Calling all EE alumni. This party’s for you! Saturday, April 29, 2006

Your alma mater is celebrating 100 years and you’re invited! We have a fantastic line-up of events including a keynote address by Bernard S. Meyerson, a vice president of IBM’s Systems and Technology Group, lab tours with a preview of emerging technology, and a celebration dinner with live music. Best of all, you’ll have a chance to reconnect with former classmates, professors, and friends.

There’s more ... Also on Saturday, the whole family will enjoy our free Engineering Open House featuring hundreds of interactive exhibits for all ages. Live entertainment, lectures, art displays, and various demonstrations will be happening all over campus for the annual Washington Weekend event. There will be something for everyone! We hope to see you in April.

Don’t miss it! Register online today.
It’s fast. It’s easy. It’s secure.
www.ee.washington.edu/centennial

Need more info?
Contact the University of Washington Alumni Association 206.543.5940

CREDITED AS folloWS: © JAmStEC.
Welcome to EEK 2006

The previous two issues of EEK examined the past and future of Electrical Engineering. This year’s edition is particularly unique because it showcases the cutting edge research being performed by our future electrical engineering faculty and industry leaders—our students and post docs. These are the faces that will lead the next generation in fulfilling our mission of Excellence in Education Through Cutting Edge Research.

Consequently, they will also be the ones to continue UWEE’s long legacy of innovation. We will recognize A Century of Innovation on April 29th, 2006 as part of the department’s Centennial Celebration. Please come celebrate with us. For more information about UW EE’s Centennial Celebration, feel free to contact: centennial@ee.washington.edu.

David J. Allstot
Chair and Boeing-Egvedt Professor
Department of Electrical Engineering

Publisher
Electrical Engineering Department
of the University of Washington

Dave Allstot, Chair
Sumit Roy, Associate Chair for Research & Development
Leung Tsang, Associate Chair for Education

Design Staff
Sarah Conradt, Designer

Editorial Staff
Howard Chizeck, Faculty Editor
Laura Haas, Staff Editor

Print management by University of Washington Publications Services

Copyright 2006, Department of Electrical Engineering, University of Washington

The opinions expressed by the contributors do not reflect official policies of the University of Washington.
Animated imagery brings life to the screen. The stylized abstraction of reality one sees in animation adds an immediate impact that cannot be captured by simply pointing a video camera at a scene. But such animation is both labor intensive and requires considerable artistic skill.

A “Video Tooning” system has been developed to transform an input video into space-time volume of image data. Optimization algorithms are efficiently employed to quickly cut out and stylize video objects into a cartoon-like style. Instead of processing a video frame-by-frame, this system accumulates the video frames to create a 3-D data volume and directly processes the pixels in 3-D space (x, y, t).

The system is composed of two main components: an interactive foreground extraction and a stylized video rendering. Given an input video, the system first provides an efficient tool to allow users to quickly extract the dynamic foreground object. To achieve this, a novel painting-based user interface has been developed to allow users to easily indicate the foreground object across space and time.

Also, a new hierarchical video segmentation algorithm is proposed; it combines multiple optimization algorithms to quickly segment the foreground object, typically in ten seconds for a 200 frame video.

Extracted foreground objects from different source videos can be composed together to create special visual effects.

Furthermore, this system provides a variety of rendering tools to stylize the spatio-temporal foreground object and create a highly abstract cartoon with temporal coherence.

Future plans are to improve the user interface and make it possible to create other animation styles. Another goal is to make the program work better with hand-held cameras.
Users of hearing devices commonly complain that they are unable to focus on a single talker in situations with many interfering talkers. Hearing devices augmented with modulation filtering overcome this problem by selectively amplifying only the talker of interest.

Current hearing aids amplify all incoming sounds in equal fashion. This works fine when there’s only a single talker, but it is detrimental to intelligibility in the presence of many interfering talkers, like in a restaurant or at a cocktail party. To be useful in those situations, hearing aids such as conventional behind-the-ear hearing aids and cochlear implants, must distinguish between the desired talker and the background babble.

Through the use of a signal processing technique called modulation filtering, a hearing aid can separate the desired talker from background noise using the modulation spectrogram representation of the input signal. It then can filter out the signal of interest with a modulation filter that is tuned to the desired talker.

In a preliminary subjective listening test, a prototype of this proposed algorithm significantly improved speech intelligibility.

This research can help users of hearing aids to focus on a single talker in situations with many interfering speech signals. As such, it contributes to the performance and usefulness of hearing aids in many everyday situations.
For years, boundary element-based solutions of Maxwell's equations were used. However, due to significant algorithmic and computational science breakthroughs, speed and memory efficiency required for simulation and design cycle acceleration of large-scale detailed electronic structures are now available.

The Applied Computational Electromagnetics lab has developed an accelerated boundary element-based 3-D full-wave EM simulator named PILOT (Predetermined Interaction List Oct Tree). This simulator deals with the classical problem of dense matrices in boundary element techniques using a robust multi-level low-rank tree-based decomposition algorithm. This leads to an extremely fast matrix setup and a solution with linear complexity and memory use in problem size. PILOT is fully scalable on parallel architectures, and connects directly to circuit simulation tools. It can compute electromagnetic parasitics with more than a million unknowns in ten minutes, which is about 50 times faster than commercial technologies. PILOT also simulates complex microelectronic structures from the Air Force Research Labs, Hughes Research Labs, Intel, Mayo Foundation, Rockwell Scientific, Intel, IBM and NASA.

Rapid increase in clock-speed and packaging density have increased the electromagnetic (EM) effects in cross-talk, substrate coupling and in the radiation of integrated circuits and packages. Consequently, accurate and efficient modeling is mandatory to maintain the desired level of signal integrity in emerging micro and nano electronic designs.

The technology of PILOT enables rapid simulation of distributed effects in integrated systems. It is currently being enhanced for rapid multi-physics modeling. This will enable the high-impact simulation of mixed-technology systems involving microfluidics, biological systems interaction, quantum dots and electrical nanostructures.
Computers integrate two data storage devices in their operation through cache control, which works by allocating data between the fast, expensive Random Access Memory (RAM), and the slow, inexpensive hard disk. The cache controller places frequently used data in the RAM, while storing the rest in the hard disk. This use of multi-level data storage results in a computer that is quick and has a large capacity.

An analogy between data and energy can be used to synthesize cache control for energy storage systems. Like RAM in data storage, energy storage devices such as flywheels have fast response times, but are expensive. An energy analogy of hard disks is hydrogen storage, which is inexpensive, but has a slow response time. Like a computer’s use of RAM and hard disk, both energy storage device types can be used to achieve acceptable performance for a reasonable cost. This multi-level storage has an immediate application to wind power plants.

The variability of wind speed makes it impractical to schedule the power output of wind power plants. However, the integration of a multi-level energy storage system will allow a schedule to be followed.

The flywheel acts like RAM, absorbing or supplying the rapidly fluctuating portion of the power. The hydrogen storage through the use of a fuel cell or electrolyzer acts like a hard drive, accommodating the bulk of the power. The output of the power plant and the allocation of energy between devices are shown.

The strong analogy between data storage and energy storage at the device and functional level has been formed. This has been exploited for the synthesis of a multi-level energy storage system for use in a wind power plant. The value of the analogy as an instructional aid is currently being evaluated.
A growing number of problems have surfaced in recent years due to fossil fuel consumption, motivating the energy industry to search for new alternatives. The need for a clean, easily generated, cost-effective replacement has encouraged continued research into the use of hydrogen fuel.

