Cellular and WLAN Networks Prototyping NI SDR Approach

Amal Ekbal, Vincent Kotzsch, Achim Nahler, Nicola Michailow June 17, 2016 WNPE Workshop

Outline

- I. NI Wireless Research
- II. Wireless Networks Prototyping with ns-3 and NI SDR
- III. Cellular/Wi-Fi Coexistence in Unlicensed Bands
- IV. Conclusions

NI Wireless Research

NI Wireless Communications Lead User Program

- Established in 2010
 - Goals: Further wireless research through prototyping
- Research Institutions
 - Academic
 - Industry
- Over 100 research papers published

STANFORD UNIVERSITY

NOKIA

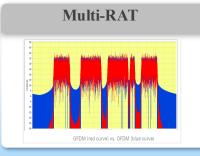
UNIVERSITY

KU LEUVEN

Prototyping Is Critical for Algorithm Research

"Experience shows that the real world often breaks some of the assumptions made in theoretical research, so **testbeds are an important tool for evaluation under very realistic operating conditions**"

"...development of a testbed that is able to test radical ideas in a complete, working system is crucial"


¹NSF Workshop on Future Wireless Communication Research

NI 5G Research Initiatives

INSTRUMENTS

PXI Systems

Bristol University Massive MIMO: 1.5Gbps in 20 MHz

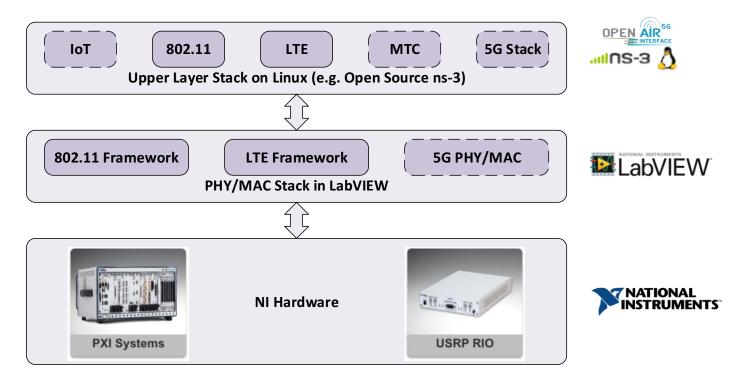
- 128 antenna system
- 10 UEs
- > 1.5Gbps in 20 MHz spectrum
- NI massive MIMO SDR

Prof Mark Beach

Paul Harris

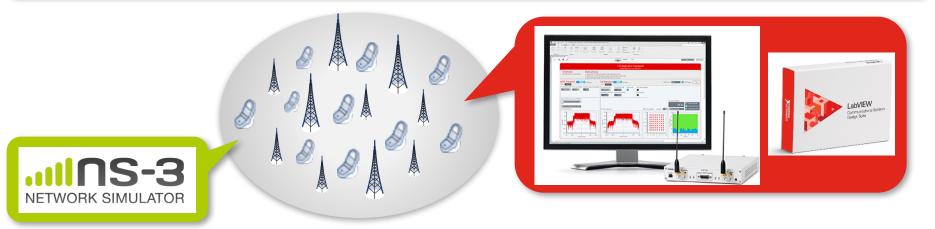
5G mmWave 14.5Gbps Link with Nokia at MWC 2016

Wireless Networks Prototyping with ns-3 and NI SDR



Wireless Networks Prototyping Challenges

- Prototyping system design requires diverse experience
 - FPGA boards, Processor boards, RF cards etc.
- Complex system integration
 - For example, control and data path APIs to RF card
- Heterogeneous tools, software and hardware
 - · Different layers may require knowledge of different tools and IDEs
- Lack of well documented, and easily modifiable code base
 - Need to obtain from diverse sources or spend time to create own code base
 - May need significant modifications to meet prototyping goals
 - E.g.:- Real-time requirements


NI Wireless Communications Prototyping Platforms

LTE Example:-ns-3 LTE Stack + NI LTE Application Framework

Example integration of one open source protocol stack with FPGA based SDR platform that runs a real-time physical layer implementation in LabVIEW Communications.

