to the constraints (3.3b) - (3.3e). Define the LP mid

points as MLP
j := CLP

j − pj/2, ∀j ∈ J . Create a job priority list by sorting MLP
j ’s in an

ascending order. Whenever a crew is free, assign to it the next job from the priority list.

The first m jobs in the list are assigned arbitrarily to the m crews.

Proposition 3.2. Given a schedule with m identical repair teams, let Rj be the set consisting
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of the lines that starts earlier than j on any machine. Then it always satisfies that,

SHj ≤
1

m

∑

i∈Rj

pi (3.4)

Proof. The proof can be trivial. Split the setR intom subsets, corresponding to the schedules

of the m crews, i.e., R =
⋃m
k=1R

k. Since job j is assigned to the first idle crew and repairs

commence immediately, we have:

SHj = min

{∑

i∈Rk

pi : k = 1, 2, . . .m

}
(3.5)

≤ 1

m

m∑

k=1

∑

i∈Rk

pi =
1

m

∑

i∈R

pi , (3.6)

where the inequality follows from the fact that the minimum of a set of positive numbers is

upper bounded by the mean.

Theorem 3.2. Algorithm 6 is a 2-approximation.

Proof. The result follows trivially as long as it holds that,

EH
J ≤ 2ELP

J ,∀J ∈ J (3.7)

Define MLP :=
[
MLP

j : j = 1, 2, . . . , |J |
]
. Let M̃LP denote MLP sorted in ascending order

and Ĩj denote the position of line j ∈ J in M̃LP. By Algorithm 6, Rj is equivalent to{
k : Ĩk < Ĩj

}
.

Note that MLP
j = ELP

j − pj/2, we rewrite eqn. (3.3e) as follows:

∑

j∈A

pjM
LP
j ≥ 1

2m

(∑

j∈A

pj

)2

(3.8)

Now, for every j ∈ J , letting A = Rj, we have:


∑

i∈Rj

pi


MLP

j ≥
∑

i∈Rj

piM
LP
i ≥ 1

2m


∑

i∈Rj

pi




2

(3.9)
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where the first inequality follows from the fact that MLP
j ≥MLP

i for any i ∈ R. Combining

Proposition 3.2 and eqn. (3.9), it follows that SHj ≤ 2MLP
j . Consequently,

CH
j = SHj + pj ≤ 2MLP

j + pj = 2CLP
j (3.10)

Then by Proposition 3.1, for all J ∈ J ,

EH
J = max

J ′�J
max
j∈J ′

CH
j (3.11)

≤ 2max
J ′�J

max
j∈J ′

CLP
j (3.12)

= 2ELP
J (3.13)

And this completes the proof.

Remark 3.1. There can be exponentially many constraint (3.3e) in LP relaxation. The

separation problem for these inequalities can be solved in polynomial time using the ellipsoid

method (Schulz et al. 1996). However, numerical study on IEEE 8500 node test feeders in

Chapter 2 shows this algorithm could be really slow for network with severe damages.

This problem, compared with the one considering a fully automated distribution network,

should be slightly easier to solve in the sense that the solution space is narrowed with lines

forming composite jobs by switches. However, the number of constraint (3.3e) is not reduced.

3.3 A Conversion Algorithm

In this section, we first take a step back and analyze the repair sequencing as it would be

done with a single crew because this provides important insights into the general structure

of the multi-crew scheduling problem. And then we will convert the one-crew sequence into

a multi-crew schedule with bounded performance.

3.3.1 The case with one repair team

We first recognize that the case with one repair team is equivalent to an existing scheduling

problem 1 | outtree |
∑

j wjCj.
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Lemma 3.1. Single crew repair and restoration scheduling in distribution networks with

limited number of switches is equivalent to 1 | outtree |
∑
wjCj, where the outtree precedences

are given in the soft precedence constraint graph P .

Proof. We plan to show this in three steps.

Step 1, interchanging positions within the same group does not affect the scheduling objec-

tive. This is obvious since all the nodes in the group cannot be energized until after the last

line is repaired. It does not matter which that last line is.

Step 2, the lines within the same group should be sequenced without interruption. It can

be shown by swapping technique. Suppose that group J = {j1, j2, · · · , jn} was interrupted by

some line j′ in a optimal sequence, i.e., the optimal sequence contains {j1, · · · , jk, j′, jk+1, · · · , jn}.

We will consider two cases. If j′ is the last job of its own group J ′, then {j′, j1, · · · , jn} has an

objective no larger than the original one since EJ along with all other energization times re-

mains the same and EJ ′ decreases. If j′ is the last job of its own group J ′, then {j1, · · · , jn, j′}

has an objective no larger than the original one since EJ decreases and EJ ′ and all others

does not change.

This indicates that the problem reduced to a single-crew problem of composite jobs. The

processing time is the sum of repair times of each line within the group and the same for the

weight, i.e.,

PJ =
∑

j∈J

pj; ΩJ =
∑

j∈J

wj. (3.14)

Step 3, now this problem is reduced to the problem in fully automated distribution networks

and Proposition 2.3 in Chapter 2 will complete the proof.

3.3.2 A conversion algorithm and its performance bound

An algorithm for converting the optimal single crew sequence to a multiple crew schedule is

given in Algorithm 7. We now prove that it is a
(
2− 1

m

)
approximation algorithm. We start

with two lemmas that provide lower bounds on the minimal harm for an m-crew schedule,
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in terms of the minimal harms for single crew and ∞-crew schedules. Let H1,∗, Hm,∗ and

H∞,∗ denote the minimal harms when the number of repair crews is 1, some arbitrary m

(2 ≤ m <∞), and ∞ respectively.

Algorithm 7 Algorithm for converting the optimal single crew schedule to an m-crew

schedule

Treat the optimal single crew repair sequence as a priority list, and, whenever a crew is

free, assign to it the next job from the list. The first m jobs in the single crew repair

sequence are assigned arbitrarily to the m crews.

Lemma 3.2. Hm,∗ ≥ 1
m
H1,∗

Proof. Given an arbitrary m-crew schedule Sm with harm Hm, we first construct a 1-crew

repair sequence, S1. We do so by sorting the energization times of the groups of the damaged

lines in Sm in ascending order and assigning to S1 the corresponding sorted sequence of

groups with arbitrary sequences within each group. Ties, if any, are broken according to

(soft) precedence constraints or arbitrarily if there is none. Let CJ denote the completion

of group J , aka, the completion of the last job in J . By construction, for any two groups of

damaged lines J and J ′ with precedence constraint J ′ ≺ J , the completion time of J ′ must

be strictly smaller than that J in the constructed S1, i.e., C1
J ′ < C1

J . Additionally, C1
J = E1

J

for any J ∈ J because the completion and energization times of lines are identical since the

sequence respects the soft precedence constraints in P .

Next, we claim that E1
J ≤ mEm

J for any fixed J ∈ J , where E1
i and Em

i are the en-

ergization times of line i in S1 and Sm respectively. In order to prove it, we first observe

that:

E1
J = C1

J =
∑

{J ′: Em
J′≤E

m
J }

∑

j∈J ′
pj ≤

∑

{J ′: Cm
J′≤E

m
J }

∑

j∈J ′
pj , (3.15)

where the second equality follows from the manner we constructed S1 from Sm and the

inequality follows from the fact that Cm
J ≤ Em

J ⇒ {J : Em
J ′ ≤ Em

J } ⊆ {J : Cm
J ′ ≤ Em

J } for
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any m-crew schedule. Next, we split the set {j : j ∈ J ′,∀J ′ satisfies Cm
J ′ ≤ Em

J } := RJ (say)

into m subsets, corresponding to the schedules of the m crews in Sm, i.e., RJ =
⋃m
k=1 R

k
J ,

where Rk
J is a subset of the jobs in RJ that appear in the kth crew’s schedule. It is obvious

that the sum of the repair times of the lines in each Rk
J can be no greater than Em

J . Therefore,

E1
J ≤

∑

j∈RJ

pj =
m∑

k=1


∑

j∈Rk
J

pj


 ≤ mEm

J (3.16)

Proceeding with the optimal m-crew schedule Sm,∗ instead of an arbitrary one, it is easy to

see that E1
J ≤ mEm,∗

J . The lemma then follows straightforwardly.

Hm,∗ =
∑

J∈J

ΩJE
m,∗
J ≥

∑

J∈J

ΩJ
1

m
E1
J (3.17)

=
1

m
H1 ≥ 1

m
H1,∗ (3.18)

Lemma 3.3. Hm,∗ ≥ H∞,∗

Proof. This is intuitive and obvious, since the harm is minimized when the number of repair

crews is at least equal to the number of damaged lines.