Traditionally, clean energy options have been very limited in urban areas. This project focuses on the need to bring clean, affordable hydrogen to such areas by creating a flexible, efficient system that uses a modular, vertically integrated design framework. By harnessing the untapped wind power on the roof of a skyscraper, a clean, renewable source of electricity was gained without creating a large footprint on valuable urban real estate. Four vertical-axis wind turbines were used to power a medium-sized hydrogen production operation.

The design was integrated with the skyscraper's electrical system, feeding excess electricity directly to the skyscraper or to the grid, and drawing grid power when wind power supplies were low. The advantages of a vertically integrated, modular design are in the ability to make efficient use of real estate and to customize the system to different areas and demands. An electrolyzer, compressor and several storage tanks are put in a previously unused basement, forming the production center. An electrolyzer generates hydrogen from electricity and water, which is then compressed for storage. The hydrogen is piped to a hydrogen dispenser where it is distributed. The design supports the fueling of 10 to 50 typical hydrogen cars a day.

This project received honorable mention at the 2005 international H2U Student Design Contest sponsored by the National Hydrogen Association, Chevron-Texaco and the U.S. Department of Energy. The team was recognized “for the brilliant innovation, technical aptitude and superior originality in the design of a next-generation hydrogen power park.”
While sensor localization has been extensively explored for benign environments, enabling position estimation for sensors in the presence of adversaries has not been addressed. Attacks against the localization process not only disassociate the collected observations from the true location of sensors, but also inflict cross-layer vulnerabilities to location-dependent protocols of higher layers.

To ensure robust location estimation, a secure range-independent localization algorithm called SeRLoc was developed. SeRLoc relies on a two-tier network architecture. The network consists of a set of sensors of unknown location, and a set of nodes equipped with directional antennas called “locators,” with known location and orientation. Both the sensors and nodes are randomly deployed in the FoI. In SeRLoc, sensors passively estimate their position based on beacons transmitted from the locators. Each beacon contains localization information that defines the sector antenna where the beacon transmission took place. The center of gravity of the convex intersection of the sectors heard is chosen as the sensor location.

By analyzing the space of possible attacks against SeRLoc, we showed that cryptography alone is not sufficient to secure the localization process. Instead, lightweight cryptography was combined (such as hashing and symmetric encryption/decryption with deployment statistics) to allow sensors to detect attacks on the localization like the wormhole and Sybil attack. We also analytically evaluated the level of security achieved by SeRLoc using Spatial Statistics theory.

Securing the localization process is an essential requirement for providing secure network services. As the size of the sensor devices decreases, computational and energy resources become limited, so security becomes a challenging problem. To address this, secure localization methods that combine cryptography with multiple consistency checks on invariant physical properties must be developed.
Watermarking is one technique to trace unauthorized leakage of EHR back to the offenders. For tracing purposes, watermarking medical images must satisfy stringent fidelity requirements to ensure diagnostic quality and high robustness. Furthermore, groups of medical professionals often collaborate, making group communication a common practice in providing medical service.

Because of the nature of a multi-user clinical environment, an efficient watermarking scheme suitable for a many-to-many multicast scenario is proposed, where a broadcast copy is of diagnostic value only after being decoded by the authorized watermark key holders. During the process of decoding, two fingerprints are imprinted onto the image; one that corresponds to the original sender, and another that corresponds to the recipient performing the decoding. This scheme is scalable in user storage and watermark key update communication. It requires only one watermark key to be stored by each user for each group, and no watermark key update is required when a member joins.

Simulation results conducted on 31 images of five modalities confirm that the fingerprinted images are of higher quality when compared to 10:1 JPEG compressed images, in terms of three image quality indices: peak signal to noise ratio (PSNR), quality index (QI) and mean squared Moran error (MSME). Meanwhile, the fingerprinted images withstand various image processing such as low pass filter (LPF), high pass filter (HPF), JPEG compression, cropping and averaging attack.
LDPC codes are emerging as standard methods of channel encoding and error correcting for many wireless standards due to their near Shannon-limit error correction performance. The LDPC block-parallel message passing decoding algorithm and its fully-parallel implementation architecture yield the high-throughput error-correction capability necessary for large-volume communication and data storage applications. However, the implementation also leads to challenges in hardware implementation, especially for large amounts of interconnection resources.

The 3-D technology can potentially improve routing and area restrictions in current layout techniques. A 1024-bit fully parallel low-density parity-check (LDPC) code decoder has been designed and implemented using a 3-D CMOS technology. This 3-D decoder, with about 8M transistors, was designed to have a 2Gb/s throughput.

LDPC codes are emerging as standard methods of channel encoding and error correcting for many wireless standards due to their near Shannon-limit error correction performance. The LDPC block-parallel message passing decoding algorithm and its fully-parallel implementation architecture yield the high-throughput error-correction capability necessary for large-volume communication and data storage applications. However, the implementation also leads to challenges in hardware implementation, especially for large amounts of interconnection resources.

The 3-D circuit seen below is a promising technology that addresses interconnection issues.

It is composed of multiple active circuit layers that are vertically stacked to allow shorter interconnection paths. However, because design methodologies and CAD tools for 3-D ASIC designs are immature or not readily available, 3-D placement tools have been developed. These tools can minimize the area, routing density, total wire length and 3D-via usage. Programs have also been created for 3-D routing, buffer insertion and circuit-versus-schematic (CVS) checking.

The significance of this work is three-fold: (1) it is the first large-scale 3-D ASIC implementation, (2) 3-D IC process with three-tier integration was shown to yield an order of magnitude improvement over the corresponding 2-D process, in terms of power-delay-area product, and (3) an automated 3-D design flow has been developed and used to implement large-scale silicon ASIC design.
A phased array is one type of multiple-antenna system, which transmits (or receives) the same signal on each antenna, but adjusts the relative phases and amplitudes. The constructive/destructive interference between these signals shapes the radiation into a beam. By adjusting the relative phases and amplitudes, the beam of radiated power can then be steered to “focus” it onto the desired user. This minimizes wasted power and increases the signal to noise ratio, thus enabling higher data rates.

As wireless communications standards evolve, data rates increase significantly with each new generation. The 2G cellular standard accommodates data rates up to 20KBps, while the forthcoming 4G standard is expected to mandate data rates up to 1GBps. This trend forces engineers to find ways to increase data rates over wireless channels. As traditional time and frequency domain methods are exhausted, engineers are turning to spatial methods. One spatial method that shows great promise is the use of multiple-antenna transceivers.

Phased arrays rely on the ability to accurately set the relative phases and amplitudes in the different signal branches. Errors and mismatches create non-idealities in the radiation pattern, such as beam pointing error and reduced directivity. This requires a system for quickly and accurately setting the phase and amplitude in each branch of a phased array. The possibility being explored is to employ dual feedback loops: the first operates on the phase of the output and generates the phase shifter control voltage, and the second operates on the amplitude of the output and generates the variable gain amplifier control voltage. The inputs to the system are the desired phase and amplitude, and the negative feedback action of the loops forces the control voltages to settle to their required values.

Phased arrays are primarily used for radar and other specialized applications, and often use discrete components or costly compound semiconductor technology. The possibility of implementing key components of a phased array in CMOS technology opens the door for the widespread adoption of phased arrays in communications applications. This research currently implements phase and amplitude control for a transmitter. The next step will integrate the system with the other transmitter components and then test the unit as a whole.
Self-Assembling Robots

SAM BURDEN, UNDERGRADUATE (EE)

Self-assembly is a phenomenon that occurs in a variety of contexts in nature, motivating chemical reactions and cell metabolism. If one could engineer these types of processes, constructing an integrated circuit would be as simple as throwing a million tiny identical components in a beaker and gently shaking it. The Self-Organizing Systems Lab is studying the mathematical underpinnings of self-assembly. It seeks to direct disparate systems like DNA molecules and passive robots to organize in specified ways using similar formal models.