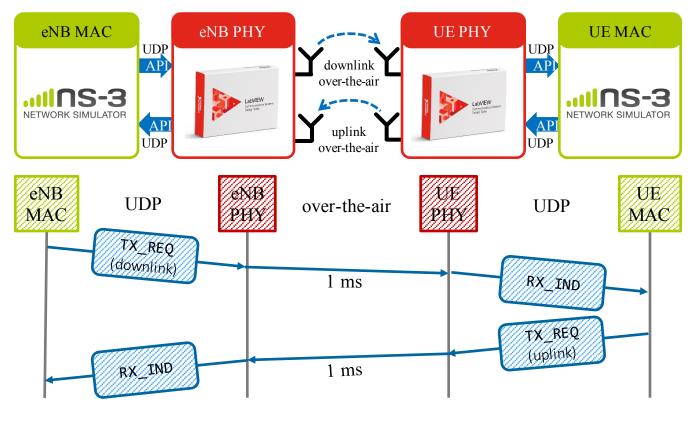
- Proof-of-concept of new PHY algorithms in an end-to-end real-time environment.
- Over-the-air experiments with modified upper layer stack (e.g. new MAC procedures).


LTE Application Framework

Real-time over-the-air transmission

Designed for modifiability by algorithm designers

PHY and Basic MAC Key Features

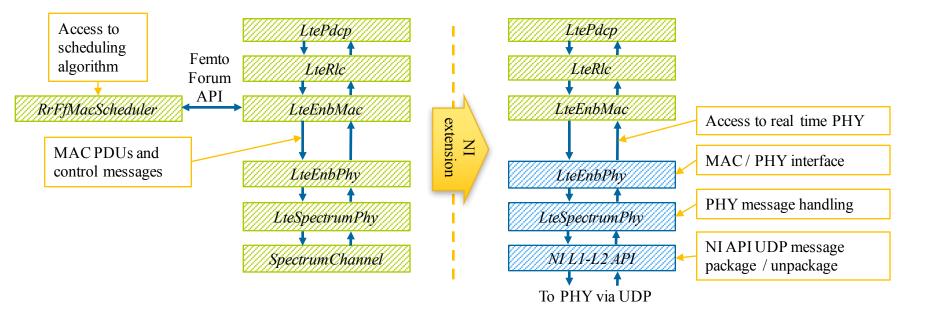

- SISO configuration with 20 MHz bandwidth
- TDD and FDD frame structure
- LTE channel encoding and decoding
- Up to 75 Mbps throughput
- Data channels : PDSCH and PUSCH
- Simplified control channel: PDCCH
- Downlink and Uplink to enable closed-loop operation with channel state and ACK/ NACK feedback
- Cell-specific and UE-specific reference signals



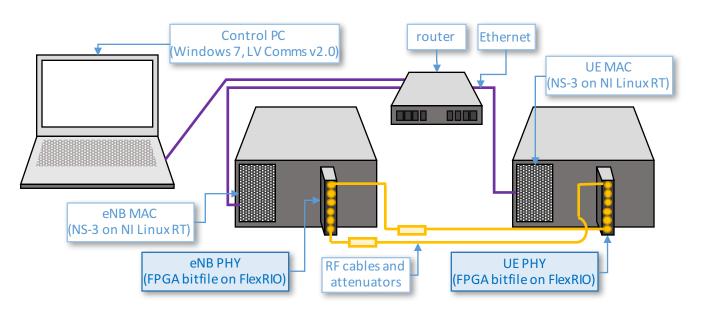
Preintegrated and Ready-to-Run Real-Time LTE PHY and Basic MAC on NI Software Defined Radio Hardware With Video Streaming Sample Application