In the ∞-crew case, every job can be assigned to one crew. For any damaged line

j ∈ J ∈ J , C∞j = pj and E∞J = maxJ ′�J maxj�J ′ pj. Also, Cm,∗
j ≥ pj = C∞j . As a result,

Em,∗
J = maxJ ′�J maxj�J ′ C

m,∗
j ≥ maxJ ′�J maxj�J ′ pj = E∞j . Therefore:

Hm,∗ =
∑

J∈J

ΩJE
m,∗
J ≥

∑

J∈J

ΩJE
∞
J = H∞,∗ (3.19)

Theorem 3.3. Let Em
J be the energization time of line j after the conversion algorithm is

applied to the optimal single crew repair schedule. Then, ∀J ∈ J , Em
J ≤ 1

m
E1,∗
J + m−1

m
E∞,∗J .
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Proof. Let Smj and Cm
j denote respectively the start and energization times of some line j ∈ J

in the m-crew repair schedule, Sm, obtained by applying Algorithm 7 to the optimal 1-crew

sequence, S1,∗. Also, let Ij denote the position of line j in S1,∗ and then Rj = {k : Ik < Ij}.

Now by Proposition 3.2:

Cm
j = Smj + pj (3.20)

≤ 1

m

∑

i∈Rj

pi + pj (3.21)

=
1

m

∑

i∈Rj ∪{j}

pi +
m− 1

m
pj (3.22)

=
1

m
C1,∗
j +

m− 1

m
pj (3.23)

and by Proposition 3.1,

Em
J = max

J ′�J
max
j∈J ′

Cj (3.24)

≤ max
J ′�J

max
j∈J ′

1

m
C1,∗
j + max

J ′�J
max
j∈J ′

m− 1

m
pj (3.25)

=
1

m
C1,∗
J +

m− 1

m
max
J ′�J

max
j∈J ′

pj (3.26)

=
1

m
E1,∗
J +

m− 1

m
E∞J (3.27)

Theorem 3.4. The conversion algorithm is a
(
2− 1

m

)
-approximation.
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Proof.

Hm =
∑

J∈J

wJE
m
J (3.28)

≤
∑

J∈J

wJ

(
1

m
E1,∗
J +

m− 1

m
E∞J

)
(3.29)

=
1

m

∑

J∈J

wJE
1,∗
J +

m− 1

m

∑

J∈J

wJE
∞
J (3.30)

=
1

m
H1,∗ +

m− 1

m
H∞,∗ (3.31)

≤ 1

m
(mHm,∗) +

m− 1

m
Hm,∗ (3.32)

=

(
2− 1

m

)
Hm,∗ (3.33)

Remark 3.2. Algorithm 7 in some sense imposes a group precedence constraint defined as

follows.

If there is a group precedence constraint Jk1 ≺ Jk2 for any k1, k2 ∈ {1, · · ·n}, it must

satisfy that for any j1 ∈ Jk1 and j2 ∈ Jk2, Sj1 ≤ Sj2.

However, such a constraint is not always satisfied in the optimal solution. For example,

in Fig. (3.2), where 1, 1′ and 1′′ belongs to a group 1 and 2 is a standalone job, the schedule

at the bottom will outperforms if 2 is the child of group 1 and Ω2 � Ω1.
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Figure 3.2: Case when group precedence is not optimal

Remark 3.3. As mentioned in proof of Lemma 3.1, interchanging positions within the same

group does not affect the scheduling objective in sequencing repairs with one repair team. And

by Algorithm 7, interchanging positions within the same group does not affect the performance

guarantee. In other words, Algorithm 7 does not specify a schedule but rather a family of

schedules.

Remark 3.4. Recall that Graham’s List scheduling algorithm with arbitrary priority list is

a 2− 1
m

approximation. Therefore, 2− 1
m

is the tightest bound possible for Algorithm 7.

Remark 3.5. Although the performance bound could not be improved by investigating the

schedules within the groups, the objectives might be improved for some cases.
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Chapter 4

HANDLING UNCERTAINTIES IN POST-DISASTER REPAIR
SCHEDULING

4.1 Stochastic Scheduling Policy

In deterministic or offline scheduling, all problem data is known beforehand and a scheduling

result assigns a job to a machine at a specified time. However, in many practical situations,

we might not have complete information about problem data including processing times of

the jobs, the number of machines or even the number of jobs to be scheduled. Stochastic

scheduling is one of the relaxed models, in which the processing time pj of job j is not known

with certainty until job j finishes. To put it mathematically, the processing time of job j

is a random variable Pj and its realization pj is known upon completion. The information

we have is the distributions of Pj, but in some approximation algorithms only first and

second order moments are needed. Pj’s are pairwise independent. The resulting start times,

completion times and function times are also random variables Sj, Cj and Fj. As typical

in stochastic optimization, one cannot expect a scheduling policy minimize the objective for

any realization of processing times, but rather aims to minimize the objective in expectation.

Notice that, due to heavy notation of the expected sign E, function time in this context is

equivalent to energization time previously defined and they might be used interchangably.

This would also allow us to use this model in a broader setting outside of the power systems.

Moreover, the result of scheduling with uncertainty processing times will not be the same

as deterministic scheduling, since no specific time can be determined for a job to start. So

they call the dynamic allocation of jobs on machines with incomplete information a scheduling

policy (Möhring et al. 1999). The theoretical notion and characterization of such a policy

is proposed by Radermacher (1981), Möhring et al. (1984, 1985) and also see (Uetz 2001)
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for a detailed review. To put it simple, a scheduling policy can make decisions at a certain

time t, but only based on the observation up to t and a priori information. And it must

not anticipate any information about the future. At this point, we only focus on static list

scheduling policy, where a priority list of jobs is obtained ahead of time and will not change

during the process of scheduling. With no precedence constraints, the list scheduling policy

could be as simple as assigning the idle machine the top of the list. We present 2 ways of

coming up with the list, corresponding to the 2 list scheduling algorithms in the Chapter 2.

4.2 LP-based List Scheduling Policy

The valid inequalities (2.15) are extended to stochastic parallel machine scheduling by Möhring

et al. (1999),

Theorem 4.1 (Möhring et al. (1999)). Let Π be any policy for stochastic parallel machine

scheduling. Then inequalities below (4.1) are valid for the corresponding vector of expected

completion times E[CΠ].

∑

j∈A

E[Pj]E[CΠ
j ] ≥ 1

2m

(∑

j∈A

E[Pj]

)2

+
1

2

∑

j∈A

E[Pj]2 −
m− 1

2m

∑

j∈A

Var[Pj] ∀A ⊂ N (4.1)

And with an additional assumption on the second moments of all processing time distri-

butions, the above result can be further simplified.

Corollary 4.2 (Möhring et al. (1999)). Let Π be any policy for stochastic parallel machine

scheduling. If Var[Pj]/E[Pj]2 ≤ ∆, then inequalities below (4.2) are valid for the correspond-

ing vector of expected completion times E[CΠ].

∑

j∈A

E[Pj]E[CΠ
j ] ≥ 1

2m

((∑

j∈A

E[Pj]

)2

+
∑

j∈A

E[Pj]2
)
− (m− 1)(∆− 1)

2m

(∑

j∈A

E[Pj]2
)
∀A ⊂ N

(4.2)

Define a set function f : 2L → R:
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f(A) :=
1

2m

((∑

j∈A

E[Pj]

)2

+
∑

j∈A

E[Pj]2
)
− (m− 1)(∆− 1)

2m

(∑

j∈A

E[Pj]2
)

(4.3)

In Section 2.3.1, we introduce the soft precedence constraints based on the energization

time vector. For each realization, soft precedence constraints are satisfied. Therefore, soft

precedence constraints in the expected sense will always be satisfied and turns out to be a

relaxation. Combined with the Corollary 4.2, the LP relaxation can be written as:

minimize
F

∑

j∈L

wjFj (4.4a)

subject to Fj ≥ E[Pj], j ∈ L (4.4b)

Fj ≥ Fi, (i, j) ∈ P (4.4c)
∑

j∈A

E[Pj]Fj ≥ f(A) ∀A ⊂ L (4.4d)

where variable Fj represents the expectation of function time and P stands for the set

of soft precedence constraints. Although there is an exponential number of constraints, the

separation problem for these inequalities can be solved in polynomial time using the ellipsoid

method (Schulz et al. 1996).

Let FLP denote any feasible solution to the constraint set (4.4b) - (4.4d) of this LP. Now

we use the list scheduling algorithm with the list defined by sorting the jobs in non-decreasing

order of FLP
j ’s. Assume without loss of generality that FLP

1 ≤ · · · ≤ FLP
n .