In an attempt to understand self-assembly in an extremely simple environment, a set of triangular robotic tiles that float on a frictionless air table has been constructed. These tiles are supposed to model molecules in a chemical reaction or proteins in a cell. Oscillating fans mix the tiles randomly and when the tiles collide, they latch. Once latched, the tiles can communicate with one another, decide whether or not to stay together, and either remain latched or break apart. By programming the tiles with different decision-making algorithms, a variety of final structures can be predictably produced.

Whether or not tiles interact and decide if they should stick together is analogous to macromolecules forming or breaking bonds and changing their internal structure when they interact with one another. By studying assembly processes involving these tiles, fundamentals about molecular self-assembly can be learned.

Progress has been made in determining efficient pathways for some assembly processes, which could be used to optimize the assembly of geometric structures like viral capsids. The goal of this research is to optimize assembly processes for these tiles and apply that information to other assembly contexts.

Faculty Advisor: Professor Eric Klavins
Research Area: Self-Assembly
Grant/Funding Source: NSF
Markov Models to Perform Clinical Skills Assessment

THOMAS MACKEL, GRADUATE STUDENT (EE)

Inspired by an analogy between medical procedure and spoken language, Markov Models were used to classify subjects using the E-Pelvis simulator (Stanford) with 92% accuracy. Certain model aspects revealed information about the medical procedure’s “grammar,” which will help develop a more compact model representation and a generalized methodology.

Complicated medical procedures are a series of less complex sub-procedures, like “tying a knot,” or “cutting tissue.” These sub-procedures are a series of even more simple gestures, and gestures are a series of specific measurable forces. Forces (syllables), gestures (words), sub-procedures (sentences), and procedures (paragraphs) form the basis of the “language” of medical procedure.

Starting with force data obtained from experts performing an actual medical procedure, each continuous value data point is quantified to 1 of 32 discrete states, which are referred to as “syllables.” This is analogous to each syllable having many different possible “pronunciations.” A model of the expert data consists of the frequency of all expert syllable transitions, and the mean and covariance of the pronunciations associated with each syllable. A similar model is created from novice force data.

Force data taken from an unclassified subject is then used to make a third model, like the above two. Comparing the unclassified subject’s model to the expert model yields an “Expert Skill Factor (ESF),” which represents how closely the subject’s performance matched the performance of the aggregate of expert subjects. A Novice Skill Factor (NSF) is determined as well. Plotting the ESF vs. NSF shows a quantitative comparison of skill, referred to as the Performance Index, for multiple subjects.

This skill assessment technique is heading towards handling larger dimensional data with many more syllables, as well as extending the number of classes beyond two. Another possible direction is to work on identifying “words” and “sentences” of the procedure, and using this information to simplify the models.
An exoskeleton is a wearable external robot with joints and links corresponding to those of the human body. Through the use of gravity compensation, the exoskeleton supports the weight of itself, the human arm, and externally applied loads while the human controls its motion through neural inputs using surface electromyography-based (sEMG-based) or impedance-based control algorithms.

As a proof of concept for neural control (sEMG), two prototypes of exoskeleton arms were developed. The first prototype produced a single-joint (elbow) exoskeleton controlled by sEMG signals from the bicep and tricep muscles. The second prototype included two additional degrees of freedom at the shoulder.

The current seven degree-of-freedom (DOF) exoskeleton, serving as a wearable robot, is composed of seven cable-driven aluminum links.
Measurement of Grasper-Induced Tissue Damage

Smita DE, Graduate Student (Bioeng)

The use of minimally invasive surgical (MIS) techniques has greatly increased over the last couple of decades due to a number of patient benefits. However, limited force feedback in MIS tools (including surgical robots) may lead to inadvertent excess stress application by a surgeon and clinically significant tissue injury.

Reducing intra-operative or acute injury that can occur during routine tissue manipulation with surgical graspers may help to avoid unnecessary long-term consequences. Therefore, identification of relevant stress magnitudes and durations that can be safely applied to tissues may help improve MIS device design.

By measuring tissue damage as a function of stress magnitude and duration in commonly manipulated organs, safe stress “thresholds” can be identified and applied during minimally invasive surgery. The initial step to this project involved designing an appropriate methodology and analyzing it with preliminary studies. Combinations of experimental and analytical approaches were used to address these goals. Measured stresses, within the range of stresses typically applied with graspers by surgeons, are applied in vivo to pig liver, small bowel and ureter using the computer-controlled Motorized Endoscopic Grasper (MEg) developed in the UW Biorobotics Laboratory.

Histological methods and image analysis are used to measure acute injury in the compressed tissues based on inflammation, coagulation and cellular death. Finite element modeling is used to approximate stress distributions under the MEG’s grasper jaws for a more accurate correlation of stress to tissue damage.

Multiple models will be created for each organ, with a stepwise increase in model complexity. Statistical analysis, including analysis of variance, is used to identify stress magnitudes and durations that cause significantly increased acute damage to organs.

Initial results indicate an appropriately sensitive methodology. Preliminary results produced expected finite element models and nonlinear relationships between stress and damage, suggesting that it may be possible to identify safe stress thresholds.
It has been shown that the inclusion of haptics in a shared virtual environment increases the task performance and virtual presence felt by the users. Previous work in this area includes systems with impulsive force rendering and haptic media synchronization techniques such as intra-media, inter-media and group synchronization control.

The collaborative haptic control of a two-user, one degree of freedom, simplified collaboration setup is explored in this work. The experimental setup consists of a cube that is free to move along one degree of freedom on a floor inside a three dimensional room rendered using OpenGL. A similar virtual environment was displayed for the second user on a separate computer. The display also includes a target sphere that both users jointly track during the experiment. Two PHANToM Omni haptic devices were used to interact with the cube. Three different virtual coupling schemes for position coherency were tested: distributed architecture (Scheme 1), peer-to-peer architecture (Scheme 2), and a centralized or client-server architecture (Scheme 3).

The performance of all three approaches was evaluated experimentally, using ten volunteers. A fixed set of virtual coupling parameters was used. Position coherence in terms of peak and RMS position error between the two cubes was computed for each method. As expected, the centralized architecture had the lowest position error. The distributed architecture resulted in a position error only slightly higher than the centralized architecture, for the delays that were tested in this work. The peer-to-peer method had substantially higher position errors.

It has been demonstrated that a distributed control architecture can achieve a comparable performance to that of a client-server approach. Networks like the Internet have time-varying delay, and communication packets could be lost or arrive out of order. The next step is to investigate this...
The first generation of surgical robots made a significant step toward integrating robotics and medicine. However, some of these systems were large and overbuilt. The BioRobotics lab (BRl) is working on the next generation in surgical robotics. Primary electronics and a mechanism optimized for the requirements of minimally invasive surgical (MIS) procedures are in place. The BRl is currently working on control software, teleoperative control design, and user interfaces for local and remote control. As the field of surgical robotics continues to evolve, it is important to keep patient safety in mind. A safety control architecture is being developed that is aimed at moving an experimental system in the direction of intrinsically safe operation.