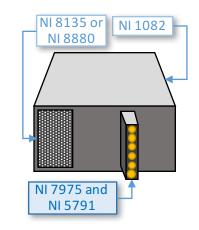


Platform Overview



NI Extensions to NS-3


NS-3 LTE Stack Changes



Hardware setup

FlexRIO+FAM Setup

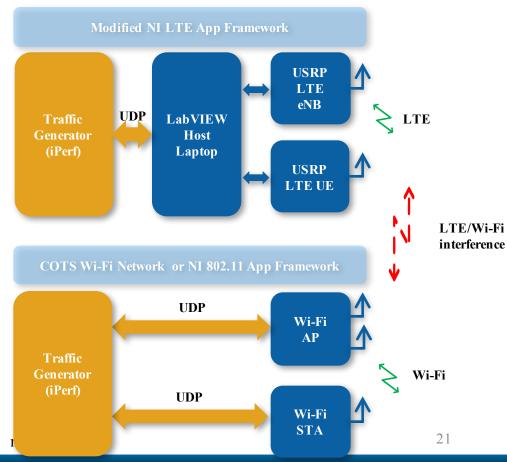
Legend

Acknowledgement

- This effort started as a Lead User collaboration with NYU Poly
 - Russell Ford & Prof. Sundeep Rangan
- Lead to a successful review and conclusion of the EU FP7 funded project "CROWD"

- Source code and detailed white paper will be released as an example with upcoming LabVIEW Communications v2.0
- A template for combining LabVIEW PHY/MAC with Linuxbased stacks for rapid prototyping

Cellular/Wi-Fi Coexistence in Unlicensed Bands


5GHz Unlicensed Spectrum and Cellular Technologies

• New PHY/MAC

- Licensed Assisted Access (LAA)
- LTE-Unlicensed (LTE-U)
- MuLTEfire
- Using 802.11 PHY/MAC
 - LTE Wi-Fi Aggregation (LWA)
 - Wi-Fi Offload (NGH, Hotspot 2.0)

NI LTE/Wi-Fi Coexistence Testbed (1)

National Instrument Experimental Results on Coexistence of DL LAA and Commodity Wi-Pi Network with Cet 2 LBT ocument for: Discussion

3GPP TSG RAN WG1 Meeting #83 Anabaim 11SA 16th - 20th Necember 2015

Agenda item 6.2.3.1

2.1 Metivation

National Instruments Experimental Results on Impact of Energy Detection Threshold for DI, LAA Discussion

Introduction This contribution is an extension of a previous submission to RANI [4]. In this contribution, we The contribution is methanism of a previous softmanno is AAN [4], in this contribution, we present operaturation calls. And a Wi-16 interprets preformance for viscous AAD, the text structures semantics. The appendixes the viscous and a protecting surface composed of commercially available of the shell hardware that allows us to configure LA and Wi-Fi-garameters for consistence or Wi-Hand AAA and we will be studies around for WiFi-WiFi containence as well as results for consistence of Wi-Hand AAA and we will configured EHT Calls.

2 LAA-WLEi Consistence Testhed

Trife:

R1-196622

tings, the accuracy of the assumptions and network simulation results h 2.2. Description of Testhed

1.4 Incomparison in concern the sequences in the desired to end by this consistence of two Wi-Fi networks and of an LAA network with a Wi-Fi network are also in a Figure 10 and Figure 10, respectively. The LAA WI-and the sequence of the sequence of the sequence of the security of the security of equilibrary, while the Wi-Fi networks are responsed of constraints with the DE 11 for and DE 111 for WI-Fi AFs and matters. The damages therems the devices are balanced to assess that the DESI in balance of EB. The treffed setup and definited operating Januarities are deviced at a DE 15 for all DE 15 f

atal results on LAA and WAFs throughout performance for this remain on LOA and wide unreignput performance on 1. The experiment was conducted on a protetyping testbed che-shelf hardware that allows us to configure LAA and tion [2-4]. We focus on experiments for WiJ1 downlink

y of the assumptions and network simulation results have daug of the coexistence, LAA testbed was developed to WUE 49

a consistence of an LAA network with a Wi-Fi network is modified version of a LTE PHY with discontinuous spabilities, while the Wi-Fi network is composed of a statism. The testbed setup and detailed experimental