Proposition 4.1. Let SΠ and CΠ denote the random vector of starting times and completion

times, respectively, of the scheduling constructed by the list scheduling algorithm. Then

E[FΠ
j ] ≤

(
2− 1

m
+ max

{
1,
m− 1

m
∆
})

FLP
j (4.5)
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Proof. Consider any job j. From the algorithm, job 1, · · · , j − 1 are scheduled in order with

no idle time in between, which means all machines are busy before the last job starts. Then

for any realization p of P and its scheduling result by policy Π,

Sj ≤
1

m

j−1∑

i=1

pi (4.6)

Since it holds for every realization, then

E[SΠ
j ] ≤ 1

m

j−1∑

i=1

E[Pi] (4.7)

Fix j and let A be the set of {1, 2, · · · , j}. Combined with the fact that FLP
1 ≤ FLP

2 ≤

· · · ≤ FLP
n ,

(

j∑

i=1

E[Pi])FLP
j ≥

j∑

i=1

E[Pi]FLP
i ≥ 1

2m

(
j∑

i=1

E[Pi]

)2

+
m−∆(m− 1)

2m

(
j∑

i=1

E[Pi]2
)

(4.8)

Divide both sides by
∑j

i=1 E[Pi],

FLP
j ≥ 1

2m

j∑

i=1

E[Pi] +
m−∆(m− 1)

2m

∑j
i=1 E[Pi]2∑j
i=1 E[Pi]

(4.9)

When ∆ ≤ m/(m− 1), the second term on the right-hand side of (4.9) is nonnegative, so

FLP
j ≥ 1

2m

j∑

i=1

E[Pi] (4.10)

When ∆ > m/(m− 1) on the other hand, since

∑j
i=1 E[Pi]2∑j
i=1 E[Pi]

≤ max
i=1,··· ,j

E[Pi] ≤ FLP
j (4.11)

and therefore,

FLP
j ≥ 1

2m

j∑

i=1

E[Pi] +
m−∆(m− 1)

2m

∑j
i=1 E[Pi]2∑j
i=1 E[Pi]

(4.12)

≥ 1

2m

j∑

i=1

E[Pi] +
m−∆(m− 1)

2m
FLP
j (4.13)
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Combining (4.10) and (4.13),

1

m

j∑

i=1

E[Pi] ≤

(
1 + max

{
1,
m− 1

m
∆
})

FLP
j (4.14)

Then the expected completion time under policy Π, given by the sum of the expected starting

time and the expected repair time, could be also bounded:

E[CΠ
j ] = E[SΠ

j ] + E[Pj] ≤
1

m

j∑

i=1

E[Pi] + (1− 1

m
)E[Pj] (4.15)

≤

(
1 + max

{
1,
m− 1

m
∆
})

FLP
j + (1− 1

m
)FLP

j (4.16)

≤

(
2− 1

m
+ max

{
1,
m− 1

m
∆
})

FLP
j (4.17)

Finally, based on the definition of the soft precedence constraints in the expected sense,

E[FΠ
j ] = max

i�Sj
E[CΠ

i ] ≤ max
i�Sj

(
2− 1

m
+ max

{
1,
m− 1

m
∆
})

FLP
i (4.18)

=

(
2− 1

m
+ max

{
1,
m− 1

m
∆
})

FLP
j (4.19)

where the last equality follows trivially from the definition of a soft precedence constraint in

the expected sense.

Theorem 4.3. The scheduling policy using LP relaxations is a

(
2− 1

m
+ max

{
1, m−1

m
∆
})

-

approximation.

Proof. Proposition 4.1 and the fact that linear program (4.4) is a relaxation of the stochastic

scheduling problem concludes the proof.
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Chapter 5

DISTRIBUTION SYSTEMS HARDENING AGAINST
NATURAL DISASTERS

5.1 Introduction

Natural disasters have caused major damage to electricity distribution networks and deprived

homes and businesses of electricity for prolonged periods, for example Hurricane Sandy in

November 2012 (NERC 2014), the Christchurch Earthquake in February 2011 (Kwasinski

et al. 2014) and the June 2012 Mid-Atlantic and Midwest Derecho (Infrastructure Security

and Energy Restoration, Office of Electricity Delivery and Energy Reliability, U.S. Depart-

ment of Energy 2012). Estimates of the annual cost of power outages caused by severe

weather between 2003 and 2012 range from $18 billion to $33 billion on average(Executive

Office of the President 2013). Physical damage to grid components must be repaired before

power can be restored (The GridWise Alliance 2013, NERC 2014). On the operational side,

approaches have been proposed for scheduling the available repair crews in order to mini-

mize the cumulative duration of customer interruption, which reduces the harm done to the

affected community (Nurre et al. 2012, Coffrin & Van Hentenryck 2014). On the planning

side, Kwasinski et al. (2014) reported that facilities that had been upgraded or hardened in

Christchurch, at a cost of $5 million, remained serviceable immediately after the September

2010 earthquake and saved approximately $30 to $50 million in subsequent repairs. Harden-

ing minimizes the potential damages caused by disruptions, thereby facilitating restoration

and recovery efforts, and the time it takes for the infrastructure system to resume opera-

tion (Omer 2013). However, as indicated in (Rollins 2007), the difficulty of hardening does

not lie in the design or construction of a hardened system, rather in the ability to quantify

the expected performance improvement so that rational decisions can be made regarding
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increased cost versus potential future benefit.

Recall that we have defined a measure of resilience, harm H, in Chapter 1,

H =
∑

n

wnTn, (5.1)

where wn can be interpreted as the contribution of node n to the overall loss in functionality

of the system or the importance of node n and Tn is the time to restore node n. In Chapter 2,

we approximate this quantity with

H =
∑

n

wnEn (5.2)

by relaxing the operational voltage constraints and load flow models. The objective for

operational problems is to minimize the measure
∑

nwnTn, given a specific disaster scenario,

while the objective for planning problems is to minimize
∑

nwnTn in an expected sense, where

the expectation is over all possible disaster scenarios in consideration.

5.1.1 Literature review

Defending critical infrastructures at the transmission level has been a major research focus

over the past decade (Brown et al. 2006, Bier et al. 2007, Yuan et al. 2014). In general, this

research adopted the setting of Stackelberg game and formulated the problem with a tri-

level defender-attacker-defender model. Such a model assumes that the attacker has perfect

knowledge of how the defender will optimally operate the system after the attack and the

attacker manipulates the system to its best advantage.

In recent years, several researchers have investigated different methods for distribution

systems hardening, but most focus solely on the robustness, i.e., worst-case load shedding

at the onset of disaster. Of note, a resilient distribution network planning problem (RDNP)

was proposed by Yuan et al. (2016) to coordinate the hardening and distributed genera-

tion resource allocation. A tri-level defender-attacker-defender model is studied, in which

the defender (hardening planner) selects a network hardening plan in the first stage, the

attacker (natural disaster) disrupts the system with an interdiction budget, and finally, the
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defender (the distribution system operator) reacts by controlling DGs and switches in or-

der to minimize the shed load. This model is improved by Ma et al. (2016) by considering

the investment cost and by eliminating the assumption that enhanced components should

remain intact during any disaster scenario. Another direction of research enforces chance

constraints on the loss of critical loads and normal loads respectively (Yamangil et al. 2015b,

Nagarajan et al. 2016). A two-stage stochastic program and heuristic solution of hardening

strategy were proposed by Romero et al. (2015), specifically for earthquake hazards, under

the assumption that the repair times for similar types of components follow an uniform

distribution, which simplifies the problem to a certain extent.

5.1.2 Our approach

To the best of our knowledge, this paper is the first to consider the restoration process in

conjunction with hardening. Our approach can be seen as a two-stage stochastic problem.

The first stage selects from the set of potential hardening choices and determines the extent

of hardening to maximize the expected resilience measure R, while the second stage solves the

operational problem in each possible scenario by optimizing the sequence of repairs given the

hardening results. In the operational problem, we consider scheduling post-disaster repairs

in distribution network with parallel repair crews. This issue will be discussed in more detail

in Section 5.6. Since an ideal formulation of the problem is hard to solve and also turns

out impractical, we developed a deterministic single crew approximation with a heuristic

approach to solve the hardening problem. Wang et al. (2015) make a distinction between

hardening activities and resiliency activities which are focused on the effectiveness of humans

post-disaster. By using only one repair crew in the operational problem, we can also focus on

the effects of network structure and components, and reduce the reliance on resourcefulness

(i.e. the number of repair crews available).