This project is part of the “operating room of the future” vision in which the patient is the only person in the room and doctors teleoperate robotic manipulators to perform surgery. The BRL Surgical Robot is being developed by an interdisciplinary team with members from the departments of surgery, electrical engineering, mechanical engineering, bioengineering and computer science. This surgical robot, which is currently a prototype undergoing testing, is composed of a number of subsystems. It is a two arm, 7-DOF, cable-actuated surgical robot system for performing minimally invasive telesurgery. Using a multidisciplinary approach to design the system will lead to a seamless integration into the operating room of the future.

MIS utilizes long slender tools and a video camera inserted through ports in the patient. Operating about this pivot point makes a spherical mechanism a natural candidate for a MIS robot manipulator. Using in-vivo MIS kinematic and dynamic data as a foundation, an optimization was performed to determine the ideal link angles for the 2-R spherical linkage. The dexterous workspace (DWS) is defined as the workspace in which surgeons spend 95% of their time, and the extended dexterous workspace (EDWS) as the workspace required to reach all the target anatomy in the human abdomen. Kinematic analysis of the 2-R spherical mechanism led to the derivation of the forward and inverse kinematics as well as the Jacobian matrix.

Surgical robotics will revolutionize the way in which surgical intervention is performed. The integration of robotics and medicine will ultimately lead to better patient care. Less invasive procedures, more precise motion control, and quicker healing times are just a few of the potential benefits.
Isotropy is a measure of how well a manipulator can move in any arbitrary
direction and is defined as the ratio of highest to lowest singular value of the
Jacobian matrix. This score is unbounded, so isotropy is redefined as the ratio
of the lowest to highest singular value to obtain a bounded scoring criterion that
ranges from 0 (singular) to 1 (perfectly isotropic). There is an isotropy score
associated with every pose of every design.

In order to perform an optimization over the design space, all combinations of
link angles ranging from 16°-90° were analyzed with respect to isotropy. For each
potential target workspace, the isotropy score is integrated over the workspace
then multiplied by the minimum score within that target workspace. This provides
a measure of average performance as well as penalizing target workspaces
near singularities. The best target workspace score for each design candidate
is then divided by the sum of the link angles cubed to provide a penalty for
greater mass and inertia. The optimal manipulator is defined as the design of
the highest composite score when scored against the DWS, but can also reach
the entire EDWS. The resulting design for a 2-R spherical mechanism optimized
for MIS yielded link angles of 75° and 60° (Link1 and Link2 respectively). These
parameters were the basis for the mechanical design work required to bring this
system to fruition.

The first four joint axes of the robot intersect at the surgical port location
resulting in a spherical motion about the incision point that allows for tool motion
just as in manual MIS. DC brushless motors mounted to the base of the surgical
manipulator actuate all motion axes. Maxon EC-40 motors with 12:1 planetary
gearboxes are used for the first three axes, which see the highest forces. Maxon
EC-32 motors are used for the remaining axes. Maxon DES70/10 series amplifiers
drive these brushless motors. The motors are mounted on quick-change plates,
allowing for motor removal without the need for disassembling the cable system.
The first three axes have power-off brakes to prevent tool motion in the event
of a power failure.
The control software is running on Linux with real-time extensions to the kernel (RTAI). The controller is implemented as a kernel module and RTAI grants it exclusive access to system resources, turning a full-featured application on Linux into an embedded-type system with highly accurate timing. The robot control loop runs at 1kHz.

Well-defined software interfaces to the controller allow high-level control of the robot (start, stop, control gains, test inputs, etc) from the Linux host and surgical control by a master device across a network. The master device can be any suitable, high fidelity haptic interface; currently the Phantom Omni from Sensable Technologies is used. The surgeon interface also uses touch screen controls and foot pedal for user-friendly operation during surgery.

Connection between the robot and the Linux host is through a USB 2.0 I/O board also developed in the BRL. Custom drivers allow the board to communicate with RTAI Linux in USB 2.0 bulk transfer mode. This USB board is designed to be highly versatile and includes a variety of inputs and outputs, including 8 24-Bit Encoders, 8 16-Bit DACs and 8 General Purpose I/O Pins. PC control software can set DAC values output to the DES 70/10s controlling motor torques, or read encoder values to get the robot joint positions.
This surgical robot will have a variety of safety features. These features include a small number of operating states, brakes, an emergency stop (E-Stop) button, a watchdog timer, and a surgeon side foot pedal. The state of the system will be managed by a programmable logic controller (PLC). PLCs are a highly reliable off the shelf technology that can easily be programmed for small numbers of states. The control software will send requests to change states to the PLC and the PLC will in turn update the states. Additionally, a function in the Control Module produces a 10Hz square wave for a watchdog timer function in the PLC.

The design of this safety system is almost complete. The process of testing and constructing the various pieces of the system has begun, and the hope is to have the safety system constructed soon. The described software architecture is a crucial element in the overall surgical robot system. The expectation is that this system will provide a level of predictability, reliability and robustness sufficient for animal surgery evaluation.

Another aspect of this project is teleoperative control and mediating the destabilizing effects of time delay. A low-latency network protocol stack for RTAI decreases network latency, but cannot nullify the large and variable time-delays associated with operating across the Internet.

The researchers in the BRL are testing, applying and advancing the state of the art technology in this field. The system successfully performed a teleoperation demonstration across the UW campus from Kane Hall to the BioRobotics Lab with the first three DOF under control. This highly portable, network-enabled surgical platform has the potential to bring the skill of expert surgeons anywhere in the world.
Yeast cells are an ideal model organism for studying human aging, but analyzing old yeast cells is extremely labor intensive. This research combines the fields of automation, electromagnetics, image processing, microfluidics and cellular biology to develop a system that will automate the lifetime analysis of a single yeast cell.

This automated system will be used to determine what causes age-related genomic instability. Yeast culture is pumped into a microfluidic device, where a single yeast cell is captured by microfabricated magnets. This yeast cell is held for its lifetime, which is approximately 60 hours. Image processing software is then used to monitor the cell and automatically detect the cell dividing into a mother and a daughter cell. When the cell divides, valves in the microfluidic device align to send the daughter cell to an external petri dish, where it is grown for future genetic analysis. Each daughter colony gives a snapshot of the genetic stability of the mother at the time of the division.

Why do we age? How do we age? Science still cannot answer these fundamental questions, yet we know that a cell’s genome becomes unstable over time—understanding why this occurs could lead to treatments for age-related ailments such as cancer.
Fluorescence imaging has become an important tool for studying dynamic gene expression and protein functions. Confocal microscopy is especially gaining popularity due to its three-dimensional capability, which enables biologists to study cellular responses.

However, the availability of information and the accessibility of new ideas in medical and biological research often requires expensive instruments and labor-intensive operations. For example, commercial confocal microscopes are a powerful tool for life sciences and nanotechnology, but they are expensive, large in size, and limited in function.

The Microscale Life Sciences Center (MLSC) is utilizing new technologies to make confocal microscopes smaller, less expensive and able to modulate light in temporal and spatial domains. As a result, these new microscopes with lab-on-a-chip devices can observe biological events that cannot be seen by conventional means. Furthermore, the size and cost of the system are comparable to a digital projector, making confocal microscopy affordable for more laboratories and individuals.

The new system will be used with the high-content living cell array developed at MLSC, (co-directed by EE Professor Deirdre Meldrum and Microbiology and Chemical Engineering Professor Mary Lidstrom) to monitor dynamic multi-variable cellular processes.
Though genome sequencing has provided instructions for life, cells with identical genes show a range of behaviors due to randomness in translating these instructions. Insight into these variations will require innovative tools for manipulating individual cells under conditions that mimic their natural environment.

