EE572- Electromagnetics 1: Microwave Engineering Autumn 2016 ### **Class Meetings:** Wednesdays in EEB 045, 6-8:50PM ### Dr. Allan Ecker Office Hours: Thursdays in EEB M358, 6-8:50PM allan@ee.washington.edu TA: Huazeng Deng: hd6@uw.edu Midterm: The midterm exam is scheduled for November 2. Final: The final exam is scheduled for December 7. ### **Syllabus** Grading Breakdown: Homework: 8 assignments, 40% credit Midterm: 60 minutes, 20% credit Final: 120 minutes, 40% credit ## **Lecture Schedule** | 1 | Class Intro
Review of T-Lines
5-Parameters
And Microstrip | Matlab and Octave
for simulated
instrumentation | S-Parameters from
circuit theory
perspective
(Gamma, 5 matrix,
frequency dependence
of t-line) | Computing reflections
and transmissions
(Matlab) | Reintroducing the
Smith Chart
and some Use Cases | HW1: S-Parameter
Demonstrations | |----|--|---|---|---|--|--| | 2 | Electric Materials
From Physics
To Mathematics | Frequency Domain
Models and the
Phase Unwrapping
Problem | Vector Electric Fields
and Voltages in TEM | Electric Signal Motion
In 2-Conductor
Waveguides in TEM | Microstrip and Stripline | HW2:
DeEmbedding and
Model Making | | 3 | Electric Materials
From Mathematics
To Modeling | Interpolating
S-Parameters
Mindfully | Mechanisms of Electric
Signal Loss | Deduction of VNA
Parameters | Dispersion | HW3:
Building an NWA
and Interpolation | | 4 | Time Domain Models
for Transmission Lines
and Loads | Software TDR | Bounce Diagrams
and the Telegrapher's
Equations | Inverse transform of S-Parameters | Step functions
from impulse responses | HW4:
Software TDR
of simple systems | | 5 | Time Domain Models
of Lossy and Dispersive
Media | Modeling Lossy and
Dispersive Transmission
Lines in Numerical Tools
With Convolution | Additional Reading on
Time Domain Models | Pseudorandom Bit
Sequences and Eye
Diagram Construction | Midterm Review | Midterm Review | | 6 | MIDTERM | MIDTERM | Coupled Lines | Interpolating, Patching
and Otherwise Fixing
S Parameter Datasets | Multiport S Parameters | HW5:
Virtual Eye Diagrams | | 7 | Modeling Discontinuity | Case Study: Complex
Interconnect | PCB Design
Considerations | Lumped Edge Models | Delay Matching | HW6:
PCB Case Study
In Routing | | 8 | Modes of Propagation
TEM, TE, TM | Modeling Multimode
Scattering | Suppressing
Higher-order
modes | Case Study:
Interconnect via
Oversized Model | Signal Integrity
Overview | HW7:
Interconnect with
Multimode Loss | | 9 | Single-conductor
Waveguides | Rectangular and
Circular Waveguides | Wave guide use
cases | Logic Without DC:
Wireless Protocols | Case Study: DIY NWA | HW8:
Bit Error Rate
Analysis | | 10 | Wireless: The Universe
as a Waveguide | 377 Ohms | Optics vs RF | Recommended Projects | Final Examination Prep | Final Examination Prep |