The rest of the paper is organized as follows. In Section 5.2, we briefly review the op-

erational problem of scheduling post-disaster repairs in distribution networks with multiple

repair crews and discuss an MILP model for solving the single crew repair sequencing prob-
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lem. In Section 5.3, we formulate the problem of distribution system hardening against

natural disasters and model it as a stochastic optimization problem, followed by a determin-

istic reformulation (Section 5.4) and single crew approximation (Section 5.5). In Section 5.6,

we motivate why we believe it is important to consider the restoration process (operational

phase) in the hardening problem (planning phase) and develop the so called ‘restoration pro-

cess aware hardening problem’. Two solution methods, an MILP formulation and an iterative

heuristic algorithm, are also discussed in this section. The performance of these methods is

validated by various case studies on various standard IEEE test feeders in Section 5.7.

5.2 An MILP approach for Optimal Post-disaster Sequencing

With only one repair crew, the damaged components must be repaired one by one, so there

can be LD decisions to make, one at each time stage. The duration of each stage depends

on the repair time of the component. We use two sets of binary decision variables. The first

set of decision variables is denoted by {xtl}, where xtl = 1 if edge l is repaired at time stage

t and is equal to 0 otherwise. The second set of decision variables is denoted by {uti}, where

uti = 1 if node i is energized at the end of time stage t and is equal to 0 otherwise. Let T

denote the restoration time horizon and ht denote the harm till time stage t. The MILP
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model for minimizing the aggregate harm is shown below:

min
x,u

T∑

t=1

ht (5.3a)

s.t. u0
i = 1, ∀i ∈ S (5.3b)

T∑

t=1

uti = 1, ∀i ∈ D (5.3c)

∑

l∈LD

xtl = 1, ∀t ∈ [1, T ] (5.3d)

t−1∑

τ=0

uτi + utt(l) − 2xtl ≥ 0, l ∈ LD, i ∈ Ne(t(l)),∀t (5.3e)

d0 = 0 (5.3f)

dt ≥ dt−1 + pl × xtl , ∀t ∈ [1, T ], ∀l ∈ LD (5.3g)

ht ≥ wju
t
jd
t, ∀j ∈ D, ∀t ∈ [1, T ] (5.3h)

The first set of constraints binds the two sets of decision variables. Constraints (5.3b) and

(5.3c) specify that all source nodes be energized initially and all sink nodes be energized by

time T . Constraint (5.3d) requires that only one damaged edge be chosen for repair at any

time stage. Constraint (5.3e) requires that when an edge l ∈ LD is chosen for repair at time

stage t, i.e., xtl = 1, both utt(l) and
∑t−1

τ=0 u
τ
i must be equal to 1. In other words, if the tail node

of edge l, t(l), is to be energized at time stage t, at least one of its neighbors in the damaged

component graph G′, denoted by Ne(t(l)), must have been energized at some previous time

stage. This constraint follows directly from the outtree precedences in Lemma 2.1.

The second set of constraints connects the aggregate harm with the decision variables.

The intermediate variable dt models the aggregate restoration time just prior to time stage

t. Constraint (5.3f) initializes the aggregate restoration time to 0 while constraint (5.3g)

requires that the difference dt−dt−1, for some t, be at least the repair time of the edge being

repaired at time t. Finally, constraint (5.3h) models the tth stage harm if l is the edge being

repaired at time stage t, whose tail node is j. Note that constraint (5.3h) can be easily

linearized using the big-M method, details of which are omitted.
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5.3 The Hardening Problem: Formulation

5.3.1 Damage modeling

As mentioned above, damages are modeled by repair time vectors associated with network

components. Since no a priori exact information about the damages is available at the

planning stage, we model the repair times as a random vector ~P . The uncertainties are

twofold: the possible scenarios of natural disasters that planners want to take into account

and the uncertain damages to components caused by a specific disaster. The distribution of

~P can be a mixture of a Bernoulli distribution which represents the probability of damage

and a (possibly) continuous distribution of repair time, such as the exponential (Patton 1979)

or log-normal distribution (Billinton & Wojczynski 1985). Mixed distributions, usually do

not admit a closed-form expression of their distribution functions. In our work, we do not

assume any knowledge of the distribution function, except for knowledge of the first moment

E[ ~P ].

Some planners tend to use the sample average approximation (SAA) methods (Kleywegt

et al. 2002) by considering a limited set of component damage scenarios, which are either

defined by users or drawn from a probabilistic model, as by Yamangil et al. (2015b), Na-

garajan et al. (2016). It is known that SAA methods converge to the optimal solution as

the sample size goes to infinity. However, SAA methods require that the selected scenarios

be typical and right on target, or the sample averaging needs to be performed over a large

number of cases.

5.3.2 Hardening options and costs

In practice, multiple hardening actions are usually available for each network component.

For example, hardening an edge can involve some combination of vegetation management,

pole reinforcement, undergrounding, enhanced pole guying (Ma et al. 2016). Typically, the

goal of hardening a component is to lower the probability of its failure in the event of a

disaster. However, since we are interested in maximizing the resilience of the system, or
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equivalently, minimizing the aggregate harm, simply lowering the probability of failure of a

component is not sufficient. Since the aggregate harm is a function of the restoration times

of the nodes, which in turn depend on the repair times of the damaged components (and the

repair schedule), hardening a component can only be beneficial if it leads to a corresponding

reduction in the repair time of that component.

In this paper, we assume that there is a finite set of hardening strategies for each edge

l, which we denote by Kl. Each such strategy can be some combination of several disjoint

hardening actions. We require that the hardening process select one strategy from the set

Kl. Let ~p = {pl}, where pl is the ‘expected repair time’ of component l before hardening,

∆~p = {∆plk}, where ∆plk is the ‘expected reduction in the repair time’ of component l due

to hardening strategy k ∈ Kl, and clk be the cost of implementing hardening strategy k on

edge l. We make the following assumption on the relationship between clk and ∆plk:

Assumption 5.1. For any two hardening strategies (k1, k2) ∈ Kl, if ∆plk1 < ∆plk2, then

clk1 < clk2 and vice versa.

Generally, the more a component is hardened, the greater is the cost of hardening, but

so is the reduction in repair times. The reasoning behind Assumption 5.1 is similar to

that of Proposition 1 in Sinha & Zoltners (1979). If there exists two hardening strategies

(k1, k2) ∈ Kl which violate the assumption, i.e., ∆plk1 > ∆plk2 is true while clk1 < clk2 ,

strategy k2 cannot be part of the optimal hardening solution.

5.3.3 A stochastic programming model

Definition 5.1. Given a repair time vector ~p, the min-harm (or equivalently, max-resilience)

function, denoted by fm(·), is the mapping ~p
fm(·)7−→ Hm,∗, where Hm,∗ is the harm when repairs

are scheduled optimally with m repair crews.

Let C denote the capital budget available for hardening, P denote the repair time after

hardening (modeled as a random vector to account for different disaster scenarios), and ylk

be a binary variable which is equal to 1 if hardening strategy k is chosen for edge l and
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0 otherwise. A stochastic optimization model for minimizing the expected aggregate harm

assuming m repair crews is shown below:

min
{∆pl},{ylk}

E[fm( ~P)] (5.4a)

s.t. ~p−∆~p = E[ ~P ] (5.4b)
∑

k∈Kl

ylk ≤ 1, ∀l ∈ LD (5.4c)

∑

l∈LD

∑

k∈Kl

clkylk ≤ C (5.4d)

∆pl =
∑

k∈Kl

∆plkylk, ∀l ∈ LD (5.4e)

ylk ∈ {0, 1}, ∀l ∈ LD, ∀k ∈ Kl (5.4f)

where the expectation in eqn (5.4a) is over all disaster scenarios (the assumption being, dif-

ferent disaster scenarios cause different types/scales of damage and therefore lead to different

repair times). While the notation LD denotes the set of actual damaged edges in the context

of the post-disaster scheduling problem (operational phase), we interpret it as the set of all

edges which could potentially be damaged in the event of a disaster, the worst case opera-

tional scenario, in the context of the hardening problem. Eqn. (5.4b) is the mean-enforcing

constraint (which requires that we have knowledge of the first moment of ~P), eqns. (5.4c)

and (5.4f) force at most one hardening strategy to be chosen per edge from the set Kl,

eqn. (5.4d) enforces the budget constraint, and eqn. (5.4e) models the (possible) reduction

in repair time of each edge l due to hardening. Observe that the set of constraints (5.4c),

(5.4d) and (5.4f) mimics a 0-1 knapsack constraint since we are essentially choosing a subset

of hardening strategies from the set of all hardening strategies over all edges, subject to a

budget constraint.