“Microfluidic” devices with tiny fluid channels offer exciting alternatives to conventional tools (e.g., flasks, pipettes) for studying cells in controlled chemical environments. However, it requires a method of positioning and holding cells in place without damaging them or affecting their behavior. This is especially difficult for cells that respond to the sense of touch. As a result, an unusual fluid flow to gently trap single cells in a microscopic channel has been developed.

A tiny cylinder, about the size of a human hair (100 microns), creates four microeddies when the fluid is oscillated (AC) at audible frequency. Each microeddy positions and holds a single cell near the eddy center, somewhat like a pop bottle trapped in a whirlpool.

Forces generated by the flow push inward from all directions to completely suspend a cell within the fluid. Trapping forces are comparable to well-known methods that use focused lasers (optical tweezers) or oscillating electric fields (dielectrophoresis). Because the gentle flow around the microeddies is comparable to blood flow in arteries, fluid tweezers provide a more natural environment for studying suspended cells.

A complete picture of cell-to-cell variation will require measurement of many single cells under controlled chemical conditions. Many traps are created in a single device using cylinder arrays, and cells are loaded into the traps by superimposing a steady flow (DC) on the oscillation.

The DC flow is also used to supply trapped cells with nutrients, reagents, and fluorescent indicators needed for dynamic measurements. Fluid tweezers arrayed with chemicals will be used to measure dynamic protein expression by human T-cells under physiological conditions.

The remarkable ability to suspend cells in a gentle fluid flow makes fluid tweezers well-suited for studying sensitive cells, such as human T-cells that normally live suspended in blood.
Recently, achieving such a goal using light has attracted much attention since the location of the exerted force can be not only precisely defined, but also flexible and controlled by scanning the light.

This research aims to design and build the Opto-Plasmonic Tweezers for manipulation and rotation of micro/nano objects.

Micro/nano objects with asymmetrical shapes are suspended in a liquid solution. The light source, with its polarization adjusted by a fine polarization controller, has an electric-field component and is focused on an Au-nanoshell film.

A simulated 3-D trapping trajectory with equal time interval for the micro/nano object which is trapped at the surface of the Au-nanoshell film.

This electric field oscillates in time with the frequency of the incident light, and induces the free electrons near the surface of the metal to move and form oscillating dipole moments. With the proper frequency, resonant oscillation can be induced, and surface plasmon is formed. The direction of the dipoles is parallel to the electric-field polarization of the light. They radiate in the same way as oscillating charges, and create a patterned radiation electric field that manipulates the micro/nano objects through dielectrophoresis with fine orientation control by adjusting the polarization of the incident light.

By developing a theoretical model, dielectrophoresis force and torque for asymmetrical objects can be analyzed. Using the self-assembled polystyrene monolayer as the template, an Au-nanoshell film was fabricated, which can be utilized to generate the surface plasmon resonance. In collaboration with Professor Suzie Pun from the UW Department of Bioengineering, a bench-top optical system using Listeria monocytogenes for the experimental demonstration will eventually be built.

The ability to control the orientation of biological cells is a particularly desirable manipulation mechanism. Such capability opens the door for building structured biomaterials with potential applications in constructing biofilms and human tissue engineering.

Faculty Advisor: Professor Lih Y. Lin
Collaborators: Professor Suzie Pun (Bioeng)
Research Area: Biophotonics
Grant/Funding Source: NSF & NIH
Nanophotonic Waveguides Using Self-assembled Quantum Dots

JEAN WANG, GRADUATE STUDENT (EE)

The diffraction limit stemming from Heisenberg’s Uncertainty Principle limits the packing density of photonic components. Proposed methods are subject to difficulties in fabrication, integration with other photonic components and transmission loss. However, the quantum dot (QD) based nanophotonic waveguide is gain-enabled and may be constructed through self-assembly.

Working in the area of nanophotonics, this research involves guiding light at sub-diffraction limit dimensions. Both 500 nm and 100 nm width waveguides made by self-assembly of quantum dots on a substrate via an e-beam lithography template have been successfully demonstrated.

The waveguide operation relies on a pump light to create population inversion within the quantum dots and a signal light to cause stimulated emission of photons, which allows the propagation of light through near-field energy transfer.

To place the quantum dots, fabrication begins by using e-beam lithography on a silicon dioxide coated silicon substrate to specify waveguide widths at 100 nm and 500 nm. Then, the samples are immersed in 3’-aminopropyltriethoxysilane (APTES) followed by solution deposition of carboxylated QDs, where the carboxyl and amine group binding is facilitated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC).

The small number of steps involved enables rapid processing and placement of quantum dots at high density. Deposition of the first monolayer composed of APTES has been confirmed with x-ray photoelectron spectroscopy (XPS), which reveals up to 10 nm of the surface composition by element. In addition, fluorescence micrographs and AFM images, confirm the attachment of 655 nm emission quantum dots aligned in the 500 nm and diffraction-limited 100 nm width lines.

The next steps will test the waveguides by measuring loss, cornering efficiencies, and crosstalk between adjacent structures. The use of alignment marks and tapered patterns will aid in characterizing 100 nm waveguides. With thorough demonstration, quantum dot waveguides may become a useful mean for transporting information on the nanoscale.
The emerging field of nano-photonics offers the possibility of large bandwidth, high-speed, and high-density photonic integrated circuits for future use in all-optical computing and communications. Nano-scale, super-sensitive, single-photon detection devices will be a critical component of such circuits. The unique optoelectronic properties of quantum dots make these tiny pieces of semiconductor material well-suited for such an application.

The photodetector described here consists of one or more quantum dots that bridge a small gap (~1 nm) between Au electrodes on a Si/SiO₂ substrate. The quantum dots are linked to the electrodes via a self-assembly process using hexanedithiol (HDT) as the linker molecule.

The Au electrodes are defined on the Si/SiO₂ substrate using electron-beam lithography (EBL). A monolayer of HDT is self-assembled on to the Au electrodes and CdSe quantum dots are subsequently self-assembled to the HDT monolayer.

Conceptual graphic of a nano-scale quantum dot photodetector that shows the CdSe quantum dot linked to the Au electrode via the HDT molecule.

The working principle of the device is based on 3D-0D-3D resonant electron tunneling from the source (3D) to the quantum dot (0D) and finally to the drain (3D). The quantum dot is referred to as a zero-dimensional system because electrons are confined in all three dimensions and the energy levels are quantized. In a three-dimensional system like the electrodes, electrons are free to move and the energy levels form a continuous band. Carrier transport is governed by selection rules involving energy and momentum conservation. The tunneling from the quantum dot to the drain can be enhanced by photo-generated electrons that occupy higher energy levels. This effectively happens when the quantum dot is optically pumped with a light source.

Thus, the current-voltage (IV) characteristics of the device are expected to change under optical pumping, and the device can be utilized as a photodetector. Work to date has consisted of modeling, fabrication and preliminary testing of these devices.

Nano-scale quantum dot photodetectors offer the possibility of nano-scale photodetection for future nano-scale photonic integrated circuits. Other potential photodetector applications of the device include infrared, astronomical, and medical imaging. Future work will include characterization and optimization of the device performance, and integration with other nano-scale quantum dot photonic integrated circuit components.
High-speed and high-performance optical switches are required for optical communication and optical signal-processing. Traditional switches without wavelength selectivity still cannot satisfy wavelength division multiplexing (WDM) system requirements for the optical signals to be switched at both fiber and wavelength levels. This is a task requiring wavelength selective switching.

