

Converged Wireless Access: The New Normal

NEC Laboratories

Americ

Karthik Sundaresan WNPE, Univ of Washington, June 2016

www.nec-labs.com

5G Services

5G Services

- Services drive network requirements for 5G
- Wireless technology and access plays a critical role in this vision

Wireless Technology Evolution

Wireless Technology Evolution

Access: Two Isolated Worlds

- WiFi
 - Asynchronous, distributed access
 - Asynchronous transmit/ receive
 - De-coupled downlink and uplink

- Cellular (LTE)
 - Synchronous, coordinated access
 - Synchronous transmit/ receive
 - Coupled downlink and uplink (BS schedules)

Convergence in Access?

- Licensed spectrum crunch
 - Supplement licensed with unlicensed channels
- Co-existence challenges
 - Co-existence with WiFi and other LTE operators
 - Asynchronous access in traditional synchronous network
- Boundaries of access getting blurred
- Is this a one-off problem?

A Paradigm Shift in Access

- Two modes of operation
- LTE-U
 - Duty cycling at time scales of 100 ms
 - Can be realized today: switch on/off unlicensed carriers

- LTE-U
 - Duty cycling at time scales of 100 ms
 - Can be realized today: switch on/off unlicensed carriers
 - Short-term unfairness to WiFi, higher latency

- LTE-U
 - Duty cycling at time scales of 100 ms
 - Short-term unfairness to WiFi, higher latency
- LAA-LTE: License assisted access
 - Energy sensing CCA; Operation at 1-10 ms granularity
 - Modification to LTE specification for Listen-before-Talk

- LTE-U
 - Duty cycling at time scales of 100 ms
 - Short-term unfairness to WiFi, higher latency
- LAA-LTE: License assisted access
 - Energy sensing CCA; Operation at 1-10 ms granularity
 - Reduced throughput efficiency of smaller TxOP

12

Challenge

- Im-balanced channel access
 - WiFi detects/notifies other WiFi through "WiFi carrier" sensing/notification (-84 dBm sensitivity)
 - WiFi-LTE detect each other through "energy" sensing alone (-62 dBm sensitivity)

Challenge

- Im-balanced channel access
 - WiFi detects/notifies other WiFi through "WiFi carrier" sensing/notification (-84 dBm sensitivity)
 - WiFi-LTE detect each other through "energy" sensing alone (-62 dBm sensitivity)
- Can we homogenize channel access policies to deliver better latencies, throughput efficiency?

Ideal Solution

- WiFi sensing and preamble notification on every component carrier
 - Changes to the PHY; technology (WiFi) specific
- Scalable realization without PHY modifications?

ULTRON: Unlicensed LTE Radio Node

- Homogenized channel access
- WiFi Embedding
 - Embeds Tx notification (CTSto-Self) in LTE transmissions
- WiFi Sensing
 - Detects WiFi signals to realize
 -84 dBm sensitivity
 - Single WiFi sensing module spans multiple CCs; LTE scheduler balances traffic

ULTRON: Unlicensed LTE Radio Node

- Homogenized channel access
 - Detects WiFi signals to realize -84 dBm sensitivity
 - Embeds Tx notification to WiFi in LTE transmissions
- Efficient and fair LTE-WiFi co-existence (2x-3x gain)

Summary

- Boundaries between synchronous and asynchronous access models will get blurred in 5G
- Need a deeper understanding of how to realize converged access
 - Several interesting and important problems
 - Critical for innovation in unlicensed spectrum: new operators and business models
- LTE-WiFi co-existence barely scratches the surface
 - Both technical and policy challenges
- Right time to get involved!

Thanks! Questions/Comments?

Orchestrating a brighter world

www.nec-labs.com