5.4 Deterministic robust reformulation by Jensen’s inequality

Unfortunately, the aforementioned stochastic program is extremely difficult to solve, even

with perfect knowledge of the statistical distribution of ~P . This is due to two reasons.
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First, it is almost impossible to know beforehand the explicit form of fm(·), even when

the operational problem is solvable in polynomial time for m = 1. Second, evaluation of

the objective function requires knowledge of the distribution function of ~P , while at the

same time, this distribution function depends upon the decision variable (see eqns. 5.4a and

5.4b). This circular dependency effectively rules out the applicability of SAA methods. While

metaheuristics such as simulated annealing could be used to solve the above problem to (near)

optimality, doing so might require an inordinate amount of computation time. We therefore

propose a deterministic robust reformulation in Section 5.4 which is more computationally

tractable. We begin this section by showing that the min-harm function fm(~p) is concave.

Theorem 5.1. The min-harm function fm(~p) is concave.

Proof. Let ~pi and ~pj be two different repair time vectors and fm~pi (~pj) denote the harm eval-

uated by the optimal schedule corresponding to ~pi when the actual repair time vector is ~pj.

Obviously, fm(~pj) = fm~pj (~pj). For some ~p0 6= ~p, we have:

fm~p0(~p)− fm~p0(~p−∆~p) =
∑

l∈LD

∆pl
∑

j∈Rl

wj, (5.5)

where Rl denotes the set of jobs assigned to the same crew as l, scheduled no earlier than l

in the optimal schedule corresponding to ~p0. This shows that fm~p0(~p) is a linear function of

the pl’s in ~p0. And since fm(~p) is the optimal schedule,

fm(~p) = min
~p0

fm~p0(~p), (5.6)

which implies that fm(~p) is the point-wise minimum of a set of affine functions and is therefore

concave.

Since fm(~p) is concave, Jensen’s inequality Jensen (1906) holds and the objective func-

tion (5.4a) can be naturally upper bounded as follows:

E[fm( ~P)] ≤ fm(E[ ~P ]) (5.7)
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The preceding discussion motivates the following deterministic robust reformulation (note

that constraint (5.4b) has been wrapped into the objective function):

min
{∆pl},{ylk}

fm(~p−∆~p) (5.8)

s.t. (5.4c) ∼ (5.4f)

As will be apparent from Section 5.6, the above model is a key development which allows

for an integrated treatment of the restoration process and the hardening problem.

We conclude this section with a note on the worst case impact on the objective function

caused by the upper bounding by Jensen’s inequality. Assume that the support of ~P is

bounded, i.e., ~P ∈ [~0, ~pmax]. Then, it follows from Theorem 1 in Simic (2008) that:

fm
(
E[ ~P ]

)
− E

[
fm( ~P)

]
≤ fm (~pmax)− 2fm

(
~pmax

2

)
(5.9)

5.5 Single crew approximation

While the stochastic model and its deterministic reformulation discussed above are applicable

for any value of m, for the rest of the paper, we make the assumption that m = 1. That is,

the hardening decisions, which are made at the planning stage, are based on an assumption

of single crew repair sequencing at the operational stage. The main motivation for making

the single crew assumption is that it is practically impossible to know at the planning stage

the actual number of repair crews that will be available in the event of a disaster. While

hardening decisions based on an assumption of m1 repair crews are most likely not the

optimal decisions if the number of crews is actually m2, a single crew assumption allows us

to factor in the restoration process in these hardening decisions, without requiring a precise

a priori knowledge of m or a joint probability distribution on the type/magnitude/scale of

the disaster event and m.

We now provide a theoretical upper bound on the aggregate harm during the operational

stage, applicable for any arbitrary value of m, even when hardening decisions have been made

based on m = 1. Consider two hardening strategies, A and B, with corresponding expected
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reduction in repair time vectors, ∆~pA and ∆~pB. Suppose strategy A is obtained from the

minimization of the objective function (5.8) with m = 1 and B is an arbitrary hardening

strategy. For a strategy S, we also define Hm,∗
S := fm(~p −∆~pS), the deterministic optimal

harm (i.e., the objective function function in eqn. 5.8) at the operational stage with m repair

crews and Hm
S denote the harm for an m-crew schedule computed using Algorithm 3 with

repair time vector ~p−∆~pS. Then:

Hm,∗
B ≥ 1

m
H1,∗
B (5.10)

≥ 1

m
H1,∗
A (5.11)

≥ Hm
A −

(
m− 1

m

)
H∞A (5.12)

≥ Hm
A −

(
m− 1

m

)
H∞ (5.13)

where the first inequality follows from Proposition 2.4, the second inequality follows from

the fact that hardening strategy A is by definition optimal when m = 1, the third inequality

follows from eqn. 2.49 in the proof of Theorem 2.4, and the fourth inequality follows from

the fact that the aggregate harm defined by any m after hardening is upper bounded by the

aggregate harm before hardening. Rearranging terms, we have:

Hm
A ≤ Hm,∗

B +

(
m− 1

m

)
H∞ (5.14)

Since B represents any hardening strategy,

Hm
A ≤ min

B

{
Hm,∗
B +

(
m− 1

m

)
H∞

}

= Hm,∗
OPT +

(
m− 1

m

)
H∞, (5.15)

where Hm,∗
OPT represents the deterministic optimal harm when a network has been hardened

by minimizing objective function (5.8), with perfect knowledge of m.

The implication of eqn. (5.15) is that, while hardening strategy A may not be optimal

for some chosen m > 1, the approximation gap between the harm when an m-crew schedule



80

(obtained by applying Algorithm 3) is used during the operational stage and the harm corre-

sponding to an optimal hardening strategy for that specific value of m is at most
(
m−1
m

)
H∞.

In practice, the value of H∞ can be determined straightforwardly during the planning stage.

Clearly, the smaller H∞ is, the better the single crew approximation is and an exact or prob-

abilistic a priori knowledge of m corresponding to different disaster events may not even be

necessary if H∞ is small enough. Note that the H∞ term on the r.h.s of eqn. (5.15) could be

way smaller than Hm,∗
OPT . This is likely to be so when the hardening budget is limited since

the benefits of an infinite number of repair crews will outweigh the benefits of hardening.

We wish to emphasize that our single crew approximation during the planning stage does

not prevent the network operator from deploying multiple crews during the operational stage

for post-disaster restoration. In fact, a network which has been designed/hardened with an

eye on the restoration process, albeit with one repair crew, will ensure a smaller aggregate

harm (or improved resilience) during the restoration process post-disaster when additional

repair crews might be available, as opposed to a network which has been designed/hardened

with no consideration given to the restoration process. Simulation results discussed in Sec-

tion 5.7.3 confirm this.

5.6 Restoration Process Aware Hardening Problem

Usually, the restoration problem and the hardening problem are treated separately because

the former is an operational problem while the latter is a planning problem. However, we

argue that the two problems should not be treated in isolation because hardening can affect

the repair times, which in turn, can influence the restoration times through the sequencing

process and thereby the aggregate harm or resilience. The model that we formulate is similar

to single machine scheduling with controllable processing times, which dates back to the

1980s (Nowicki & Zdrza lka 1990). See Section 2 in (Shioura et al. 2016) for a review of recent

advances. Our problem is more complicated in the sense that the effect of hardening decisions

(analogous to ‘costs of compression amount’ in the context of single machine scheduling

with controllable processing times) are not just linear, instead they are embedded in the
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sequencing problem.

In this section, we discuss two solution approaches for the so-called ‘restoration process

aware hardening problem’ (RPAHP), first an MILP formulation, followed by a heuristic

algorithm framework inspired by a continuous convex relaxation, considering m = 1.

5.6.1 MILP formulation

In Section 5.2, we developed an MILP model for optimizing the repair schedule with one

repair crew, while in Section 5.5, we developed a deterministic single crew approximation of

the hardening problem , both with the same objective, minimization of the aggregate harm.

These two models can be easily incorporated into an integrated MILP formulation, as shown

below:

min
~x,~u,∆~p,~y

T∑

t=1

ht (5.16)

s.t (5.3b) ∼ (5.3f)

dt ≥ dt−1 + (pl −∆pl)× xtl , ∀t ∈ [1, T ], ∀l ∈ LD (5.17)

(5.4c) ∼ (5.4f)

Observe that the impact of hardening, ∆pl, is incorporated into constraint (5.17). The

product of ∆pl and xtl on the r.h.s of eqn. (5.17) can be easily linearized using the big-M

method, details of which are omitted.

5.6.2 A continuous convex relaxation

For notational brevity, we define f(·) := f 1(·). As stated previously, the min-harm function

fm(·) is concave piecewise affine and so is f(·). In general, concave minimization problems are

NP-hard Garey et al. (1976). In our case, there are at most n! affine pieces, corresponding

to n! number of affine possible sequences, where n = |LD| is the number of damaged edges.