To overcome the size and speed limitations of current technologies, a new type of wavelength selective switch based on electro-optic (EO) polymer micro-ring resonators is being developed. The basic switching element is a 2x2 switch with two micro-rings and two intersecting bus waveguides.

Each of the rings under voltage applied can independently couple light of one wavelength and switch it from Input m to Output n (m, n can be 1 or 2). Without coupling to the ring, light propagates from Input m to Output m (m can be 1 or 2). This 2x2 switch can be used as a building block for the larger NxN switches, which can independently switch large number of wavelengths and their combinations from any input to any output. The typical radius of the switching rings is only 25 µm, which makes the overall size of the device two orders of magnitude smaller than traditional switches. The entire NxN switch array can fit on top of a silicon complementary metal-oxide semiconductor (CMOS) circuit chip. It makes fabrication of a single chip optical switch node possible and self-contained with all the necessary control electronics. This design uses all the benefits of EO polymer switches and adds extra functionality because of the ability to switch every wavelength independently. Calculation showed that low loss, high isolation and fast switching speed device is possible using existing EO polymers.

Theoretical analysis using matrix models and numeric methods have been performed to find optimal device configuration. Preliminary devices have been made from passive polymers using soft lithography. Future efforts will focus on process optimization and the fabrication of the EO polymer devices.
A New Surface Plasmon Resonance Biosensor Based on Diffraction Gratings

FUMIN YANG, GRADUATE STUDENT (EE)

A Surface Plasmon Resonance (SPR) wave can be generated at the interface of a metal and a dielectric through the coupling of the light with either a prism or a diffractive grating structure. The SPR wave property is closely related to the dielectric property in the ambient environment at the interface. This phenomenon is utilized for sensing purposes through the binding of the detection species at the interface.

This project is developing a diffraction grating based SPR sensor, where multiple surface plasmons with different wavelengths are generated through the coupling of a micro-fabricated multi-frequency profile diffractive grating.

There are two main parts to this research: 1. The fabrication of the diffraction grating and its integration into the SPR biosensor, and 2. A modeling tool to simulate light diffraction on a multi-frequency diffraction grating embedded in a multi-layer structure.

Other work involves designing, fabricating and testing the microfluidic liquid sample transfer system for the SPR biosensor. Currently, the single frequency profile diffraction grating is being fabricated, and it’s also undergoing the design of its integration into SPR sensors. The models to simulate light propagation through the plane multi-layer structure, and light diffraction on a single frequency profile metallic grating are completed.

Next steps involve fabricating multi-frequency profile diffraction gratings, and testing its effect on the SPR signal. A model for simulation of light diffraction on a multi-frequency diffraction grating embedded in a multi-layer structure will also be built.
Exciting prospects for lab-on-chip systems have fueled the emergence of droplet-based “digital” microfluidics. Electrowetting, the electrical approach to droplet manipulation, involves actuating droplets on a hydrophobic surface via voltage-controlled lowering of the solid-liquid interfacial tension at one edge of the droplet. However, surface fouling and high actuation voltages impede the development of bioassay systems. To remedy these issues, a novel approach employing microtextured surfaces was envisioned and the enabling modules successfully implemented to lay the foundation for creating a completely reconfigurable, CMOS-compatible bioassay platform.

To overcome the first road block of surface fouling, novel low protein-fouling surfaces with alternating hydrophobic and hydrophilic patterns were developed. Currently, the design, fabrication and initial characterization have been completed. Radio-labeled protein fouling experiments are under way to quantify the fouling.

Next, systematic variation of roughness was employed to create contact angle gradients that guided droplets propelled by vibration.

The surfaces were designed to maintain air traps beneath the droplet. The dimensions and spacing of the pillars etched in silicon were varied to create the gradient. Thus, solid-liquid contact area fraction was introduced as a new control variable in any scheme of manipulating droplets.

A driving force is required to mitigate the impeding force due to pinning of the three phase contact line. A low force requirement translates to a low actuation voltage for electrowetting. The impeding force decreased with the solid-liquid contact area, and shows promising results in overcoming high actuation voltages. Texture dependence of the impeding force (hysteresis) is shown at bottom left.

By creating non-fouling surfaces, electrowetting based bioassay systems are made possible. Guiding droplets down “hard coded” textured tracks lowering the impeding force through texturing have been demonstrated. Next steps include replacing acoustic actuation by electrical means, and establishing the feasibility of low voltage programmable gradients.
Using top-down microfabrication methods to create devices, as well as self-assembly to create 3-D functional structures out of these devices will help overcome these limitations. This requires the four following items: 1) the development of new microfabrication technologies compatible with existing methods to create parts that can participate in self-assembly, 2) “programming” the assembly of these parts 3) agitation of the system to encourage intended assembly, and 4) the creation of permanent mechanical and/or electrical connections.

This research aims to self-assemble silicon-based, 3-D functional devices, and fabricate new, lower-cost systems by assembling pre-microfabricated parts in different ways. New microfabrication technologies for parts have been developed and “programmed” to assemble using surface energy modifications and capillary forces.

By combining microfabrication and chemical handling techniques, micrometer-scale parts have been developed with silicon-on-insulator (SOI) wafers. Photolithography and deep reactive ion etches define each part, and hydrofluoric (HF) acid etching releases parts into a carrier fluid. The sidewalls of each part are programmed by rendering surfaces hydrophobic or hydrophilic with molecular self-assembled monolayers. The resulting surface energies program the assembly by determining the wetability of a hydrophobic adhesive. The part faces then coat with this hydrophobic adhesive and adhere to each other by capillary forces. Gentle tumbling acts as agitation, cross-linking the hydrophobic polymer adhesive with heat to form permanent mechanical bonds.

By quantifying the agitation energy and correlating the energy of individual bonds, it is expected that control over this type of self-assembly will improve in the future, and many exciting device architectures will result.
Based on the principle for delivering micro components to receptor sites, the self-assembly techniques derived by the MEMS Lab at UW EE can be classified into three categories: capillary-driven self-assembly, feature-directed self-assembly, and a combination of shape-directed and capillary-driven self-assembly. These techniques satisfy the manufacturing requirements for micro devices ranging in application from biochemical analysis, to radio frequency identification (RFID), to micromechanical transducers with moving components.

A capillary-driven self-assembly process mounts micro components onto a substrate via adhesive droplets on the binding sites, and alignment with submicron accuracy can be achieved by interfacial energy minimization. By using this assembly method and heating polymerizable adhesive liquid, piezo actuators for micro fluidic pumps were assembled.

Feature-directed self-assembly is based on feature recognition between protruding and recessed features on components and receptor sites. Micro components are driven by centrifugal forces from orbital shaking until their features fall into trenches on a substrate. Uniquely orienting self-assembly is achieved by two-stage feature recognition.

Mounting of components with controlled poses (vertical or horizontal) is achieved by combining shape recognition and capillary-driven self-assembly. Shape recognition allows micro components to stand vertically in apertures on a vibrating plate. Micro components can then lie down and self-align to receptor sites by capillary forces.