NI LTE/Wi-Fi Coexistence Testbed (2)

- Creating a neutral platform for coexistence algorithm exploration
- Hardware
 - COTS or NI USRP RIO SDR Wi-Fi network
 - LTE network using NI USRP RIO SDR
- LAA/LTE-U example created using NI SDR software
 - LabVIEW Communications
 - LTE application framework (Host and FPGA)
 - $_{\circ}~$ Modified to add LAA/LTE-U functionality
 - $_{\circ}~$ 802.11 PHY blocks available from 802.11 application framework
- Example code and white paper is available
 - <u>http://www.ni.com/white-paper/53044/en/</u>
 - MWC 2016 testbed launch video: <u>http://videos.microwavejournal.com/video/National-Instruments-LTE-U-and;Test-Measurement</u>

LAA Modifications to Cellular MAC/PHY

- 802.11-like channel access support
 - Clear channel assessment
 - Discontinuous transmission with a given max TXOP
 - Listen before talk (LBT)
- Figure from 3GPP Spec TR 36.889 v13.0.0

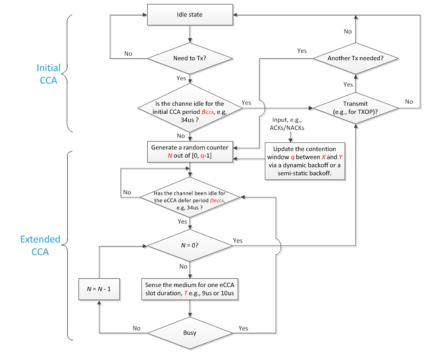
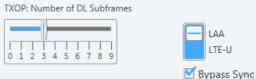
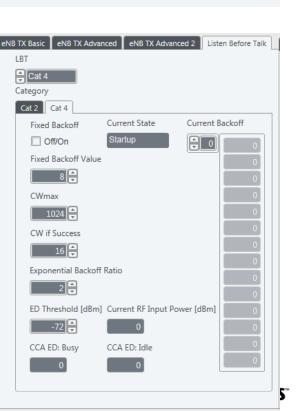


Figure 7.2.1.6-1: Flowchart of DL LAA SCell Cat 4 LBT procedure


Feature Set in Example Code


• LAA

- Listen before talk:
 - \circ Configurable CCA-ED threshold
 - $_{\circ}\ Cat \, 2$: Configurable duration
 - ° Cat 4: Configurable contention window size (CWS)
- Discontinuous transmission (DTX)
 - LBE (LAA): Configurable TXOP

• LTE-U

- FBE (LTE-U): configurable duty cycle
- Coexistence metrics
 - Throughput measurements
- Traffic generation
 - iPerf

Conclusions

- NI offers a platform for **flexible**, **open** and **scalable real-time** prototyping across MAC and PHY layers (LTE + WiFi + etc.).
- The platform will enable faster evaluation of algorithms with **simulations** and **prototyping**.

Thank you.

Contact

Amal Ekbal, Ph.D., Senior Wireless Platform Architect, National Instruments <u>aekbal@ni.com</u>

Further reading

- NI 5G <u>http://www.ni.com/5g/</u>
- LabVIEW Communications 802.11 Application Framework White Paper http://www.ni.com/product-documentation/52533/en/
- LabVIEW Communications LTE Application Framework White Paper <u>http://www.ni.com/white-paper/52524/en/</u>
- LabVIEW Communications LTE/Wi-Fi Coexistence Testbed White Paper <u>http://www.ni.com/white-paper/53044/en/</u>
- CROWD White Paper <u>http://www.ni.com/white-paper/52339/en/</u>
- CROWD Project website <u>http://www.ict-crowd.eu/</u>
- NS3 LTE Module Documentation http://lena.cttc.es/manual/