The RPAHP involves two types of decision variables, the sequencing variables (the x’s and

u’s) and the hardening variables (the ∆p’s). Given the hardening variables, it is straight-
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forward to see that the joint optimization problem reduces to the single crew sequencing

problem, which can be solved optimally in polynomial time as stated previously in Sec-

tion 2.6.2.

Now let us consider the case where the sequencing variables are fixed. Let

Ωl :=
∑

j∈Rl

wj (5.18)

where Rl is the set of some edges l ∈ LD and all its successors in the given sequence. The

quantity Ωl represents the reduction in aggregate harm per unit decrease in pl. The objective

function for the hardening problem can now be recast as f(~p) =
∑

l∈LD Ωl pl, which implies:

f(~p−∆~p) =
∑

l∈LD

Ωlpl −
∑

l∈LD

Ωl∆pl (5.19)

Since the first term on the r.h.s of eqn. (5.19) is a constant, instead of minimizing f(~p−∆~p),

an equivalent formulation is:

max
~y

∑

l∈LD

∑

k∈Kl

Ωl∆plkylk (5.20a)

s.t.
∑

k∈Kl

ylk ≤ 1 ,∀l ∈ LD (5.20b)

∑

l∈LD

∑

k∈Kl

clkylk ≤ C (5.20c)

ylk ∈ {0, 1}, ∀l ∈ LD, ∀k ∈ Kl (5.20d)

This model is similar to that of the multiple choice knapsack problem (Sinha & Zoltners

1979), where Ωl∆plk’s are the value coefficients and clk’s are the cost coefficients. Since the

multiple choice knapsack is known to be NP-hard, we propose an algorithm based on convex

envelopes and LP relaxation, similar to (Kameshwaran & Narahari 2009).

Definition 5.2 (Convex envelope (Horst & Tuy 2013)). Let M ⊂ Rn be convex and compact

and let g : M → R be lower continuous on M . A function ĝ : M → R is called the convex

envelope of f on M if it satisfies:
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• ĝ(x) is convex on M ,

• ĝ(x) ≤ g(x) for all x ∈M ,

• there is no function h : M → R satisfying (1), (2) and g(x0) < h(x0) for some point

x0 ∈M .

Intuitively, the convex envelope is the best underestimating convex function of the original

function. Details of a polynomial time algorithm for computing the convex envelope of a

piecewise linear function can be found in (Kameshwaran & Narahari 2009).

Given a discrete function of clk vs. ∆plk for some edge l and a set of all hardening actions

k ∈ Kl, we first connect the neighboring points, starting from the origin, to construct a con-

tinuous piecewise linear cost function Cl(∆pl), where ∆pl is the relaxed continuous decision

variable. It follows from Assumption 5.1 that Cl is a strictly increasing function. Let Ĉl de-

note the convex envelope of Cl and K̂l = {1, 2, · · · , |K̂l|} denote the set of breakpoints/knots

on the convex envelope (excluding the origin) corresponding to the hardening strategies in

consideration, indexed in ascending order of ∆plk. The linear relaxation of (5.20) based on

the convex envelope approximations, which we denote as (LP), can then be formulated as:

max
∆~p

∑

l∈LD

Ωl∆pl (5.21a)

s.t. Ql ≥ max
k∈K̂l

[µlk (∆pl − αlk) + blk] , ∀l ∈ LD (5.21b)

∑

l∈LD

Ql ≤ C (5.21c)

0 ≤ ∆pl ≤ ∆pl,|K̂l|, ∀l ∈ L
D (5.21d)

where µlk and blk are the slope and intercept of the kth piece of Ĉl, αlk is the lower break-

point of the kth piece of Ĉl, and Ql is an intermediate decision variable which accounts

for the budget spent on edge l. This formulation is similar to the conventional continuous

knapsack problem, and it turns out that the optimal values of ∆pl are always from the set
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{0, some βlk, (αlk, βlk)}, where βlk is the upper breakpoint of the kth piece of Ĉl. Further-

more, at most one ∆pl can have an intermediate value in the range (αlk, βlk) in the optimal

solution. For some l and k > 1, the intercept parameter, blk, is: blk = Ĉl (αlk) = Ĉl
(
βl(k−1)

)
.

For k = 1, αlk = Ĉl (αlk) = blk = 0.

The preceding LP relaxation (5.21) can also be solved optimally using a greedy algorithm

by first sorting the ratios
{

Ωl

µlk

}
in a descending order, and then choosing the components

(and the degree of hardening) based on that sorted list iteratively, until the budget is ex-

hausted. Ties, if any, during the selection process, are broken arbitrarily. We use a ∆p

variable for each edge l and each segment k of Ĉl. All these ∆plk variables are initialized

to 0. Once a selection is made from the sorted list at any iteration T , say (lT , kT ), we set

∆plT kT equal to the maximum value possible within the range [αlT kT , βlT kT ] such that the

‘cumulative budget’ at the end of iteration T does not exceed C. Typically, this maximum

value will be at the upper breakpoint βlT kT , unless, doing so results in a budget violation.

In that case, a proper value within the range (αlT kT , βlT kT ) is chosen such that the budget is

met exactly. At the end of every iteration, we evaluate the expression of budget spent:

Λ =
∑

l∈LD

Ĉl

(
max
k∈K̂l

{∆plk}
)
, (5.22)

which represents the cumulative budget consumed till the current iteration. The algorithm

terminates when Λ = C. Upon termination, the optimal ∆pl values can be obtained from

the ∆plk values as follows:

∆pl = max
k∈K̂l

{∆plk} . (5.23)

We now provide an example which helps illustrate the operation of the algorithm.

Consider a scenario where two edges are to be repaired, l = 1, 2, and the hardening cost

functions for the two edges are as shown in Fig. 5.1. Suppose C = 10 and Ω1 = Ω2 = 1.

The selections made by the greedy algorithm at each step are as follows:

• Step 1 : Breaking ties arbitrarily, choose (l = 2, k = 1), set ∆p21 = 1, cumulative

hardening cost = C1(1) = 1.
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Ĉ
1
(∆

p
1
)

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

∆p2

Ĉ
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Figure 5.1: Hardening cost functions for illustrating the greedy algorithm used to solve the

continupus knapsack-like problem. The solid circles represent the actual discrete hardening

strategies and costs, the dashed lines represent the piecewise linear constructions, while the

solid lines represent the convex envelope approximations.

• Step 2 : Choose (l = 1, k = 1), set ∆p11 = 1, cumulative hardening cost = C1(1) +

C2(1) = 1 + 1 = 2.

• Step 3 : Choose (l = 2, k = 2), set ∆p22 = 3, cumulative hardening cost = C1(1) +

C2(max[1, 3]) = 1 + 7 = 8.

• Step 4 : Choose (l = 1, k = 2), set ∆p12 = 1.5, cumulative hardening cost = C1(max[1, 1.5])+

C2(max[1, 3]) = 3 + 7 = 10. Note that, unlike the previous 3 steps, we can only af-

ford 1.5 units of hardening corresponding to (l = 1, k = 2) so that the budget is not

violated.

The LP solutions are therefore the points (1.5, 3) and (3, 7) for edges 1 and 2 respectively.
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5.6.3 An iterative heuristic algorithm

We now discuss an iterative heuristic algorithm for solving the RPAHP. First, we note

that the solutions obtained from the greedy algorithm used to solve the convex relaxation

formulation (5.21) may need to be rounded down to the nearest lower breakpoints on the

convex envelopes so that the hardening strategy is feasible for each edge. In the example,

this represents an actually available ‘under-budget’ hardening strategy closest to the point

(1.5, 3.0) chosen by the greedy algorithm. Observe that the point (1.2, 2.5) represents a

feasible hardening strategy, even though it is not on the convex envelope. However, no

rounding is necessary for line 2 since the point selected by the greedy algorithm, (3.0, 7.0),

does correspond to an actual hardening strategy. By rounding down, wherever necessary,

we ensure that the budget constraint will not be violated due to the rounding process.

However, after completion of the rounding process, we may find that a portion of the budget

has been left unspent. We therefore incorporate a backfill heuristic which iteratively solves

LP relaxations of the form (5.21) with the unspent budget from the previous iteration and

the remaining available hardening options, along with updated convex envelopes, followed by

a rounding down to a feasible hardening strategy. The backfill process terminates whenever

the budget has been spent exactly, or, when no further enhancement is possible on any

edge without exceeding the budget. Fig. 5.2 provides a flowchart of the iterative heuristic

algorithm for solving the restoration process aware hardening problem. In the context of

the example provided in the previous sub-section, rounding down the LP solution for edge

1 to the point (1, 1) creates an unspent budget of 2 units, which becomes the new budget

for the second iteration. During the second iteration, the points (0, 0) (no hardening is a

feasible option in iteration 1), (2, 5), (2.5, 12) and (3, 15) in the left panel of Fig. 5.1 are

no longer in consideration and the convex envelope is recomputed over the set of points

(1, 1) and (1.2, 2.5), with the former being the new origin. Since the optimal repair schedule

depends on the repair times, we update the schedule after every iteration t with the new

repair time vector, ~p(t + 1) ← ~p(t) − ∆~p(t). The backfill process terminates whenever the
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budget has been spent exactly, or, when no further enhancement is possible on any edge

without exceeding the budget.