The capillary-driven self-assembly of piezo actuators has significant advantages over the conventional bonding method with silver epoxy. The uniquely orienting assembly enables flip-chip bonding of micro chips with multiple asymmetrical interconnects. The vertical mounting technique is useful for RF and optical MEMS components.
NEW STUDENT RESOURCES CENTER

After two years of renovation, the newly updated Sieg Hall was officially opened to the public. Members of UW EE and The College of Engineering attended a ribbon cutting ceremony on October 21st, 2005. In addition to structural repairs to the building itself, the following space has been provided to UW EE students:

- **INTEGRATED STUDENT CENTER** - a designated area where students can study, discuss EE related issues, or socialize
- **OFFICES FOR STUDENT-RUN ORGANIZATIONS** - separate dedicated office space for IEEE, HKN, and GSA
- **TA CENTER** - individual workspace for each TA as well as a computer lab
- **TUTORIAL CENTER** - A room which holds up to 24 students along with three additional smaller and adjoining “break-out” rooms

The Department was saddened by the death of Professor Robert N. Clark on January 27, 2006. Professor Clark joined the EE Department in 1957 from Honeywell Inc. where he had established his reputation as an expert in the analysis of feedback systems and automatic control. This emergent technology was critical to the challenges of the times including the understanding of the dynamics of complex systems, from motors to aircraft, and the design of the necessary control systems. He documented his expertise in a seminal text, “Introduction to Automatic Control Systems” published by John Wiley and Sons in 1962 that had at least three printings. This book was particularly impressive for the relevance of its content. Students were challenged with real-world examples from Bob’s experience, lending more excitement to their study than is often the case in introductory texts. Upon arriving at the University of Washington, Bob was an early and major contributor in developing our curriculum in systems and automatic control.

Professor Clark received his BSEE and MSEE degrees from the University of Michigan (1950 and 1951) and his Ph.D. from Stanford University in 1969 while on leave from our department. His expertise was recognized nationally and internationally by his election as a Fellow of the IEEE in 1983 with the citation: “For contributions to engineering education and the practical application of control theory.” He was also appointed Professor of Aeronautics and Astronautics in 1988 and continued to serve both departments until his retirement in 1994.

Those of us who served in the Department with Bob enjoyed his wry humor and, especially, his generous friendship. Bob and his wife Mary were gracious and dedicated members of the Electrical Engineering community who provided ready hospitality to faculty and students.

TEKTRONIX UNDERGRADUATE RESEARCH LAB

On November 18, 2005, the Department of Electrical Engineering celebrated the opening of our first lab solely dedicated to undergraduate research opportunities. The Tektronix Undergraduate Research Lab in Sieg Hall was made possible through the generous support of Tektronix, Inc. Tektronix gave over $350,000 worth of the equipment and furniture needed to fully outfit the lab. Students who are serious about research opportunities during their undergraduate years can now work in a dedicated facility on state-of-the-art equipment. Thank you Tektronix!

The Department was saddened by the death of Professor Robert N. Clark on January 27, 2006. Professor Clark joined the EE Department in 1957 from Honeywell Inc. where he had established his reputation as an expert in the analysis of feedback systems and automatic control. This emergent technology was critical to the challenges of the times including the understanding of the dynamics of complex systems, from motors to aircraft, and the design of the necessary control systems. He documented his expertise in a seminal text, “Introduction to Automatic Control Systems” published by John Wiley and Sons in 1962 that had at least three printings. This book was particularly impressive for the relevance of its content. Students were challenged with real-world examples from Bob’s experience, lending more excitement to their study than is often the case in introductory texts. Upon arriving at the University of Washington, Bob was an early and major contributor in developing our curriculum in systems and automatic control.

Professor Clark received his BSEE and MSEE degrees from the University of Michigan (1950 and 1951) and his Ph.D. from Stanford University in 1969 while on leave from our department. His expertise was recognized nationally and internationally by his election as a Fellow of the IEEE in 1983 with the citation: “For contributions to engineering education and the practical application of control theory.” He was also appointed Professor of Aeronautics and Astronautics in 1988 and continued to serve both departments until his retirement in 1994.

Those of us who served in the Department with Bob enjoyed his wry humor and, especially, his generous friendship. Bob and his wife Mary were gracious and dedicated members of the Electrical Engineering community who provided ready hospitality to faculty and students. **EE**
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
<th>Department/Program</th>
<th>Education/Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aframowitz, Marty</td>
<td>Professor</td>
<td>Microtechnology/Sensors</td>
<td>Ph.D., 1969 Columbia University, NIH Career Development Award</td>
</tr>
<tr>
<td>Allstot, David</td>
<td>Professor & Chair of VLSI</td>
<td>System-on-Chip VLSI</td>
<td>Ph.D., 1979 UC-Berkeley, IEEE Fellow</td>
</tr>
<tr>
<td>Ammer, Josie</td>
<td>Assistant Professor</td>
<td>Circuits and Algorithms for Wireless Communication</td>
<td>Ph.D., 2005 UC-Berkeley</td>
</tr>
<tr>
<td>Atlas, Les</td>
<td>Professor</td>
<td>Signal and Image Processing</td>
<td>Ph.D., 1984 Stanford University, NSF Presidential Young Investigator, IEEE Fellow</td>
</tr>
<tr>
<td>Atlas, Les</td>
<td>Professor</td>
<td>Signal and Image Processing</td>
<td>Ph.D., 1999 UC-Berkeley, NSF CAREER Award</td>
</tr>
<tr>
<td>Böhringer, Karl</td>
<td>Associate Professor</td>
<td>Microelectromechanical Systems (MEMS)</td>
<td>Ph.D., 1997 Cornell University, NSF CAREER Award</td>
</tr>
<tr>
<td>Bushnell, Linda</td>
<td>Research Assistant Professor of Robotics</td>
<td>Controls and Robotics</td>
<td>Ph.D., 1994 UC-Berkeley, NSF ADVANCE Fellow</td>
</tr>
<tr>
<td>Chen, Tai-Chang</td>
<td>Research Assistant Professor of MEMS and Microfabrication</td>
<td>Research Assistant Professor of MEMS and Microfabrication</td>
<td>Ph.D., 1997 University of Washington</td>
</tr>
<tr>
<td>Chinowsky, Tim</td>
<td>Research Assistant Professor of Sensors, Instrumentation, Analog Electronics</td>
<td>Ph.D., 2000 University of Washington</td>
<td></td>
</tr>
<tr>
<td>Chizeck, Howard</td>
<td>Professor</td>
<td>Controls and Robotics</td>
<td>Ph.D., 1982 MIT, IEEE Fellow</td>
</tr>
<tr>
<td>Christie, Rich</td>
<td>Associate Professor</td>
<td>Energy Systems</td>
<td>Ph.D., 1989 Carnegie Mellon University, NSF Presidential Young Investigator</td>
</tr>
<tr>
<td>Crum, Lawrencee</td>
<td>Research Professor</td>
<td>Medical Ultrasound</td>
<td>Ph.D., 1967 Ohio University, ASA Fellow</td>
</tr>
<tr>
<td>Dailey, Daniel J.</td>
<td>Research Professor</td>
<td>Intelligent Transportation Systems</td>
<td>Ph.D., 1990 University of Washington</td>
</tr>
<tr>
<td>Danborg, Mark</td>
<td>Professor</td>
<td>Energy Systems</td>
<td>Ph.D., 1969 University of Michigan</td>
</tr>
<tr>
<td>Darling, R. Bruce</td>
<td>Professor</td>
<td>Devices, Circuits, and Sensors</td>
<td>Ph.D., 1985 Georgia Institute of Technology</td>
</tr>
<tr>
<td>Dunham, Scott</td>
<td>Professor</td>
<td>Materials and Devices</td>
<td>Ph.D., 1985 Stanford University</td>
</tr>
<tr>
<td>El-Sharkawi, Mohamed</td>
<td>Professor</td>
<td>Intelligent Systems and Energy</td>
<td>Ph.D., 1990 University of British Columbia, IEEE Fellow</td>
</tr>
<tr>
<td>Goldstein, Evan</td>
<td>Affiliate Professor</td>
<td>Lightwave Communications</td>
<td>Ph.D., 1989 Columbia University, IEEE Fellow, OSA Fellow</td>
</tr>
<tr>
<td>Gupta, Maya</td>
<td>Assistant Professor</td>
<td>Signal Processing</td>
<td>Ph.D., 2003 Stanford University</td>
</tr>
<tr>
<td>Hannaford, Blake</td>
<td>Professor</td>
<td>Biophotonics</td>
<td>Ph.D., 1995 UC-Berkeley, NSF Presidential Young Investigator, IEEE EMBS, Early Career Achievement Award, IEEE Fellow</td>
</tr>
<tr>
<td>Hauck, Scott</td>
<td>Associate Professor</td>
<td>VLSI and Digital Systems</td>
<td>Ph.D., 1995 University of Washington, NSF CAREER Award, Sloan Research Fellowship</td>
</tr>
<tr>
<td>Holl, Mark</td>
<td>Research Assistant Professor of MEMS and Micrototal analytical systems</td>
<td>Research Assistant Professor of MEMS and Micrototal analytical systems</td>
<td>Ph.D., 1995 University of Washington</td>
</tr>
<tr>
<td>Hwang, Jenq-Neng</td>
<td>Professor</td>
<td>Signal and Image Processing</td>
<td>Ph.D., 1988 University of Southern California, IEEE Fellow</td>
</tr>
<tr>
<td>Jandhyala, Vikram</td>
<td>Associate Professor</td>
<td>Electromagnetics, Fast Algorithms, Devices</td>
<td>Ph.D., 1986 University of Illinois, NSF CAREER Award</td>
</tr>
<tr>
<td>Kim, Yongmin</td>
<td>Professor/Chair of Bioengineering</td>
<td>Digital Systems, Image Processing and Medical Imaging</td>
<td>Ph.D., 1982 University of Wisconsin - Madison, IEEE Fellow, IEEE/EMBS Early Career Achievement Award</td>
</tr>
<tr>
<td>Kirchhoff, Katrin</td>
<td>Research Assistant Professor of Multilingual Speech Processing</td>
<td>Research Assistant Professor of Multilingual Speech Processing</td>
<td>Ph.D., 1995 University of Bielefeld</td>
</tr>
<tr>
<td>Klavins, Eric</td>
<td>Assistant Professor</td>
<td>Controls and Robotics</td>
<td>Ph.D., 2001 University of Michigan, NSF CAREER Award</td>
</tr>
<tr>
<td>Kuga, Yanuo</td>
<td>Professor</td>
<td>Electromagnetics</td>
<td>Ph.D., 1983 University of Washington, NSF Presidential Young Investigitor, IEEE Fellow</td>
</tr>
<tr>
<td>Lin, Lih</td>
<td>Associate Professor</td>
<td>Photonics, MEMS</td>
<td>Ph.D., 1996 UC-Los Angeles</td>
</tr>
<tr>
<td>Lin, Hui</td>
<td>Associate Professor</td>
<td>Communications and Signal Processing</td>
<td>Ph.D., 1985 University of Texas, Austin, NSF CAREER Award, CNRS Young Investigator</td>
</tr>
<tr>
<td>Maminishov, Alex</td>
<td>Associate Professor</td>
<td>Electric Power Systems, MEMS, Sensors</td>
<td>Ph.D., 1999 MIT, NSF CAREER Award</td>
</tr>
<tr>
<td>McMurchie, Larry</td>
<td>Research Assistant Professor of VLSI and Digital Systems</td>
<td>Research Assistant Professor of VLSI and Digital Systems</td>
<td>Ph.D., 1977 University of Washington</td>
</tr>
<tr>
<td>Meldrum, Delirdre</td>
<td>Professor</td>
<td>Genome Automation</td>
<td>Ph.D., 1993 Stanford University, NSF CAREER Award, NIH SERCA Award, IEEE Fellow</td>
</tr>
<tr>
<td>Nelson, Brian</td>
<td>Research Associate Professor of Plasma Physics</td>
<td>Plasma Physics</td>
<td>Ph.D., 1987 University of Wisconsin - Madison, IEEE Fellow</td>
</tr>
</tbody>
</table>
Calling all EE alumni. This party's for you! Saturday, April 29, 2006

Your alma mater is celebrating 100 years and you're invited! We have a fantastic line-up of events including a keynote address by Bernard S. Meyerson, a vice president of IBM's Systems and Technology Group, lab tours with a preview of emerging technology, and a celebration dinner with live music. Best of all, you'll have a chance to reconnect with former classmates, professors, and friends.

There's more ... Also on Saturday, the whole family will enjoy our free Engineering Open House featuring hundreds of interactive exhibits for all ages. Live entertainment, lectures, art displays, and various demonstrations will be happening all over campus for the annual Washington Weekend event. There will be something for everyone! We hope to see you in April.

Don't miss it! Register online today. It's fast. It's easy. It's secure. www.ee.washington.edu/centennial

Need more info?
Contact the University of Washington Alumni Association 206.543.5940

Otterdorfer, Mari
Signal and Image Processing
Ph.D., 1987 University of Wisconsin - Madison
IEEE Fellow

Oslo, Birgitta
Microelectromechanical Systems (MEMS)
Ph.D., 1999 University of Wisconsin-Madison

Pavlov, Bahar
Microelectromechanical Systems (MEMS)
Ph.D., 2002 University of Michigan

Pockel, James S.
Lecturer
Digital Systems
Ph.D., 1985 University of Washington

Poussou, Raphael
Control Systems and Signal Processing
Ph.D., 1986 University of Maryland

Rahim, Raveh
Research Assistant Professor
Signal and Image Processing
Ph.D., 1993 University of Utah

Rifkin, Ruvim
Professor & Associate Dean
Signal and Image Processing
Ph.D., 1995 Stanford University

Rittel, Jan
Communications and Signal Processing
Ph.D., 1980 UC–San Diego

Rosen, Jacob
Communications and Signal Processing
Ph.D., 1985 University of Washington

Sahr, John
Communications and Networking
Professor & Associate Chair for Research
Ph.D., 1999 Georgia Institute of Technology

Sahni, C. Richard
VLSI and Digital Systems
Professor
Ph.D., 1980 Stanford University

Sahni, Chih-Chi
Ph.D., 1997 University of Washington

Sandford, Robert
Signal Processing/Quantum
Ph.D., 1996 University of Wisconsin–Madison

Sarrafzadeh, Ali
Integrated Systems
Ph.D., 1995 University of Washington

Sarkar, Abhijit
Professor
Ph.D., 1992 University of California, Berkeley

Sarkar, Anupam
Signal and Image Processing
Ph.D., 1991 MIT

Sarkar, Subhadip
Ph.D., 2002 Georgia Institute of Technology

Sarkar, Yajna
Electrical Engineering
Ph.D., 1986 University of California

Sarnoff, William J.
Ph.D., 1959 Stanford University

Sarma, Ravi
Professor
Ph.D., 2003 Indian Institute of Technology

Sarma, Siva
Professor
Ph.D., 1990 Indian Institute of Science

Sarma, Tushar
Professor
Ph.D., 1986 Stanford University

Sarma, Venkat
Professor
Ph.D., 1985 Indian Institute of Technology

Sarma, V. V. K.
Professor
Ph.D., 1980 Indian Institute of Technology

Sarma, V. V. K.
Professor
Ph.D., 1980 Indian Institute of Technology