Summarizing what we have so far, we now describe a general framework of a multi-

run heuristic algorithm for solving the RPAHP, as shown in Fig. 5.2. Broadly speaking,

the approach involves three major stages. In the first stage, we compute the single crew

optimal sequence, given ~p, the expected repair time vector before hardening. In the second

stage, we use the optimal repair sequence obtained from the first stage and solve the LP

relaxation (5.21) using the convex envelopes of the hardening cost functions, followed by

rounding, which yields a set of feasible hardening decisions. In the third stage, we implement

a backfill procedure by re-solving the LP relaxation (5.21) with updated information, as

described in the previous paragraph. We provide three options in Fig. 5.2 which differ in

how often the repair sequence is updated based on some hardening decisions. Option 3,

which is the most aggressive, updates the repair sequence after every iteration of the greedy

algorithm used for solving the LP relaxation (5.21). To avoid clutter, we have opted to show

the feedback arrow in Option 3 going directly to the ‘blue greedy algorithm box’, instead

of expanding the details of it. Option 1, which is the most conservative, does not update

the repair sequence at all and uses the initial Ωl’s until termination. Option 2 represents

a middle ground and updates the repair sequence after completion of the greedy algorithm

used for solving the LP relaxation (5.21). Implementation details of these three options are

shown in Algorithm 8.

We close this section by pointing out that each iteration of the above algorithm can also

be interpreted from the perspective of the convex-concave procedure discussed in Lipp &

Boyd (2016). Essentially, the min-harm function f(·) is being convexified at some ~p and the

resulting linearized problem solved to give the near-optimal hardening results.
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Figure 5.2: Flowchart of an iterative heuristic algorithm for solving the RPAHP.
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Algorithm 8 Algorithms for restoration process aware distribution systems hardening.

1: Compute the optimal sequence given the expected repair time ~p, using Algorithm 2;

2: Calculate the weights Ωl according to eqn. (5.18);

3: Obtain the convex envelopes of costs Ĉl (∆pl) with K̂l pieces, along with the coefficients

µlk, blk, αlk and βlk, for each edge l ∈ LD;

4: H ← ∅;

5: kl ← 1, ∀l ∈ LD;

6: while true do

7: find l ∈ LD \H with largest Ωl
µl,kl

;

8: let ∆pl = βlkl and calculate the current cost Λ =
∑

l∈LD Ĉl (∆pl);

9: if Λ = C then

10: break;

11: else if Λ > C then

12: ∆pl = βl,kl−1;

13: Option 2 & 3: Update the optimal sequence given the current expected repair time ~p−∆~p

and then update Ω’s.

14: Update the convex envelope of cost Ĉl (∆pl) for edge l and then update the coefficients

µlk, blk, αlk and βlk, for each edge l ∈ LD;

15: else if kl = |K̂l| then

16: ∆pl = βl,kl−1;

17: H ← {H, l};

18: else

19: kl = kl + 1;

20: Option 3: Update the optimal sequence given the current expected repair time ~p−∆~p and

then update Ω’s.

21: continue;

22: end if

23: if |H| = |LD| then

24: break;

25: end if

26: end while
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5.7 Case studies

5.7.1 IEEE 13 node test feeder

We first tested the MILP and the heuristic approach discussed in the previous section on the

IEEE 13 node test feeder with randomly generated Cl’s and two different budgets. Values

of E[f(·)] in this section were computed using Monte Carlo simulations assuming an inde-

pendent geometric distribution for each pl. With a budget of C = 20, hardening actions did

not result in different repair schedules and both the MILP and heuristic approaches yielded

identical results. With a budget of C = 60, even though the hardening actions suggested by

the MILP and heuristic approaches differ for two edges, as shown in Table 5.1, the objective

values obtained from the greedy algorithm, both for E[f(·)] and its upper bound f(E[·]),

are very close to those provided by the MILP formulation. In fact, the ratios of the f(E[·])

measure from the greedy algorithm to the E[f(·)] measure from the MILP algorithm are

both approximately 1.04 for C = 20 and C = 60 (note that this ratio captures the worst case

performance loss, including the effect of upper bounding the true objective function using

Jensen’s inequality).

Table 5.1: Comparison of hardening results on the IEEE 13 node test feeder with a budget

of C = 60.

Edge l ∆pl by MILP ∆pl by heuristic

671-684 0.2 0.4

645-646 0 0.4

632-645 0.5 0.8

632-671 5.3 3.5

f(E[·]) 14.411 14.520

E[f(·)] 13.987 14.146
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We then varied the hardening budget from 0 to 50. Fig. 5.3 shows the aggregate harm

as a function of the budget for m = 1. The MILP and the heuristic produced almost

identical results when using the f(E[·]) measure so that their plots almost overlap. The plots

corresponding to the E[f(·)] measure are also very close, considering the errors introduced by

Monte Carlo simulations. The gap between the true objective and the deterministic objective,

E[f(·)] − f(E[·]), is fairly constant for both the MILP and the heuristic. As expected, the

aggregate harm decreases (resilience increases) as the hardening budget increases.
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Figure 5.3: Aggregate harm vs. hardening budget for the IEEE 13 node test feeder.

Finally, in Fig. 5.4, we compare the pre-hardening sequencing decisions with the post-

hardening decisions calculated using the MILP for the same case study as in Table 5.1. In

these Gantt charts, each ‘box’ represents the repair of a line and the width of each ‘box’ is

proportional to the repair time, appropriately scaled for better visualization. Observe that
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the two sequences differ by the relative locations of lines (632, 645), (645, 646) and (632,

633). This confirms the interaction between sequencing and hardening decisions. Finally, we

want to emphasize that these sequencing decisions are abstract constructs that only serve to

model operational decisions at the planning stage.

(633,634)(692,675)(671,680)(671,692)(684,652)(684,611)(671,684)(632,671)(632,633)(645,646)(632,645)(650,632)

(a) Gantt chart of sequencing decisions before hardening

(633,634)(692,675)(671,680)(671,692)(684,652)(684,611)(671,684)(632,671)(645,646)(632,645)(632,633)(650,632)

(b) Gantt chart of sequencing decisions after hardening (MILP)

Figure 5.4: Comparison of optimal single crew repair schedules before and after hardening.

5.7.2 IEEE 37 node test feeder

Next, we ran our algorithms on one instance of the IEEE 37 node test feeder (Kersting 2001).

Since the running time of the MILP formulation increases exponentially with network size, we

allocated a time budget of 10 hours. In contrast, the heuristic algorithm yielded a solution

within seconds. Table 5.2 shows the edges for which the MILP and heuristic approach

produced different hardening results, along with the objective function values.

Analogous to Fig. 5.3, Fig. 5.5 shows a plot of the aggregate harm vs. the hardening

budget for m = 1. Due to the inordinate amount of time required to solve the MILP, we

show results only for the heuristic. Unlike the 13 node feeder, the aggregate harm in this

case exhibits a steep drop initially before gradually tapering off. This tapering off reflects

the fact that our cost functions were so chosen that no line could be hardened enough to

reduce its repair time to zero; i.e., for every line l, we ensured that pl −∆pl > 0.
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Table 5.2: Comparison of reduction in repair times, ∆pl’s, due to hardening on the IEEE 37

node test feeder with a budget of C = 200.

edge l MILP(10 hours) Option 1 Option 2 Option 3

(744, 729)) 0.8 0 0 0

(702, 703) 0.2 0.2 0.2 0.3

(708, 733) 0 0.3 0.3 0.3

(702, 705) 2.1 0.4 0.4 2.1

(734, 737) 0 0 0.2 0.2

(708, 732) 0 0.2 0.2 0

(734, 710) 0.1 1.4 1.7 0.1

f(E[·]) 843.08 842.04 843.84 837.93

E[f(·)] 672.21 667.35 667.42 666.09
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Figure 5.5: Aggregate harm vs. hardening budget for the IEEE 37 node test feeder.
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In order to compare the performances of the three options within the heuristic framework,

we then varied the hardening budget from 1 to 400. Fig. 5.6 summarizes these results.

Intuitively, when the hardening budget is small, we expect the three options to behave

similarly since reductions in repair times, if any, are likely to be small enough so as not to

trigger a change in the repair schedule, rendering the ‘update schedule’ step in Fig. 5.2 moot.

Similarly, when the hardening budget is large, all three options should behave similarly since

most edges are likely to be hardened to the maximum degree possible at the end of the

first run, and in this case, the ‘update schedule’ step would be inconsequential since the

algorithm would tend to terminate after the first run. As can be observed from Fig. 5.6,

the three options indeed behave similarly at either end of the budget spectrum, but produce

somewhat different results for intermediate budgets (in the range 21 − 303), although the

differences are not appreciable. For a better understanding of the average performance of

the three options, we conducted 200 trials with randomly generated hardening cost functions

and a budget of C = 282. Option 1 turned out to be the best on 53 trials, option 2 on 69

trials, and option 3 on 158 trials. Note that the numbers do not add up to 200 since ties were

counted while ranking the three options. All three options produced identical results on 19

trials. However, the largest difference that we observed between any two options was 4.7%.

Consequently, we recommend Option 1 as the preferred option if ease of implementation and

fastest computational performance are desired.
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Figure 5.6: Comparison of harms by 3 options of the heuristic framework on the IEEE 37

node test feeder.

5.7.3 IEEE 8500 node test feeder

Finally, we tested the performance of the heuristic algorithm on one instance of the IEEE

8500 node test feeder medium voltage subsystem (Arritt & Dugan 2010) containing roughly

2500 edges. We did not attempt to solve the ILP model in this case, but the heuristic

algorithm took just 9.36 seconds to solve this problem.

Analogous to Figs. 5.3 and 5.5, Fig. 5.7 shows a plot of the aggregate harm vs. the

hardening budget for m = 1. Due to issues with computational time, we chose to plot the

f(E[·]) measure only as a function of the budget using the heuristic algorithm.
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Figure 5.7: Aggregate harm vs. hardening budget for the IEEE 8500 node test feeder.

Even if hardening decisions at the planning stage are made based on single crew op-

erational scheduling, the resilience of the system would still improve if multiple crews are

deployed at the operational stage. To emphasize this aspect, Fig. 5.8 shows the normalized

improvement in harm,

β :=
Hm −Hm

A

Hm
(5.24)

for different values of m. The reduction in the repair time vector due to hardening, ∆~pA,

was obtained using the iterative heuristic algorithm with a budget of C = 2000. For m > 1,

the aggregate harms before and after hardening, Hm and Hm
A , were determined from m-crew

schedules obtained using Algorithm 3. The normalized improvement in harm shows a slight

decrease (note the scale on the y-axis). This generally decreasing trend is understandable

since the improvement in system resilience due to the availability of an increasing number of

repair crews will gradually outweigh the improvement in resilience due to hardening with a

limited budget. Nevertheless, even for m = 50, we can observe that the normalized improve-

ment in harm due to hardening remains above 8%, even though the hardening decisions were

made considering m = 1.
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Figure 5.8: Normalized improvement in harm, β (see eqn. 5.24), as a function of the number

of repair crews, m, for the IEEE 8500 node test feeder.

5.8 Conclusions

In this paper, we investigated the problem of strategically hardening a distribution network

to be resilient against natural disasters. Motivated by research on resilient infrastructure

systems in civil engineering, we proposed an equivalent definition of resilience with a clear

physical interpretation. This allows us to integrate the post disaster restoration process

and the planning stage component hardening decision process into one problem, which, we

argued, is necessary since both aspects ultimately contribute to system resilience. This

is a major departure from most current research where the two aspects of resilience are

treated separately. We first modeled the restoration problem as an MILP and the harden-

ing problem as a stochastic program, which was reformulated using Jensen’s inequality and

approximated by single crew for computational tractability. Finally, we unified the sequenc-

ing and hardening aspects and proposed an integrated MILP model as well as an iterative

heuristic algorithm. The expected component repair times are used to generate an optimal



98

single crew repair sequence, based on which hardening decisions are made sequentially in a

greedy manner. Simulations on IEEE standard test feeders show that the heuristic approach

provides near-optimal solutions efficiently even for large networks.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

As we mentioned in Chapter 1, our ultimate goal is to develop useful tools for industry.

The work in this dissertation still needs to be refined further to fit in the need of practice.

But hopefully this dissertation will provide some basic insights for future work. Therefore,

in this chapter, we will focus on some potential research directions as we feel like there are

not many to conclude and this is just a start.

6.1 Post-disaster repair scheduling in a reconfigurable distribution network

In our previous research, we assume the distribution network is radial, a valid assumption

for many distribution networks especially those in rural areas. To completely bring the dam-

aged system back online in this kind of systems, all damaged components should be repaired.

However, there exist some distribution system in some metropolitan areas that is built as a

meshed network while operated radial. This gives rise to a natural problem called distribu-

tion network reconfiguration (Sarfi et al. 1994), which aims to find the best system topology

under some criteria. The ability of reconfiguration not only provides additional robustness

of the system but also provides alternative ways of energizing the system. In light of this,

we consider the problem of joint optimization of scheduling and reconfiguration. Current

setting is, to find a reconfiguration and stick with it during the restoration period.

The complexity of this problem has not been analyzed in literatures but Nurre & Sharkey

(2014) have provided the complexity results for a class of similar problems called INDS.

In particular, they showed that 1 | MF | Cumulative and P2 | MF | Cumulative where all

weights are equal are both stronglyNP-hard. Similarly, by reducing the well-known strongly

NP-hard problem Set Cover to an instance (A) of this joint optimization of scheduling and
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reconfiguration, it is possible to show that the problem is indeed strongly NP-hard and

cannot be approximated to within a ratio of log n unless NP ⊂ TIME(nO(log logn)), where n

is the number of nodes in this network. However, the instance (A) would be a general net-

work built on a bi-partite graph, which is nowhere close to a real-life distribution networks.

Therefore, such an analysis could be too conservative in practice.

We are considering two solving techniques: 1) performing some spanning tree selecting strat-

egy and scheduling the repairs within the tree above; this approach resembles that by Nojima

& Kameda (1992), Wang & Cui (2012); 2) find out a tree decomposition (Halin 1976, Robert-

son & Seymour 1984) of the loopy network and schedule the clusters of repairs, which are

connected in a radial network.

We implemented 3 different spanning tree selecting strategies, Shortest Path Tree (SPT),

Minimum Spanning Tree (MST) and (Node-) Weighted Shortest Path Tree (WSPT) and

tested the optimality gap on 1000 instances of a modified IEEE 13 node test feeder with 3

additional lines as shown in Figure 6.1.

A comparison of bar plots of optimality gaps is shown in Figure 6.2, where MST seems to

be the best strategy in the simulations. There is still no further theoretical analysis regarding

this kind of strategies.

6.2 Joint optimization of scheduling and routing

When the repair team are sent to repair a sequence of components, they do have to travel

in a transportation network. Co-optimizing the repairs and routes will be the most practical

solution to the most fundamental problem of restoring the post-disaster system. Previous

work on this topic relies on Mixed Integer Programming (MIP) and therefore cannot be

applied to the case of severe damages.

Ideally, this work would require: 1) a test case of distribution system coupled with a

transportation network; 2) a not-so-slow MILP formulation or a near-optimal relaxation as

the benchmark of optimality; 3) an approximation algorithm that works as the problem

scales up and that hopefully has a bounded performance.
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Figure 6.1: A Modified IEEE 13 node test feeder with 2 additional lines.
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Figure 6.2: Numerical Results of 3 spanning tree selecting strategies
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Ouyang, M. & Dueñas-Osorio, L. (2014), ‘Multi-dimensional hurricane resilience assessment

of electric power systems’, Structural Safety 48, 15–24.

Ouyang, M. & Fang, Y. (2017), ‘A mathematical framework to optimize critical infras-

tructure resilience against intentional attacks’, Computer-Aided Civil and Infrastructure

Engineering .

https://www.energy.gov/sites/prod/files/2016/11/f34/Distribution%20Automation%20Summary%20Report_09-29-16.pdf
https://www.energy.gov/sites/prod/files/2016/11/f34/Distribution%20Automation%20Summary%20Report_09-29-16.pdf
https://fas.org/sgp/library/pccip.pdf


110

Panteli, M., Mancarella, P., Trakas, D. N., Kyriakides, E. & Hatziargyriou, N. D. (2017),

‘Metrics and quantification of operational and infrastructure resilience in power systems’,

IEEE Transactions on Power Systems 32(6), 4732–4742.

Patton, A. (1979), Probability distribution of transmission and distribution reliability per-

formance indices, in ‘Reliability Conference for Electric Power Industry’, pp. 120–122.
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